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Mass-Spring-Damper Systems
The Theory

The Unforced Mass-Spring System

The diagram shows a mass, M, suspended from a spring of natural
length l and modulus of elasticity λ . If the elastic limit of the spring
is not exceeded and the mass hangs in equilibrium, the spring will
extend by an amount, e, such that by Hooke’s Law the tension in the

spring, T, will be given by T
e
l

=
λ

For system equilibrium, this will be balanced by the weight

so 
l
eTMg λ==     (1)

If the spring is pulled down a further distance, y, (with y positive downwards) the

restoring force will now be the new tension in the spring, ′T , given by 
( )

′ =
+

T
e y

l
λ

,

and so the net force acting DOWNWARDS is Mg T− ′
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But, from equation (1), Mg
e
l

=
λ

,

so the net force downwards  = −
λy
l

(2)

From Newton’s 2nd Law, Force = mass x acceleration 2

2

dt
ydM= (3)

so, combining (2) and (3)

The above analysis has resulted in a second-order differential
equation with dependent variable y (displacement) and independent variable t (time)
and system parameters M, λ  and l. (See box on next page for discussion on
parameters and variables)

For the mass-spring-damper’s 2nd order differential equation, TWO initial conditions
are given, usually the mass’s initial displacement from some datum and its initial
velocity.

Since the system above is unforced, any motion of the mass will be due to the initial
conditions ONLY. Typical initial conditions could be ( )y 0 2= −  and ( ) 40 +=y� . With
downward as the positive direction, y measured in centimetres and t in seconds, these
initial conditions say that at t = 0 the mass is instantaneously 2 cm above the datum
and is travelling with a velocity of 4 cm/s in the downward direction.
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The Unforced Mass-Spring-Damper System

The above system is unrealistic since it does not take into account the
resistance to motion due to friction in the spring or air resistance. Once
the mass is set in motion, that system will continue moving forever.

Damping can be introduced into the system physically, schematically
and mathematically by incorporating all resistances into a dashpot (see
diagram).

It can be shown experimentally that in such cases the resistance to
motion is directly proportional to the velocity of the mass and,
naturally, opposes the motion. This is not unreasonable - the faster the
mass moves, the greater the resistance is exerted upon it (compare how
much more difficult it is running, rather than walking, through water).

So the damping force, D R
dy
dt

= − .           (R > 0)

Here, R is the constant of proportionality and is called the damping factor.

The inclusion of the damping modifies the equations of the previous case thus:

This time, the net downward force will be  Mg T− ′ - D                    Mg          ′T       D

( )
= −

+
− = − −Mg

e y
l

R
dy
dt

y
l

R
dy
dt

λ λ
.

  And, again using Newton’s 2nd Law, this results in

or,

where k = λ  / l

Digression on Variables and Parameters In this system y(t) is the output of the
system once the mass has been initially displaced and released. It is a time dependent
variable.

y(t) is called the dependent variable and t is the independent variable since the value
of displacement y depends on (is a function of) time, t. Note that in any such system,
the displacement y will vary (unless it is a constant) as time, t, varies. However, in any
given system M, λ  and l will always take just the one value for all time. It is possible
to change them - but if they are changed, this results in a different mass-spring-
damper system and hence a completely different differential equation to solve.
Quantities that remain constant like this within any system (such as M, λ  and l) are
parameters of the system.

Note that the system above has no input – it is unforced. Nothing forces the system to
move; any movement is a consequence only of an initial displacement or an initial
velocity.
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This is, once again, a second-order differential equation, but this time with parameters
M, R and k. Parameter k is in terms of parameters λ  and l, and parameter R is
dependent upon the viscosity of the fluid in the dashpot, for example.

The Forced Mass-Spring-Damper System

Consider now the case of the mass being subjected to a force, f(t), in the
direction of motion.

f(t)
This time, the net downward force will be

    Mg T− ′ - D + f(t)         Mg       ′T    D    f(t)
( ) ( ) ( )= −

+
− + = − − +Mg

e y
l

R
dy
dt

f t
y
l

R
dy
dt

f t
λ λ

.

