
No, this isn’t the 1 April issue of

Science, and yes, you read the head-

line correctly. Materials already

being developed could funnel light

and electromagnetic radiation

around any object and render it

invisible, theoretical physicists pre-

dict online in Science this week

( w w w. s c i e n c e m a g . o rg / c g i /

content/abstract/1125907 and …

1126493). In the near future, such

cloaking devices might shield sen-

sitive equipment from disruptive

radio waves or electric and mag-

netic fields. Cloaks that hide objects

from prying eyes might not be much

further off, researchers say.

The papers are “visionary,”

says George Eleftheriades, an

electrical engineer at the Univer-

sity of Toronto in Canada. “It’s

pioneering work that sets the stage for future

research.” Greg Gbur, a theoretical physicist

at the University of North Carolina, Charlotte,

notes that others have studied invisibility but

says the new papers describe more precisely

how to achieve it. “Each gives specific exam-

ples of how you might design an invisibility

device,” he says.

From spaceships that vanish in Star Trek

movies to Harry Potter hiding beneath his

imperceptible cloak, invisibility has been a

mainstay of science fiction and fantasy. But

it might become a reality thanks to emerging

“metamaterials,” assemblages of tiny rods,

c-shaped metallic rings, etc., that respond to

electromagnetic f ields in new and highly

controllable ways. John Pendry of Imperial

College London and colleagues, and Ulf

Leonhardt of the University of St. Andrews,

U.K., independently calculated how the

properties of a shell metamaterial must be

tailored to usher light around an object

inside it. An observer would see whatever is

behind the object as if the thing weren’t

there, Leonhardt says.

The theorists exploit the fact that light is

always in a hurry, taking the quickest route

between two points. That’s not always a

straight line, because light travels at different

speeds in different materials, and it opts for

the path that minimizes the total time of

transit. So when light passes from, say, air

into glass, its path may bend, which is why

ordinary lenses focus light.

Pendry and colleagues and Leonhardt cal-

culated how the speed of light would have to

vary from point to point within a spherical or

cylindrical shell to make the light flow around

the hole in the middle. Light must travel faster

toward the inner surface of the shell. In fact,

along the inner surface, light must travel infi-

nitely fast. That doesn’t violate Einstein’s the-

ory of relativity because within a material,

light has two speeds: the one at which the rip-

ples in a wave of a given frequency zip along,

and the one at which energy and information

flow. Only the second must remain slower than

light in a vacuum, as it does in a metamaterial.

The invisibility isn’t perfect: It works only in a

narrow range of wavelengths.

The authors map out the necessary speed

variations and leave it to others to design the

materials that will produce them. But

researchers already know how to design meta-

materials to achieve such bizarre properties, at

least for radio waves, says Nader Engheta, an

electrical engineer at the University of Penn-

sylvania. “It’s not necessarily easy, but the

recipes are there,” says Engheta, who last year

proposed using a metamaterial coating to

counteract an object’s ability to redirect light,

making combination nearly transparent.

Cloaking devices for radio waves could

appear within 5 years, Gbur says, and cloaks

for visible light are conceivable. Pendry notes

that even a cloak for static fields would, for

example, let technicians insert sensitive elec-

tronic equipment into a magnetic resonance

imaging machine without disturbing the

machine’s precisely tuned magnetic field.

Alas, even if invisibility proves possible, it

may not work the way it does in the movies.

For example, a cloaking device would be use-

less for spying, Pendry says. “Nobody can see

you in there, but of course you can’t see them,

either.” Keeping track of your always-invisible

device might be a pain, too.

–ADRIAN CHO
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No see? Forget the Invisible Man’s transparency potion; new
materials might ferry light around an object, making it invisible.

‘Disappointed’ Butler Exhausts Appeals 
Thomas Butler’s legal journey has come to an

end. On 15 May, the U.S. Supreme Court

declined to take up the case of the physician

and microbiologist who received a 2-year

prison sentence for shipping plague samples

to Tanzania without the required permits and

for defrauding his employer, Texas Tech Uni-

versity in Lubbock (Science, 19 December

2003, p. 2054).

Butler declined to be interviewed, but his

wife Elizabeth says her husband is “very dis-

appointed.” Butler is working in Lubbock at a

job unrelated to his professional training, she

says, and weighing offers to rebuild his career.

“This has been a tremendous blow,” she adds,

“but we are healing little by little.”

In January 2003, Butler reported vials con-

taining the plague bacterium Yersinia pestis

missing from his lab; after questioning by the

FBI, he signed a statement, which he later

withdrew, saying he had accidentally

destroyed the samples. In his trial, the jury dis-

missed all but one of the government’s charges

relating to illegal shipping and handling of

plague samples but found Butler guilty of

fraud involving fees for clinical trials he had

conducted at Texas Tech. Last fall, a three-

judge panel on the U.S. Court of Appeals for

the Fifth Circuit upheld his conviction (Science,

4 November 2005, p. 758); the full appeals

court declined to review the case.

“I have never in my career seen someone

who was handed such a gross injustice,” says

his attorney, George Washington University

law professor Jonathan Turley. Turley says that

the fraud charges, which the government

added after Butler refused to accept a plea bar-

gain, concerned a dispute between the

researcher and his employer that would not

otherwise have been prosecuted criminally.

Butler, 64, was transferred to a halfway

house in November after having served

19 months of his sentence and came home in

late December. His supporters, including

chemistry Nobelist Peter Agre of Duke Uni-

versity in Durham, North Carolina, are hop-

ing against hope for a presidential pardon, if

not from George W. Bush then possibly from

his successor.

–MARTIN ENSERINK

U.S. COURTS

High-Tech Materials Could Render Objects Invisible
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than in the rest of the disk. The correlation

remains notable even if we do not apply a

thickness filter to the data or if we use another

definition of the thickness (3, 11). The two maps

are not independent, however; changing the

density distribution in the arms will necessarily

produce changes in themeasured thickness unless

the perturbations are distributed in the same way

as the initial distribution. The alignment of

overdensities with regions of reduced thickness

was suggested previously (3). This alignment has

not been observed in other galaxies because

surface density maps are most easily made for

face-on galaxies where there is no information

about the thickness of the gas layer.

The radial profile of the HI disk has been a

matter of controversy for many years. A sharp

falloff in HI emission as a function of velocity

has long been known (18), but this need not

correspond to an abrupt radial cutoff in the disk

density (19). Velocity dispersion will cause fea-

tures to be smeared along the line of sight by

confusing the velocity-distance transformation,

resulting in the radially elongated features near

the edges of maps (Fig. 3). The radial extent of

the spiral arms provides a minimum cutoff ra-

dius for the Galactic gas disk; in other words, it

is not possible for the gas to have spiral

structure beyond where the HI disk ends. This

radius is only a lower limit, because it is

possible that there is gas beyond where the

spiral structure ends that does not participate in

the spiral structure or that past some radius the

arms are too weak to be detected by the un-

sharp masking. Near 25-kpc Galactocentric

radius, both the surface density and the thick-

ness perturbation maps (Fig. 3) change from

spiral patterns to features elongated along the

line of sight. This is most clearly seen in the

south; the transition radius is not immediately

obvious in the north. Thus, the HI gas disk must

extend to at least 25 kpc from the Galactic

center in the south, about three times the Sun-

Galactic center distance. A related conclusion is

that gas within the cutoff radius is kinematically

settled into a disk; otherwise it would be

unlikely to respond to the spiral density waves.

It is useful to fit four-armed models to our

density perturbation map. We used logarithmic

spiral arms that start at the Solar circle:

logðR=R0Þ 0 EfðRÞ j f0^tany ð2Þ

where y is the pitch angle and f
0
is the

Galactocentric azimuth at the Solar circle. Our

fitting method was designed to trace the regions

of gas overdensity. For each of the four arms

apparent in Fig. 1, we investigated an evenly

spaced grid of these two free parameters for

ranges of values that connect the overdense con-

tours. For each combination of y and f
0
, we

linearly interpolated the value of P for the

locus of points along each arm. Any points that

fall in the excluded regions were ignored. We

used the median of the list of interpolated

values as a measure of the goodness of fit for

each curve. In this scheme, arms with values

of y and f
0
that trace overdense regions will

naturally have a large median and thus a large

goodness of fit. The best fit values of y and

f
0
for each of the four arms are given (Table

1). Other fits that connect a different set of

features in the map could be drawn, because

assigning a unique arm pattern to a map is not

possible. We find pitch angles for the outer

arms in the range from 20- to 25-; this is larger
than the value of y , 13- averaged over a

variety of tracers (20). This does not neces-

sarily imply a disagreement, however, be-

cause the arms could be unwinding in their

outer regions.

