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Abstract

Sleep can be considered to consist of two very different phases: slow-wave sleep

(SWS) and rapid-eye-movement (REM) sleep. Recently,Steyn-Rosset al. (2005)

have developed a mean-field model describing the average behaviour of popula-

tions of neurons in the cerebral cortex, and applied this model to sleep. The model

predicts that the transition between SWS and REM is a first-order phase transition,

analogous to ice melting into water. As a system crosses the critical point of the

phase transition, its fluctuations show discontinuous changes in power, correlation

and spectral distribution. These are hallmarks of all first-order phase transitions.

In this thesis, the scalp recorded voltage fluctuations, the electroencephalogram

(EEG), of sleeping humans and rats are examined to provide evidence of the phase

transitions predicted by theSteyn-Rosset al. (2005) model. Using extensive, orig-

inal MATLAB code, the previously mentioned statistics are calculated on the EEG

time-series and the SWS to REM transitions are identified. The results show high

values for the total power, low-frequency power and correlation time of the EEG

during SWS, on approach to the transition. At the transition into REM, these high

values suddenly drop, giving strong evidence that it is indeed a first-order phase

transition. While identifying abrupt changes in DC-coupled EEG, it is observed

that one-way, low-pass filtering a DC-shift produces waveforms that appear very

similar to another phenomenon: the K-complex.

Steyn-Rosset al. [Journal of Biological Physics, 31, 3/4 ,547–569 (2005)]
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Chapter 1

Introduction

Sleep is essential to everyday life, but there is still much about it that remains un-

known. Psychologists initially assumed that the brain, particularly the cerebral cor-

tex, was idle during sleep and active during wakefulness.Dement and Kleitman

(1957) recorded the electroencephalogram (EEG) — the electrical activity of the

cortex measured with electrodes attached to the scalp — of a multitude of sleep-

ing adult humans. They reported that “discrete periods of rapid eye movement

potentials” coincided with high-activity EEG that is similar to waking EEG. They

found that sleep went through cycles between two phases: low activity, with no

eye-movements and high activity, with rapid eye-movements. They then divided

sleep into two main categories: rapid-eye-movement (REM) sleep, and non-REM

sleep. Non-REM was further sub-categorised, from lightest sleep to deepest sleep,

as stages 1, 2, 3 and 4.

When people fall asleep they begin with stage 1 or 2, and usually proceed up

to stage 3 and stage 4. The stages generally progress with 1–4 Hz oscillations

increasing in amplitude and occurrence. In stages 3 and 4, the 1–4 Hz slow-waves

are the dominating feature. Non-REM sleep has also come to be known as EEG-

synchronised sleep, or slow-wave sleep (SWS). REM sleep, because its EEG looks

similar to the waking EEG, is also known as paradoxical sleep. (EEG examples for

the different sleep states are shown in Fig.3.3on Pg.33)

While many were trying to mark the similarities between paradoxical and EEG-

synchronised sleep, Dement commented that the two “are as far as night and day”.

He went on to state, “I would even go so far as to suggest that there may be some

validity in questioning whether they should be subsumed under the general heading

of sleep.” (Steriade and McCarley, 2005, Pg. 9).

With advances in technology, there has been a big leap in the understanding

of the differences between SWS and REM, particularly at the neurophysiological

1



2 Introduction

level. By surgically implanting the electrodes into the brains of mammals such as

rats and cats, voltage signals can be recorded from the cortex and other structures

such as the thalamus. Research has also been performed on microscopic slices of

the brain tissue of animals. Individual neurons are chemically or electrically stim-

ulated and their responses are measured. During SWS there is a decreased amount

of information transfer from the outside world, but the cortico-cortico and cortico-

thalamic messages are still preserved (Steriade and McCarley, 2005, Pg. 10). In

REM sleep the EEG is in an activated state, where the neurons in the cortical net-

work are brought closer to the threshold where they can respond quickly to mes-

sages from the outside world. The paradox of REM sleep is that although the cortex

is in this activated state, the motoric arousal threshold is much greater than it is for

SWS (Steriade and McCarley, 2005, Pg. 19).

Recently, research into the sleeping states have used models of the brain to de-

scribe the waveforms observed in the EEG. The different approaches of modelling

can be classified into two groups. One is theneural network, where the individual

neurons and their connections are modelled. This approach has been used byHill

and Tononi(2005) andBavhenovet al. (2002). The other type of models, first used

by Nunez(1974) and byFreeman(1992), are continuum, ormean-fieldmodels,

where populations of tens of thousands of neurons are grouped together and aver-

ages are computed. Taking averages of this many neurons may seem like a huge ap-

proximation, but the EEG itself is an average of the voltages of the neurons directly

beneath the electrode. Other contributors to mean-field models includeWright and

Liley (1996), Robinsonet al. (1997), Liley et al. (1999) andRennieet al. (2000).

Steyn-Rosset al. (1999, 2001a,b) have taken the mean-field model of the cortex

byLiley et al.(1999), a system of coupled differential equations describing the aver-

age voltages of the neurons, and adapted it to model the effects of anaesthetic agents

such as propofol. They solved their system of equations as a function of anaesthetic

concentration and found that for low levels and high levels of anaesthetic, there was

only one solution, but at intermediate concentrations, there were three solutions.

Solutions of this form lead to phase transitions, which are commonly seen in ther-

modynamics. A stability analysis revealed that where three solutions existed, only

two of them were stable. The model showed that if the concentration of the anaes-

thetic was increased enough, the cortex would make a discontinuous jump from

the conscious state to the unconscious state. Once the cortex was anaesthetised, the

cortex would not make the jump back to consciousness until the anaesthetic concen-

tration was reduced to a much lower level. The jumps in and out of consciousness

seen in theSteyn-Rosset al.(1999, 2001a,b) model are first-order phase transitions,
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analogous to ice melting into water.

More recently, Moira and Alistair Steyn-Ross have become interested in natural

sleep, and whether the change from SWS to REM may also be a phase transition. In

their paper,Steyn-Rosset al. (2005) design a new model to account for the neuro-

modulator effects that have been observed during sleep using the same philosophy

as their anaesthesia model. The natural sleep model does indeed predict the exis-

tence of a phase transition between SWS and REM.

Dement claimed that SWS and REM were as far apart as night and day. In this

thesis, I look for phase transitions between SWS and REM and try to see if they are

as far apart as ice and water.

1.1 Thesis Overview

TheSteyn-Rosset al.(2005) model for natural sleep makes a number of predictions

describing how the characteristics of the EEG fluctuations will change as the cortex

undergoes the SWS to REM phase transition. The primary aim of my research

was to analyse real EEG obtained from both human sleep subjects and laboratory

rats, and attempt to find evidence of the cortical phase transitions. At the SWS

to REM transition, the model predicts sharp discontinuous changes in statistical

values calculated from the EEG fluctuations. The same statistics are calculated on

real EEG and the SWS to REM transitions are identified and compared with phase

transitions. The model also predicts that there will be a quick upwards jump in the

DC voltage level of the EEG at the phase transition. To test for this, EEG of the

rats had been recorded down to zero frequency. A new algorithm was developed for

detecting these DC-shifts.

1.2 Thesis Structure

In Chapter2 I present the relevant theory necessary for describing theSteyn-Ross

et al. (2005) model. This includes: elementary neurophysiology, theLiley et al.

(1999) equations on which the Steyn-Ross model is based, stability analysis, a pre-

vious anaesthesia model and its predictions (Steyn-Rosset al., 2001a,b), and finally

the natural sleep model and its predictions.

Chapter3 contains a summary of common practices involved with sleep stud-

ies, particularly recording EEG and other bio-signals and categorising sleep into its

stages. I also give details specific to my EEG data, such as how, where and from

whom the recordings were obtained. The chapter is concluded with a small section



4 Introduction

describing the filters that were used in pre-processing the EEG.

Chapter4 describes the time-series statistics that were calculated for the analysis

of the EEG data. The analytical equations given are not my own work, but I did

write the functions that were used to implement them myself. The four time-series

statistics are: total power, frequency band power fractions, correlation time and

spectral entropy. During the process of writing the functions I devised a method

of overlapping the time epochs very efficiently. This is explained at the end of the

chapter along with results of a quick experiment measuring its computation time.

In Chapter5 the measures taken for detecting and removing artefacts from the

signal are described. The figures showing the results of the time-series analysis of

the human EEG are then presented and the SWS to REM transitions are described.

The chapter also gives a small discussion on how the heart beats of the electro-

cardiogram (ECG) can be found in the EEG, and how these artefacts affect the

time-series statistics.

Chapter6 presents the results of the time-series statistics that were calculated

on the fluctuations of the rat EEG. The data is presented as a time-series of the full

recording, and also as averages of small data subsets that have been time-aligned so

the SWS to REM transitions occur simultaneously. The focus of the chapter then

moves on to the detection of DC-shifts. The transitions that do and do not show

DC-shifts at the SWS to REM transition are discussed. Towards the end of the

chapter is a section describing a certain waveform known as the K-complex. I make

an observation and give results indicating the possibility that another phenomenon

could be misclassified as a K-complex.

Chapter7 gives the details of a DC-shift detection algorithm that I have devel-

oped. I give the basic idea behind the algorithm and the results it produces in its

current form. I conclude the chapter by listing the limitations of the algorithm and

giving suggestions on how it could be improved.

Chapter8 is a summary of the conclusions made from the research presented in

this thesis. It also contains things that did not work so well and that I would change

if more time were available. It then concludes with future research topics to provide

answers to questions that have arisen during work on the current topic.

1.3 Original Work

For the sake of completeness, this thesis briefly presents work that is not my own.

However, the majority of this thesis is my own original work. Specifically, my

original contributions are:
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• All the necessary code that has been used to assist with data display and

analysis with the exception of a few toolboxes (a summary of the time-series

signal processing functions and other utility codes that have been written is

given in AppendixA).

• All figures presented in this thesis, unless otherwise stated. Most of the re-

printed figures are found in Chapter2.

• The overlapping algorithm that is implemented in the time-series statistics

functions (Chapter4).

• Artefact detection and removal from the EEG time-series (Chapter5).

• The calculation and analysis of the time-series statistics (Chapters5 and6).

• The final alignment of the time-aligned transitions (Chapter6). Logan Voss

extracted the data subsets containing the SWS to REM transitions from the

full time-series.

• Analysis of the rat DC data (Chapter6).

• The observation of the similarities between low-pass filtered DC-shifts and

K-complexes (Chapter6).

• The development of the DC-shift detection algorithm, with initial inspiration

from Jamie Sleigh and Alistair Steyn-Ross (Chapter7).





Chapter 2

Cortical Modelling Theory

This chapter summarises the theory that has been adopted and developed in the

Steyn-Ross model of the cortex. The equations and concepts described here are

explained in greater detail in previous papers (Steyn-Rosset al., 1999, 2001a,b,

2003, 2004, 2005; Liley et al., 1999; Wilson et al., 2005) and theses (Steyn-Ross,

2002; Whiting, 2003).

2.1 Basic Neurophysiology

The human brain consists of many different parts such as the cerebellum, brain

stem, thalamus and cerebrum. The largest of these is the cerebrum. Its outer layer

of grey matter, about 2–3 mm thick, is called the cerebral cortex. It is twisted and

folded to compact its large surface area into a small volume. The cerebral cortex

is responsible for sensing, thinking, learning, emotion, voluntary movements and

consciousness (Weiten, 1992).

2.1.1 Neuronal Operation

The brain cells that make up the cortex are called neurons. A typical neuron is

shown in Fig.2.1. Many neurons connect together, sending and receiving elec-

tronic signals. The main body of the neuron is thesoma. Signals leave the soma

through theaxon, then at thesynapses, they jump to thedendritesof other neurons.

A single neuron may have as many as 15,000 synaptic connections (Weiten, 1992).

