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On matching coefficients with Eq. 4-794, we find that
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B, =0, (4-198)
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B;=0,---, (4-200)
and, from Eq. 4-193,
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Figure 4-26 shows the equipotential lines in this case. The components of the
field intensity may be found, as usual, by calculating —VV.

Figure 4-26

Equipotentials for a charged
ring. None are shown in the
vicinity of the ring, where

they are too close together
to be depicted graphically.
At about two diameters

from the ring the equipoten-
tials are approximately cir-
cular, and the field is quite
similar to that of a point
charge.

4.7. Solutions of Poisson’s Equation

We have as yet dealt only with solutions to Laplace’s equation, since we have
concerned ourselves only with cases in which the charge density p is zero. As
we pointed out earlier, however, there are important fields in which a space
charge exists and in which p is not zero. For these, we must find a solution of
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Poisson’s equation, and again the solution must be consistent with the boundary
conditions which obtain in the particular problem. We have already shown in
Section 4.2 that the solution is unique.

4.7.1. The Vacuum Diode. As an example of such a field let us find the poten-
tial distribution between the plates of a vacuum diode whose cathode and anode
are plane parallel surfaces separated by a distance which is small compared to
their linear extent. The anode is maintained at a positive potential V¥, relative
to the cathode whose potential we
™ shall take to be zero. The cathode is
¢ heated in order that electrons will be
emitted thermionically and will be
accelerated toward the anode under
the action of the electric field. We
shall assume that the electrons are
emitted with zero velocity and that
the current is not limited by the cath-
ode temperature but can be increased
at will by increasing ¥,.

Since the electrons move in the
space between the plates with finite
velocity, they constitute a space
Figure 4-27. A plane-parallel vacuum charge whose density p is given by
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diode. The cathode is grounded, and the J

anode is at a potential V. An electron p= (4-202)
of charge e moves toward the plate with ) o

a velocity u. where J is the current density in am-

peres/meter? at a point where the
electron velocity is u meters/second. The space charge density p is then meas-
ured in coulombs/meter®; since the electron carries a negative charge, p is
negative. The current density J is also negative, since we take the velocity u
as positive for motion from cathode to anode, as in Figure 4-27.
Since the potential can depend only on the coordinate x in the direction
perpendicular to the plates, Poisson’s equation reduces to
azv 0
= e (4-203)
Thus the second derivative of ¥ with respect to x is everywhere positive, since p
is a negative quantity, and, for a given potential difference between the plates,
V is everywhere lower than the corresponding free space value.
Expressing p in terms of the current density J and of the velocity u, we have
av J

it (4-204)
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where we now take J to be the magnitude of the current density, as read on a
meter, without regard to sign.
From the conservation of energy, the velocity u is given by

%muz = eV, (4-205)
where m is the mass of the electron. Substituting this value of u into Eq. 4-204
gives
@&V _J ( m\”~
= a(2) (4200

This equation can be integrated easily by first multiplying the left side by
2(dV/dx) dx and the right side by 2 d¥, which are equivalent factors. Thus

1/2
(d—V>2 —4Z <2ﬁe> V2 4 A, (4-207)
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where A is a constant of integration which can be evaluated from the magnitude
of dV/dx at the cathode, where V is zero.

In the present case, dV/dx = 0 at the cathode, as can be seen from the
following. If we establish the potential difference V, between the plates when
the cathode is cold, that is, with no electrons available, the electric field inten-
sity E, at the surface of the cathode is positive and equal to Vo/s. But if we heat
the cathode, electrons are emitted, the space charge is established, and E,
diminishes. If an unlimited supply of electrons is available, the space charge
increases, and E, falls until equilibrium is reached. As long as E, is positive, the
electrons emitted are accelerated toward the anode and cannot return to the
cathode. The current is then limited by the cathode emission and not by V¥, as
we assumed at the beginning. On the other hand, if E. were negative the electrons
could never leave the cathode and we would have no space charge. Thus E,
cannot be either positive or negative. At equilibrium, E, = 0, thus the constant
of integration A4 in Eq. 4-207 must be zero. Then

1/2 1/4
F o (fo) (%’:—3) yin, (4-208)
and
1/2 1/4
yas = %(IJO) <’2’—'e) X+ B. (4-209)

The constant of integration B is zero since ¥ = 0 at x = 0, and so

2/3 1/3 4/3
QU

When x = s, ¥V = V,, and so Eq. 4-210 can be written as

X

V="V <—)4/3- (4-211)

N



170

ELECTROSTATIC FIELDS 11 [Chap. 4]

Expressing the field intensity E, the current density J, and the charge density p
in similar fashion, we find that

13
_ g% (f) ) (4-212)

1/2 3/2
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V3/2
= 2.335 X 10~ ra (amperes/meter?). 4-214)
Thus o
p= %; Ve (f) : (4-215)
5 50- Equation 4-214, which is known as
the Child-Langmuir law, is valid only
2.25¢ for the plane parallel diode and for
2 00k electrons emitted with zero velocity.
| 75l Figure 4-28 shows the distribution of
potential ¥, electric field intensity E,
1.50F e and charge density p in the plane par-
1.25} allel diode. One can show,* however,
o ‘ that, in general, no matter what the
E/E, ! geometry of the diode may be, the
0.751 ! current is related to the potential
0.50k E difference between cathode and anode
V7V, ! by the relation

0.25§ !

SR I B RER BUN B B A J = KV, (4-216)
0 04 /s 06 08 10 where Kisa constant.

Figure 4-28. The space charges density In an actual diode, electrons are

p, the electric field intensity E, and the emitted with finite velocities, and the
electrostatic potential V as functions of equilibrium field intensity E, at the
the distance from the cathode in a plane- cathode is negative. In this case, a

parallel infinite diode. The index 1 refers
to the value at the anode. The distance
between cathode and anode is s.

potential minimum is established at
a small distance in front of the cath-
ode and only electrons with veloci-

ties greater than a critical value can get past the potential minimum, which is
a potential energy maximum for electrons.

4.8. Summary

In this chapter we have dealt with electrostatic problems which cannot easily
be solved by direct integration from Coulomb’s law or by application of Gauss’s
law. We have sought solutions of Poisson’s equation

* K. R. Spangenberg, Fundamentals of Electron Devices (McGraw-Hill, 1957), p. 169.



