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Al = _Elh (4-167)
and that
bn an+2
B, = I+l e (4-168)

To evaluate the b,’s, we use the fact that the potential is zero at r = a.
Substituting the above coefficients into Eq. 4-139 and setting r = a, we have
bia
360
which must be true for all 6. Thus both the term ba/e, which is independent
of 8, and the coefficients of all the P,’s must be equal to zero. Thus

0 = — EwaPy(cos 6) + I% + Py(cos ) + %“;ﬁ Pycos @) + ---, (4-169)
0 0

by =0, (4-170)
and
—Epa + bia =0, 4-171)
3e
or
by = 3ekE,. 4-172)

All other b,’s are zero.

The potential ¥ at any point (r, §) is thus given by substituting into Eq. 4-139
A, = —E; as in Eq. 4-167, and

B, = Ey@, 4-173)

as in Egs. 4-168 and 4-172. The field is the same as that found in Eq. 4-151.

The surface charge density (9’) on the conducting sphere can be obtained
from Eq. 4-164 now that the b,’s are known: we find the value previously
found in Eq. 4-156.

4.6.2. Dielectric Sphere in a Uniform Electrostatic Field. We can calculate
this field by either of the formal methods discussed above if we write a general
solution as in Eq. 4-139 for points outside the sphere and write another solution
with different coefficients for points inside the sphere. The coefficients must be
chosen such that the boundary conditions are satisfied:

V — —Ercosé (r — »);
V is continuous across the boundary (r = a);
the normal component of D is continuous (r = a).

Instead of following such a formal procedure, however, we shall write down a
combination of spherical harmonics which will satisfy all the boundary condi-
tions.

Outside the sphere, we must have — Eor cos § as one of the terms in the solu-
tion to satisfy the condition at » —- «. Furthermore, this is the only harmonic
with a positive power of » which we can permit, for otherwise the condition
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at r —> o would be violated. As regards this condition, all the terms with
inverse powers of r are acceptable.

Consider now the solution for points inside the dielectric sphere. No inverse
powers at all are permissible here, since such terms would make the potential
infinite at the center. This is clearly impossible, since the only charges in the
system are those which produce the field E; and those induced on the surface
of the sphere, if we assume a Class A dielectric, with the result that no volume
distribution of induced charge exists.

Writing ¥, for the potential outside the sphere and ¥, for that inside, we have

Vo= —Eycosf + Z B,r—=tbP (cos 6), (4-174)
n=0
V= Z C.riP,(cos 6). (4-175)
n=0
We also require that
VO(aa 0) = Vi(aa 6) (4'1 76)
and that

_(3Vr,0) _ avqr, 6) .

( ar >r=a = <Ke ar )r=a’ (4 177)

where K, is the dielectric coefficient of the sphere. These are the second and
third boundary conditions discussed above. Therefore

B1P1(COS 0) BQPQ(COS 0)
2 + a3

— EyaPy(cos §) + %’ + 4 e

= Cy 4+ CiaPy(cos 0) + C.a?Py(cos ) + - - -, (4-178)
and

2B,P 0 3B;P. 0
1;(;305)_*_ 22(:308)_!_”'

B,
EyPy(cos 0) + a—;’ + p
= —~KeC1P1(COS 0) - ZKQCQsz(COS 0) + cee, (4‘179)

In order that Eqs. 4-178 and 4-179 be true for all values of 4, the coefficient
of each Legendre polynomial on the left side must be equal to the coefficient
of the same Legendre polynomial on the right side. Thus, from Eq. 4-178,

B _ g, (4-180)
a
B,
—Fua + E = C1a, (4-181)
% -G, (4-182)
and, from Eq. 4-179,
B _o, (4-183)
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2B

E+25 = —K.Cy (4-184)
a
3B _ _2K.Cua. (4-185)
at
These sets of equations lead to the following values for the coefficients:
B() = C() = 0, (4'186)
(K. —1 s :
B, = (Ke T 2) E()a s (4 ]87)
_ _ 3B _188
CG=-F17 (4-188)
B,=C,=0 (n>1). (4-189;
Thus
K. —1\a& )
Vi, 6) = —[ 1 - ( T 2) %] B coso, (4-190)
A\
~

Figure 4-24. The field near a dielectric sphere in a uniform electrostatic field. The
lines of electric displacement (indicated by arrows) crowd into the sphere as shown,
with the result that D is larger inside than outside. Since there is no free charge
at the surface of the sphere, the lines of D neither originate nor terminate there,
and they are continuous across the boundary. The equipotentials spread out inside,
corresponding to a lower electric field intensity E. The electric field intensity E is
discontinuous at the surface, and the density of lines of force is lower inside than
outside. As in the conducting sphere, the field is hardly disturbed at distances
larger than one radius from the surface. The field inside is uniform.
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and

Vr,0) = —(ﬁ) Egrcos§ = —<Kei_ 2) Eyz. (4-191)

We may calculate the field intensity inside and outside the sphere by calcu-
lating — V'V from Eqs. 4-190 and 4-191. It will be observed that the field inside
the sphere is uniform, is along z, and is given by

3
E = ( a 2) E.. (4-192)

The lines of force and equipotentials are shown in Figure 4-24.

4.6.3. Uniformly Charged Ring. As a final example of a field involving spher-
ical harmonics, let us consider a thin ring of radius a, carrying a charge Q as in
Figure 4-25. We wish to find the elec-
trostatic potential V at a point P(r, 6)
such that » = a. The uniform charge
on the ring assures azimuthal sym-
metry for the potential. Equation
4-139 again applies, but we can rule
out all terms with positive powers of
6 ! P(r,0) r since we require that ¥V —- 0 as

z r — . The potential at P must

therefore be of the form

P(r,8)

~

V(r,0) = E B, r—#tOP,(cos 0).

n=0
Figure 4-25. A4 ring of radius a carrying (4-193)

I ch . sy
a total charge Q We shall proceed as we did in the

latter part of Section 4.6.1. On the axis, where 6 = 0 and r = z, we have
P,(cosf) = 1 and

V(z,O)—_—%’-}-%‘-}—%—}----. (4-194)

We can, however, calculate the potential on the axis directly from Coulomb’s
law, and if we expand the resultant expression in inverse powers of z we may
match coefficients term by term with Eq. 4-194 to determine the B.’s. The axis
thus provides us with the equivalent of a boundary condition.

Following this procedure, we have

a2 —1/2
Ve 0) = 7 O(aza i = = (1 + ;) , (4-195)

__90 _le 3a 54 |\ 2
T drez 1 222—*_824 16 z‘3+ (4-196)
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On matching coefficients with Eq. 4-794, we find that

-2 .
By = e (4-197)
B, =0, (4-198)
__Q@ 2
B, = a2’ (4-199)
B;=0,---, (4-200)
and, from Eq. 4-193,
_L[l_lai(é > _l> ] 3
V(r,0) = ralr 2702 cos? § 2 4+ (4-201)

Figure 4-26 shows the equipotential lines in this case. The components of the
field intensity may be found, as usual, by calculating —VV.

Figure 4-26

Equipotentials for a charged
ring. None are shown in the
vicinity of the ring, where

they are too close together
to be depicted graphically.
At about two diameters

from the ring the equipoten-
tials are approximately cir-
cular, and the field is quite
similar to that of a point
charge.

4.7. Solutions of Poisson’s Equation

We have as yet dealt only with solutions to Laplace’s equation, since we have
concerned ourselves only with cases in which the charge density p is zero. As
we pointed out earlier, however, there are important fields in which a space
charge exists and in which p is not zero. For these, we must find a solution of