The dendrites of the neuron collect the synaptic input voltages and bring the sig-

nals back to the soma where they are integrated together. When the voltage of the

soma increases above a threshold, a large voltage spike (action potential) is gener-

ated and it travels down the axon. At the end of the axon, it branches out to many

7
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Figure 2.1: A schematic diagram of a neuron. The dendrites of a neuron collect
(1) excitatory or (2) inhibitory voltage pulses that have come from a presynaptic
neuron. The pulses propagate down the dendritic tree and are combined at the cell
body (soma). If the soma voltage is raised above the threshold voltage a large
voltage spike, called an action potential (3a), is released and it travels down the
axon. At each of the nodes of Ranvier (3b, 3c), the action potential is boosted again.
At the end of the axon the action potential propagates down the to the axon terminals
where neurotransmitters are released to stimulate more neurons (4). [image source:
Hammond(2001) ]
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terminals which connect to the dendrites of more neurons via more synapses. At

the synapse, neurotransmitter chemicals are released from thepresynapticneuron,

and are received by thepostsynapticneuron. There will be either a positive (excita-

tory) or negative (inhibitory) voltage pulse, which is called apostsynaptic potential

(PSP), in the dendrites after they have received the neurotransmitter. A positive

PSP (EPSP) arises from stimulation from an excitatory neuron, while a negative

PSP (IPSP) comes from an inhibitory neuron. In the cortex, roughly 85% of the

neurons are excitatory and 15% are inhibitory (Braitenberg and Schüz, 1991).

2.1.2 Voltages of Neurons

If the potential difference between the intracellular and extracellular fluids of a cor-

tical neuron were measured, one would record a voltage of approximatelyV =

−70 mV. This is the resting potential of the neuron. The voltage difference is due

to the fact that the intracellular and extracellular fluids have different ionic con-

centrations. Inside the cell there is an abundance of K+, while outside the cell the

concentrations of Na+ and Cl− are high.

The Nernst potentialVX is the voltage across the membrane due to the difference

in concentrations of ion X. It is defined as:

VX = Vi − Vo =
RT

zF
ln

[X]o
[X]i

, (2.1)

whereR = 8.314 J K−1 mol−1 is the ideal gas constant,T is the temperature,z is

the ion charge (i.e., Na+ has a charge of 1), andF = 9.648× 104 C mol−1 is the

Faraday constant. The square brackets [X] mean the concentration of X, and the

subscriptsi ando denote inside and outside the cell respectively. Table2.1 lists the

concentrations and Nernst potentials for the common ions.

Table 2.1: Ion concentrations (in mmol/L) and Nernst potentials (mV) for a resting
human neuron. The Nernst potentials were calculated using Eq. (2.1) with T =
37◦C, which givesRT/F = 26.7 mV. [Values fromSteyn-Ross(2002)]

Concentration
Ion Inside Outside Nernst Potential

Na+ 10 140 +70
K+ 140 4 −95
Cl− 4 103 −87

The differences in concentrations of the ions are needed to form action poten-
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tials. When the potential difference across the soma membrane (soma voltage) ex-

ceeds a certain threshold, the sodium ion channels open. Na+ rush into the neuron to

balance out the concentrations, consequently raising the soma voltage. At the peak

of the action potential, the potassium ion channels open and allow K+ to escape,

which lowers the soma voltage again. The concentration gradients are maintained

by ion pumps, which bring two K+ ions into the cell and expel three Na+ ions. The

Nernst potential is also called thereversalpotential because the direction of ion

flow will reverse if the soma voltage is greater than the Nernst potential.

The Goldman–Hodgkin–Katz formula has a similar form as Eq. (2.1), but it

combines the concentrations of the ions [X] and their permeabilitiesPX together.

V =
RT

F
ln

[

PK[K] o + PNa[Na]o + PCl[Cl] i
PK[K] i + PNa[Na]i + PCl[Cl] o

]

(2.2)

The exact values of the permeabilities need not be known, just their ratios. The

permeabilitiesPK : PNa : PCl with respect toPK are 1 : 0.05 : 0.25. At a temperature

of 37◦C,V = −70.2 mV, which is the resting potential.

2.2 The Macrocolumn and the EEG

Because the cortex contains billions of neurons and∼1014 synapses, modelling each

connection would be impossible. Rather than attempting this unfeasible task, the

Steyn-Ross model opts for the mean-field approach where neurons occupying the

same volume are grouped together to give averages. The Steyn-Ross model is an

adaption of the Liley model (Liley et al., 1999). The basic building block of both

models is themacrocolumn. The macrocolumn is a cylindrical volume,∼0.3–1 mm

in diameter and as deep as the cortical tissue∼2–3 mm. A schematic diagram is

shown in Fig.2.2.

The voltages of the excitatory and inhibitory neurons are averaged and labelled

asVe andVi respectively. When an action potential is fired down the axon, a dipole is

created. As seen in Fig.2.2, the excitatory neurons are aligned so that their dendrites

and axons are roughly perpendicular to the scalp, so the dipoles sum together. The

inhibitory neurons are randomly orientated so their dipoles approximately cancel.

Therefore, the EEG measured from the scalp can be broadly considered to arise

from the average behaviour of the excitatory neurons over a small area immediately

below the electrode.
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Figure 2.2: The macrocolumn is a cylindrical volume of the cortex containing
∼100,000 neurons (only four are shown).∼85% are (pyramidal) excitatory neurons
which are actually triangular in shape and line up with their axons pointing away
from the scalp. The other∼15% are (stellate or basket) inhibitory neurons which
have a more circular shape and are aligned arbitrarily. Outputs connections from an
excitatory neuron (e→e, e→i) can be short-range, long-range and subcortical, but
inhibitory neuron output connections (i→e, i→i) can only be short-range.
[image source:Steyn-Ross(2002)]
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2.3 Cortico-Dynamic Equations

The original equations describing the dynamics of the macrocolumn used in the

Steyn-Rosset al. (1999) model, were the same as were used byLiley et al. (1999).

Since then there have been some small modifications. This section follows the

theory presented in one of their more recent papers (Steyn-Rosset al., 2005).

The model consists of a set of eight differential equations, in two-dimensional

space and time. In these equations, the subscriptse and i denote excitatory and

inhibitory neurons. In some of the terms, there are two subscripts (e.g., inψei).

The first subscript is the type of the presynaptic neuron, while the second is the

postsynaptic neuron.

2.3.1 Integral Equations

The first two of the eight equations describe how the average voltages of the ex-

citatory and inhibitory macrocolumn,Ve andVi, react in time to dendritic inputs.

Before stating them in differential form, it helps to understand them by first writing

them as integrals. Here, all the excitatory and inhibitory PSPs are convolved with

the soma impulse response functionL and then integrated together to give the soma

voltage. The two equations are identical apart from the subscriptse and i of the

postsynaptic neuron, so only one equation has been written andk can take the value

e or i.

Vk = V rest
k +

∫ t

−∞
Lk(t − t′)

[

ρe ψek(t)Φek(t) + ρi ψik(t)Φik(t)
]

dt′ (2.3)

The impulse responseLk is defined as:

1
τk

exp[−t/τk], t ≥ 0 soma response (2.4)

whereτk is time constant of the decay curve.

The termsρj ψjk Φjk (wherej, k ∈ {e, i}), in Eq. (2.3), are input perturbations

from other neurons. The productρeΦek(t) is the excitatory voltage input to a type

k neuron. The strength of the synapse is modelled byρ, which has units mV·s and

Φ is the input spike rate flux, with the units spikes·s−1. Theψjk are dimensionless

and they weight the effectiveness of the inputρj Φjk. The equation governing this

weighting is:

ψjk =
V rev
j − Vk

V rev
j − V rest

k

. (2.5)
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To explain the weighting of the inputs, consider this example of an excitatory

neuron giving inputρeΦee(t) to another excitatory neuron. If the potential of the

postsynaptic neuronVe is at its resting potentialV rest
e , we have (V rev

e −V rest
e )/(V rev

e −
V rest
e ) = 1 and the full voltage input is received. In another scenario, ifVe were

already almost as high asV rev
e , the numerator ofψee(t) would be close to zero, and

Ve would increase by only a small fraction of the input. Theψjk weights constrainVe
andVi to lie between the reversal potentials,V rev

e andV rev
i . Figure2.3shows how the

weightsψek(t) andψik(t) change with varying soma voltageVk using the parameters

in the current model. (A full list of typical parameters is given in table2.2.) The

soma potential of the postsynaptic neuron isincreasedwith excitatory inputs, and

decreasedwith inhibitory inputs.

-80 -70 -60 -50 -40 -30 -20 -10 0 10
-0.5

0

0.5

1

1.5

(a) ψ
ek

(V
k

)

-80 -70 -60 -50 -40 -30 -20 -10 0 10
-5

0

5

10

15

(b) ψ
ik

(V
k

)

Soma Voltage,  Vk

Vi

Vi

Ve V
rest

rest
rev

rev
e

  (mV)

Figure 2.3: The value ofψjk weights the effectiveness of the voltage inputsρj Φjk

on the postsynaptic neuron. In the current model (Steyn-Rosset al., 2005), the
value ofV rest

e = V rest
i ≈ −64 mV,V rev

e = 0 mV andV rev
i = −70 mV. [image source:

Steyn-Rosset al. (2005)]

The total input spike rate fluxΦ is an integration of all local (β: within the same

macrocolumn), distant (α: from other macrocolumns) and subcortical (sc: from

structures such as the thalamus and brainstem) voltage spikes. These are convolved

with the dendrite impulse response curveH. The total input spike rate is given

by the per-synapse spike rateφek, φik multiplied by the number ofe → k, i → k
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Table 2.2: Typical model constants for the neural macrocolumn. Subscript labelk
means destination cell can be either of typee (excitatory) ori (inhibitory). Note
that there is considerable uncertainty in many of these values.

Symbol Description Value Unit

τe,i membrane time constant 0.050, 0.050 s
V rev
e,i cell reversal potential 0,−70 mV
V rest
e,i cell resting potential −64,−64 mV
ρe,i synaptic gain (1.00,−1.05)×10−3 mV·s
Nα
ee,ei long-rangee→k synaptic connections 3710, 3710 –

N
β
ee,ei local e→k synaptic connections 410, 410 –

N
β
ie,ii local i→k synaptic connections 800, 800 –

Nsc
ee,ei subcorticale→k synaptic connections 50, 50 –

Nsc
ie,ii subcorticali→k synaptic connections 50, 50 –
v axonal conduction speed 9 m s−1

Λee,ei axonal inverse-length scale 40, 40 m−1

γee,ei rate constant fore→k synaptic input 70, 70 s−1

γie,ii rate constant fori→k synaptic input 58.6, 58.6 s−1

Qmax
e,i maximum firing rate for sigmoid 30, 60 s−1

θe,i inflexion-point voltage for sigmoid −58.5,−58.5 mV
σe,i sigmoid width 4, 6 mV

connectionsNek,Nik.

Φek(t) =
∫ t

−∞
Hek(t − t′)

[

N
β

ek φ
β

ek(t
′)

︸ ︷︷ ︸

local

+ φsc
ek(t

′)
︸︷︷︸

subcortical

+Nα
ek φ

α
ek(t

′)
︸ ︷︷ ︸

distant

]

dt′ (2.6)

Φik(t) =
∫ t

−∞
Hik(t − t′)

[

N
β

ik φ
β

ik(t
′) + φsc

ik(t
′)
]

dt′ (2.7)

Theφβek andφβik are the spike rates from other neurons within the macrocolumn,φsc
ek

andφsc
ik are spike rates from subcortical structures, andφαek is the spike rate from

neurons in other macrocolumns. Notice that there is noNα
ik φ

α
ik in Eq. (2.7). This is

because inhibitory neurons do not have long-range output connections (i.e., to other

macrocolumns). Theφαjk andφβjk are dependent on the the soma voltagesVe andVi.