  Again using Newton’s 2nd Law, this results in

or,

Note how the only difference here is that the input to the system, f(t), the forcing
term, appears on the right hand side of the differential equation rather than the zero
when the system was unforced (i.e. zero input).

Forcing Terms
The forcing term, the input to the system, given by f(t) can take various forms and can
be modelled readily by standard mathematical functions:

•  An unforced system, modelled by using f(t) = 0
•  A constant applied force uses f(t) = c (where c is a constant)
•  A constantly changing force (ramp input), f(t) = mt + c (m,  c constants)
•  A quadratically changing force, f(t) = at2 + bt + c (a, b and c constants)
•  An oscillating force (sinusoidal input), f(t) = tbta ωω cossin + ( here a,  b &

ω are constants where ω is the angular frequency of the applied oscillations)
•  An exponentially changing input, f(t) = aebt (a,  b constants)

Solving the Mass-Spring-Damper Second-Order Differential Equation
Obtaining the solution of second order differential equations is outside of the remit of
this theory sheet. You should be learning these methods on your course - methods
such as the classical “Complementary Function and Particular Integral” method, or the
“Laplace Transforms” method. Here the emphasis is on using the accompanying
applet and tutorial worksheet to interpret (and even anticipate) the types of solutions
obtained.

Types of Solution of Mass-Spring-Damper Systems and their Interpretation
The solution of mass-spring-damper differential equations comes as the sum of two
parts:

•  the complementary function (which arises solely due to the system itself), and
•  the particular integral (which arises solely due to the applied forcing term).
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The particular integral is the easier part of the solution to consider. The mass-spring-
damper differential equation is of a special type; it is a linear second-order differential
equation. In mathematical terms, linearity means that y, dy/dt and d2y/dt2 only occur to
the power 1 (no y2 or (d2y/dt2)3 terms, for example). In real-world terms, linearity
means “What goes in, comes out”! If you apply an oscillating force to such a system,
oscillations will result. A constant applied force (input) will produce a constant
deflection, y (output). As you can imagine, if you hold a mass-spring-damper system
with a constant force, it will maintain a constant deflection from its datum position.
This is the steady state part of the solution.

How it gets to the steady state solution is governed by the system itself (is it light and
springy or perhaps heavy and slow?) and hence dependent on the values of M, R and
k. The way in which the mass reaches its steady-state solution, called the transient, is
reflected in the complementary function, which itself is dependent on the relative
sizes of R2 and 4Mk.

A linear second order differential equation is related to a second order algebraic

equation, i.e. ky
dt
dyR

dt
ydM ++2

2

 is related directly to cbxax ++2 . For a second

order algebraic equation the discriminant b2 – 4ac plays an important part in deciding
the type of solution to the equation cbxax ++2 = 0. Similarly the ‘discriminant’ R2 –

4Mk determines the type of solution to the differential equation ky
dt
dyR

dt
ydM ++2

2

 =

0, i.e. the system with the forcing term taken out – it is this equation (with f(t) = 0)
that produces the transient response.

R2 – 4Mk > 0 (or R2 > 4Mk) produces a complementary function (transient) of the
form

tmtm BeAey 21 +=  with A, B, m1 and m2 all constant with m1 and m2 both negative.
This produces an exponential decaying transient. How long the transient takes to die
away will depend upon the time constants of the two exponential decay terms (see
next section for discussion on time constants). This is a ‘sluggish’ response and
corresponds to large R-values compared with M and k (R2 > 4Mk) and so represents a
heavily damped system.

R2 – 4Mk < 0 (or R2 < 4Mk) produces a complementary function (transient) of the
form

( )tBtAey pt ωω cossin +=  with A, B, p and ω all constant with p negative.
This produces a sinusoidal transient modulated by pure exponential decay. How long
the sinusoids take to die away will again depend upon the time constant of the
exponential. This is a ‘fast’ response and corresponds to small values of R compared
with M and k (remember R2 < 4Mk) and so is called a lightly damped system.

R2 – 4Mk = 0 (or R2 = 4Mk) produces a complementary function (transient) of the
form

mteBtAy )( +=  with A, B and m constant with m < 0.
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This is a linear function (A + Bt), modulated by exponential decay. How long this
transient takes to die away will depends on the time constant of the exponential. This
is the fastest response possible without setting up oscillations in the system and
corresponds to a critically damped system.

