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Figure 5: The field of stationary capillary waves excited on the base of a water jet impinging on a
horizontal water reservoir. The grid at right is millimetric.

Cancellation via (9) yields the equation for p̃ accurate to order ε:

p̃ = − εσ

R2
0

(
1− k2R2

0

)
eωt+ikz . (27)

Combining (20), (22) and (27) yields the dispersion relation, that indicates the dependence of the
growth rate ω on the wavenumber k:

ω2 = σ
ρR3

0
kR0

I1(kR0)
I0(kR0)

(
1− k2R2

0

)
. (28)

We first note that unstable modes are only possible when

kR0 < 1 (29)

The column is thus unstable to disturbances whose wavelengths exceed the circumference of the
cylinder. A plot for the dispersion relation is shown in Figure 4.
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The fastest growing mode occurs for kR0 = 0.697, i.e. when the wavelength of the disturbance is

λmax ' 9.02R0 . (30)

By inverting the maximum growth rate ωmax one may estimate the characteristic break up time:

tbreakup ' 2.91

√
ρR3

0

σ
. (31)

A water jet of diameter 1cm has a characteristic break-up time of about 1/8 s, which is consistent
with casual observation of jet break-up in a kitchen sink.

When a vertical water jet impinges on a horizontal reservoir of water, a field of standing waves may
be excited on the base of the jet (see Figure 5). The wavelength is determined by the requirement
that the wave speed correspond to the local jet speed: U = −ω/k. Using our dispersion relation
(28) thus yields

U2 =
ω2

k2
=

σ

ρkR2
0

I1 (kR0)
I0 (kR0)

(
1− k2R2

0

)
. (32)

Provided the jet speed U is known, this equation may be solved in order to deduce the wavelength
of the waves that will travel at U and so appear to be stationary in the lab frame. For jets falling
from a nozzle, the result (4) may be used to deduce the local jet speed.

5.3 Fluid Pipes (see http://www-math.mit.edu/ bush/pipes.html)

The following system may be readily observed in a kitchen sink. When the volume flux exiting the
tap is such that the falling stream has a diameter of 2-3mm, obstructing the stream with a finger
at a distance of several centimeters from the tap gives rise to a stationary field of varicose capillary
waves upstream of the finger. If the finger is dipped in liquid detergent (soap) before insertion
into the stream, the capillary waves begin at some critical distance above the finger, below which
the stream is cylindrical. Closer inspection reveals that the surface of the jet’s cylindrical base is
quiescent.

An analogous phenomenon arises when a vertical fluid jet impinges on a deep water reservoir
(Figures 5 and 6). When the reservoir is contaminated by surfactant, the surface tension of the
reservoir is diminished relative to that of the jet. The associated surface tension gradient draws
surfactant a finite distance up the jet, prompting two salient alterations in the jet surface. First,
the surfactant suppresses surface waves, so that the base of the jet surface assumes a cylindrical
form (Figure 6). Second, the jet surface at its base becomes stagnant: the Marangoni stresses
associated with the surfactant gradient are balanced by the viscous stresses generated within the
jet. The quiescence of the jet surface may be simply demonstrated by sprinkling a small amount
of talc or lycopodium powder onto the jet. The fluid jet thus enters a contaminated reservoir as if
through a rigid pipe.

A detailed theoretical description of the fluid pipe is given in Hancock & Bush (JFM, 466, 285-
304). We here present a simple scaling that yields the dependence of the vertical extent H of the
fluid pipe on the governing system parameters. We assume that, once the jet enters the fluid pipe,
a boundary layer develops on its outer wall owing to the no-slip boundary condition appropriate
there. Balancing viscous and Marangoni stresses on the pipe surface yields

ρν
V

δH
∼ ∆σ

H
, (33)
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Figure 6: The fluid pipe generated by a falling water jet impinging on a contaminated water
reservoir. The field of stationary capillary waves is excited above the fluid pipe. The grid at right
is millimetric.

where ∆σ is the surface tension differential between the jet and reservoir, V is the jet speed at
the top of the fluid pipe, and δH is the boundary layer thickness at the base of the fluid pipe. We
assume that the boundary layer thickness increases with distance z from the inlet according to
classical boundary layer scaling:

δ

a
∼

( νz

a2V

)1/2
. (34)

Substituting for δ(H) from (34) into (33) yields

H ∼ (∆σ)2

ρµV 3
. (35)

The pipe height increases with the surface tension differential and pipe radius, and decreases with
fluid viscosity and jet speed.
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Dispersion relation
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The “regular” wave equation is non-dispersive



Shallow and deep water
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Shallow water
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Deep water waves
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Fig .  4. The space dis t r ibut ion of the wave t ra ins  for  large time. 