They are explained in the next section.

TheHjk term is the dendrite impulse response curve. It models how the ion

channels open and let the excitatory or inhibitory voltage pulses enter the cell.Hjk
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is defined as:

Hjk(t) = t γ2
jk exp[−t γjk], t ≥ 0 dendrite response (2.8)

The soma impulse response function,L, and the dendrite impulse response func-

tion,H, are both zero whent < 0. The functions are also normalised so that their

area is exactly 1. They are plotted in Fig.2.4. Notice thatH decays much faster

thanL. This becomes important in the “slow membrane” approximation made in

theSteyn-Rosset al. (2005) model.
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Figure 2.4: The impulse response of the soma and dendrites. The potential of the
dendrite response equalises much faster than the soma after an input spike. [image
source:Steyn-Rosset al. (2005)]

2.3.2 Converting the Integrals to Derivatives.

As integrals the equations are easier to understand, but they are difficult to use in

analysis. With the use of the calculus theorem for differentiation of integrals with

variable limits (see page 83 ofSpiegel(1963)), Eq. (2.3) is converted in to a pair of

first-order differential equations (one each fork = e, i).

τe
dVe
dt

= V rest
e − Ve + ρe ψee(t)Φee(t) + ρi ψie(t)Φie(t) (2.9)
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τi
dVi
dt

= V rest
i − Vi + ρe ψei(t)Φei(t) + ρi ψii(t)Φii(t) (2.10)

If one ignores allρ’s, ψ ’s andΦ’s from Eq. (2.9), it should be recognisable as

an exponential decay ofVe from some initial level to its equilibrium positionV rest
e ,

with τe as the time constant. The situation is exactly the same for the inhibitory

neuron in Eq. (2.10).

By using the same calculus theorem again,twice, Eqs. (2.6, 2.7) are converted

into four second-order differential equations. The first pair of equations describes

the excitatory postsynaptic neurons,

(

d

dt
+ γee

)2

Φee =
[

Nα
ee φ

α
ee(t) +N

β
eeQe(t) + φsc

ee(t)
]

γ2
ee (2.11)

(

d

dt
+ γie

)2

Φie =
[

N
β
ieQi(t) + φ

sc
ie (t)

]

γ2
ie (2.12)

and the second pair describes the inhibitory neurons,

(

d

dt
+ γii

)2

Φii =
[

N
β
ii Qi(t) + φ

sc
ii (t)

]

γ2
ii (2.13)

(

d

dt
+ γei

)2

Φei =
[

Nα
ei φ

α
ei(t) +N

β
eiQe(t) + φ

sc
ei (t)

]

γ2
ei (2.14)

In these last four equations, new variablesQe,i have appeared and replacedφβjk.

These were the internal macrocolumn spike rates, which are assumed to be equal

to the mean rate of spiking of the macrocolumn. The new variableQ is an average

spike rate that is determined by the average soma voltage; the higher the soma

voltage, the higher the firing rate. All the neurons have a threshold soma voltage that

must be exceeded before they will fire an action potential. Among the population of

neurons, the thresholds are assumed to have a Gaussian distribution with meanθe,i

and standard deviationσe,i. Qe,i is then the cumulative sum of the distribution and

is described by a sigmoid function.

Qe,i =
Qmax
e,i

1+ exp
[

−π (Ve,i(t)−θe,i)√
3σe,i

]

(2.15)

The last two of the set of eight differential equations describe the long-range

excitatory inputs from distant macrocolumns. They are modelled as damped waves
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that are generated by other sourcesQe(~r, t), propagating along the 2-D cortex.

[

(

∂

∂t
+ vΛee

)2

− v2∇2

]

φαee(~r, t) = (vΛee)
2Qe(~r, t) (2.16)

[

(

∂

∂t
+ vΛei

)2

− v2∇2

]

φαei(~r, t) = (vΛei)
2Qe(~r, t) (2.17)

The v in the above equations is the average speed that an action potential trav-

els down the axon. The other new parameterΛek is the inverse-length scale for

long-range connections. It governs the average distance that action potentials travel

(analogous to the time-constants for the decays of the impulse responses earlier).

Equations (2.9–2.17) make up the (slightly modified)Liley et al. (1999) model

as used bySteyn-Rosset al. (2005).

To keep their model of the cortex consistent with the real cortexSteyn-Ross

et al. (2005) feed the system with white noiseξm(t) through the subcortical terms

φsc
jk seen in Eqs. (2.11–2.14).

φsc
jk(t) = sjkQ

max
j +

√

sjkQ
max
j · ξm(t). (2.18)

Herem can take the valuesm = 1 for j = e, k = e, m = 2 for j = i, k = e, m = 3
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for j = e, k = i andm = 4 for j = i, k = i. Eachξm is completely independent of

all the others, and they all have a mean of zero:〈ξm(t)〉 = 0. The other parameters

sjk are just scalers to allow variability to the level of the noise.

2.3.3 Approximations and Stability of the Steady States

The Steyn-Rosset al. (2005) model makes an approximation that was made in

previous work (Steyn-Rosset al., 2001a,b, 2003, 2004), namely, the “slow neuron”

adiabatic limit. The assumption is that the relaxation time of the impulse response

of the dendrites is much quicker than the relaxation time impulse response of the

soma, i.e.,γ−1
jk � τk. To implement their approximations the temporal derivatives

d/dt in Eqs. (2.11–2.14) and Eqs. (2.16–2.17) are set to 0. The cortex is also

assumed to be homogeneous, meaning that all macrocolumns are identical so only

one macrocolumn needs to be modelled. In effect this means that the Laplacian∇2

in Eqs. (2.16–2.17) can be set to zero. The Eqs. (2.9–2.17) now reduce to only two

equations:

dVe
dt

=
1
τe

{

V rest
e − Ve(t) + ρeψee(t)

[

(Nα
ee +N

β
ee)Qe + seeQmax

e

]

+ρiψie(t)
[

N
β
ieQi + sieQ

max
i

]

+ Γe(t)
}

(2.19)

dVi
dt

=
1
τi

{

V rest
i − Vi(t) + ρeψei(t)

[

(Nα
ei +N

β
ei)Qe + seiQmax

e

]

+ρiψii(t)
[

N
β
iiQi + siiQ

max
i

]

+ Γi(t)
}

(2.20)

The white-noise (stochastic) terms are written asΓe,i:

Γe(t) = ρeψee(t)
√

seeQ
max
e · ξ1(t) + ρiψie(t)

√

sieQ
max
i · ξ2(t) (2.21)

Γi(t) = ρeψei(t)
√

seiQ
max
e · ξ3(t) + ρiψii(t)

√

siiQ
max
i · ξ4(t) (2.22)

Another member of the cortical modelling group at Waikato, Marcus Wilson,

has run numerical simulations on a two-dimensional grid of macrocolumns without

using the adiabatic approximation. His results on the dynamics of the system are

reported inWilsonet al. (2005).

By also setting to zero the white noise termsΓe,i, the steady states ofVe and

Vi can be found — i.e., solutions whereVe,i(~r, t) is constant in space and time. In

most cases there is only one solution, but for a particular parameter set more than

solution may exist. The region in the parameter space where solutions cease to
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exist is usually of most interest. If there are multiple solutions the the stability of

the steady states must be checked. Some states can be stable and others can be

unstable.

A stable steady state is analogous to a ball sitting in the valley of two hills (two

dimensions, height and width). If the ball is pushed part way up the hill, it will roll

back down. It may oscillate back and fourth, but it will eventually settle back to its

equilibrium position. An unstable state, conversely, is analogous to a ball sitting on

the top of a hill. The ball is not moving, so the top of the hill is steady. It is not

stable though, because if the ball is slightly pushed one way or another, it will roll

down and not return to the top.

To analyse the stability of the steady states and to consider the size of fluc-

tuations about these statesSteyn-Ross(2002) first wrote the equations for soma

voltages as the sum of deterministic and stochastic parts:

dVe
dt

= F1 + Γe(t)/τe (2.23)

dVi
dt

= F2 + Γi(t)/τi (2.24)

whereF1,2 are all the terms on the right hand side of Eq. (2.19, 2.20) exceptΓ1,2.

The stability is determined by perturbing the soma voltageVk away from its steady

stateV 0
k by a small amountδVk.

Ve = V 0
e + δVe (2.25)

Vi = V 0
i + δVi (2.26)

The linear approximations to the deterministic part of Eqs. (2.23, 2.24) are com-

bined in the matrix equation,

d

dt

[

δVe

δVi

]

= A

[

δVe

δVi

]

(2.27)

whereA is the 2× 2 Jacobian matrix.A needs to be computed at every steady state

position (V 0
e , V

0
i ).

A ≡

[

A11 A12

A21 A22

]

≡









∂F1

∂Ve

∂F1

∂Vi
∂F2

∂Ve

∂F2

∂Vi









(2.28)
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The eigenvaluesλ1,2 of A are then calculated via the formula

λ1,2 =
T ±

√

T 2 − 4D
2

(2.29)

whereT is the trace andD the determinant ofA. The solutions of the differential

equations (2.19, 2.20) are then written:

δVe = a1 e
λ1t + a2 e

λ2t (2.30)

δVi = b1 e
λ1t + b2 e

λ2t (2.31)

Herea1,2 andb1,2 are constants that depend on the initial conditions. Both eigen-

values must be negative for the steady state to be stable. If one of the eigenvalues

is not negative, the fluctuations will grow exponentially. The eigenvalues can be

complex, which will lead to oscillatory components, but their real part must still be

negative.

2.4 Expanding from Anaesthesia to Natural Sleep

2.4.1 The Anaesthesia Model

In earlier work (Steyn-Rosset al., 1999, 2001a,b, 2003, 2004) the model was used

to predict changes in the cortex when it was under the effect of an anaesthetic such

as propofol. It was easier to model anaesthesia than natural sleep, because there is

only one major control variable: the concentration of the anaesthetic drug.

The drug propofol works by enhancing the inhibitory effect of the neurotrans-

mitter GABA (gamma-amino butyric acid) by holding the chloride ion channel open

longer and allowing more Cl− to enter the postsynaptic neuron. This causes the

soma voltage to be lowered further from its firing threshold. To incorporate the ef-

fect of the anaesthetic into their model, the parametersγie andγii were divided by a

dimensionless factorλ.

γik →
γik
λ

(2.32)

In Fig. 2.6 the thick curve in (a) marks the steady states of Eqs. (2.9–2.17)

as a function of anaesthetic effect λ. There are three branches of the “S-bend”

corresponding to three solutions for a particular range ofλ. The upper and lower

branches are stable, but the middle branch is unstable. As the concentration of

anaesthetic concentration increases and the average soma voltage decreases along

the steady state curve, the amplitudes of its fluctuations get larger. When the corner
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of the “S-bend” is reached (marked A3), the soma voltage must suddenly drop from

the upper branch to the lower branch. Following this, the fluctuation amplitude

dramatically decreases. This behaviour for the fluctuations is a hallmark of a first-

order phase transition.
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Figure 2.6: An EEG time-series simulation of an anaesthetised cortex from an
earlier model (Steyn-Rosset al., 2001a). In their older notationhe was the symbol
assigned to the excitatory soma voltage (nowVe). The change from one branch to
another makes this a first-order phase transition similar to those commonly seen in
thermodynamics. In (a) the amplitude of the fluctuations was scaled up by 300 to
make them visible; they are at their true size in (b). [image source:Steyn-Ross
et al. (2001a)]

The large increase in soma voltage fluctuations as a patient approaches anaes-

thesia is well known by anaesthetists and is referred to as a biphasic response. This

experimental behaviour is consistent with the predictions of the model.

2.4.2 Modelling Natural Sleep

A figure in a paper byDestexheet al. (1999) (reprinted here in Fig.2.7) is remi-

niscent of the results of the anaesthetic modelling. This prompted the question as

to whether phase transitions also occur in natural sleep — specifically the transition

from SWS to REM sleep.

