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single charge Q" = Q at the position of Q, as in Figure 4-14b. Since

2
TR+
these combinations of charges produce fields which satisfy the boundary condi-
tions, we know from the uniqueness theorem that they provide the correct
solution. The shape of the field is shown in Figure 4-15.

In general, for two media having dielectric constants K, and K,,, with the
point charge Q in the first medium, the point charges which give the correct
field are the following: X X
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at the image position together with Q gives the field in the first medium, and
2K,
Kot Ka©

at the position of Q gives the field in the second medium.

(4-69)

0" =+ (4-70)

4.5. General Solution of Laplace’s Equation*

The methods which we have considered until now for the calculation of
electrostatic fields are useful only in special cases. We shall discuss here a more
general method which will involve solving Poisson’s equation,

vy = £ (4-71)

€

To begin with, we shall confine our attention to problems in which the charge
density p is equal to zero, thus we shall have to deal with Laplace’s equation,
v = 0. #-72)
Solutions of Laplace’s equation are known as harmonic functions, and there
are an infinite number of them. These functions have a number of general prop-
erties, of which we shall use the following one. If the functions Vi, V,, Vs, - - -
are solutions, then any linear combination 4;V; + A,V, + A3Vs + - - - of these
functions, where the A’s are arbitrary constants, is also a solution. This can be
demonstrated readily by substitution into the original equation.

4.5.1. Solutions in Rectangular Coordinates. It is usually possible to find
solutions of Laplace’s equation which will satisfy required boundary conditions
by the process of variable separation. In Cartesian coordina.es, for example, we
can usually find a solution of the form

V= X(x)Y(y) Z(z), (4-73)
where X(x), Y(y), and Z(z) are functions only of the variables x, y, and z

* Sections 4.5 to 4.6.3 may be omitted without losing continuity.
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respectively. We can then fit boundary conditions by adding a series of such
solutions multiplied by suitable coefficients. The uniqueness theorem assures us
that the solution thus found is the proper solution.
We can find the form of the functions X(x), Y(»), and Z(z) by substituting V'
of Eq. 4-73 into Laplace’s equation. Then
17524 ayY d*Z
YZsz_2+ZX21y_2+XYE=O’ 4-74)
where we have written total instead of partial derivatives, since the X, Y, and Z
functions are each a function of a
single variable. On dividing through
by XYZ, we find that

1 d*X 1 d*Y 1 d*Z
Xae TYar Tzdz -
(4-75)

Now since the second and third terms
are independent of x, and since the
three terms must add to zero at all
points, the first term must also be
independent of x. It is therefore con-
stant in value, and

y
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Figure 4-16. Grounded, plane-parallel . .
electrodes terminated by a plane elec- Similarly,
trode at potential V. The electrodes are _l ‘12_ = C 4-77)
assumed to be infinite in the direction Y dy? »
perpendicular to the paper and are as- 1 &2Z
sumed to extend infinitely on the right. Zdz = Cs. 4-78)
Then

Cl + C2 + C3 = O. (4-79)

The problem now becomes one of solving the three ordinary differential equa-
tions, subject to the condition of Eq. 4-79 and to the boundary conditions.

4.5.2. Field Between Two Grounded Semi-infinite Parallel Electrodes Ter-
minated by a Plane Electrode at Potential Vo. As an example, consider Fig-
ure 4-16, which shows two grounded, semi-infinite, parallel electrodes separated
by a distance b. The plane at x = 0 is occupied by a conducting electrode main-
tained at a potential ¥;. The problem is to find the potential ¥ at any point
between the plates.

Since the plates have infinite extent in the positive and negative z directions,
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the potential must be independent of z, thus the last term of Eq. 4-75, together
with the constant C;, is zero. We must therefore solve the two ordinary dif-

ferential equations

2
X kx=o (4-80)

and

2
%yl; + kY =0, (4-81)

where we have substituted k2 for C; and —k? for C; to eliminate square roots
in the solution. The choice between C; and C, as the negative constant is im-
material; the boundary conditions will force us to the same final solution in
either case.

Equation 4-81 is solved by setting

Y = Asinky 4 Bcos ky, (4-82)

where 4 and B are arbitrary constants. This can be easily verified by substitution.
Our value of Y must satisfy the boundary conditions

V=20 (r=0,y=0), (4-83)
V="V (x = 0), (4-84)
V—0 (x —- ). (4-85)

In order to have ¥V = 0 at y = 0 we must have B = 0; and in order to have
V = 0 at y = b we must have

kb = nr (n=1,2-"), (4-86)
thus
Y= Asin"—;)'l’ (n=1,2,---). (4-87)

The value n = 0 must be omitted, for it corresponds to a sine term which is
zero, and therefore to zero field.
Turning now to the X equation, we have

X nm\?
e (7;) X =0, (4-88)
thus
X = Gerrslb + Henrels, (4-89)

where G and H are arbitrary constants. We can again verify this solution by
substitution. The condition that ¥ —- 0 as x —- » requires that G = 0.
Altogether then, we have

V(x,y) = Csin n_? e—nralb (4-90)

where C is another arbitrary constant.
The solution as it is will obviously satisfy the boundary conditions stated in
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Egs. 4-83 and 4-85. 1t will not, however, satisfy Eq. 4-84. We therefore take an
infinite sum of such solutions and set

V(x,p) = 3, Cosin 52 e, (4-91)
n=1

To evaluate the coefficients C,, we use the boundary condition at x = 0,
namely,

(0, y) = Z C, sin 2% ’”y (4-92)

The expression on the right is called a Fourier series. It can be shown that the
functions in Eq. 4-92, provided an infinite series of cosine terms is also included,
constitute a complete set of functions. This means that an arbitrary boundary
condition can be satisfied with such an infinite series. \
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Figure 4-17. The condition V =V, as satisfied by a Fourier series taking (a)
only the first term, (b) the first 3 terms, (c) the first 10 terms, and (d) the first
100 terms. The Fourier series provides an increasingly better approximation as
the number of terms is increased.