Various models of the locations of the

arms have been proposed. We compared our

map to a model derived from regions of

ionized hydrogen (21–23); the model consists

of two pairs of mirror symmetric arms follow-

ing logarithmic spirals. We denoted this as the

symmetric model (Fig. 4). The symmetric mod-

el fits P reasonably well over much of the

southern sky; the agreement is poor in the north

where the spiral structure is less prominent,

possibly because of the larger thickness of the

northern gas (11). Gas that is dynamically

warmer is less likely to respond to spiral den-

sity waves, and the azimuthally averaged thick-

ness of the northern gas is nearly twice that of

the southern gas at R 0 20 kpc.

There are several places where the symmet-

ric model deviates from the data. For example,

the arm in the north (R , 13 kpc) falls in

between two of the model_s arms; forcing the

arms to be mirror-imaged pairs is too strong a

restriction. Features near the excluded regions

could result from a large-scale ordered velocity

structure that has not been included in our rota-

tion model. Elliptical streamlines with m 0 2

could cause such an effect (11). Images of other

galaxies suggest that the spiral arms may

bifurcate into spurs in the outer disk. The

structure of the Perseus and Carina arms past

R , 20 kpc is suggestive of this behavior.
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Optical Conformal Mapping
Ulf Leonhardt

An invisibility device should guide light around an object as if nothing were there, regardless
of where the light comes from. Ideal invisibility devices are impossible, owing to the wave
nature of light. This study develops a general recipe for the design of media that create
perfect invisibility within the accuracy of geometrical optics. The imperfections of invisibility
can be made arbitrarily small to hide objects that are much larger than the wavelength. With
the use of modern metamaterials, practical demonstrations of such devices may be possible.
The method developed here can also be applied to escape detection by other electromagnetic
waves or sound.

A
ccording to Fermat_s principle (1), light

rays take the shortest optical paths in

dielectric media, where the refractive

index n integrated along the ray trajectory defines

the path length. When n is spatially varying, the

shortest optical paths are not straight lines, but are

curved. This light bending is the cause of many

optical illusions. Imagine a situation where a

medium guides light around a hole in it. Suppose

that all parallel bundles of incident rays are bent

around the hole and recombined in precisely the

same direction as they entered the medium. An

REPORTS
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observer would not see the difference between

light passing through the medium or propagating

across empty space (or, equivalently, in a uniform

medium). Any object placed in the hole would be

hidden from sight. The medium would create the

ultimate optical illusion: invisibility (2).

However, it has been proved (3, 4) that per-

fect invisibility is unachievable, except in a finite

set of discrete directions where the object

appears to be squashed to infinite thinness and

for certain objects that are small as compared

with the wavelength (5, 6). In order to carry

images, though, light should propagate with a

continuous range of spatial Fourier components,

i.e., in a range of directions. The mathematical

reason for the impossibility of perfect invisibility

is the uniqueness of the inverse-scattering

problem for waves (3): the scattering data, i.e.,

the directions and amplitudes of the transmitted

plane-wave components determine the spatial

profile of the refractive index (3). Therefore, the

scattering data of light in empty space are only

consistent with the propagation through empty

space. Perfect illusions are thus thought to be

impossible due to the wave nature of light.

On the other hand, the theorem (3) does not

limit the imperfections of invisibility—they

may be very small—nor does it apply to light

rays, i.e., to light propagation within the regime

of geometrical optics (1). This study develops a

general recipe for the design of media that

create perfect invisibility for light rays over a

continuous range of directions. Because this

method is based on geometrical optics (1), the

inevitable imperfections of invisibility can be

made exponentially small for objects that are

much larger than the wavelength of light.

To manufacture a dielectric invisibility de-

vice, media are needed that possess a wide range

of the refractive index in the spectral domain

where the device should operate. In particular,

Fermat_s Principle (1) seems to imply that n G 1

in some spatial regions, because only in this case

the shortest optical paths may go around the

object without causing phase distortions. In our

example, n varies from 0 to about 36. In practice,

one could probably accept a certain degree of

visibility that substantially reduces the demands

on the range of the refractive index.

Extreme values of n occur when the material

is close to resonance with the electromagnetic

field. Metamaterials (7) with man-made reso-

nances can be manufactured with appropriately

designed circuit boards, similar to the ones used

for demonstrating negative refraction (8). The

quest for the perfect lens (9) has led to recent im-

provements (7, 10–13) mainly focused on tuning

themagnetic susceptibilities. In suchmetamaterials,

each individual circuit plays the role of an artificial

atom with tunable resonances. With these artificial

dielectrics, invisibility could be reached for fre-

quencies in the microwave-to-terahertz range. In

contrast, stealth technology is designed to make

objects of military interest as black as possible to

radar where, using impedance matching (14), elec-

tromagnetic waves are absorbed without reflection,

i.e., without any echo detectable by radar. Recently,

nanofabricated metamaterials with custom-made

plasmon resonances have been demonstrated (13)

that operate in the visible range of the spectrum

and may be modified to reach invisibility.

The method used here is general and also ap-

plicable to other forms of wave propagation—

for example, to sound waves, where the index

n describes the ratio of the local phase velocity

of the wave to the bulk value, or to quantum-

mechanical matter waves, where external po-

tentials act like refractive-index profiles (1).

For instance, one could use the profiles of n

described here to protect an enclosed space

from any form of sonic tomography. This study

examines the simplest nontrivial case of invisi-

bility, an effectively two-dimensional situation,

by applying conformal mapping (15) to solve

the problem—an elegant technique used in

research areas as diverse as electrostatics (14),

fluid mechanics (16), classical mechanics

(17–20), and quantum chaos (21, 22).

Consider an idealized situation: a dielectric

medium that is uniform in one direction and light

of wave number k that propagates orthogonal to

that direction. In practice, the mediumwill have a

finite extension and the propagation direction of

light may be slightly tilted without causing an

appreciable difference to the ideal case. The

medium is characterized by the refractive-index

profile n(x,y). To satisfy the validity condition of

geometrical optics, n(x,y) must not vary bymuch

over the scale of an optical wavelength 2p/k (1).

To describe the spatial coordinates in the

propagation plane, complex numbers z 0 x þ iy

are used with the partial derivatives ¯
x
0 ¯

z
þ ¯

z
*

and ¯
y
0 i¯

z
j i¯

z
*, where the asterisk sym-

bolizes complex conjugation. In the case of a

gradually varying refractive-index profile, both

amplitudes y of the two polarizations of light

obey the Helmholtz equation (1)

ð4¯z*¯z þ n2k2Þy 0 0 ð1Þ

written here in complex notation with the

Laplace operator ¯
x
2 þ ¯

y
2 0 4¯

z
*¯

z
. Suppose

we introduce new coordinates w described by an

analytic function w(z) that does not depend on

z*. Such functions define conformal maps (15)

that preserve the angles between the coordinate

lines. Because ¯
z
*¯

z
0 kdw/dzk2¯

w
*¯

w
, we obtain

in w space a Helmholtz equation with the

transformed refractive-index profile n¶ that is

related to the original one as

n 0 n¶
dw

dz

����
���� ð2Þ

Suppose that the medium is designed such that

n(z) is the modulus of an analytic function g(z).

The integral of g(z) defines a map w(z) to new

coordinates where, according to Eq. 2, the

transformed index n¶ is unity. Consequently, in

w coordinates, the wave propagation is in-

distinguishable from empty space where light

rays propagate along straight lines. The medium

performs an optical conformal mapping to

empty space. If w(z) approaches z for w Y V,

all incident waves appear at infinity as if they

have traveled through empty space, regardless

School of Physics and Astronomy, University of St Andrews,
North Haugh, St Andrews KY16 9SS, Scotland. E-mail:
ulf@st-andrews.ac.uk

Fig. 1. Optical conformal map. A dielectric
medium conformally maps physical space
described by the points z 0 x þ iy of the complex
plane onto Riemann sheets if the refractive-index
profile is kdw/dzk with some analytic function
w(z). The figure illustrates the simple map (3)
where the exterior of a circle in the picture above
is transformed into the upper sheet in the lower
picture, and the interior of the circle is mapped
onto the lower sheet. The curved coordinate grid
of the upper picture is the inverse map z(w) of
the w coordinates, approaching a straight
rectangular grid at infinity. As a feature of
conformal maps, the right angles between the
coordinate lines are preserved. The circle line in
the figure above corresponds to the branch cut
between the sheets below indicated by the curly
black line. The figure also illustrates the typical
fates of light rays in such media. On the w
sheets, rays propagate along straight lines. The
rays shown in blue and green avoid the branch
cut and hence the interior of the device. The ray
shown in red crosses the cut and passes onto the
lower sheet where it approaches V. However, this
V corresponds to a singularity of the refractive
index and not to the V of physical space. Rays
like this one would be absorbed, unless they are
guided back to the exterior sheet.
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of what has happened in the medium. However,

as a consequence of the Riemann Mapping

Theorem (15), nontrivial w coordinates occupy

Riemann sheets with several V, one on each

sheet. Consider, for example, the simple map

w 0 z þ a2

z
, z 0

1=2
�
w T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 j 4a2

p �
ð3Þ

illustrated in Fig. 1, that is realized by the

refractive-index profile n 0 k1 j a2/z2k. The

constant a characterizes the spatial extension of

the medium. The function (3) maps the exterior

of a circle of radius a on the z plane onto one

Riemann sheet and the interior onto another.