Sleep becomes more complex to model than anaesthesia because there are many

neuromodulators that are involved in the sleep cycle. To try to keep the model as



22 Cortical Modelling Theory

Figure 2.7: The EEG, fractional band power, and space constant of a sleeping cat
studied byDestexheet al. (1999). The sharp drop in the EEG fluctuations is similar
to what was observed in Fig.2.6
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simple as possibleSteyn-Rosset al. (2005) model the effect of only two neuromod-

ulators:adenosineandacetylcholine

Adenosine seems to control tiredness, or fatigue. Its concentration steadily in-

creases while one is awake, and then decreases again during sleep (Espãna and

Scammell, 2004). Adenosine works by increasing K+ leak current. This lowers the

resting voltageV rest
e and makes the cells less likely to fire (Hasselmo, 1995).

The second neuromodulator, acetylcholine (ACh), has a high concentration dur-

ing REM sleep, but during non-REM sleep, the concentration drops to almost zero

(Espãna and Scammell, 2004). There are two major effects of ACh. The first is op-

posite to that of adenosine. ACh reduces the K+ leak current, which raisesV rest
e and

makes the cells more likely to fire. The second effect of ACh is somewhat contrary

to the first. While it increasesV rest
e , it also reduces the amplitude of the excitatory

PSP (Hasselmo, 1995). This corresponds to a decrease in the excitatory gainρe.

The two neuromodulator effects are included into the differential equations by

changing the parametersV rest
e andρe from Eqs (2.9) and (2.10):

V rest
e → V rest

e + ∆V rest
e (2.33)

ρe → λACh ρe (2.34)

whereλACh is a dimensionless scalar to model the concentration of ACh and∆V rest
e

is an additive constant. A high ACh concentration corresponds to a low value of

λACh. Steyn-Rosset al. (2005) have chosen to not include the+∆V rest
e into theψjk

weights of Eq. (2.5) to avoid unnecessary complexity. The soma voltage equations

now become:

dVe
dt

=
1
τe

{

V rest
e + ∆V rest

e − Ve(t) + λAChρeψee(t)
[

(Nα
ee +N

β
ee)Qe + seeQmax

e

]

+ρiψie(t)
[

N
β
ieQi + sieQ

max
i

]

+ Γe(t)
}

(2.35)

dVi
dt

=
1
τi

{

V rest
i − Vi(t) + λAChρeψei(t)

[

(Nα
ei +N

β
ei)Qe + seiQmax

e

]

+ρiψii(t)
[

N
β
iiQi + siiQ

max
i

]

+ Γi(t)
}

(2.36)

The steady states of Eqs. (2.35) and (2.36) were found on the domain defined

by the new parameters∆V rest
e andλACh. The steady states forVe in the model also

contains an “S-bend”, but now there is a 3-D manifold (shown in Fig.2.8). The

amount of overlap in the three steady states reduces as∆V rest
e rises until there is

only one steady state.
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Figure 2.8: The steady states ofVe of the macrocolumn for theSteyn-Rosset al.
(2005) model of natural sleep are plotted as a function of∆V rest

e andλACh. For most
of the surface there is only one steady state, but on the left side of the graph, inside
the green⊃ shape, the upper and lower surfaces overlap and three steady states
exist. The thick black line traces out an elliptical tour. This will be explained later
in section2.4.3. [image source:Steyn-Rosset al. (2005)]

2.4.3 Predictions of the Steyn-Ross Model

TheSteyn-Rosset al. (2005) model makes predictions of how the EEG will change

as a sleeper progresses through his sleep cycle. The ellipse drawn on to the manifold

of steady states marks out a hypothetical sleep cycle on the∆V rest
e , λACh domain. A

bird’s-eye view of the manifold is shown in Fig.2.9. The starting position, marked

as (+), is on the lower branch on what is presumed to be SWS. The trajectory of

the ellipse takes it towards the edge of the cusp (marked by the green curve). From

here there is nowhere else to go except to the upper branch which is assumed to be

REM sleep. This jump, occurring at the position marked (◦), is a first-order phase

transition. The ellipse trajectory continues around the manifold where only one

steady state exists. It eventually passes under the upper branch again and returns to

the start. This cycle was chosen to agree with the evidence that the SWS to REM

transition is a sudden change, but the transition back from REM to SWS is not (see

chapter5).

Steyn-Rosset al. (2005) also calculated the theoretical changes in statistics that

can be measured from real EEG. Figure2.10shows the predicted changes in EEG

time-series statistics for one complete sleep cycle that follows the elliptical tour.
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Figure 2.9: A bird’s-eye view of the sleep manifold from Fig.2.8. The elliptical
tour starts at (+) and undergoes a first-order phase transition as it passes from SWS
to REM sleep at (◦). [image source:Steyn-Rosset al. (2005)]

The model predicts that there will be a large surge in both the total power and cor-

relation time of the fluctuations of the EEG at the SWS to REM transition (These

quantities are discussed in more detail in chapter4). This is followed by a sharp

drop to a lower level. The power fractions show how the energy is spectrally dis-

tributed. Before the transition more than 50% of the energy will be contained below

4 Hz, with all power concentrated at zero frequency the instant before transition. Af-

ter REM begins, there is much more energy located in the higher frequency band.

The changes predicted by the model are qualitatively consistent with experimental

results presented byDestexheet al. (1999) for their sleeping cat (Fig.2.7).

The results of the time-series statistics computed for real EEG are presented in

chapter5 for human sleep patients, and also chapter6 for laboratory rats.

In a three second, numerical simulation,Steyn-Rosset al. (2005) showed how

Ve changes as the macrocolumn makes the SWS to REM transition. In Fig.2.11

the macrocolumn starts on the bottom branch of Fig.2.8very close to the cusp and

the white noise causesVe to fluctuate aboutV 0,Bot
e ≈ −64.4 mV. At about 2 s into

the simulationVe becomes greater than the unstable middle branch and rises up to

V
0,Top
e ≈ −53.9 mV on the top branch. Here the amplitude of the fluctuations has

greatly diminished and only the high-frequency activity remains.

When the macrocolumn transitions from SWS to REM, the average excitatory
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Figure 2.10: Time-series statistics that were predicted by taking the elliptical tour
of the sleep cycle shown in Figs.2.8and2.9. These statistics are calculated on real
EEG in chapters5 and6. [image source:Steyn-Rosset al. (2005)]

soma voltageVe increases by∼10.5 mV. This change in the DC voltage should

be possible to detect if one can accurately record EEG down to zero frequency.

The EEG of laboratory rats were recorded using a DC-coupled amplifier so that the

predicted DC-shift could be observed. The results of the DC EEG are presented

with the other rat results in chapter6.
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Figure 2.11: A numerical simulation of the nonlinear differential equations (2.19,
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Chapter 3

EEG Recording and Filtering

In this chapter the details of recording the raw EEG for a sleep study are described.

The EEG electrode positions and the positions of electrodes for measuring other

useful bio-potentials are given. The raw recordings contained 50 Hz interference

from the mains power supply. The filter that was designed to remove the interfer-

ence is also explained.

3.1 The Raw Sleep Recordings

3.1.1 Electrode Configuration

When recording the EEG from the scalp of a human subject, there is a standard set

of positions for placing the electrodes. It is called the International 10-20 System

of Electrode Placements. The 10-20 system labels certain areas of the human scalp

with a letter that corresponds to the cortical lobe that is located in that area. Table3.1

is the list of cortical lobes from which EEG signals are recorded.

3.1.2 Sleep Stages

For sleep studies,Rechtschaffen and Kale(1968) recommend that the recorded EEG

should be the difference of the EEG signals from the central lobe and the mastoid

on the opposite side (e.g., EEG1 = C3−A2 and EEG2 = C4−A1). The EEG record is

usually displayed in time epochs of about 30 seconds. By observing the character-

istics of the EEG signal (looking for certain amplitude and frequency waveforms)

the stage of sleep can be scored. Some important EEG waveforms that are used as

sleep staging markers are:

alpha waves 8–12 Hz oscillations usually seen when one is relaxing with their eyes

29
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Table 3.1: The meanings of the labels used in the International 10-20 System of
Electrode Placement. Odd numbers are on the left hemisphere while even numbers
are on the right. A subscript “Z” indicates the line down the middle of the head,
between the two hemispheres of the cortex.

Label Cerebral Cortex Lobe

Fp Front polar lobe
F Frontal lobe
C Central lobe
T Temporal lobe
P Parietal lobe
O Occipital lobe
A Ear (mastoid)

Figure 3.1: The electrode positions used for recording EEG as specified
by the International 10-20 System of Electrode Placement. [image source:
http://butler.cc.tut.fi/∼malmivuo/bem/bembook/13/13.htm]

http://butler.cc.tut.fi/~malmivuo/bem/bembook/13/13.htm
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closed, but still awake.

spindles Coherent bursts of 12–15 Hz oscillations that rise and fall in less than one

second. Commonly seen in stage 2. They are simultaneously detected over

the cortex, and are believed to come from the thalamus.

K-complex A quick spike that over shoots on its recovery then settles back to nor-

mal EEG rhythms. The whole waveform lasts about 0.5 s. Most common

to stage 2, and have been found to be evoked if the sleeper hears a startling

noise.

delta waves large amplitude 1–4 Hz oscillations. Stage 3 and 4 are defined by the

amount of delta waves.

The EEG is of primary importance, but the sleep stages can be difficult to discern

with the EEG alone. Voltage signals are also recorded from other locations to assist

with the sleep staging.

The very title of REM sleep gives away one of the staging signals. The eyes

of the sleeper can move very fast during REM sleep, making the electro-oculogram

(EOG) a good distinctive feature. REMs are much faster than normal movements,

but they are not unnatural movements where, for example, one eye looks up while

the other looks down. The eyeball has an electric dipole with the positive end at

the cornea; the electrodes measure the change in electric field due to the moving

dipole. Usually the EOG is recorded for both eyes. If one electrode is positioned

upper-left of the left eye and the other is lower-right of the right eye, the two EOG

channels will change in anti-phase with normal eye movements (both eyes looking

in the same direction). Eye-blinks can distinguished from REMs because the two

EOG signals change in-phase.

Another useful bio-signal is the muscle tone or electromyogram (EMG). During

REM sleep the muscles become more relaxed so the EMG voltage becomes lower.

It is also helpful for scoring wakefulness and movement. In sleep studies, the EMG

is often recorded from under the chin.

The rules on categorising the stages of sleep as written byRechtschaffen and

Kale (1968) are summarised below.

wake Not a stage of sleep, but must be recorded when the sleeper is not sleeping.

It can be identified by large EMG indicating movements, or more than 50%

of the epoch contains alpha activity in the EEG.

stage 1 This is a transitionary phase lasting several minutes and containing many
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Figure 3.2: Electrode placements for recording EEG, EMG and EOG during sleep
studies. [image source:Rechtschaffen and Kale(1968)]

small arousals. The EEG contains low amplitude theta (4–8 Hz) and possibly

delta, less than 50% alpha, and no spindles or K-complexes.

stage 2 Usually follows stage 1. The EEG contains mostly theta and some delta

(less than 20% of the epoch). Spindles and K-complexes are seen. Scoring

as stage 2 continues until there is good reason to change to another stage.

stage 3 The EEG has more than 20% delta, but less than 50%. The amplitudes are

much larger than what has been seen in previous stages, greater than 75µV.

Spindles and K-complexes are less common. There is no specific EMG level

for stage 3 but it is typically lower than it was for stage 2.

stage 4 The EEG has more than 50% delta with high-amplitude. Stage 3 and

stage 4 are often considered together as the transition is gradual and can the

stage can alternate.

REM The EEG is low-amplitude and high-frequency, resembling wake or stage 1.

