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SOME SIMPLE FUNCTIONS IN
THE COMPLEX PLANE

by
Peter Signell

1. Introduction

Complex numbers provide one with a very powerful tool in physics.
For some subjects, it provides a sort of rich, full view of an object where
the real numbers provide only a sort of silhouette. In other cases it pro-
vides quick and easy means of analysis, synthesis and solution. Finally,
there are cases like the time-dependent Schrodinger where it is an integral
part of the theoretical framework.

2. Complex Numbers

2a. Rules for Complex-Number Arithmetic. A complex number
z can be defined as an ordered pair of real numbers (x,y); e.g., (2,5),
(27,21.49), (2a+ b,c*d). The first number in the parenthesis is called the
“real part” of the “complex number” z, while the second number in the
parenthesis is called the “imaginary” part. What distinguishes complex
numbers is the way they combine to form new complex numbers.

Suppose we have two complex numbers, z; = (z1,y1) and 2o =
(z2,y2). Here are the addition, subtraction, and multiplication rules for
those two complex numbers:

21 £ 20 = (1 £ 2,91 T Y2) (1)
2122 = (21,41) - (T2,¥2) = (L1702 — Y1y2, T1y2 + T2y1). (2)

2b. “Real” and “Imaginary” Numbers. Complex numbers with
no second number (z,0), are referred to as “purely real,” while those with
no first member (0,y) are said to be “purely imaginary.” Any complex
number can be written as the sum of a real number and an imaginary
number, according to the addition rule Eq. (1); e.g.,

z = (:C’O) + (Ovy) = (:E,y)

The normal notation and wording for the real and imaginary parts of a
complex number are:
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-2
11
-3 -2 —1_1 11 2 3 x
_2._\(0'_1) Figure 1. Three complex num-
3] e=(2,-3) bers represented as points on a

“complex” plane.

“real part of z” = Re(z)

Yy ; “imaginary part of z” = Im(z).
z = (Re(2),0) + (0, Im(z)) = (Re(z),Im(z)).

2c. The Argand Diagram: A Complex Number Plot. Complex
numbers are often represented as points in a two-dimensional complex
plane, as illustrated in the Argand® diagram of Fig. 1. Here the z-axis is
called the “real axis,” the y-axis the “imaginary axis.”

2d. Use of i. In the physical sciences and engineering the combinato-
rial rules in Egs. (1)-(2) are remembered and denoted by use of the symbol
i, which is treated like any other algebraic symbol except that:

i?=-1. (3)
It is in this sense that we say:
i=v—1. (4)
Complex numbers are then written:
z=2x+ 1y = Re(z) + i Im(z) (5)

The combinatorial rules of Eq. (1) can be derived from Eq.(4) in a few
lines. Help: [S-1]

2e. The Complex Conjugate. Only real numbers can correspond
to the results of physical measurements, so one must have mechanisms
for obtaining real numbers from complex ones. One of the most common
ways is to combine a complex number with its “complex conjugate,” ei-
ther additively or multiplicatively. The complex conjugate of a complex

IPronounced “Ar’gind” in English.
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X| Figure 2. The magnitude |z| of a com-
plex number.

number z is written z*, and is defined as the same number-pair except
that the sign of the imaginary part is reversed:
z¥ = (x +iy)* =z —dy. (6)

The process of complex conjugation is obviously equivalent to a reflection
about the z-axis in Fig. 1.

Both the product and sum of a complex number and its complex
conjugate are real. That is, (z - z*) and (z + z*) are real.

2f. Polar Representation: Magnitude and Phase. The “mag-
nitude” of a complex number z = x + iy is written |z| and is defined

by
12| = V22 = Verz = /(@ —iy)(x +iy) = Va2 + 32 (7)

In terms of the complex plane, the magnitude of a complex number
z is the polar radius to z’s point (z,y) in the complex plane, as illustrated
in Fig.2. The phase ¢ of the point z is defined as the polar angle of the

point (x,y):

¢ =tan"* (y/x).
Then:
x=|z|cosgp; y=|z|sing
and hence:
z =2+ iy = |z|(cos ¢ + isin @).