Time Constants and the Time to Decay
The transient is the way in which the system responds during the time it takes to reach
its steady state. Transient means “short lived”. But how short is “short lived”? This
can be determined from the following table:

The right hand column shows that the value of e
t−
τ

varies from 100% at t = 0 to about 0.7% by t = 5τ.

τ  (Greek letter, “tau”) is called the “time constant”.
The implication is that by t = 5τ, the contribution of

e
t−
τ  has died away to ‘practically nothing’. For our

system, the exponential terms are of the form mte− ,

so comparing with e
t−
τ , gives the important result, 

m
1=τ

Note that here, the time constant, ττττ, is only appropriate for exponential decay, not growth.

A heavily damped system that contains the complementary function (transient)
tt eey 52 37 −− −=  in its solution, for example, has two time constants, 1/2 and 1/5. The

two exponential terms will die away after about five times these values. So the te 27 −

term (time in seconds) dies out after 2.5 seconds and the te 53 −  term after only 1
second. If, for example, the full solution for this system had been

1537 52 +−= −− tt eey  then the transient would have lasted about 2.5 seconds after
which the steady state value of 15 is all that remains. Watch out for this sort of
response when you use the accompanying applet.

Transients with Exponentially Decaying Sinusoids
As seen previously, when R2 < 4Mk the complementary function (transient) had the
form ( )tBtAey pt ωω cossin +=  with A, B, p and ω all constant and p negative. This
result contains oscillations - the trigonometric part - multiplied by (or modulated by,
or even ‘killed off’ by) exponential decay (remember p < 0). In the section above you
saw how easy it was, using the time constant, to determine how long it took for the
exponential decay to kill off this part of the system response. But here, how many
oscillations will occur before they disappear? This can be determined from the
following.

When working with angular velocity, ω, (measured in radians per second), two
important formulae can be used:

fπω 2=  and 
ω
π21 ==

f
T

  t e
t

−
×τ 100%

(as a percentage)
  0 e0  x 100 =100
  τ e-1 x 100 =   36.7879
2τ e-2 x 100 =   13.5335
3τ e-3 x 100 =    4.9787
4τ e-4 x 100 =    1.8316
5τ e-5 x 100 =    0.6738
  5ττττ is an important
value!
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where f is the frequency of the oscillations (measured in cycles per second or Hertz)
and T (in seconds) is the periodic time (time for one cycle) of the oscillations.
Ordinary alternating mains electricity in the UK, for example, operates at a frequency
of f = 50 Hz. Its angular velocity is therefore ω = π100  rad/sec and its periodic time is
T = 1/50 sec or 20 ms.

Suppose the transient solution of a mass-spring-damper system is tey t 10sin5 2.0−= .
Here the time constant is 1/0.2, so five times the time constant will be 25 seconds –
whatever the transient response, it will have disappeared by 25 seconds. The number
of oscillations that will occur during this time can be found from T = 2π/10 = 6.28
seconds (2 d.p.). Each complete oscillation takes about 6.28 seconds, the exponential
decay kills of the transient in about 25 seconds, and therefore there will be 25/6.28,
about 4, complete oscillations. Mind you, by the time you get to the fourth
oscillations, its very small amplitude will make it difficult to see. Watch out for this
effect when using the applet.

Mechanical Systems
Many real-world systems can be modelled by the mass-spring-damper system – not
just the mass-spring-damper system itself!

•  If you thump a window in its frame, it will move – not by much you’d hope!
The window has mass, it has a resistance to motion (not the least part of which
is the fact that the window is held in a frame) and the window has natural
springiness. You force the system when you thump it.

•  Consider, a wine glass. This inherently has more springiness than the window,
as can be heard when you ‘ping’ the glass with your fingernail.

•  Hold down one end of a ruler at the end of a desk, pull it up at the free end and
let go (initial conditions: displacement equals 2cm, say, and initial velocity
zero). Here you have a good example of a lightly damped unforced system –
the ruler will oscillate but the oscillations will die away. With no forcing
terms, once the transient dies away, the ruler will settle down back at its datum
position.