Very sharp eye movements begin seen in the EOG and the EMG should be

minimal, but may not be much lower than what was seen in stage 3 or 4.

If a spindle or K-complex is seen during REM, then the epoch should be

reclassified as stage 2.

In the figures below are samples of EEG from the various stages of sleep. Notice

that from stages 1–4 there is an increase of low-frequency, high-amplitude activity.

The sample of REM EEG is also platted with the left and right eye EOG. The very
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sharp movements are also called saccades, and can have a peak angular velocity of

greater than 500◦ s−1 (Steriade and McCarley, 2005).
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Figure 3.3: Sample EEG of the different stages of sleep, 1–4 and REM. The EOG
is included with REM to show the quick movements.

3.2 Human Sleep Recordings

The human EEG recordings that are analysed in chapter5 came from patients who

were all diagnosed with sleep apnea, a disorder in which the sufferer repeatedly

stops breathing and wakes up during the night. It disturbs people’s sleeping habits

so that they always feel tired and, in extreme cases, they can fall asleep during

everyday activities. The patients whose sleep records were supplied to me were

being treated using Fisher & Paykel Healthcare’s CPAP (continuous positive airway

pressure) respirators. The original purpose of recording the patients’ EEG was to

determine how the CPAP respirators were helping their sleeping patterns. They had

all agreed to the release of their sleep records for research purposes.

The patients’ sleep records were taken at two locations, Fisher & Paykel Health-
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care and Greenlane Hospital. The two locations had different recording equipment.

Fisher & Paykel Healthcare had a reasonably new plant with up-to-date computer

hardware. The sleep recordings made there used sampling rates of 256 Hz for the

EEG. The EEG from the four scalp locations mentioned in the previous section, C3,

C4, A1 and A2, were all recorded independently (referenced to FpZ) and the EEG1
=C3−A2, EEG2 = C4−A1 were performed by their analysis software.

At Greenlane, the equipment was much older. In an effort to save electronic

storage space, they made the EEG1 and EEG2 subtractions during the recording,

presumably with a differential amplifier. The Greenlane data also used lower sam-

pling rates. The EEG was sampled at only 125 Hz. They also had a low clipping

level1 which cut some of the higher peaks short.

3.3 The Binary Data Format

The commercial software that was used for acquisition and analysis of the sleep

studies at Fisher & Paykel Healthcare and at Greenlane hospital, were not avail-

able at Waikato, so the data was exported in the European data format (EDF). The

EDF format is a relatively straight forward binary format capable of storing many

channels of data. The channels can even have different sample rates.

The binary data files for the human patients were opened and read into MATLAB

with the use the BIOSIG toolbox. It is a set of MATLAB -compatible functions to

aid in analysis of EEG and other bio-signals written by Alois Schloegl.2

3.4 Filtering Electrical Interference

3.4.1 Filtering Human EEG

The unfiltered data contained a lot of 50 Hz electrical interference from the mains

power supplies. An elliptical low-pass filter was designed to remove the 50 Hz.

Elliptical filters can provide large attenuations over a very small frequency range

with only a small filter order. The cost of using such a filter is that there is ripple

attenuation in the pass-band. The filter specifications used were:

1clipping level: the limits of maximum and/or minimum values that can possibly be recorded
2 BIOSIG toolbox: http://sourceforge.net/projects/biosig

http://sourceforge.net/projects/biosig
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pass band frequency cutoff: fp = 47 Hz

stop band frequency cutoff: fs = 49 Hz

pass band ripple attenuation:αp = 1 dB

stop band attenuation: αs = 40 dB

The minimum filter order was calculated to be 7 by the functionellipord,

which is found on the MATLAB signal processing toolbox. The magnitude and

phase response are plotted in Fig.3.4. Both the attenuation and the phase response

of the filter above∼50 Hz greatly fluctuate, which is typical for elliptical filters.

This is not a problem, however, because most of the EEG patterns studied (delta,

alpha, spindle etc.) have a frequency less than 50 Hz. The exception is gamma

frequency band which goes up to 60 Hz (Steriade and McCarley, 2005). To better

observe the ripple attenuation in the magnitude, a zoomed-in graph has also been

plotted.

In Fig. 3.5 the power spectral density (PSD) of the EEG is shown. Before

filtering there is a very strong spike at 50 Hz. In fact, the interference is so large that

the EEG just looks like a pure 50 Hz sine wave. After filtering, the PSD still shows

the 50 Hz spike, but it is low enough that it will not be noticed in the EEG. The

filter specifications required that the stop band attenuation was 40 dB, which can be

observed on the magnitude response in Fig.3.4. The PSD of the filtered EEG has

the 50 Hz spike reduced to−80 dB. This is because the filter was applied twice via

the functionfiltfilt, which filters the data forward then backward to remove any

phase shifts.
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Figure 3.4: The magnitude and phase response for the low-pass filter designed to
remove the 50 Hz mains interference. As seen in the zoomed in plot, there are
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Figure 3.5: The PSD of an EEG channel before and after low-pass filtering to
remove 50 Hz electrical interference. The spike at 50 Hz has been removed
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3.4.2 Filtering Rat EEG

As the rat EEG was recorded, the mains interference was filtered electronically by

a 50 Hz notch. However, the notch was not strong enough to completely remove

the mains interference. In Fig.3.6 the PSD of a sample of rat EEG is shown. The

50 Hz peak, is so large that is emerges out of the notch. The harmonics of the 50 Hz

signal, 100, 150 and 200 Hz, are also present in the PSD. An elliptical, low-pass

filter, similar to the human EEG filter, was used to further lower these peaks. The

only difference was that the stop band attenuation was only set to 20 dB, as the

interference peaks were already at a value of about−50 dB
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Figure 3.6: The rat EEG was filtered during the recording using a 50 Hz notch
filter. The PSD of Rat EEG shows that the notch was not deep enough to remove
all the 50 Hz. The PSD reveals that the harmonics of 50 Hz are also present in the
EEG.



Chapter 4

Time Series Signal Processing

The number of data points that come from a sleep study can be very large. If the

scalp voltages are sampled at 256 Hz, then for a 6 hour overnight sleep recording,

there are about 5.5 million data points stored per channel. In order to analyse and

display such large volumes of data, it is necessary to compute statistical averages

that can be compared with cortical modelling predictions. The averaging calcu-

lations described here are designed to split each data channel into time-blocks or

epochs of length,T , and then to evaluate selected statistics for each epoch. Four

such statistics were used: total power, fractional band power, correlation time and

spectral entropy.

4.1 Total Power

The total power of the EEG, voltage signalV (t), averaged over the epoch periodT ,

is defined to be:

Ptot =
1
T

∫ T

0
V (t)2dt. (4.1)

In discrete form, this equation becomes:

Ptot =
1
T

N
∑

i=1

Vi
2∆t. (4.2)

Remembering that the epoch length isT = N∆t, the equation can be rewritten as

Ptot =
1
N

N
∑

i=1

Vi
2 (4.3)

39
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Equation (4.3) can be implemented efficiently in MATLAB , as the formula can be

applied to an entire data channel after areshape command.

I find that the total power is a valuable first analysis tool. It shows how the

squared amplitude of an EEG (or any other) signal changes with time, so it is use-

ful for detecting artefacts, as these often show up as large power spikes that are

generated when the sleeper moves causing the EEG to become corrupted with high-

amplitude EMG.

4.2 Fractional Band Power

In order to get results comparable toDestexheet al. (1999) (Fig. 2.7, Pg.22), I

needed to calculate the amount of power concentrated in different frequency bands

and then normalise these against the total power. This was achieved by first taking

the modulus-squared of the Fourier transform,F , for each time epoch to give the

power spectral density (PSD),S(f ):

S(f ) =
∣

∣F [V (t)]
∣

∣

2
(4.4)

Then the fractional band powerF in a specified spectral bandf1 ≤ f < f2 is given

by

F band =
1
Ptot

∫ f2

f1

S(f ) df (4.5)

The superscript “band” indicates which frequency bandf1–f2 is being analysed.

e.g., the alpha band would givef1 = 8 Hz andf2 = 12 Hz. In discrete form,

Eq. (4.5) becomes

F band =
1
Ptot

∑

i

S(fi), f1 ≤ fi < f2 (4.6)

The fractional band power is usually calculated twice or more, with different

values forf1 andf2, giving a low frequency band such as 0.1–4 Hz and a high

frequency band, 15–47 Hz. In the analysis, the high band limit of 47 Hz was chosen

because a low-pass filter had been applied to the raw data to remove the 50-Hz mains

power supply interference. The low band limit of 0.1 Hz was chosen to remove very

low frequency artefacts arising from eye-blinks and movements. Iff lo
1 = fmin and

fhi
2 = fmax, and the other frequency limitsfhi

1 f lo
2 , are equal, then the two traces will

be exact complements, changing in anti-phase with their sums adding to unity.

As we shall see in chapter5, the fractional band power is very good at making
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Figure 4.1: A demonstration of the results of the fractional band power calculation.
T = 2 s,fs = 400 Hz, window overlap= 80%,f lo = 0–3 Hz andfhi = 3–8 Hz

distinctions between SWS and REM sleep. During SWS, most of the energy in a

sleeper’s EEG is concentrated below 4 Hz. After the transition into REM sleep,

the PSD of the EEG changes to contain a larger proportion of the total energy in

the high frequencies bands. By calculating both a high and a low frequency power

fraction, the two will change in anti-phase as the sleeper cycles between SWS and

REM sleep.

4.3 Correlation Time

The autocorrelation of a time series can be used to estimate a signal’s temporal

coherence. The autocorrelationCtrue(τ) of a zero-mean signalV (t) is defined as

Ctrue(τ) =
∫∞

−∞
V (t) V (t + τ) dt (4.7)
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The variableτ is referred to as thelag time(C(t) measures the degree of similarity

betweenV (t) andV (t+τ), a copy ofV (t) which has been delayed (lagged) by time

τ). C(τ) is always maximum whenτ is zero because the signal is perfectly corre-

lated with a zero-lagged copy of itself. The autocorrelation of a noisy or random

signal drops very quickly and can be approximated by an exponential decay. The

correlation timeτC is then defined to be the value ofτ at which the autocorrelation

has fallen to1/e of its zero-lag value:

C(τC )
C(0)

=
1
e
≈ 0.368 (4.8)

In practice, Eq. (4.7) is not very helpful, as it is impossible to have an infinite

data set. Another problem with this form of the autocorrelation is that in time-

series analysis, we are looking for changes in the signal over time, so calculating

the autocorrelation for the entire signal would be unhelpful, as we would miss all

of changes we are looking for. It is better to take many autocorrelation samples,

each of period T, where T is chosen to be small enough to track the changes in

correlation statistics, but large enough to smooth out the random fluctuations in the

statistic. For these reasons abiased, finite autocorrelation is used to estimate the

true autocorrelation:

C(τ) =
1
T

∫ T

0
V (t) V (t + τ) dt (4.9)

In a discrete form, Eq. (4.9) becomes:

Cj =
1
N

N−1
∑

i=−N+1

Vi Vi+j, j = −(N − 1), . . . ,N − 1 (4.10)

Herej is not the lag time, it is the lag index, andN is the number of samples in the

epoch,N = fsT . To calculate the lag time,j must be divided by the sampling rate

of the signal:

τ =
j

fs
= j∆t (4.11)

Using MATLAB , Eq. (4.10) is evaluated with thexcorr function, found in the signal

processing toolbox:

[C,lags] = xcorr(data,‘biased’);

the‘biased’ option tellsxcorr to divide byN as in Eq. (4.10). The second output

argumentlags is optional, but it is useful, as it corresponds to all the possible values

of j, −(N − 1) . . . (N − 1).