Using a technique devised by Fourier, we multiply both sides of Eq. 4-92 by
sin [(pmry)/b], where p is an integer, and integrate from y = 0 to y = b:

b b ®
in ATV o PTY .
ﬁ Vosm b dy—/; ;C,,sm p Sy dy. (4-93)
On the left-hand side,
2bV, o s
b if p is odd,
/ Vo sm—b—dy =< P 499
0

0 if p is even,
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whereas on the right-hand side,
. 0 if p=~n,
s MY L PTY o .
ﬁ C, sin p Sinp dy c IEJ ifp=n. (4-95)

Thus, for a given p, the only term of the infinite series on the right-hand side
of Eq. 4-93 which differs from zero is the one for which n = p. Functions with
such properties are said to be orthogonal.

Combining Eqs. 4-94 and 4-95, we find that

o if n is odd, (4-96)
0 if n is even.

We can now write down the potential V at any point (x, y):

_% - l H m —nwr/b -
V(x,y) = — n=1;,...nsm ke ) (4-97)

The successive terms in the series become progressively less important because
of the (1/n) factor in the coefficients and because of the negative exponential
factor involving n. The degree of approximation which one achieves at x = 0

Figure 4-18

Three-dimensional plot of the po-
tential V for the configuration of
Figure 4-16. The U-shaped curves
are equipotentials; the others show
the intersections of the potential
surface with planes parallel to the
xV-plane.

with one, three, ten, and one hundred terms of the series is indicated in Fig-
ure 4-17. At x = b the first term alone gives a good approximation. The equi-
potentials are shown in Figure 4-18.

4.5.3. Field Between Two Grounded Parallel Electrodes Terminated on Two
Opposite Sides by Plates at Potentials V; and V2. As a more complicated
example, consider Figure 4-19, where two grounded plane parallel electrodes of
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width a are separated by a distance b and extend to infinity in the other direc-
tion. The plane at x = 0 is occupied by a conducting surface maintained at a
potential V3, and the plane at x = a is occupied by a conductor maintained at a
potential ¥,. The problem is again
to find the electrostatic potential ¥
at any point between the plates.
Since the plates have infinite extent
in the positive and negative z direc-
tions, there is no z dependence of
the potential, hence the last term of
Eq. 4-75, together with the constant
C; in Eq. 4-79, is again zero. Since
the Y part of the solution is identical
with that of the previous example,
Eq. 4-87 is again valid, as are Egs.
4-88 and 4-89.
< From this point on, the solution
Figure 4-19. Grounded plane-parallel differs from that of the previous ex-

electrodes terminated on two sides with ample, since the boundary conditions
plane electrodes at potentials V1 and V. are different. Here we have
The electrodes are assumed to be infinite

in the direction perpendicular to the V="Vatx=0 (4-98)
paper. and
V=V,atx=a. (4-99)

The most general solution, and the one required to satisfy the boundary condi-
tions, is

y

DI

V(x,3) = 3 (duesl* + Buer==®) sin ”—ZZ, (4-100)

n=1

where A, and B, are again constants which must be determined from the
boundary conditions.
Atx =0,

Vi= > (4. + B)sin "—-})’y- (4-101)

n=1
The coefficients are evaluated by the same Fourier method used in the previous
example. On multiplying by sin%’ and integrating from y = 0 to y = b, we
have again, out of the whole infinite series, only one term corresponding to
p=mn:

b
v f sin "2 dy = (s + B) 3 (4-102)
0
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thus
o
Ao+ B, = | n if n is odd, (4-103)
0 if n is even.

We can find another relationship between A4, and B, by using the boundary
condition at x = a: from Eq. 4-100,

0

Va= 3 (Auem/* + Bierrei®) sin 7. (4-104)

n=1

Multiplying by sinﬂgz and integrating from y = 0 to y = g, as before, we find
that

4V, e
— if nis odd,

Ane—mra/'b + Bnemra/b _— nmw (4-105)
0 if n is even,

and from Egs. 4-103 and 4-105,

4 (V) — Ve nmolb
A" = E ( 1 — e—2n1ru/b ) (4-106)
and
4e—n1ralb V., — Ve—mra/b
B"’ = nr ( i — e-1‘2n1ra/b > (4-107)

where n = 1,3, 5, - --. The potential ¥ at any point (x, y) is given by Eq. 4-100
with 4, and B, as above.

The degree of approximation achieved with a few terms of the final solution
using these coefficients in Eq. 4-100 will be left as a problem at the end of the
chapter. Figure 4-20 shows the equipotentials for the case where Vy = ¥V, = V..

Figure 4-20

A three-dimensional plot of the poten-
tial V for the configuration of Figure <
4-19withV, =V, =V,



