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Introduction

The harmonic oscillator is a common model used in physics because of the wide range of
problems it can be applied to. For example atoms in a lattice (crystalline structure of a
solid) can be thought of as an infinite string of masses connected together by springs, whose
equation of motion is oscillatory. In fact, the solutions can be generalized to many systems
undergoing oscillations, of which the mass-spring system is just one example. Since the
mass-spring system is easy to visualize it will serve as the primary example as we develop a
more complete general theory describing harmonic motion.

1 Theory

1.1 Hooke’s Force Law

We will begin with the restoring force F (x), where x is a measure of the distance from the
origin of the system (taken as x = 0). Assuming F is analytic in the sense that it can be
described by an infinite order polynomial this implies that F has continuous derivatives of
all orders and can be Taylor expanded to form the series

F (x) = F0 + x

(
dF

dx

)

0

+
1

2!
x2

(
d2F

dx2

)

0

+ · · · (1)

where F0 = F (0) and (dnF/dxn)0 is the nth derivative of F evaluated at x = 0.
We will assume that the perturbations from the origin of the system (x = 0) are small

so that all second order terms and above can be neglected. Since we began under the
assumption F0 = 0 this leaves us with

F (x) = −kx (2)

where k ≡ −(dF/dx)0. Equation (2) is known as Hooke’s Law and describes the class of
objects which adhere to elastic deformations.
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1.2 General Mass-Spring System (Undamped Motion)

The mass-spring system falls into this group of elastic deformations governed by Hooke’s
Law. From Newton’s second law F = ma we arrive at the equation of motion

−kx = mẍ (3)

This gives us a second order linear equation of the form

ẍ + ω2
0x = 0 (4)

where we have defined

ω0 ≡
√

k

m
. (5)

This has the general solution

x(t) = A sin(ω0t) + B cos(ω0t) . (6)

1.3 Damped Motion

While the undamped system provides a measure of elegant beauty and simplicity in its
solution it is to a certain extent boring. Once the initial conditions are set it will continue to
oscillate forever, never deviating from its simple sinusoidal pattern. This is also unrealistic
as any physical system will eventually come to rest. To create a more accurate model a
damping (resistive) force must be added.

It does not make sense for this to be a constant force. If a mass-spring system is sitting
at rest at its equilibrium point it will not all of a sudden begin moving under the influence of
some mysterious force. It also does not make sense for the force to depend on the displace-
ment, or position, of the mass. If the entire system were to be translated intuition says the
motion will be the same, simply moved to another location. It then makes sense to model
the damping force as a function of the objects velocity. This adds an additional force of the
form Fd = bv, so that our equation of motion is

mẍ = −kx− bẋ. (7)

Rearranging terms we are left with the differential equation

ẍ + 2βẋ + ω2
0x = 0 (8)

where

β ≡ b

2m
, ω0 =

√
k

m
(9)
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With a bit of foresight the damping parameter β has been defined. Guessing the solution
x = A exp(rt) we find the roots of the auxiliary equation to be

r± = −β ±
√

β2 − ω2
0 (10)

so that the general solution to the equation of motion is

x(t) = e−βt

[
A1 exp(

√
β2 − ω2

0t) + A2 exp(−
√

β2 − ω2
0t)

]
(11)

Equation (11) is similar in form to (6) with the addition of a decaying exponential on the
left side. It is this additional term that gives the system the damping we are looking for.

Upon closer examination we find that there are three general cases for a damped harmonic
oscillator. They are:

Underdamping: ω2
0 > β2

Critical damping: ω2
0 = β2

Overdamping: ω2
0 < β2

Each case corresponds to a bifurcation of the system. Overdamped is when the auxiliary
equation has two roots, as they converge to one root the system becomes critically damped,
and when the roots are imaginary the system is underdamped.

Underdamped Motion

We start by defining the characteristic frequency of the underdamped system as

ω2
1 = ω2

0 − β2. (12)

For underdamped motion ω2
1 > 0 so that the roots in (11) are imaginary. This leaves us with

x(t) = e−βt [A1 exp(iω1t) + A2 exp(−iω1t)] (13)

This can be simplified to the form

x(t) = Ae−βt cos(ω1t− δ) (14)

which is the general solution for underdamped motion.

Critically Damped Motion

For the case that ω2
0 = β2 we find ourselves with a double root at r = −β. To obtain our

second linearly independent solution, and thus our general form, we try a particular solution
of the form xp = At exp(rt). Plugging this into (8) we find that r = −β so that our general
solution is

x(t) = (A + Bt)e−βt (15)
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Figure 1: The different forms of damping. Notice how only underdamped crosses the equi-
librium point periodically. Both critically damped and overdamped tend to zero at infinity.

Overdamped Motion

For overdamped motion we define the characteristic frequency as

ω2
2 = β2 − ω2

0. (16)

This means ω2
2 < 0, so that the square roots in (11) are positive. Our general solution is

then

x(t) = e−βt [A1 exp(ω2t) + A2 exp(−ω2t)] (17)

Figure 1 shows the general forms of the different types of damping.