To demonstrate the calculation of the correlation time, I created some random
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data with mean 0, standard deviation 1, and time step 1 ms. The data was then

smoothed by using a Whittaker smoother (Eilers, 1994) with different smoothing

strengths, to give three new signals, labelled 1, 2 and 3. The autocorrelation function

for each signal was calculated. As shown in Fig.4.2 the correlation time is longer

for the smoother, less random signal-3 than it is for the less smoothed, signal-1.

This means that signal-3 is more coherent than signal-1.
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Figure 4.2: Left: A random, Gaussian signal smoothed using a Whittaker smoother
(Eilers, 1994); λ specifies the degree of smoothing. Right: The autocorrelations of
the random signal and the best-fit exponential decay curves. The smoother signals
have longer correlation times. The time axis extends all the way from−1999 ms to
1999 ms, but we are only interested in the decay centred att = 0
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4.4 Spectral Entropy

Entropy is a measure of the disorder in a system. Thespectralentropy is then a

measure of the disorder in the frequency spectrum of a signal. White noise, which

has a flat spectrum, is highly disordered, and therefore has a high entropy. A pure

sine wave, on the other hand, has only a single spike in its spectrum, meaning all

the energy is concentrated in a very ordered state, and hence its spectrum has a low

spectral entropy.

A starting point for the spectral entropy is the discrete Shannon information

entropyH1 (Shannon and Weaver, 1949),

H1 = −
N
∑

i=1

pi ln pi. (4.12)

wherep is the probability density function approximated from the PSDS(ω) with a

histogram which has a bin width of∆ω, andN is the total number of spectral bins.

Henceωi = i∆ω, i = 1,2, . . . ,N. Because eachpi is aprobability,
∑

i pi = 1.

Steyn-Ross(2002) showed that the discrete Shannon form is unsatisfactory

since it gives abiasedestimate of the spectral entropy of a continuous signal that

has been discretely sampled. It turns out that the bin width∆ω plays an important

role in correctly calculating the entropy. Steyn-Ross shows that thehistogramspec-

tral entropyH2 gives anunbiasedestimate of the underlying continuous spectral

entropy:

H2 = −∆ω
N
∑

i=1

si ln si (4.13)

where

si =
pi
∆ω

=
Si

∆ω
∑

Si
(4.14)

and
N
∑

i=1

si∆ω = 1. (4.15)

In order to normalise Eq. (4.13), Steyn-Ross then shows that the maximum

entropy possible isHmax
2 = ln[N∆ω]. The normalised histogram spectral entropy

is now

Hnorm
2 =

−∆ω
ln[N∆ω]

N
∑

i=1

si ln si. (4.16)

To demonstrate the spectral entropy, I have used the same original functions

as in Fig.4.1 and then also added zero-mean noise whose standard deviation is
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exponentially growing in amplitude. Figure4.3 shows the spectral entropy grow

and reach a local maxima as the 5 Hz pulse reaches the same magnitude as the 2-Hz

sinewave. The entropy then drops again as more energy is concentrated in the pulse.

Later, at∼5 s, the random noise starts to increase and the spectral entropy grows

towards unity.
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Figure 4.3: A test signal formed by summing a 2-Hz sinewave, a 5-Hz and expo-
nentially growing noise (top two panels). The spectral entropy of the composite
signal is shown in the bottom panel.

4.5 Epoch Overlap

In time-series analysis, the calculations are usually performed on small time epochs

of lengthT . For example when looking at 6 hours of data, perhaps one point for

each 30 seconds is appropriate and then a smooth curve can be fitted to the data.

However, when looking at smaller time periods of only a few minutes, then epochs

lengths of 30 s, or even 5 s, may not give enough data points to observe changes

accurately. To overcome this paucity of observation points, I decided tooverlapthe

time epochs. The use of overlapping epochs is quite common and in the literature,
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the simplest method would be to make a calculation on data in the time range of

[t, t+T ] and then increaset by (1−X)×T , whereX is the overlap fraction, before

making the next calculation.

X = overlap fraction

T = time epoch

i = 1

while (t+T) < length(data)

answer (i) = function (data(t:t+T))

t = t + (X-1) × T

i = i + 1

end while

This method is fine for (compiled) languages such as C or FORTRAN, but in

MATLAB it does not make use of the very fast array and matrix operations available.

In fact, in MATLAB this method runs very slowly.

4.5.1 A New Overlapping Algorithm

I thought of a better way to overlap the time epochs in MATLAB . My idea was

to calculate the result for the whole data channel, as if there was no overlap, then

re-calculate with the starting position moved forward byX × T , and repeat until all

the required overlaps have been processed. Figure4.4 shows how a data vector of

length 17× T
4 seconds would be calculated in four iterations if the epoch overlap

were set to 75%.

After the overlapping algorithm has finished, the resulting array from figure 4

would look like












1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c NaN

4a 4b 4c NaN













. (4.17)

The array is then reshaped columnwise back into a vector and the NaN’s are re-

moved from the end as they are just place holders.

( 1a 2a 3a 4a 1b 2b· · · 1d 2d ) (4.18)

This is now a new time-series with four data points every epochT .

The relationship between the fraction of overlapX and the number of iterations
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{ { { {1a 1b 1c 1d{ { { {2a 2b 2c 2d{ { { {3a 3b 3c NaN{ { { {4a 4b 4c NaN

Data vector

}T

Figure 4.4: An illustration showing how the overlapping algorithm, set to 75%,
would perform calculations on a data vector. The full calculation over the vector
takes four iterations, with the starting position increased by1

4T each time. Note the
two NaN’s where 3d and 4d should be, which are there because there is not enough
data in the vector to define a full epoch (NaN means “not a number”).

comes from looking at the fraction that the epochadvancesδ each iteration:

δ = 1−X. (4.19)

For example, in Fig.4.4 the overlap fraction isX = 0.75, so the advance per itera-

tion isδ = 0.25. The number of iterationsM is then

M =
1
δ

=
1

1−X
(4.20)

Numerically, it helps ifX is a rational fraction, whose numerator and denominator

are both factors ofN the number of samples in the epoch. This is because at each

iteration the code moves the starting position byδ×N samples, and errors can occur

if indices are not integers. In the beginning of the algorithm I have a a few lines of

test code to convertδ into a rational fraction and change its value if necessary.

UsuallyX is set to a fraction of the formx−1
x

, such as1
2 or 3

4. This meansδ

has the form1
x
. If this is not the case, i.e., the numerator is greater than 1, then the

example in Fig.4.4 is not correct. Figure4.5 shows an example of the overlap,X

set to1
3 =⇒ δ = 2

3.

As the eye follows down the first column a the epoch is moved to the right by2
3

each time. At the start of the next column b, one notices that 1b occursbefore3a.

The epoch at 1b cannot exist with the overlap set to1
3. The next epoch23 after epoch
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Data vector
}T

{ { { {{

1a 1b 1c 1d 1e{ { { {{

2a 2b 2c 2d 2e{ { { {{

3a 3b 3c 3d NaN

Figure 4.5: With the overlap set to 33.3%, the second and fourth columns (b and d)
are never used.

3a is epoch 1c. It is clear from the diagram in Fig.4.5 that the whole of column b

is redundant and the same holds for the column d. The resulting array will for this

example will look like






1a 1c 1e

2a 2c 2e

3a 3c NaN







(4.21)

As columns b and d are not required, there is no point in calculating them. The

way to find which columns will be redundant comes from the advance fractionδ.

The fractionδ can be expressed as,numerator
denominator = n

d
. Then only everynth column

after the first needs to be calculated. The best way to do this is to remove the

unwanted data at the start of each iteration. In MATLAB this is easy as the data is

first reshaped from a vector to an array. Then the unwanted data can be removed

with the command

newdata = data(:,1:n:end);

To demonstrate the effectiveness of overlapping the epochs, I have plotted the

total power for 2 minutes of rat EEG in Fig.4.6. It has been calculated with

sleeppower and the amount of overlap was set to 0%, 50%, 80% and 95%. At

0% and 50%, the plot looks a little sparse, and one is left wondering what happens

in between the points. At 80%, there is five points in every epoch, and the graph

looks good. Not much more is gained by going up to 95%, but the computation

time now begins to become annoying, because11−0.95 = 20 iterations. I have found

that for most small data sets (about 2 min long) 75% or 80% overlap is the best

compromise between detail and computation time.
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Figure 4.6: The power of some rat EEG data calculated bysleeppower. The epoch
was set to 4 s and the amount of overlap was varied: 0%, 50%, 80%, 95%

4.5.2 Overlap Time Trials

To test the effectiveness of the epoch overlapping algorithm, the total power of a

artificial data set, of length 107 samples, was computed. My overlapping algorithm

was compared with the simple one outlined on page46. The power was calculated

and the computation time was recorded. The results are shown in table4.1.

The simple algorithm was slightly faster only for the case where there was no

overlap, but for high overlap fractions, it is outclassed. Figure4.7 shows a plot

of the data. For both methods, the computation time increases with the amount of

overlap, but the growth is much slower for my new method.
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Table 4.1: The time for the power to be calculated for a 107 element data vector
with varying degrees of epoch overlap.

Overlap Simple Algorithm New Algorithm
X time (s) time (s)

0 0.581 1.542
0.5 3.368 2.751
0.75 15.32 4.927
0.8 23.27 5.998

0.875 62.59 9.304
0.9 97.32 11.51
0.95 363.7 22.33
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Figure 4.7: The time taken to compute the power of a large data vector (107 sam-
ples) using two different epoch overlapping methods



Chapter 5

Human Data Results

The Steyn-Ross model makes predictions on how the EEG recorded from a sleeping

cortex will change over time. The single prediction that is the focus of this thesis is

that when the cortex makes the transition from EEG-synchronised SWS and goes

into the active, paradoxical REM sleep, this is in fact a first-order phase transition,

analogous to ice melting into water. When any system undergoes a first-order phase

transition, there are measurable changes in power, temporal/spatial correlation and

entropy. With the use of the time-series statistics described in chapter4, we can

attempt to detect the SWS to REM transitions and compare them with the theory

common to all first-order phase transitions.

For our cortical phase transition, the model predicts a surge in the low-frequency

power of the EEG during SWS as the approach towards REM is made. Simulta-

neously we should see an increase in the correlation time and a reduction in the

spectral entropy. At the SWS to REM transition, the model predicts a sudden drop

in the total power and the energy should spread out into higher frequencies. This

is accompanied by the correlation time becoming shorter and the spectral entropy

increasing (Steyn-Rosset al., 2005).

In this chapter I present the results that came from the human sleep volunteers.

The subjects were all suffering from obstructive sleep apnoea, but were being suc-

cessfully treated using Fisher & Paykel Healthcare’s CPAP (Continuous Positive

Airway Pressure) respirators. The patients’ EEG were recorded from four locations

of the scalp. Using the 10-20 system of standard electrode positions, the electrodes

were placed at C3, C4, A1 and A2, and were referenced to FpZ, at the front of the

forehead.

51
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5.1 Sleep Staging

Before the time-series of the sleep records could be analysed, I needed to look

through the data set and double-check the stage of sleep that had been assigned to

each 30-second epoch of the time-series. The staging had already been scored by

the sleep technician. However, I still needed to go through the data to get a feel

for the number of artefacts. I wrote the software toolsleepwork (described in

AppendixA.2.2) to assist with the viewing of the time-series, assigning of stages

and flagging of artefacts. The staging was scored through observation of the EEG,

EMG and EOG. From these three bio-signals, one can discern the correct stage of

sleep.

Because sleep staging is scored manually, the application of the standard rules

by Rechtschaffen and Kale(1968) are subject to human error. Different people who

score the same time-series will usually come up with discrepancies. There are times

when it is difficult to assign one particular sleep stage. The EEG may not show the

telltale signs of any particular stage (spindles, slow-waves, etc). The EOG can

show light activity that causes the epoch to resemble REM. It seems that sometimes

epochs are scored as stage 2 because of a lack of anything else to call them. An

example of this is shown in Fig.5.1.