Light rays traveling on the exterior w sheet may

have the misfortune of passing the branch cut

between the two branch points T2a. In

continuing their propagation, the rays approach

V on the interior w sheet. Seen on the physical z

plane, they cross the circle of radius a and

approach the singularity of the refractive index

at the origin. For general w(z), only one V on

the Riemann structure in w space corresponds

to the true V of physical z space and the

others to singularities of w(z). Instead of

traversing space, light rays may cross the

branch cut to another Riemann sheet where

they approach V. Seen in physical space, the

rays are irresistibly attracted toward some

singularities of the refractive index. Instead

of becoming invisible, the medium casts a

shadow that is as wide as the apparent size of

the branch cut. Nevertheless, the optics on

Riemann sheets turns out to serve as a

powerful theoretical tool for developing the

design of dielectric invisibility devices.

All we need to achieve is to guide light back

from the interior to the exterior sheet, i.e., seen in

physical space, from the exterior to the interior

layer of the device. To find the required

refractive-index profile,we interpret theHelmholtz

equation in w space as the SchrPdinger equation
(1) of a quantum particle of effective mass k2

moving in the potential U with energy E such

that U j E 0 jn¶
2
/2 (1). We wish to send all

rays that have passed through the branch cut onto

the interior sheet back to the cut at precisely the

same location and in the same direction in which

they entered. This implies thatwe need a potential

for which all trajectories are closed. Assuming

radial symmetry for U(w) around one branch

point w
1
, say þ2a in our example, only two

potentials have this property: the harmonic

oscillator and the Kepler potential (17). In both

cases the trajectories are ellipses (17) that are

related to each other by a transmutation of force

according to the Arnol_d-Kasner theorem (18–20).

The harmonic oscillator corresponds to a Luneburg

lens (23) on the Riemann sheet with the trans-

formed refractive-index profile

n¶
2
0 1 j

kw j w1k
2

r20
ð4Þ

where r
0
is a constant radius. The Kepler

potential with negative energy E corresponds

to an Eaton lens (23) with the profile

n¶
2
0

r0

kw j w1 k
j 1 ð5Þ

Note that the singularity of the Kepler profile in

w space is compensated by the zero of kdw/dzk
at a branch point in physical space such that the

total refractive index (2) is never singular. In

both cases (4) and (5), r
0
defines the radius of

the circle on the interior w sheet beyond which

n¶
2
would be negative and hence inaccessible to

light propagation. This circle should be large

enough to cover the branch cut. The inverse

map z(w) turns the outside of the circle into the

inside of a region bounded by the image z(w) of

the circle line in w space. No light can enter

this region. Everything inside is invisible.

Yet there is one more complication: Light is

refracted (1) at the boundary between the exterior

and the interior layer. Seen in w space, light rays

encounter here a transition from the refractive

index 1 to n¶. Fortunately, refraction is reversible.

After the cycles on the interior sheets, light rays

are refracted back to their original directions

(Fig. 2). The invisibility is not affected, unless

the rays are totally reflected. According to

Snell_s Law (1), rays with angles of incidence

q with respect to the branch cut enter the lower

sheet with angles q¶ such that n¶sinq¶ 0 sinq. If
n¶ G 1, this equation may not have real solutions

for q larger than a critical angle Q. Instead of

entering the interior layer of the device, the light

is totally reflected (1). The angle Q defines the

acceptance angle of the dielectric invisibility

device, because beyond Q, the device appears

silvery instead of invisible. The transformed

refractive-index profiles (4) and (5) at the

boundary between the layers are lowest at the

other branch point w
2
that limits the branch cut,

w
2
0 j2a, in our example. In the case of the

harmonic-oscillator profile (4), n¶ lies always

below 1, and we obtain the acceptance angle

Q 0 arccos
kw2 jw1k

r0

� �
ð6Þ

For all-round invisibility, the radius r
0
should

approach infinity, which implies that the entire

Fig. 3. Ray propagation in the dielectric invisi-
bility device. The light rays are shown in yellow. The
brightness of the green background indicates the
refractive-index profile taken from the simple map
(3) and the Kepler profile (5) with r0 0 8a in the
interior layer of the device. The invisible region is
shown in black. The upper panel illustrates how
light is refracted at the boundary between the two
layers and guided around the invisible region,
where it leaves the device as if nothing were
there. In the lower panel, light simply flows
around the interior layer.

Fig. 2. Light guiding. The device guides light that
has entered its interior layer back to the exterior,
represented here using two Riemann sheets that
correspond to the two layers, seen from above.
Light on the exterior sheet is shown in blue and
light in the interior, in red. At the branch cut, the
thick line between the two points in the figure (the
branch points), light passes from the exterior to
the interior sheet. Here light is refracted according
to Snell’s law. On the lower sheet, the refractive-
index profile (5) guides the rays to the exterior
sheet in elliptic orbits with one branch point as
focal point. Finally, the rays are refracted back to
their original directions and leave on the exterior
sheet as if nothing has happened. The circle in the
figure indicates the maximal elongations of the
ellipses. This circle limits the region in the interior
of the device that light does not enter. The outside
of the circle corresponds to the inside of the
device. Anything beyond this circle is invisible.
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interior sheet is used for guiding the light back

to the exterior layer. Fortunately, the Kepler pro-

file (5) does not lead to total reflection if r
0
Q

2kw
2
j w

1
k. In this case, the invisible area is

largest for

r0 0 2kw2 j w1k ð7Þ

Figure 3 illustrates the light propagation in a

dielectric invisibility device based on the simple

map (3) and the Kepler profile (5) with r
0
0 8a.

Here n ranges from 0 to about 36, but this

example is probably not the optimal choice.

One can choose from infinitely many conformal

maps w(z) that possess the required properties

for achieving invisibility: w(z) È z for z Y V

and two branch points w
1
and w

2
. The invisible

region may be deformed to any simply

connected domain by a conformal map that is

the numerical solution of a Riemann-Hilbert

problem (16). We can also relax the tacit

assumption that w
1
connects the exterior to only

one interior sheet, but to m sheets where light

rays return after m cycles. If we construct w(z)

as af(z/a) with some analytic function f(z) of the

required properties and a constant length scale

a, the refractive-index profile kdw/dzk is identical
for all scales a. Finding the most practical

design is an engineering problem that depends

on practical demands. This problem may also

inspire further mathematical research on con-

formal maps in order to find the optimal design

and to extend our approach to three dimensions.

Finally, we ask why our scheme does not

violate themathematical theorem (3) that perfect

invisibility is unattainable. The answer is that

waves are not only refracted at the boundary

between the exterior and the interior layer, but

also are reflected, and that the device causes a

time delay. However, the reflection can be

substantially reduced by making the transition

between the layers gradual over a length scale

much larger than the wavelength 2p/k or by

using anti-reflection coatings. In this way, the

imperfections of invisibility can be made as

small as the accuracy limit of geometrical optics

(1), i.e., exponentially small. One can never

completely hide from waves, but can from rays.
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Controlling Electromagnetic Fields
J. B. Pendry,1* D. Schurig,2 D. R. Smith2

Using the freedom of design that metamaterials provide, we show how electromagnetic fields can
be redirected at will and propose a design strategy. The conserved fields—electric displacement
field D, magnetic induction field B, and Poynting vector B—are all displaced in a consistent
manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude
completely all electromagnetic fields. Our work has relevance to exotic lens design and to the
cloaking of objects from electromagnetic fields.

T
o exploit electromagnetism, we use ma-

terials to control and direct the fields: a

glass lens in a camera to produce an

image, a metal cage to screen sensitive equip-

ment, Bblackbodies[ of various forms to prevent

unwanted reflections. With homogeneous mate-

rials, optical design is largely a matter of

choosing the interface between two materials.

For example, the lens of a camera is optimized

by altering its shape so as to minimize geomet-

rical aberrations. Electromagnetically inhomoge-

neous materials offer a different approach to

control light; the introduction of specific gra-

dients in the refractive index of a material can be

used to form lenses and other optical elements,

although the types and ranges of such gradients

tend to be limited.

A new class of electromagnetic materials

(1, 2) is currently under study: metamaterials,

which owe their properties to subwavelength

details of structure rather than to their chemical

composition, can be designed to have properties

difficult or impossible to find in nature. We

show how the design flexibility of metamaterials

can be used to achieve new electromagnetic

devices and how metamaterials enable a new

paradigm for the design of electromagnetic struc-

tures at all frequencies from optical down to DC.

Progress in the design of metamaterials has

been impressive. A negative index of refraction

(3) is an example of a material property that

does not exist in nature but has been enabled by

using metamaterial concepts. As a result,

negative refraction has been much studied in

recent years (4), and realizations have been

reported at both GHz and optical frequencies

(5–8). Novel magnetic properties have also been

reported over a wide spectrum of frequencies.