•  Consider the Millennium Bridge across the Thames when first opened. It had
(and still has!) mass, it had springiness (too much) and it had resistance to
motion (too little) – a lightly damped system if ever there was one! Left to
itself, the bridge was quite happy. However, when ‘forced’ by a large number
of people all walking in time with a frequency close to the natural frequency of
the springy bridge, it began to resonate – the oscillations set up became
uncontrollably large and uncomfortable.

Resonance occurs when vibrations (sinusoids), whose frequency is the same as the
natural frequency of the system itself, force an undamped (or very lightly damped)
system. It is an effect that you will be able to set up in the accompanying applet. In
mechanical systems resonance can be destructive.

•  The Tacoma Narrows Bridge disaster, for example, in which, at a certain wind
speed, the vortices shed from (and hence forces acting on) the bridge were
shed at the same frequency as the natural frequency of the bridge itself thus
reinforcing the vibrations (now you see why they closed the Millennium
Bridge!).
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•  The opera singer who pitches a note at the natural frequency of a wine glass
can set up resonance forcing the glass to shatter.

•  The passing bus that causes a badly fitting window to rattle in its frame as the
engine revs (1 rev/sec = 1 Hz) pass through the natural frequency of the
window.

Beats are another phenomenon that can be visualised using the accompanying applet.
Beats occur when you force a lightly damped system (once again) by vibrations whose
frequencies are close to the natural frequency of the system. A good example of
hearing beats is to tune two guitar strings to nearly the same note. Pluck both strings.
You will hear a rather discordant sound since the notes are so close, but you will also
hear what can best be described here as the “nyur, nyur”(any better offers?!) regularity
of the beats.
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Appendix A: The Electrical-Mechanical Analogue

The LCR Series Circuit This is obviously NOT a mass-spring-damper system, yet it
is of great interest to those concerned with mass-spring-damper systems, as you will
see.

  L                         R                   C

                          e(t)

Here it is necessary to know that the potential drop across a capacitor is given by 
q
C

,

where q is the charge on the capacitor with capacitance, C.

R is electrical resistance, L is inductance and e(t) is the applied voltage. i(t) is the
current  that results (it is the output from the system).

It is also necessary to know that q i dt
t

= �0 .  The differential of both sides of this leads

to 
dq
dt

i=  (the rate of change of charge across a capacitor is equal to the current in the

circuit) and hence 
d q
dt

di
dt

2

2 = . These will both be used shortly.

Applying Kirchhoff’s 2nd Law (the sum of the potential drops across all elements in a
circuit equals the applied potential)

( )L
di
dt

Ri
q
C

e t+ + = -----(A)

Unfortunately, this differential equations involves TWO time-dependent output
variables i(t) and q(t).  However as seen above, they are related, so the equation can be
totally written in terms of q (or indeed of i) leading to

a second-order differential equation in q, or differentiating equation (A) with respect

to time and replacing 
dq
dt

 with i, gives

( )( )
L

d i
dt

R
di
dt C

i
d e t

dt

2

2

1
+ + =       ----------(#)

Note the similarity between the two equations marked  # (the other is on page 3.) Here
they are again.

  and     
( )( )

L
d i
dt

R
di
dt C

i
d e t

dt

2

2

1
+ + =

( )L
d q
dt

R
dq
dt C

q e t
2

2

1
+ + =

( )M
d y
dt

R
dy
dt

ky f t
2

2 + + =
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These two equations are fundamentally identical and constitute an electrical-
mechanical analogue.

Notice the analogy between corresponding parameters and variables. In the electrical
circuit:
                 L behaves like mass, M
                 R behaves like mechanical resistance, R (surprise, surprise!)

                
1
C

 behaves like spring stiffness, k

 i(t), the output from the electrical system, corresponds to displacement,
y(t), the output from the mechanical system.

                
de t

dt
( )

, the rate of change of applied voltage, behaves like the applied force,

f(t).

These analogies form the basis of analogue computers, aircraft simulators, etc. in
which real-world mass-spring-damper type systems can be simulated with the
equivalent electrical analogue circuit. In any such system, if you know the values of
M, R and k then you can simulate that system electronically.
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