2g. Euler’s Representation. We now use Euler’s? formula, ¢ =
cos ¢ + isin ¢, to put z in the form:3

z=lz]e'?, (8)

2Pronounced “Oiler.”
3See “Taylor’s Series for the Expansion of a Function About a Point” (MISN-0-4)
for a Taylor series proof of Euler’s formula.
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where e is the base of the natural logarithms. This neatly separates z into
its magnitude |z| and phase ¢: compare Eq. (8) and Fig.2. In the polar
representation, complex conjugation reverses the sign of the phase. For
example,

(44 3i)* = (53097 )% = 5 ¢7136:9°, Help: [S-2]
Here are some other interesting applications of Euler’s representation:

212 = :z;: i (P1—02)

Vz = +4/]2| /2 Help: [S-3]

Vi = +e™/* = +£(cos /4 + isinm/4) = i\/ii (1+14). Help: [S-4]

> Work out the four applications shown above.

3. Poles of Simple Functions

3a. Real Function Silhouettes. Consider the function

fla) = - )

_a
224 a2’
where a is a constant. If we vary a we get the f(z) curves shown in Fig. 3.
We are going to relate the shape of the central bumps in Fig. 3 to what
is going on in the complex plane.

> Verify the curves in Fig. 3.

3b. Extending a Function Into the Complex Plane. The real
function in Eq. (9), f(z) = a?/(2?+a?), can be extended into the complex
plane by substituting z for z: f(z) = a?/(2? + a?), where z = z +iy. The
original function, Eq. (9), is then included as the special case y =0.

f(x) a=1
a=2
A 1=3
| =
1 1 ~1_T—T
-3 -2 -1 0 1 2 3
X —

Figure 3. Plot of Eq. (9) for three values of a.
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Figure 4. The value of [1/(22+1)|, Figure 5. Plot of the function
plotted along the real axis only. [1/2* 4+ 1], for y =0 and y = —1.

3c. Plotting a Complex Function’s Magnitude. Since f(z) has
a single value for each value of x and y, we can plot the magnitude of
f(2), 1f(2)], as a third dimension extending up from our complex plane.
This is shown, for the silhouette along the real axis, in Fig.4. Note
that we have displayed the complex plane in a rather unusual manner,
with the y-axis increasing toward the observer. The lower f(x) curve of
Fig. 3 is the one shown standing up along the real z-axis in Fig.4. It is
|f(2)| = |a?/(2? + a?)|, with a =1, plotted for y=0.

If we now calculate f(z) with a =1 for y = —1, we get:
F— i)l =~ 1
T —i)| = ——; y=-1,
Va2 44 Y
shown standing up along y = —1 in Fig. 5.

3d. Representing Poles. Notice that f(z) for y = —1 becomes infi-
nite as * — 0. Then f(z) for a=1 is said to have a “pole” at the position
x =0,y = —1.% We can fill in |f(z)| for all points in the complex plane,
finding the surface shown in Fig. 6 (where we have plotted |1/(z%+1)] for
all negative values of y). Thus our real axis bump function is seen to be
the chopped-off foothill of a mountain that rises to infinity.

3e. Saddle Point and Conjugate Pole. In Fig.6, notice the line
above the imaginary axis as it comes down the front slope of the pole
toward you. As that crest line approaches the top of the real axis bump,

4Note we have not given a precise definition of poles; see math texts for further
discussions.
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Figure 6. As in Fig. 5, but now Figure 7. Plot of |a?/(2%+a?)| for
plotted for all y < 0. a=1.

it levels off and becomes, just at the real axis, horizontal. Why does it do
that? To see why, factor the denominator of f(z) for a=1:

1 1
241 (2414)-(2—19)

There are two poles, then, at z, = £i. These are illustrated in Fig.7,
which also shows the surface above the positive part of the imaginary
axis as well as above the negative part. The real and imaginary axes
are hidden from sight beneath the surface, but the original real-axis f(x)
bump curve can still be seen going through the pass between the two
mountains.