Further information on the design and construc-

tion of metamaterials may be found in (9–13).

In fact, it is now conceivable that a material

can be constructed whose permittivity and

permeability values may be designed to vary

independently and arbitrarily throughout a

material, taking positive or negative values as

desired.

1Department of Physics, Blackett Laboratory, Imperial
College London, London SW7 2AZ, UK. 2Department of
Electrical and Computer Engineering, Duke University, Box
90291, Durham, NC 27708, USA.

*To whom correspondence should be addressed. E-mail:
j.pendry@imperial.ac.uk

Fig. 1. (A) A field line in
free space with the back-
ground Cartesian coordi-
nate grid shown. (B) The
distorted field line with the
background coordinates
distorted in the same fash-
ion. The field in question
may be the electric dis-
placement or magnetic in-
duction fields D or B, or the
Poynting vector S, which is
equivalent to a ray of light.
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If we take this unprecedented control over

the material properties and form inhomogeneous

composites, we enable a powerful form of

electromagnetic design. As an example of this

design methodology, we show how the con-

served quantities of electromagnetism—the

electric displacement fieldD, the magnetic field

intensity B, and the Poynting vector S—can all

be directed at will, given access to the

appropriate metamaterials. In particular, these

fields can be focused as required or made to

avoid objects and flow around them like a fluid,

returning undisturbed to their original trajecto-

ries. These conclusions follow from exact

manipulations of Maxwell_s equations and are

not confined to a ray approximation. They

encompass in principle all forms of electro-

magnetic phenomena on all length scales.

We start with an arbitrary configuration of

sources embedded in an arbitrary dielectric and

magnetic medium. This initial configuration

would be chosen to have the same topology as

the final result we seek. For example, we might

start with a uniform electric field and require that

the field lines be moved to avoid a given region.

Next, imagine that the system is embedded in

some elastic medium that can be pulled and

stretched as we desire (Fig. 1). To keep track of

distortions, we record the initial configuration

of the fields on a Cartesian mesh, which is

subsequently distorted by the same pulling and

stretching process. The distortions can now be

recorded as a coordinate transformation be-

tween the original Cartesian mesh and the

distorted mesh

uðx,y,zÞ,vðx,y,zÞ,wðx,y,zÞ ð1Þ

where (u, v, w) is the location of the new point

with respect to the x, y, and z axes. What hap-

pens to Maxwell_s equations when we substitute

the new coordinate system? The equations have

exactly the same form in any coordinate system,

but the refractive index—or more exactly the

permittivity e and permeability m—are scaled by

a common factor. In the new coordinate system,

we must use renormalized values of the

permittivity and permeability:

e¶ u 0 eu
QuQvQw

Q2
u

(

m¶ u 0 mu

QuQvQw

Q2
u

( etc: ð2Þ

E¶ u 0 QuEu( H ¶u 0 QuHu( etc: ð3Þ

where,

Q2
u 0

¯x

¯u

� �2

þ ¯y

¯u

� �2

þ ¯z

¯u

� �2

Q2
v 0

¯x

¯v

� �2

þ ¯y

¯v

� �2

þ ¯z

¯v

� �2

Q2
w 0

¯x

¯w

� �2

þ ¯y

¯w

� �2

þ ¯z

¯w

� �2

ð4Þ

As usual,

B¶ 0 m0m¶H¶( D¶ 0 e0e¶E¶ ð5Þ

We have assumed orthogonal coordinate systems

for which the formulae are particularly simple.

The general case is given in (14) and in the

accompanying online material (15). The equiv-

alence of coordinate transformations and changes

to e and m has also been referred to in (16).

Now let us put these transformations to use.

Suppose we wish to conceal an arbitrary object

contained in a given volume of space; further-

more, we require that external observers be

unaware that something has been hidden from

them. Our plan is to achieve concealment by

cloaking the object with a metamaterial whose

function is to deflect the rays that would have

struck the object, guide them around the object,

and return them to their original trajectory.

Our assumptions imply that no radiation can

get into the concealed volume, nor can any

radiation get out. Any radiation attempting to

penetrate the secure volume is smoothly guided

around by the cloak to emerge traveling in the

same direction as if it had passed through the

empty volume of space. An observer concludes

that the secure volume is empty, but we are free to

hide an object in the secure space. An alternative

scheme has been recently investigated for the

concealment of objects (17), but it relies on a

specific knowledge of the shape and the material

properties of the object being hidden. The

electromagnetic cloak and the object concealed

thus form a composite whose scattering proper-

ties can be reduced in the lowest order approx-

imation: If the object changes, the cloak must

change, too. In the scheme described here, an

arbitrary object may be hidden because it re-

mains untouched by external radiation. The

method leads, in principle, to a perfect electro-

magnetic shield, excluding both propagating

waves and near-fields from the concealed region.

For simplicity, we choose the hidden object

to be a sphere of radius R
1
and the cloaking

region to be contained within the annulus R
1
G

r G R
2
. A simple transformation that achieves

the desired result can be found by taking all

fields in the region r G R
2
and compressing

them into the region R
1
G r G R

2
,

r¶ 0 R1 þ rðR2 j R1Þ=R2,

q¶ 0 q,

f¶ 0 f ð6Þ

Applying the transformation rules (15) gives

the following values: for r G R
1
, e¶ and m¶ are

free to take any value without restriction and do

not contribute to electromagnetic scattering; for

R
1
G r G R

2

e¶r¶ 0 m¶r¶ 0
R2

R2 j R1

ðr¶ j R1Þ2

r¶
,

e¶q¶ 0 m¶q¶ 0
R2

R2 j R1

,

e¶f¶ 0 m¶f¶ 0
R2

R2 j R1

ð7Þ

Fig. 2. A ray-tracing program has been used to calculate ray trajectories in the cloak, assuming that
R2 d l. The rays essentially following the Poynting vector. (A) A two-dimensional (2D) cross section of
rays striking our system, diverted within the annulus of cloaking material contained within R1 G r G R2
to emerge on the far side undeviated from their original course. (B) A 3D view of the same process.

Fig. 3. A point charge located near the cloaked
sphere. We assume that R2 ¡ l, the near-field
limit, and plot the electric displacement field. The
field is excluded from the cloaked region, but
emerges from the cloaking sphere undisturbed.
We plot field lines closer together near the sphere
to emphasize the screening effect.
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for r 9 R
2

e¶r¶ 0 m¶r¶ 0 e¶q¶ 0 m¶q¶ 0 e¶f¶ 0 m¶f¶ 0 1 ð8Þ

We stress that this prescription will exclude all

fields from the central region. Conversely, no

fields may escape from this region. At the outer

surface of the cloak (r 0 R
2
), we have e¶q¶ 0 e¶f¶ 0

1/e¶
r¶
and m¶q¶ 0 m¶f¶ 0 1/m¶

r¶
, which are the

conditions for a perfectly matched layer (PML).

Thus we can make the connection between this

cloak, which is reflectionless by construction, and

a well-studied reflectionless interface (18).

For purposes of illustration, suppose that

R
2
d l, where l is the wavelength, so that we

can use the ray approximation to plot the

Poynting vector. If our system is then exposed

to a source of radiation at infinity, we can per-

form the ray-tracing exercise shown in Fig. 2.

Rays in this figure result from numerical integra-

tion of a set of Hamilton_s equations obtained by

taking the geometric limit of Maxwell_s equations
with anisotropic, inhomogeneous media. This

integration provides independent confirmation

that the configuration specified by Eqs. 6 and 7

excludes rays from the interior region. Al-

ternatively, if R
2
¡ l and we locate a point

charge nearby, the electrostatic (or magnetostatic)

approximation applies. A plot of the local

electrostatic displacement field is shown in Fig. 3.

Next we discuss the characteristics of the

cloaking material. There is an unavoidable

singularity in the ray tracing, as can be seen by

considering a ray headed directly toward the

center of the sphere (Fig. 2). This ray does not

know whether to be deviated up or down, left

or right. Neighboring rays are bent around in

tighter and tighter arcs the closer to the critical

ray they are. This in turn implies very rapid

changes in e¶ and m¶, as sensed by the ray.

These rapid changes are due (in a self-

consistent way) to the tight turn of the ray and

the anisotropy of e¶ and m¶. Anisotropy of the

medium is necessary because we have com-

pressed space anisotropically.

Although anisotropy and even continuous

variation of the parameters is not a problem for

metamaterials (19–21), achieving very large or

very small values of e¶ and m¶ can be. In

practice, cloaking will be imperfect to the

degree that we fail to satisfy Eq. 7. However,

very considerable reductions in the cross sec-

tion of the object can be achieved.