Examples of possible misclassifications in the sleep records have been shown

in Figs.5.1and5.2. Both figures show epochs that have some high-amplitude and

low-frequency waves and neither contain sleep spindles. The epoch in Fig.5.1has

been classified as stage 2, but it contains more activity in the EOG (labelled LOC:

left ocular, ROC: right ocular) than the epoch in Fig.5.2which has been scored as

REM.

Another problem with manual sleep staging comes from the scorer sometimes

relaxing the rules depending on the need for accuracy and speed. For instance,

sometimes every epoch is not given its own score; the scorer just notes the time

and new stage every time the sleeper changes state. Recording of sleep stages in

this way means that brief changes are ignored. To make matters worse, when the

sleeper is alternating between two stages, or is very close to the boundary, a rough

average of the two is given. Stage 3 and 4 are often combined to become 3.5, while

stage 1 and 2 become 1.5.

It seems that the sleep staging can be somewhat arbitrary and for the purpose of

this analysis it should be used only as a guide.
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but it was classified as REM by the sleep technician (the downward spikes are ECG
artefacts).



54 Human Data Results

5.2 Pre-processing – Artefacts Detection

When an artefact arises in the EEG, it is worthwhile checking to see what could

have caused it. It is helpful then, to have access to signals other than the EEG,

EOG and EMG. The sleep records I received contained a leg movement channel,

an airflow channel and even a microphone. These were all very useful in detecting

artefacts. The leg movement channel was good for detecting full body movements

which cause the EEG to completely overrun with high-amplitude noise. Although

the sleepers were all being successfully treated for sleep apnoea, they would still

occasionally stop breathing and wake up. The airflow channel was helpful in ex-

plaining artefacts arising from these awakenings. The microphone channel was

helpful if an artefact came from a cough or snoring.

While the patients were awake, the amplitude of their EEG was rather low, but

there were often many artefacts that came from eye-blinks and other movements. In

terms of flagging unwanted or bad data, the waking state and artefacts were handled

in the same way. I assigned them a sleep score of zero= awake. If the patient was

actually awake, the whole 30-second epoch would be scored awake. It was unusual

for an artefact to last 30 seconds, so for the flagging of small artefacts, the 30-second

epochs were broken into six five-second epochs. Then only a subset containing the

artefact needed to be scored as awake and the rest of the epoch can remain as its

correct status. Figure5.3 is a screen shot taken fromsleepwork. It shows a large

movement artefact in the middle of a stage 3 epoch. By splitting the 30 seconds into

six epochs, only 10 seconds need to be flagged as an artefact.

The total EEG power of patient one has been calculated and graphed in Fig.5.4.

Here one can see the need for artefact detection, as the sleep cycles are not well

observed among the high-amplitude artefact spikes. In contrast, the same data is

plotted again in Fig.5.5 with the artefact detection turned on. There are still large

amounts of fluctuation in the time-series, so a smooth curve has been fitted to the

data.

One observation that can be made directly from Fig.5.5 is the consistency over

the four channels. The electrodes were positioned approximately 5 cm apart on

the patient’s scalp, but on this time scale the power traces are extremely similar,

showing a high degree of synchrony across the cortex.

During REM there are many high-amplitude eye-movements that can corrupt

the EEG. They occur so often that to flag each one as an artefact would leave out a

great deal of the time-series. I found that a reasonable way of removing the REMs

was to use a 1 Hz high-pass filter. In Fig.5.6, 30 seconds of patient two’s sleep

record are plotted. The left and right EOG (LOC and ROC) are wired in such a
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Figure 5.3: The patient is in stage 3 sleep. There is a movement artefact at time=
1:30:55. There is artefact signal on the microphone and the leg channel, indicating
that the patient has momentarily stirred then gone back to sleep. Notice how much
the EEG, LOC/ROC and EMG channels are corrupted. This artefact would produce
a large spike in the results and therefore must be flagged so that it can be elimi-
nated from the analysis. (The EEG channels 1 and 2 are the difference between
the EEG recorded from two scalp locations as recommended byRechtschaffen and
Kale (1968): EEG1= C4 – A1, EEG2= C3 – A2.)

way that REMs produce voltage signals that change in anti-phase, while blinking

of the eyelids makes the signal change in phase. In calculations of the total power

of the EOG, the ROC was subtracted from the LOC so the in-phase eye-blinks and

high-amplitude slow-waves from the EEG would cancel out, Meanwhile, the out-

of-phase REMs would combine to create a stronger signal.

5.3 Full Sleep Record Results

In this section I present the results of the time-series analysis. In the following

subsections (5.3.1–5.3.4), I have plotted the EEG time-series statistics described

in chapter4. The total power, fractional band power, correlation time and spectral

entropy are all graphed as functions of time. The power of the EOG and EMG are

also included as these can help in distinguishing SWS from REM sleep. The sleep

staging that was scored by the sleep technician is also included.

When calculating these statistics, I used a consistent set of parameters. The the
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Figure 5.6: Rapid eye-movements during REM sleep are the cause of some artefacts
in the EEG. A 1 Hz high-pass filter removes most of the artefact without losing
much of the real EEG signal.

epochT length for each calculation was 5 s. The overlap fraction was set to zero,

as the raw time-series data are so long I did not require intermediate points. The

sample frequencyfs was 256 Hz for the first three patients, whose recordings were

taken at Fisher & Paykel Healthcare. The other three patients (four, five and six)

had their sleep records taken at Greenlane Hospital and the sample rate was only

125 Hz.

The frequency bands used in the fractional band power calculation had the de-

fault value:F lo = 0.1–4 Hz andF hi = 15–47 Hz. These were chosen because they

were the same asDestexheet al. (1999) used for their sleeping cat. (Their high-

frequency limit was actually 75 Hz but I was low-pass filtering to remove 50 Hz

mains power supply interference.) The frequency limits used for evaluating the

spectral entropy were 0.1–47 Hz. The minimum frequency bin width is determined

by the epoch size,∆f = 1
T

. The 5 s epoch gave a bin width of 0.2 Hz (see Ap-

pendixA.1.4).

Because the resulting graphs were so noisy, a Whittaker smoother was used to

draw a smooth curve to the data. The difference order wasd = 2 and the smoothing

strength wasλ = 100 (see AppendixA.3.2).
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Graphs showing only the fractional band power calculated for five different fre-

quency bands are also plotted. This is because, in humans, many different EEG

patterns occur in the range 4–15 Hz. Spindles, one of the defining characteristics

of stage 2, have frequencies in the range of 12–15 Hz. Alpha activity, 8–12 Hz, is

associated with the subject being awake and relaxed, with eye closed (Steriade and

McCarley, 2005, Pg. 256). The alpha band can serve as an indicator to see if sleep

has begun, as it disappears when the subject has fallen asleep.

The common frequency bands used in EEG analysis are listed in table5.1. The

exact values of the frequency limits may vary from one author to another. The

frequency limits used for this analysis came fromMarshalet al. (2003) with the

exception of the gamma band stopping at 47 Hz from my low-pass filter (Marshal

has a 30 Hz low-pass filter so leaves out gamma altogether), and the slow-wave

band beginning at 0.1 Hz (Marshal uses 0.2 Hz).

Table 5.1: Frequency bands commonly used in EEG analysis.

Frequency Band Frequency range (Hz)

slow-wave 0.1–1
delta 1–4
theta 4–8
alpha 8–12

spindle 12–15
beta 15–25

gamma 25–47

5.3.1 Patient One

The time-series analysis of patient one is shown in Fig.5.7. The top graph is the

total power time-series. When the patient is in deep SWS (stage 3 or stage 4) the

EEG amplitude is high, resulting in a large power. REM sleep, on the other hand,

has a much smaller amplitude than SWS and therefore a lower power. Patient one

went through two clear sleep cycles during the first few hours of the recording. He

then woke up at around the time his next REM phase should have occurred. The

last cycle consists of mostly light, stage 2 sleep, then a long REM phase.

We are particularly interested in the transitions from SWS to REM sleep. These

are marked by the vertical dashed lines. The first of the three transitions into REM is

the clearest. There is a sudden drop in the total power, and from the fractional band
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Figure 5.7: The time-series analysis of the sleep recordings of patient one
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power we see there is a change in the spectral distribution of the energy. Before

the transition, almost 100% of the energy is concentrated below 4 Hz. After the

transition, however, it is reduced to about 75%. This is also seen by the 15–47 Hz

band increasing from almost zero before the transition, to about 10% of the total

power after the transition. (The middle band of 4–15 Hz also increases, but it was

excluded from the graph to avoid cluttering.) In Fig.5.8 the fraction band power

calculated for several frequency bands has been graphed.

The high correlation time during SWS is due to the high-amplitude and low-

frequency of the slow-waves. Once the cortex has transitioned into REM, the cor-

relation time is greatly reduced. This is because the slow-waves go away with the

drop in low-frequency power, and all that is left are the higher frequencies that have

a shorter correlation time. The work ofSteyn-Ross(2002) suggests that spectral

entropy will change in anti-phase with the correlation time. This is exactly what

we observe here. During the highly coherent SWS phase, the spectral entropy is

low, meaning the energy in the signal is well ordered in the low-frequency band.

After the transition, when the energy is more evenly spread across all frequencies,

the spectral entropy is higher, because the spectrum is in a more disordered state.

The second sleep cycle contains an even more dramatic change in the time-

series statistics att ≈ 3:10 hours. However, this is not a transition from SWS to

REM. It is a transition from stage 4 to stage 2. After inspecting the raw EEG time-

series, I believe the scorer has correctly staged this period as stage 2 as there are

many spindles present. The transition into REM occurs slightly later. The predicted

changes in the time-series statistics are still present, but not nearly as distinguishable

as they were in the first sleep cycle.

The third REM period occurs near the end of the sleep record at∼7:30. Here

the patient only briefly enters deep, stage 3 or stage 4 SWS, then goes back into

stage 2. At the transition into REM, the total power reduces slightly, but it is not

very noticeable, as the power was not very large before the transition.

If attention is turned back to the graph of the correlation time in Fig.5.7, one

will notice a large concentration of data points, marked by the arrow, at a value

of ∼25 ms which is lower than all the other data points. These occur primarily

during stage 2 and arise from the autocorrelation of spindles. In Fig.5.9 (a) the

autocorrelation of some typical stage 2 EEG is plotted. The exponential decay

approximation matches the drop in correlation reasonably well down to the point
1/e. On the other hand, Fig.5.9 (b) is the autocorrelation of stage 2 EEG that

contains a spindle. The exponential decay follows the first downward oscillation of

the autocorrelation. This gives a correlation time that is much quicker than it should
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be. The exponential decay curve should pass through the middle of the oscillations

in the autocorrelation decay.
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Figure 5.9: The correlation time of stage 2 sleep EEG is around 0.6–0.8 s as seen
in (a). When there is a spindle in the EEG epoch the autocorrelation oscillates at
the spindle frequency,∼13 Hz, and a much shorter correlation time is measured.
The oscillations in the autocorrelation should be removed before calculating the
correlation time.

Spindles have a frequency of∼13 Hz which is a period of 0.077 s. The spindle

is about1/3 or 1/4 through its period when it reaches1/e, which gives correla-

tion time as 0.019–0.026 s. These numbers are consistent with what is seen on the



5.3 Full Sleep Record Results 63

graph. Ideally, the spindle resonance in the autocorrelation should be removed be-

fore computation of the correlation time for a more accurate result. This is one of

the unfinished tasks that I would like to complete in the future.

5.3.2 Patient Two

The sleep record for patient two shows similar trends to that of patient one. During

stage 3 and stage 4 SWS the power is high and concentrated in the low frequencies.

At 70 minutes into the recording, there is what looks like a transition, but the patient

does not enter REM; he wakes up. The waking and REM states are very similar,

and this event could still be a phase transition. In earlier work,Steyn-Rosset al.