4. Pole Trajectories

As the parameters of a function change, the poles of the function
move around in the complex plane. By way of illustration, consider the
function f(2) = a?/(22 + a?), factored to show the poles (the zeros of the
denominator):

(12

0= e =i

The poles of this function are obviously at z, = +ia. Thus, as the param-
eter a is either increased or decreased from zero, the two poles move away
from the real axis as in Fig.8. The lines traced out by such movements
of the pole positions are called the pole “trajectories.”

10
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Figure 8. The pole positions of
a?/(z2 +a?) fora=1,2,3

Half-plane views of pole movements are shown in the Ap-
pendix.
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Appendix

Half-plane views, corresponding to Fig. 7, are shown in Fig. 9 for a =
1, 2, 3. The real-axis bumps in these figures are just those of Fig. 3. Note
in Fig. 8 that, as a increases from —oo, one pole moves up the imaginary
axis (shown in Fig.9) while the other pole moves down it (not shown in
Fig.9).

> We suggest you use felt-tip markers to color Figures 4-9. That will
enhance the three-dimensional appearance of the figures. We suggest you
color the vertical faces along the real axis light blue and the line on or
above the entire imaginary axis (and up the y = 0 line on the vertical
face) red.

11
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Figure9. Asin Fig.8, a = 1, 2, 3 (top frame to bottom).
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PROBLEM SUPPLEMENT

1. Write down the complex conjugate, the magnitude, and the phase of
z =28 + 6i.

2. Locate the poles of

25
1= 2 ro
3. Sketch the pole trajectories of
1
f(z) = 22 4+az+1"’

where a is continuously and smoothly increased form —oo to +oo.
Describe the motions of the pole(s) along trajectories.

Brief Answers:

1. 2% =8 —6i; |2| =10; ¢ = tan—' (3/4) = 36.9.
2. zZ1 = —4 + 32, zZ9 = —4 — 3i. [8—5]

3. The arrowheads show the directions the poles travel as a increases from
—o0 to +00. The numbers show the values of a. For clarity, parts of
the trajectories are shown slightly displaced from the z-axis. Those
parts actually coincide with the z-axis.

3.0
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SPECIAL ASSISTANCE SUPPLEMENT

(from TX-2d)

Addition/subtraction rule resulting from i = \/—1:

21t 29 = (33‘1 + iy1) + (Iz + iyz).

Rearranging and factoring,

z1 £ 29 = (x1 4+ x2) £ i(y1 + y2), which is the rule.
Multiplication rule resulting from i = v/—1:

21 20 = (21 +iy1) (@2 + iy2) = 2122 + iy122 + i21y2 + (0)%Y1y0.
Using Eq. (2), rearranging, and factoring,

which is the rule.

This can also be written:

21 - 2o = |21]€M1 - |2a]e®? = |2y - |zo| € P1192),

(from TX-4)

Computation of Polar Coordinates for the Example

By use of Egs. (6), (7), and (8):

4+ 3i = /(42 + (3)2 gitan™t (3/4) _ 5i36.9°

To obtain the complex conjugate, just replace 7 by —i throughout.

(from TX-4)

VE = (2] e)12 = ()2 ()12 = /Tl /2,

(from TX-4)

i=0+1i=cosm/2+isinm/2=e"/2. Then:
) . 1
/2 = (ewr/Q)l/? — dein/4 — +(cosm/4+isinm/4) = iﬁ(l + ).

Check the answer by squaring it!

14




MISN-0-59 AS-2

MISN-0-59

AS-3

(from PS-Problem 2)

We want to make the function zero so its inverse will be infinite; the
zeros of the function are the pole positions of its inverse. We denote
those values of z, that make the function zero, by z,:

az§+bzp—|—c=0.

This is a quadratic expression so we solve it by using the quadratic root
formula, which you should have on instant recall:

b+ Vb2 — 4dac

z
P 2a

We check our answer by multiplying out the resulting function to make
sure it reproduces the original polynomial :

(z—z1)(z—22) =z — (4430 [z = (-4 =-3i)] = ....

Here we denoted the two values of z, by z; and 2 and we showed the
polynomial in factored form (note that either z = z; or z = 25 makes
the function zero).

Apply the quadratic root formula and then do the check yourself!
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Connection between Figures 6 and 7.
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