A further issue is whether the cloaking effect

is broadband or specific to a single frequency. In

the example we have given, the effect is only

achieved at one frequency. This can easily be

seen from the ray picture (Fig. 2). Each of the

rays intersecting the large sphere is required to

follow a curved, and therefore longer, trajectory

than it would have done in free space, and yet

we are requiring the ray to arrive on the far side

of the sphere with the same phase. This implies

a phase velocity greater that the velocity of

light in vacuum which violates no physical law.

However, if we also require absence of dis-

persion, the group and phase velocities will be

identical, and the group velocity can never

exceed the velocity of light. Hence, in this

instance the cloaking parameters must disperse

with frequency and therefore can only be fully

effective at a single frequency. We mention in

passing that the group velocity may sometimes

exceed the velocity of light (22) but only in the

presence of strong dispersion. On the other

hand, if the system is embedded in a medium

having a large refractive index, dispersion may

in principle be avoided and the cloaking operate

over a broad bandwidth.

We have shown how electromagnetic fields

can be dragged into almost any desired config-

uration. The distortion of the fields is represented

as a coordinate transformation, which is then used

to generate values of electrical permittivity and

magnetic permeability ensuring that Maxwell_s
equations are still satisfied. The new concept of

metamaterials is invoked, making realization of

these designs a practical possibility.
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Nanoassembly of a Fractal
Polymer: A Molecular ‘‘Sierpinski
Hexagonal Gasket’’
George R. Newkome,1,2* Pingshan Wang,1 Charles N. Moorefield,1 Tae Joon Cho,1

Prabhu P. Mohapatra,1 Sinan Li,3 Seok-Ho Hwang,1 Olena Lukoyanova,5 Luis Echegoyen,5

Judith A. Palagallo,4 Violeta Iancu,6 Saw-Wai Hla6

Mathematics and art converge in the fractal forms that also abound in nature. We used molecular
self-assembly to create a synthetic, nanometer-scale, Sierpinski hexagonal gasket. This non-
dendritic, perfectly self-similar fractal macromolecule is composed of bis-terpyridine building
blocks that are bound together by coordination to 36 Ru and 6 Fe ions to form a nearly planar
array of increasingly larger hexagons around a hollow center.

F
ractal constructs are based on the incorpo-

ration of identical motifs that repeat on

differing size scales (1). Examples of fractal

shapes in nature include clouds, trees, waves on a

lake, the human circulatory system, and moun-

tains, to mention but a few. The study of fractals

has moved from the field of pure mathematics to

descriptions of nature that, in turn, have inspired

artistic design. More recently, chemists have

incorporated the fractal form in molecular synthe-

sis. Since 1985, molecular trees, which generally

branch in a binary (2) or ternary (3) pattern, have

been synthesized with increasing size and struc-

tural complexity. Beyond their aesthetics, these

dendrimers and hyperbranched materials (4) are

now under study for use in a wide range of prac-

tical applications. However, treelike patterns are

but one type of fractal composed of repeating

geometrical figures. A porphyrin-based dendrimer

(5) that uses porphyrins as branching centers has

been prepared that incorporates the snakelike

Bkolam[ fractal pattern described by Ascher (6).
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Broadband Invisibility by
Non-Euclidean Cloaking
Ulf Leonhardt1,2* and Tomáš Tyc2,3

Invisibility and negative refraction are both applications of transformation optics where the
material of a device performs a coordinate transformation for electromagnetic fields. The device
creates the illusion that light propagates through empty flat space, whereas in physical space,
light is bent around a hidden interior or seems to run backward in space or time. All of the
previous proposals for invisibility require materials with extreme properties. Here we show that
transformation optics of a curved, non-Euclidean space (such as the surface of a virtual sphere)
relax these requirements and can lead to invisibility in a broad band of the spectrum.

Geometry has always played a distin-
guished role in optics (1), but direct op-
tical applications of differential geometry

are rather recent (2–4). Most notably, electro-
magnetic cloaking devices (5) are inspired by
ideas of transformation optics (6–10), whereby
transparent materials mimic coordinate transfor-
mations, forcing light to follow curved coordi-
nates. The coordinatesmay enclose a hidden space,
making the interior invisible and the act of cloaking
undetectable. Another application of transforma-
tion optics (3, 4) is negative refraction (11, 12),
where light follows coordinates that run backward
in space (2) or time (13). One can also create
optical analogs of the event horizon (2, 3, 14) and
perhaps even electromagnetic wormholes (15).
The key to engineering practical implementations
of ideas that normally belong to general relativity
(2–4) is the application of modern metamaterials
(16–19). In metamaterials, man-made subwave-
length structures generate unusual electromag-
netic and optical properties. Metamaterials are
potentially very versatile, but they are still subject
to fundamental limits.

Take, for instance, the cloaking device (10)
with the coordinate transformation illustrated in
Fig. 1. The coordinates of physical space (Fig.
1B) are curved transformations of straight Car-

tesian coordinates in a virtual space that we call
electromagnetic space (2) (Fig. 1A). This space is
empty, so light follows straight lines that appear
curved in physical space. If the coordinate trans-
formation expands one point in electromagnetic
space to an extended volume in physical space,
anything in the “interior of the point” is invisible,
as shown in Fig. 1B. However, Fig. 1 also reveals
a fundamental problem of such cloaking devices.
In electromagnetic space, light passes a point in
infinitely short time, but in physical space the
point has become an extended region. Thus, light

must propagate along the inner lining of the cloak
at infinite speed (2). In materials, including meta-
materials, the phase velocity (1) of light may
approach infinity, but only at discrete frequencies
that correspond to resonances of the material’s
constituents. Light with different frequencies (dif-
ferent colors) would not be cloaked but instead be
distorted. Furthermore, the group velocity (1)
tends to be zero at resonances: Light pulseswould
become glued to the device instead of traveling
around it (20). Therefore, turning invisibility from
a tantalizing idea into a practical broadband de-
vice requires a different approach.

So far, transformation optics have mostly ap-
plied concepts of only Euclidean, flat space, the
curved light rays being mere coordinate trans-
formations of a space that is inherently flat. Here
we explain how concepts of non-Euclidean ge-
ometry (i.e., of intrinsically curved space) could
pave the way to broadband invisibility. In curved
space, light may propagate along closed loops or
may avoid some regions altogether. Most trans-
parent materials act as if they would curve the
geometry of light (3); light focused by a lens,
refracted in a water droplet, or bent in a mirage
perceives space as being curved, in general. Trans-
formation media where the perceived space is
inherently flat are the exceptions (3). However, to

1Physics Department, National University of Singapore, 2
Science Drive 3, Singapore 117542, Singapore. 2School of
Physics and Astronomy, University of St. Andrews, North
Haugh, St. Andrews, KY16 9SS, UK. 3Institute of Theoretical
Physics and Astrophysics, Masaryk University, Kotlarska 2,
61137 Brno, Czech Republic.

*To whom correspondence should be addressed. E-mail:
ulf@st-andrews.ac.uk

Fig. 1. Euclidean cloaking device (10). The device performs a coordinate transformation from the
virtual space (A) to physical space (B). The virtual space is empty and flat (Euclidean). Because the
curved coordinate lines of physical space are transformations of straight lines, physical space is
Euclidean as well. The device creates the illusion that light propagates through flat space that is
empty, apart from one point that, in physical space, has been expanded to finite size. The interior
of the expanded point is hidden. Light, however, passes a point in infinitely short time. So, in
physical space, the speed of light in the material of the device must approach infinity, which
severely limits the use of Euclidean cloaking (10).
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achieve invisibility, it is necessary to curve the
geometry in specific ways.

We explain our ideas with pictures, the
complete calculations behind the pictures being
described in the supporting online material (21).
As three-dimensional (3D) curved space is dif-
ficult to visualize, we first explain our concept on
a 2D example and then extend this case to three
dimensions. Figure 2A shows the archetype of a
non-Euclidean space (the surface of a sphere)
combined with a Euclidean space (the plane) that
touches the sphere like a piece of paper partially
wrapped around a globe. Both the plane and the
sphere carry a coordinate grid that we map onto
physical space (the plane shown in Fig. 2B). The
entrance to the sphere (i.e., the line where the
globe touches the plane) has been opened like an
eye in the physical plane to make space for the
grid of the sphere. In mathematical terminology,
electromagnetic space consists of two branches,
plane and sphere, that are connected at a branch
cut. Although the globe has been flattened in
physical space, the exterior curvature of the sphere
is maintained as intrinsic curvature.

