a = [a,H] = aH-Ha—oh, my, gotcha!!!

The ladder operator solution to the simple harmonic oscillator problem is subtle, exquisite, and
rather slippery—so I thought you might appreciate a recapitulation of what I said in class . . . .
You might want to go through the argument line-by-line until it clicks!

There were three steps in the argument:

1. The first step was to show that the eigenvalues of the Hamiltonian H are equal to h! times %

plus the eigenvalues of the number operator N = afa (which will turn out to be n, so we will end
up with (n+ 3)h!). We did this by showing that the Hamiltonian H is h1 times the sum of the
number operator plus one half the identity operator,

H = (aTa+%) hi:

We showed this by defining the al and a operators, and then calculating ala. Note that once we
found that H = (aJra—i— %) h!, we immediately knew that the eigenvectors of H would be the same

as the eigenvalues of alabecause every vector is an eigenvector of the identity operator! We also

immediately knew that the eigenvalues of H would be equal to h! times the eigenvalues of the ala
operator plus %h!.

2. The second step was to show that when the al and a operators act on any eigenvector of H,
we get back another eigenvector of H one step up or down the ladder of states. We showed this
by calculating the three commutators:

[a; an] =+1
[a;H] = +a
[aT; H] = _af

and considering the action of the last two commutators on any eigenvector of the Hamiltonian

[a; H] |eigenvector of H> = +a |eigenvector of H>

[a]L; H] |eigenvector of H> = —af leigenvector of H> :
By expanding the commutators, we found

(aH — Ha) |eigenvector of H> = +a |eigenvector of H>

(aTH - HaT) leigenvector of H> = —af |eigenvector of H> :

which allowed us to conclude that
alf>=(t-1)t-1>
al [t>=(t41) [f+1>:

1



This showed us that the eigenvalues of H are separated by +£h!. Combining this with the sh!

from step one, we then concluded that the eigenvalues of the Hamiltonian are given by

1
2

1
E. = (n+§)h!

where n is any integer (i.e., positive, negative, or zero!!!). However, in step three, we found the
smallest eigenvalue of the number operator is equal to zero.

So the only other thing we did not know yet was whether the raising and lowering operators return

normalized eigenvectors of the Hamiltonian, i.e., are the vectors a|f > and an|T > normalized
eigenvectors of H? We did know that they are eigenvectors of H with eigenvalues of (t —1)h! and
(t + 1)h!, respectively, but we did not know whether they are normalized—and, in fact, they are
not!

3. The third step was to calculate the normalization coeflicients. To do this we started with two
adjacent normalized states, [n>= |E = (n+ 3)h!>and |n —1>= |[E = ((n — 1) + 3)h! > and
then we calculated the expectation value of the number operator in two different ways:

(i) First, we started with the lowering operator equation
ajn>=cypn-1>

and then we calculated the adjoint of this equation
<n| al =<n— 1] ci:

We combined these to evaluate the expectation value of the number operator

<n\aTa In> =<n-1|cich In—1>= [cn]? <n—1n—-1>

(ii) Second, we replaced afa by H— % and recalculated the expectation value of N

~ 1 1 1
<n|H - n>=<n-1 [(n+§)+§] In>= n <n|n>
= n
By combining these two calculations, we found

lchl?=n = ch=+vn
= aln>=yn|n-1>:
Finally, to see that the lowest eigenvalue of the number operator is zero, we considered
alo>=+Vol0o-1>=0]|-1>= 0:

So |0> is the bottom rung on the ladder (lowering it we obtain the zero vector), and consequently
the lowest eigenvalue of H is %h 1. which is the zero point energy of the oscillator.
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Wave functions associated with the first three levels of a harmonic oscillator.

1/2 1/2
h h
o} x — { 03 x (—)
mao

‘/’o _-
ol 1
2 2
X
0123

FIGURE 5

S}

Probability densities associated with the first three levels of a harmonic oscillator
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Ho(f) =1

H(§) =2¢

Hy(§) =48 -2

Hy(§) = 88 — 12¢

Hy(f) = 16&* — 4882 + 12

Hy() = 32 — 1608 4 120¢ (11-23)
Ho(f) = 64£°% — 480%* + 72082 — 120

H:(8) = 128%7 — 1344%5 4 336058 — 1680¢

Hy(f) = 256%% — 3584£5 + 13440%¢ — 13440£ + 1680

Ho(f) = 5128 — 9216&" + 4838415 — 80640%% + 30240¢

Hio()) = 10240 — 2304028 + 161280 — 403200£4 -+ 30240052
— 30240.
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