1.4 Driven Harmonic Oscillator

A common situation is for an oscillator to be driven by an external force. We will examine
the case for which the external force has a sinusoidal form. The external force can then be
written as Fe = F0 cos ωt, so that the sum of the forces acting on the mass is

mẍ = −kx− bẋ + F0 cos ωt (18)

We can rearrange this to the form

ẍ + 2βẋ + ω2
0x = A cos ωt (19)

where the constants are defined as

A ≡ F0

m
, β ≡ b

2m
, ω0 ≡

√
k

m
(20)
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For the homogeneous solution we have the general solution of a damped harmonic oscillator
given by (11),

xh(t) = e−βt

[
A1 exp(

√
β2 − ω2

0t) + A2 exp(−
√

β2 − ω2
0t)

]
(21)

In order to find the particular solution we guess a solution of the form xp(t) = B cos(ωt− δ)
(this is equivalent to xp(t) = B1 cos(ωt) + B2 sin(ωt) but easier to solve for in this case).
Substituting into (19) and expanding the sine and cosine functions we are left with

{A−B[(ω2
0 − ω2) cos δ + 2ωβ sin δ]} cos ωt

−{B[(ω2
0 − ω2) sin δ − 2ωβ cos δ]} sin ωt = 0 (22)

Since cos ωt and sin ωt are linearly independent functions they must vanish to zero identically.
Solving for the sin ωt term gives us

tan δ =
2βω

ω2
0 − ω2

(23)

From this we arrive at

sin δ =
2βω√

(ω2
0 − ω2)2 + 4β2ω2

(24)

cos δ =
ω2

0 − ω2

√
(ω2

0 − ω2)2 + 4β2ω2
(25)

If we now look at the cos ωt term from (22) we see that

B =
A√

(ω2
0 − ω2) cos δ + 2βω sin δ

=
A√

(ω2
0 − ω2)2 + 4β2ω2

(26)

so that our particular solution is

xp(t) =
A√

(ω2
0 − ω2)2 + 4β2ω2

cos(ωt− δ) (27)

where

δ = arctan

(
2βω

ω2
0 − ω2

)
(28)

This makes our general solution the combination of (21) and (27)

x(t) = xh(t) + xp(t) (29)
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2 Application

Now that the general solutions for several variations of oscillatory motion have been solved
their practical applications can be shown. The following are several examples of common
place phenomenon that can be described by the simple harmonic oscillator system.

2.1 Example: Beat Frequency

A “beat” is often heard when multiple frequencies are playing at the same time. The curious
part is the frequency heard as the “beat” is not actually being generated by any of the
external sources. For example, a 4 Hz (hertz, one oscillation per second) pitch is played at
the same time as a 6 Hz pitch. In addition to those two frequencies you can also hear (if
you listen closely enough) a third pitch at 2 Hz. Even though only two pitches were played,
three are heard.

To explore this phenomenon we will examine a driven oscillator with no damping. Setting
b = 0, and thus β = b/2m = 0 in (29) we have the general form

xb(t) =
A

ω2
0 − ω2

cos ωt + B sin ωt (30)

where A = F0/m is the adjusted amplitude of the driving force and B is amplitude of the
characteristic wave of the system. Setting F0 = 600, m = 1, and B = 1 we can plot this
equation for f0 = 6 Hz and f1 = 7 Hz. With the relation ω = 2πf we are left with the
function

xb(t) =
300

(2π · 6)2 − (2π · 7)2
cos(2π · 7t) + sin(2π · 6t) (31)

Figure 2 shows a simple plot of the above function. The third frequency heard is a result
of the linear superposition of the natural frequency of the system and the frequency of the
driving force. As seen in the plot, a 1 Hz sine wave matches the resulting periodicity of
the third “beat” wave exactly. The Beat frequency is indeed the difference between the two
original wave forms.

2.2 Example: Resonance

Resonance is what occurs when two oscillations have the same frequency. To obtain a clear
picture of what happens in this situation we will examine the case ω = ω0 for an undamped
driven oscillator. Plugging this directly into (19) does not work since the second term tends
to infinity for this case. We must then start with the general equation of motion for a
non-damped, driven oscillator

ẍ + ω2
0x = A cos ω0t (32)

The solution to the homogeneous equation is

xh(t) = A1 sin ω0t + A2 cos ω0t (33)
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Figure 2: The graph of (31). Superimposed is a simple sine wave with frequency of 1 Hz,
showing that the periodicity of the third wave form is the difference between the original 6
and 7 Hz waves.