As there is a one-to-one correspondence be-
tween light propagation in the physical plane
(Fig. 2B) and in electromagnetic space (Fig. 2A),
we discuss the optics in electromagnetic space.
Light rays follow geodesics (3), lines of shortest
or longest path (1, 3). The geodesics on the
sphere are the great circles. Light entering the
sphere through the branch cut performs a loop
and leaves in the same direction as before; the
sphere is invisible but it does not make anything
else invisible yet. However, if we place a mirror
around the equator of the globe (Fig. 2C), light is
reflected twice, creating the illusion of follow-
ing a great circle, yet never reaching the northern
hemisphere. Anything placed inside the corre-
sponding area in physical space is invisible. A
more elegant option instead of hiding behind a
mirror is the creation of an invisible space that
light naturally avoids (22). For example, the light
circles on the sphere never cross the red zigzag
shown in Fig. 2A. Imagine we open the zigzag
like a zip in physical space (Fig. 2D). Anything
inside this region is hidden, and the act of hiding
is not detectable on the light rays: We have a cloak-
ing device. On the other hand, light performs loops
on the sphere, which takes time. Measuring time
delays or examining the phase fronts of light rays
could reveal the presence of the cloaking device.
This imperfection (9, 22) is the price to pay for
practical invisibility, whereas perfect invisibility
(10) is not practical.

The implementation of our idea does not de-
mand extreme optical properties such as infinities
or zeros of the speed of light, for the following
reason: In electromagnetic space, light propa-
gates at the speed of light in vacuum. Physical
space represents a deformed image of electro-
magnetic space; the speed of light follows this
deformation. Expressed in quantitative terms, if
an infinitesimal line element in electromagnetic
space is n times longer than its image in physical

Fig. 2. Non-Euclidean cloaking device in two dimensions. The device creates the illusion shown in (A): Light
propagates through a virtual space that consists of a plane and the surface of a sphere, a curved space, which
touch along a line. Some incident light rays venture from the plane to the sphere; they return after one loop
and continue in the same direction. Note that the rays never cross the red zigzag line on the sphere. Plane and
sphere carry a coordinate grid that is mapped onto physical space (B). The magenta circle defines the
boundary of the device. Its interior has been expanded to make space for the grid of the sphere. In particular,
the line where plane and sphere touch has been opened like an eye (thick black lines) to include the sphere.
This is not a cloaking device yet, but one could place a mirror around the equator of the virtual sphere (C),
making the northern hemisphere invisible and creating the same illusion as shown in (A). (D) Alternatively,
one could expand the red line that light never crosses to create a hidden space.

Fig. 3. 3D cloaking. One can extrapolate the ideas illustrated in Fig. 2 to 3D space, replacing the plane by flat
space and the sphere by a hypersphere. The lentil-shaped object indicates the hidden interior of the device,
and the partly shaded grid denotes the boundary of the invisibility device. For better contrast, light rays are
shown in red. (A) Rays are bent around the invisible region. (B) In three dimensions, some rays turn out to
perform two loops in hyperspace that appear in physical space as light wrapped around the invisible interior.
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space, then the refractive index in the corresponding
direction in physical space is n. Figure 2 as well as
calculations (21) show that the ratio of the line
elements is neither infinite nor zero. Even at a
branch point the spatial deformation in any di-
rection is finite, because here the coordinate grid
is only compressed in angular direction by a finite
factor, in contrast to optical conformal mapping
(9). Furthermore, the spatial deformations are grad-
ual, for avoiding reflections at boundaries (23).

Figure 3 illustrates the extension of our idea
to three dimensions. Instead of the 2D surface of
the globe of Fig. 2A, we use the 3D surface of a
4D sphere (a hypersphere). Such a geometry is
realized (24, 25) in Maxwell’s fish eye (1, 26).
Inside the cloaking device, we inflate a 2D sur-
face, the branch cut in 3D, like a balloon to make
space for the 3D surface of the hypersphere.
Again, at this point the cloak is invisible but does
not hide anything yet. Then we open another
spatial branch on the “zip” of the hypersphere to
create a hidden interior. The branch cuts are
curved surfaces in electromagnetic space, which
is the only important difference when compared
with the 2D case. Some light rays may pierce the
entrance to the hypersphere twice; they perform
two loops in the non-Euclidean branch. In phys-
ical space, light is wrapped around the invisible
interior in such cases (Fig. 3B). We calculated

the required electromagnetic properties (21) and
found that the electric permittivity ranges from
0.28 to 31.2 for our specific example. One could
give the cloaking device any desired shape by
further coordinate transformations, which would
change the requirements on the optical proper-
ties of the material. As a rule, the larger the cloaked
fraction of the total volume of the device, the
stronger the optics of the material must be, but the
required speed of light will always remain finite.
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Control of Self-Assembly of DNA
Tubules Through Integration of
Gold Nanoparticles
Jaswinder Sharma,1,2* Rahul Chhabra,1,2* Anchi Cheng,3 Jonathan Brownell,3
Yan Liu,1,2† Hao Yan1,2†

The assembly of nanoparticles into three-dimensional (3D) architectures could allow for greater
control of the interactions between these particles or with molecules. DNA tubes are known to form
through either self-association of multi-helix DNA bundle structures or closing up of 2D DNA tile
lattices. By the attachment of single-stranded DNA to gold nanoparticles, nanotubes of various 3D
architectures can form, ranging in shape from stacked rings to single spirals, double spirals, and
nested spirals. The nanoparticles are active elements that control the preference for specific tube
conformations through size-dependent steric repulsion effects. For example, we can control the
tube assembly to favor stacked-ring structures using 10-nanometer gold nanoparticles. Electron
tomography revealed a left-handed chirality in the spiral tubes, double-wall tube features, and
conformational transitions between tubes.

Nanoparticles can exhibit distinctive elec-
tronic, magnetic, and photonic properties
(1), and their assembly into well-defined

one-dimensional (1D), 2D, and 3D architectures
with geometric controls could add to their
functionality. DNA-mediated assembly of nano-
particles is an attractive way to organize both
metallic and semiconducting nanoparticles into
periodic or discrete 1D and 2D structures (1–14)
through the programmable base-pairing interac-
tions and the ability to construct branched DNA
nanostructures of various geometries. Recent
success in using DNA as a molecular glue to
direct gold nanoparticles (AuNPs) into periodic
3D crystalline lattices further demonstrates the

power of DNA as building blocks for 3D nano-
engineering (15, 16).

Here, we report a group of complex 3D geo-
metric architectures of AuNPs created using DNA
tile-mediated self-assembly. These are tubular
nanostructures with various conformations and
chiralities resembling those of carbon nanotubes.
The nanoparticle tube assembly can be engi-
neered both by the underlying DNA tile scaffolds
and the nanoparticles themselves. Previous work
in structural DNA nanotechnology has shown
that DNA tubes can form through either the self-
association of multi-helix DNA bundle structures
or the closing up of 2DDNA tile lattices (17–26).
The forces that drive tube formation have been
attributed to the intrinsic curvature of the tile-
array (21) and the thermodynamic requirement to
lower the free energy of the systembyminimizing
the number of unpaired sticky ends (22). The in-
trinsic dimensional anisotropicity of the DNA tiles
also plays an important role in the kinetic control
of the tube growth (26).

In all of the above studies, the true 3D
conformations of DNA tubes have never been
revealed in detail because of limitations in micro-
scopic imaging techniques; deposition of the
samples on a surface for atomic force microscope
(AFM) or transmission electron microscope
(TEM) imaging usually causes flattening and
sometimes opening of the tubes. This limitation
has prevented a comprehensive understanding of
the structural features of DNA nanotubes. For
example, the handedness of the chiral tubes can
be better revealed with 3D structural characteriza-
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Magnifying Superlens in the Visible
Frequency Range
Igor I. Smolyaninov,* Yu-Ju Hung, Christopher C. Davis

We demonstrate a magnifying superlens that can be integrated into a conventional far-field
optical microscope. Our design is based on a multilayer photonic metamaterial consisting
of alternating layers of positive and negative refractive index, as originally proposed by
Narimanov and Engheta. We achieved a resolution on the order of 70 nanometers. The use
of such a magnifying superlens should find numerous applications in imaging.

Optical microscopy is an invaluable
tool for studies of materials and biolog-
ical entities. Imaging tools with ever-

increasing spatial resolution are required if the
current rate of progress in nanotechnology and
microbiology is to continue. However, the spatial
resolution of conventional microscopy is limited
by the diffraction of light waves to a value on the
order of 200 nm. Thus, viruses, proteins, DNA
molecules, and many other samples are impos-
sible to visualize with a regular microscope. One
suggested way to overcome this limitation is
based on the concept of a superlens (1), which
relies on the use of materials or metamaterials
that have negative refractive index in the visible
frequency range. Near-field superlens imaging
was recently demonstrated (2, 3), but the tech-
nique is limited by the fact that the magnification
of the planar superlens is equal to 1. Thus, a thin
planar superlens cannot be integrated into a
conventional optical microscope to image objects
smaller than the diffraction limit.

We describe the realization of a magnify-
ing superlens (Fig. 1A) and demonstrate its
integration into a regular far-field optical mi-
croscope. Our design is based on the theo-

retical proposals of an “optical hyperlens” (4)
and “metamaterial crystal lens” (5) and on
the recently developed plasmon-assisted mi-
croscopy technique (6), and in particular on
the unusual optics of surface plasmon polar-
itons (SPPs). The properties of these two-
dimensional optical modes and convenient
ways to excite them are described in detail in
(7). The wave vector of the SPPs is defined by
the expression

kp ¼
w
c

edem
ed þ em

� �1=2

ð1Þ

where em(w) and ed(w) are the frequency-
dependent dielectric constants of the metal and
the dielectric, respectively, and c is the speed of
light. Above the resonant frequency w described
by the condition

emðwÞ ≈ −edðwÞ ð2Þ

the SPP group and phase velocities may have
opposite signs (Fig. 1B). The internal structure
of the magnifying superlens (Fig. 2A) consists
of concentric rings of poly(methyl methacrylate)
(PMMA) deposited on a gold film surface. For
the SPP dispersion law for the gold-vacuum and
gold-PMMA interfaces (Fig. 1B) in the frequen-
cy range marked by the box, PMMA has neg-
ative refractive index n2 < 0 as perceived by
plasmons (the group velocity is opposite to the

phase velocity). The width of the PMMA rings
d2 is chosen so that n1d1 = –n2d2, where d1 is the
width of the gold-vacuum portions of the
interface. Although the imaging action of our
lens is based on the original planar superlens
idea, its magnification depends on the fact that
all the rays in the superlens tend to propagate in
the radial direction when n1d1 = –n2d2 (Fig. 1A).
This behavior was observed in the experiment
upon illumination of the lens with l = 495 nm
laser light (bottom portion of Fig. 2B) for which
n1d1 = –n2d2. The narrow beam visible in the
image is produced by repeating self-imaging of
the focal point by the alternating layers of mate-
rials with positive and negative refractive index.
On the other hand, if 515-nm light is used, the
lens becomes uncompensated and the optical
field distribution inside the lens reproduces the
field distribution in the normal “plasmonic lens”
as described in (8) (top portion of Fig. 2B). How-
ever, in the complete theoretical description of
the magnifying superlens, the ray optics picture
presented in Fig. 1A may need to be supple-
mented by the anisotropic effective medium the-
ory presented in (4, 5).

The magnifying action of the superlens is
demonstrated in Figs. 3 and 4. Rows of two or
three PMMA dots were produced near the inner
ring of the superlens (Fig. 3, B and C). These
rows of PMMA dots had 0.5-mm periodicity in
the radial direction, so that phase matching
between the incident laser light and surface
plasmons could be achieved (Fig. 1A). Upon
illumination with an external laser, the three
rows of PMMAdots in Fig. 3B gave rise to three
radial divergent plasmon “rays,” which are
clearly visible in the plasmon image in Fig. 3D
obtained with a conventional optical micro-
scope. The cross-sectional analysis of this image
across the plasmon “rays” (Fig. 3F) indicates
resolution of at least 70 nm, or ~l/7. The lateral
separation between these rays increased by a
factor of 10 as the rays reached the outer rim of
the superlens. This increase allowed visualiza-
tion of the triplet by conventional microscopy. In
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smoly@eng.umd.edu

Fig. 1. (A) Schematic of the
magnifying superlens integrated
into a conventional microscope.
The plasmons generated by the
phase-matching structure illumi-
nate the sample positioned near
the center of the superlens. The
lateral distance between the im-
ages produced by the alternating
layers of materials with positive
and negative refractive index
grows with distance along the
radius. The magnified images
are viewed by a regular micro-
scope. (B) Real and imaginary
parts of the surface plasmon
wave vector k at the gold-PMMA and gold-vacuum interfaces as a function of frequency. In the frequency
range marked by the box, PMMA has negative refractive index as perceived by plasmons, whereas the
gold-vacuum interface looks like a medium with positive refractive index.

www.sciencemag.org SCIENCE VOL 315 23 MARCH 2007 1699

REPORTS

 o
n 

Ju
ne

 3
0,

 2
00

9 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


a similar fashion, the two radial rows of PMMA
dots shown in Fig. 3C gave rise to two plasmon
rays, which are visualized in Fig. 3E.

The composite image in Fig. 4 is a superpo-
sition of the atomic force microscopy (AFM)
image from Fig. 3A and the corresponding
optical image obtained by conventional optical
microscopy. It illustrates the imaging mecha-
nism of the magnifying superlens: The passage
of plasmon rays through the concentric al-
ternating layers of materials with positive and
negative refractive index increases the lateral
separation of the three rays (marked by arrows at
lower right). Near the edge of the superlens, the
separation is large enough to be resolved with a
conventional optical microscope, thus demon-
strating a magnifying superlens in the visible
frequency range.

The theoretical resolution of such a micro-
scope may reach the nanometer scale (1, 4). It
thus has the potential to become an invaluable
tool in medical and biological imaging, where
far-field optical imaging of individual viruses
and DNA molecules may become a reality. It
allows very simple, fast, robust, and straight-
forward image acquisition.

We expect that unusual optical metamaterials
may be designed and implemented using the
principle of our magnifying superlens. Because
(d1 + d2) and the d1/d2 ratio (Fig. 2A) are easy
to vary locally, the effective anisotropic re-
fractive index of the multilayer material may
be varied continuously from large negative to
large positive values. Thus, unusual nano-
photonic devices may be created in the visible

frequency range, such as the recently sug-
gested (9, 10) and demonstrated (11) “invisibil-
ity cloak.”
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Fig. 4. (A) Composite of the AFM im-
age from Fig. 3A superimposed onto
the corresponding image obtained by
conventional optical microscopy, illus-
trating the imaging mechanism of the
magnifying superlens. Near the edge

of the superlens, the separation of three rays (marked by arrows) is large enough to be resolved
using a conventional optical microscope. (B) The cross section of the optical image along the line
shown in (A) indicates the three rays.
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Coupled Thermal and Hydrological
Evolution of Tropical Africa over
the Last Deglaciation
Johan W. H. Weijers,1* Enno Schefuß,2† Stefan Schouten,1 Jaap S. Sinninghe Damsté1

We analyzed the distribution of branched tetraether membrane lipids derived from soil bacteria in
a marine sediment record that was recovered close to the Congo River outflow, and the results
enabled us to reconstruct large-scale continental temperature changes in tropical Africa that span
the past 25,000 years. Tropical African temperatures gradually increased from ~21° to 25°C
over the last deglaciation, which is a larger warming than estimated for the tropical Atlantic Ocean.
A direct comparison with sea-surface temperature estimates from the same core revealed that
the land-sea temperature difference was, through the thermal pressure gradient, an important
control on central African precipitation patterns.

Continental climate change during the last
deglaciation, especially in the tropics, is
not as well understood as it is for the

oceans (1–3). For Africa, a consensus is emerg-
ing on past changes in humidity and their causes
based on lake level and pollen studies as well as
the deuterium content of plant waxes (4–6), but
temperature records for such tropical continental
areas remain scarce and incomplete. In contrast to
the marine environment, few quantitative temper-
ature proxies exist for the terrestrial environment,
and continuous long-term climate archives on land
are limited. For instance, pollen-based vegetation
studies, a widely used method for environmental
reconstructions on land (5), are complicated in the
tropics because the effects of changes in tem-
perature are difficult to distinguish from those of
changes in precipitation. Temperature estimates
based on another method, stable oxygen isotope
contents of carbonates and silicates, are widely
applied in lacustrine sediments and speleothems.
However, although these estimates are appropri-
ate for high-resolution qualitative paleoclimate
reconstructions (7, 8), quantification of climate
change in terms of paleotemperatures requires
tenuous assumptions about the past changes in

parameters that have influenced the source-water
composition. The scant paleotemperature data
available for the African continent imply a tem-
perature difference of ~3.5° to 6°C between the
Last Glacial Maximum (LGM) and the present
day (2, 5, 9, 10), but these data often represent a
relatively local signal or are incomplete records.
Thus, knowledge on African tropical temper-
ature change over the last deglaciation is rather
limited, especially for the vast tropical rainforest
area of the Congo Basin. Continuous, high reso-
lution, long-term records of continental-scale tem-
perature change are much needed to improve this
knowledge and enable proper comparison with
records of marine temperature changes.