In order to find the particular solution we guess the form

xp(t) = (B1 + C1t) sin ω0t + (B2 + C2t) cos ω0t (34)

Plugging into (32) we find that C1 = A/(2ω0), C2 = 0, and the rest are free variables. It
follows that B1 and B2 are free since they are just the homogeneous solutions we already
know satisfy the equation. This leaves us with the general solution for a resonant system of

xr(t) =

(
B1 +

At

2ω0

)
sin ω0t + B2 cos ω0t (35)

As an example take the initial conditions x(0) = 0 and ẋ(0) = 0. This results in
B1 = B2 = 0, and sets the resonant solution

xr(t) =
At

2ω0

sin ω0t (36)

A plot of this equation can be seen in figure 3 where F0 = 5 and m = 1 make A = 5, and ω0

has been set to 1. The oscillations quickly increase in amplitude and will continue to do so
in a linear fashion due to the At/(2ω0) term. It follows that the peaks will gain in amplitude
by

Amplitude(t) =
A

2ω0

t (37)

and this is indeed the behavior we see.
It is this mechanical resonance of a system that was partly responsible for the infamous

collapse of the Tacoma Bridge. As air swept over the bridge, the change in pressure caused the
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Figure 3: The graph of (32). Although the system starts at the equilibrium position at rest
it quickly starts oscillating in an unbounded fashion. The line x = (5/2)t has been plotted
to show the linear increase of the amplitude.

bridge to sway back and forth. While this in itself presented no threat, the wind was blowing
at just the right speed so that the swaying was in resonance with the natural frequency of
the bridge. The amplitude of the sways increased with each cycle until the bridge eventually
collapsed.

2.3 Example: Limiting Cases of a Damped, Driven System

The behavior observed from an oscillating systems doesn’t just depend on the type of solution
choosen (e.g. underdamped, critically damped, or overdamped). By varying the constants
a wide range of responses occur in any of the systems. Take the underdamped system from
(14)

xu(t) = A exp(
−b

2m
t) cos

([
k

m
−

(
b

2m

)2
]

t

)
(38)

where the constants have been expanded and δ has been set to 0. There are three parameters
b, k, and m that we can vary. Since the case of x → 0 is often a physically significant one
we will choose it to examine.

Case 1: b → 0

First we will take the limit of (38) as b → 0 (see figure 4). This is the case were the friction
is being decreased, so one would expect the decay in amplitude to also decrease, reaching
a limiting case of a regular sinusoidal wave with no decay. Examining (38) as b → 0 the
exponential term goes to 1, and the argument of the cosine is simply ωt. Examining the plot
this is indeed the behavior we see.
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Figure 4: The limit of the underdamped oscillator as b → 0.
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Figure 5: The limit of the underdamped oscillator as k → 0.

Case 2: k → 0

Next we will take the limit as k → 0. In this case the spring coefficient, which is directly
related to the restoring force, is approaching 0. The exponential is unaffected so there will
still be a normal decay, but the time it takes to cross the origin will be increased since there
is not as much force working to restore it to equilibrium. Equation (38) agrees as decreasing
the k term acts to decrease the frequency ω of the wave. By the relation T = 2π/ω, where
T is the period, we see this decrease in ω in turn increases T and thus the time between
equilibrium crossings. Figure 5 confirms this behavior.
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Figure 6: The limit of the underdamped oscillator as m → 0.

Case 3: m → 0

Finally we have the case m → 0. This case is similar to the previous case where we had
k → 0, but shrinking the period instead of lengthening it. A decrease in mass means an
easier time for the spring in restoring it to the equilibrium point. Again examining (38) the
frequency of the cosine function will be increased by a decrease in m, and will eventually tend
to infinity. The cosine term is dominated by 1/m2 as for small m it will have an expansion
of the form

cos
1

m2
t = 1− 1

m2
t +

1

2!

1

m4
t2 + · · · (39)

Since the exponential is only 1/m to leading order, at small m the change in the function
due to the cosine will dominate. This is shown in figure 6.

2.4 Example: Alternate Applications

While the mass-spring system has been the fall back when giving examples in this paper
there are many other systems which exhibit the same time dependent, oscillatory behavior.
One example is an RLC circuit (Resistor Inductor Capacitor circuit). By Kirchoff’s loop
rule the sum of the voltages around the entirety of the circuit must be zero, so adding up
the voltage drops in figure 7 we see

Vsource = Vresistor + Vinductor + Vcapacitor (40)

The voltage drops across each component are well known, and are given by the equations

Vinductor = L
dI

dt
= Lq̈ (41)

Vresistor = RI = Rq̇ (42)
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Figure 7: A Simple RLC Circuit.

Vcapacitor =
q

C
(43)

where q is the charge, dq/dt = I is the current, L is the inductance, R is the resistance, and
C is the capacitance of the circuit. If we assume the source voltage is an oscillating voltage
source of the form Vsource = V0 sin ωt we have a differential equation describing charge

Lq̈ + Rq̇ +
q

C
= V0 sin ωt (44)

This is the same form as the general equation of motion for a damped, driven harmonic
oscillator.
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