To gain better insight into the central African
temperature development over the last degla-
ciation, its relation to global climatic changes,
and its effect on the continental hydrological
cycle, we used the Methylation index of
Branched Tetraethers (MBT) and Cyclization
ratio of Branched Tetraethers (CBT) based on
branched glycerol dialkyl glycerol tetraethers
(GDGTs) (11) present in a marine core recovered
close to the Congo River outflow (GeoB 6518-1,
05°35.3′S, 11°13.3′E,water depth of 962m, Fig. 1).
Using the MBT and the CBT, we reconstructed
the annual mean air temperature (MAT) of the
Congo River basin (12) which could be com-
pared with the sea surface temperature (SST)
record obtained from the same core (Fig. 2).
Branched GDGTs (fig. S1) are abundant core
membrane lipids derived from bacteria that
thrive in soils (11, 13, 14). As the soil erodes,
the GDGTs are fluvially transported to the
ocean. Indeed, they have been shown to be an
excellent tracer of the fate of soil organic mat-
ter in the Congo deep-sea fan (13) and the Bay
of Biscay (15) (fig. S2). The large catchment
area of the Congo River (3.7 × 106 km2) ex-
tends from about 6°N to 13°S and from about
13° to 33°E in central Africa (Fig. 1A), with ele-
vations between 300 and 1200 m except for
one small part, located at its eastern boundary,
that rises above 2000 m (16). The temperature
estimates obtained from our marine core, there-
fore, represent a catchment-integrated terres-
trial temperature signal derived from land of
low to intermediate elevation. Analysis of the
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Fig. 1. Overview maps of Africa. The position of core GeoB 6518, recovered close to the Congo
River outflow from a water depth of 962 m, and the extent of the Congo River drainage basin
(white outline) are plotted (A) on a digital elevation map of Africa [picture from NASA Jet
Propulsion Laboratory, California Institute of Technology] and (B) on a map showing the annual
MAT distribution in Africa [available in the database in (30)].
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Acoustic cloaking theory

BY ANDREW N. NORRIS*

Mechanical and Aerospace Engineering, Rutgers University,
Piscataway, NJ 08854-8058, USA

An acoustic cloak is a compact region enclosing an object, such that sound incident from all
directions passes through and around the cloak as though the object was not present.
A theory of acoustic cloaking is developed using the transformation or change-of-variables
method for mapping the cloaked region to a point with vanishing scattering strength. We
show that the acoustical parameters in the cloak must be anisotropic: either the mass
density or the mechanical stiffness or both. If the stiffness is isotropic, corresponding to a
fluid with a single bulk modulus, then the inertial density must be infinite at the inner
surface of the cloak. This requires an infinitely massive cloak. We show that perfect
cloaking can be achieved with finite mass through the use of anisotropic stiffness. The
generic class of anisotropic material required is known as a pentamode material (PM). If the
transformation deformation gradient is symmetric then the PM parameters are explicit,
otherwise its properties depend on a stress-like tensor that satisfies a static equilibrium
equation. For a given transformation mapping, the material composition of the cloak is not
uniquely defined, but the phase speed and wave velocity of the pseudo-acoustic waves in the
cloak are unique. Examples are given from two and three dimensions.

Keywords: cloaking; pentamode; anisotropy

1. Introduction

The observation that the electromagnetic equations remain invariant under
spatial transformations is not new. Ward & Pendry (1996) used it for numerical
purposes, but the result was known to Post (1962) who discussed it in his book,
and it was probably known far earlier. The recent interest in passive cloaking and
invisibility is due to the fundamental result of Greenleaf et al. (2003a,b) that
singular transformations could lead to cloaking for conductivity. Not long after
this important discovery Leonhardt (2006) and Pendry et al. (2006) made the
key observation that singular transformations could be used to achieve cloaking
of electromagnetic waves. These results and others have generated significant
interest in the possibility of passive acoustic cloaking.

Acoustic cloaking is considered here in the context of the so-called transforma-
tion or change-of-variables method. The transformation deforms a region in such
a way that the mapping is one-to-one everywhere except at a single point, which
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is mapped into the cloak inner boundary (figure 1). The acoustic problem is for
the infinitesimal pressure p(x, t) that satisfies the scalar wave equation in the
surrounding fluid,

V2pK€p Z 0: ð1:1Þ

The basic idea is to alter the cloak’s acoustic properties (density and modulus) so
that themodified wave equation inumimics the exterior equation (1.1) in the entire
regionU. This is achieved if the spatial mapping of the simply connected regionU to
the multiply connected cloak u has the property that the modified equation in u
when expressed in U coordinates has exactly the form of (1.1) at every point in U.

The objective here is to answer the question: what type of material is required to
realize these unusual properties that make an acoustic cloak? While cloaking
cannot occur if the bulk modulus and density are simultaneously scalar quantities
(see below), it is possible to obtain acoustical cloaks by assuming that the mass
density is anisotropic (Chen & Chan 2007; Cummer & Schurig 2007; Cummer et al.
2008). A tensorial density is not ruled out on fundamental grounds (Milton
et al. 2006) and in fact there is a strong physical basis for anisotropic inertia. For
instance, Schoenberg & Sen (1983) showed that the inertia tensor in a medium
comprising alternating fluid constituents is transversely isotropic (TI) with
elements hri in the direction normal to the layering, and hrK1iK1 in the transverse
direction, where h$i is the spatial average. Anisotropic effective density can arise
from other microstructures, as discussed by Mei et al. (2007) and Torrent &
Sánchez-Dehesa (2008). The general context for anisotropic inertia is the Willis
equations of elastodynamics (Milton & Willis 2007), which Milton et al. (2006)
showed are the natural counterparts of the electromagnetic (EM) equations that
remain invariant under spatial transformation. The acoustic cloaking has been
demonstrated, theoretically at least, in both two and three dimensions: a
spherically symmetric cloak was discussed by Chen & Chan (2007) and Cummer
et al. (2008), while Cummer & Schurig (2007) described a two-dimensional
cylindrically symmetric acoustic cloak. These papers use a linear transformation
based on prior EM results in two dimensions (Schurig et al. 2006).

The cloaks based on anisotropic density in combination with the inviscid
acoustic pressure constitutive relation (bulk modulus) will be called inertial
cloaks (ICs). The fundamental mathematical identity behind the ICs is the

O
.

Figure 1. The undeformed simply connected region U is transformed by the mapping c into the
multiply connected cloak u. Essentially, a single point O is transformed into a hole (the invisible
region) surrounded by the cloak u. The outer boundary vuC is coincident with vUC(ZvU) and the
inner boundary vuK is the image of the point O. Apart from O and vuK the mapping is
everywhere one-to-one and differentiable.

A. N. Norris2412

Proc. R. Soc. A (2008)

 on 30 June 2009rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


observation of Greenleaf et al. (2007) that the scalar wave equation is mapped
into the following form in the deformed cloak region:

1ffiffiffiffiffi
jgj

p v

vxi

ffiffiffiffiffi
jgj

p
gij

vp

vxj

� �
K€p Z 0; x2u: ð1:2Þ

Here gZ(gij) is the Riemannian metric with jgjZdetðgijÞ and ðgijÞZðgijÞK1. The
reader familiar with differential geometry will recognize the first term in equation
(1.2) as the Laplacian in curvilinear coordinates. Comparison of the transformed
wave equation (1.2) with the IC wave equation provides explicit expressions for
the IC density tensor and the bulk modulus (Greenleaf et al. 2008).

We will derive an identity equivalent to (1.2) in §2 using an alternative
formulation adapted from the theory of finite elasticity. A close examination of
the anisotropic density of the ICs shows that its volumetric integral, the total
mass, must be infinite for perfect cloaking. This raises grave questions about the
usefulness of the ICs. The rest of this paper provides a solution to this quandary.
The main result is that the IC is a special case of a more general class of the
acoustic cloaks, defined by anisotropic inertia combined with anisotropic
stiffness. The latter is obtained through the use of the pentamode materials
(PMs; Milton & Cherkaev 1995). In the same way that an ideal acoustic fluid can
be defined as the limit of an isotropic elastic solid as the shear modulus tends to
zero, there is a class of limiting anisotropic solids with five (hence penta) easy
modes of deformation analogous to shear, and one non-trivial mode of stress and
strain. The general cloak comprising PM and IC is called the PM-IC model. The
additional degrees of freedom provided by the PM-IC allow us to avoid the
infinite mass dilemma of the IC.

We begin in §2 with a new derivation of the IC model, and a discussion of the
infinite mass dilemma. The PMs are introduced in §3 where it is shown that they
display simple wave properties, such as an ellipsoidal slowness surface. The
intimate connection between the PM and the acoustic cloaking follows from
theorem 4.2 in §4. The properties of the generalized PM-IC model for cloaking
are developed in §4 through the use of an example cloak that can be either pure
IC or pure PM as a parameter is varied. Further examples are given in §5, with a
concluding summary of the generalized acoustic cloaking theory in §6.

2. The IC

The transformation from U to u is described by the point-wise deformation from
X2U to xZcðXÞ2u. In the language of finite elasticity, X describes a particle
position in the Lagrangian or undeformed configuration and x is particle location
in the Eulerian or deformed physical state. The transformation or mapping
defined by c is one-to-one and invertible except at the single point XZO
(figure 1). We use V, VX and div, Div to indicate the gradient and divergence
operators in x and X, respectively. The component form of divA is vAi/vxi or
vAij/vxi when A is a vector or a second-order tensor-like quantity, respectively.
The deformation gradient is defined as FZVXx with inverse FK1ZVX, or in
component form FiIZvxi/vXI and FK1

Ii ZvXI=vxi. The Jacobian of the
deformation is JZdet FZ jFj or, in terms of volume elements in the two
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