(1999, 2001a,b) give evidence that the transitions from wakefulness to induced un-

consciousness via an anaesthetic, and back again, are also both first-order phase

transitions.

At t = 2:10 hours, the patient enters REM for the first time. This is an interest-

ing transition, as the patient was in stage 3 SWS and seems to transition down to

stage 1 for about five minutes, then makes the full transition into REM. All of the

calculated statistics show a kind of step pattern. The power drops as stage 3 goes to

stage 1, then it drops again as stage 1 goes to REM. The fractional power shows two

successive reductions in low-frequency power. There are also drops in correlation

time and jumps in spectral entropy. In Fig.5.11, where different fractional power

bands have been plotted, there is a jump in the spindle band but then it falls away

after REM begins.

The second SWS to REM transition occurs at about four hours. Although the

patient was only in stage 1 and stage 2 prior to the transition, there is still a good deal

of change in the sleep statistics. Part-way through the REM phase the total power

of the EEG seems to increase and die away again when the patient leaves REM and

starts the next sleep cycle. The other statistics show trends that are consistent with

power increases. This increase in power is actually caused by REM artefacts. This

can be verified by a comparison with the eye-power time-series, which has a very

similar shape.

The third SWS to REM transition also shows the same changes in sleep statistics

that are consistent with a phase transition, although there is not a great deal of

contrast.

It should be noted that the raw EEG time-series contains a lot of ECG signal

which can be seen as sharp spikes at very regular intervals. The ECG included

in an EEG signal does slightly change the results in the sleep statistics, but the

sleep cycles are still visible and not changed in time. This is investigated later in
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Figure 5.10: The time-series analysis of the sleep recordings of patient two
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Figure 5.11: The fractional band power of patient two calculated for five frequency
bands.
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section5.4.

5.3.3 Patient Three

Patient three’s sleep record is shown in Fig.5.12. He has four REM phases. How-

ever, the last is very short and the preceding SWS is low-amplitude stage 2, making

the transition difficult to determine from the statistics. The other three transitions

are much clearer.

The second sleep cycle contains a very sharp SWS to REM transition. The

power steadily grows and then suddenly drops away. The same abrupt change is

seen in the other statistics. During SWS the EEG amplitude and the correlation

time are increasing, while the spectral entropy is decreasing. Then, while in deep

sleep, the cortex abruptly transitions into REM.

The fractional band power has been plotted again in Fig.5.13 showing more

frequency bands. This figure is different from the similar graphs of patients one

and two (Fig.5.8and Fig.5.11). They show strong differences in the 8–12 Hz, 12–

15 Hz and 15–47 Hz bands during stage 2 and REM. For patient three, however,

all these bands show very similar trends. They all are high during REM, very low

during stages 3 and 4, and at an intermediate level during stage 2.

In Fig. 5.12the smooth curve is perhaps too smooth. To show how abrupt the

transition is, I have plotted three minutes of the raw EEG and EOG time-series in

Fig. 5.14. Here we see on the left of the figure, that the EEG amplitude is pulsat-

ing high and low with a period of∼10 s. The slow-waves switching on and off

are possibly evidence of a phenomenon called aninfraslow oscillationdescribed by

Vanhataloet al. (2004). During the SWS phase, the EOG remains low and unevent-

ful. At t = 2:48:50 hours, the last pulse of slow-waves ends and large REMs begin.

The EEG remains low in amplitude, while the EOG becomes active with the sharp,

unpredictable movements that are characteristic of REM sleep.

The transition shown in Fig.5.14 is the best SWS to REM transition I have

found out of the six human sleep records that were provided to me. The change in

state occurs very quickly, as if a switch has been flipped.
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Figure 5.12: The time-series analysis of the sleep recordings of patient three
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Figure 5.13: The fractional band power of patient three calculated for five frequency
bands.
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Figure 5.14: The raw time-series of patient three. At the start of the graph, the
patient is in deep stage 3 SWS. Then, very suddenly, the EEG amplitude reduces
and large REMs begin. The thick lines in the EEG time-series are total power
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low-amplitude during SWS have a period of∼10 s and are reminiscent of infraslow
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ECG heartbeat artefacts)
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5.3.4 Patients Four, Five and Six

The three patients four, five and six all had their sleep recordings taken at Greenlane

Hospital. At Greenlane, the data acquisition equipment is older than that used at

Fisher & Paykel Healthcare, so electronic storage space is saved by lowering the

sampling rates, and clipping levels.

Patient four has only one clean SWS to REM transition in his sleep record which

is shown in Fig.5.15. At 5:50 hours, he leaves stage 4 SWS and enters REM with

only a few minutes of stage 1 in between. At this transition all the signal process-

ing statistics have trends that are consistent with our phase transition theory. In

Fig. 5.16, we see that for this transition there is a great increase in the fractional

band power for the theta, alpha, beta and gamma bands, but the spindle band in-

creases only slightly at the start of REM then drops away.

Patient four’s sleep record is far from ideal, as he woke often throughout the

night, and one of the EEG channels is bad due to a loose electrode.

Figure5.17is the sleep record of patient five. It has three good sleep cycles, the

first of which contains the cleanest SWS to REM transition at 2:00 hours. For this

transition, the theoretical predictions are observed. In Fig.5.18the fractional band

power of all the bands higher than 4 Hz increases for all of this REM phase. The

other two transitions do not show such clear changes in state. As with patient two,

the EEG of patient five has a lot of ECG artefacts.

The sleep staging file that came with this sleep record contained many non-

integer labels (1.5, 2.5, 3.5) indicating the patient is often alternating between two

stages. The staging record for this patient is more arbitrary than records for the

other patients.

Patient six’s sleep record in Fig.5.19 contains one long REM phase at four

hours. The expected drop in low-frequency power and correlation time combined

with the jump in spectral entropy are all present. There is another very short REM

period at 2:35 hours. This is interesting as it shows the 0.1–4 Hz low-frequency

power goes well below 50%, and also the correlation time drops very low. In

Fig. 5.20, we see that the fractional band power for this transition rises the most

in the alpha, beta and gamma bands.
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Figure 5.15: The time-series analysis of the sleep recordings of patient four
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Figure 5.16: The fractional band power of patient four calculated for five frequency
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Figure 5.17: The time-series analysis of the sleep recordings of patient five
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Figure 5.18: The fractional band power of patient five calculated for five frequency
bands.
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Figure 5.19: The time-series analysis of the sleep recordings of patient six
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Figure 5.20: The fractional band power of patient six calculated for five frequency
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5.4 How Does ECG Affect the Results?

Several of the patients had ECG artefacts in their EEG time-series. The ECG is

difficult to remove without losing information from the EEG, so I did not attempt

to remove it. Eye-blink and movement artefacts usually appear as sharp spikes in

the calculated statistics, making them easy to identify. ECG artefacts are different.

They are a constant periodic spiking signal that is usually most noticeable when the

sleeper has low-amplitude EEG. One quick prediction is that the total power will

increase, but it is difficult to say what would happen to the other statistics.

To investigate how much the sleep statistics are affected by ECG, I took the sleep

record of patient one, whose EEG was free of ECG corruption, and deliberately

added his ECG channel to the EEG. The ECG channel records the signal with

much greater amplitude than is seen in the EEG, so ECG was scaled by1
25. This is

shown in Fig.5.21. The sleep statistics were then calculated for the new time-series.
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Figure 5.21: The EEG was corrupted with ECG to see how the sleep statistics are
changed when ECG is present.

Figure5.22shows the time-series statistics for both the clean EEG and the EEG

that was corrupted with ECG. The ECG changes the time-series statistics in differ-

ent ways. The total power is simply displaced upwards to a higher level. This is

because the ECG is so regular and at a constant amplitude. In the three fractional

band power graphs (labelled F B P) the same trends are followed, but there is more

high-frequency energy in the signal. The 15–47 Hz band has lost much of its fine

detail. It seems to miss out many of the sharp peaks. The correlation time has been
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shortened and slightly smoothed. The spectral entropy has been affected the most

by the ECG. It has been increased, but unevenly. Most of the features in the graph

have gone except the high-amplitude SWS centred at three hours.
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fix heading

From these results, we see that the overall trends of the sleep cycle and the SWS

to REM transition are still observed. The total power and the low-frequency frac-
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tional power are still usable, but, some of the other time-series statistics, especially

spectral entropy, are changed to the extent that quantitative measurements would

be questionable. Only qualitative statements could be made about results produced

from EEG with these types of artefacts.

5.5 Summary of the Human Results

The results of this chapter show a discontinuous change in the time-series statistics

calculated from a sleeping subject’s EEG. When the cortex is in the SWS state,

the power of the EEG is high and concentrated at low frequencies (below 4 Hz).

The correlation time of the EEG is relatively long and the spectral entropy is low.

When the transition into the REM state occurs there is a sudden drop in the power

and correlation time. The spectral distribution of the EEG power also becomes

flatter, which is apparent by the increase in spectral entropy, the drop in relative

low-frequency power and the rise in high-frequency power. These abrupt changes

in the time-series statistics give strong evidence verifying that the SWS to REM

transition is indeed a first-order phase transition, as predicted by theSteyn-Ross

et al. (2005) model.

From the four different time-series statistics that were computed from the pa-

tients’ EEG, the total power and spectral entropy were found to be the fastest. Both

were useful for displaying the sleep cycles and detecting the SWS to REM transi-

tion. The fractional band power was often even better at distinguishing the SWS

and REM states. The correlation time also showed the sleep cycles well, but its

computation time is much longer than for the other statistics. The correlation time

(by accident) detected spindles, a defining characteristic of stage 2 sleep. Epochs

containing spindles had a shorter-than-usual correlation time and stood out from the

rest of the data.

It was evident to me that the transition from SWS to REM was best defined on

people who slept well throughout the recording. All of the raw data came from

people who were diagnosed with sleep apnoea and were using the CPAP respirators

manufactured by Fisher & Paykel Healthcare. They were being successfully treated,

but most of them still woke several times during the recording. When people wake

often in the night, as is the case with sleep apnoea, their sleep cycle is disturbed

and they may not enter the REM phase of sleep at all. In order to analyse more

well-defined SWS to REM transitions to further verify the model, we should record

the EEG from people who do not suffer from sleep dysfunctions.





Chapter 6

Rat Data Results

After some encouraging results with the human sleep recordings, Alistair Steyn-

Ross and Jamie Sleigh decided to take recordings of laboratory rats. Then I could

apply a similar analysis and determine whether the SWS to REM transition of a rat

also showed evidence of a phase transition. High-quality amplifiers, able to record

down to very low frequencies, were purchased. This was necessary to verify the

theoretical prediction of a positive DC-shift in the potential of the excitatory neurons

Ve at the point of transition from SWS to REM (see section2.4.3on Pg.24).

Logan Voss, a colleague of Jamie Sleigh, did the hands-on work with the lab

rats. To record bio-signals from the rats, Logan surgically implanted the electrodes

directly into the rats’ cortices. Each set of electrodes was fixed in place by a small

headset screwed into the skull. A photograph of one of the rats wearing a headset is

shown in Fig.6.1.

Figure 6.1: A photograph of one of the laboratory rats wearing its surgically at-
tached electrode headset. [image source: Logan Voss (personal communication)]

81
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A bio-signal recorded from cortical electrodes is not called EEG. It is called the

electrocorticogram, or ECoG. When recording voltages from the scalp (EEG), the

skull and skin act as low-pass filters. So when recording the ECoG, much more

high-frequency energy is expected.

6.1 Full Rat Time-Series

When I received the rat time-series data, I tried an analysis similar to the human

data analysis, to plot all the sleep statistics as functions of time. There was not a

channel reserved for recording the EOG, but it was not required. With close obser-

vation, REM can be identified by twitches in the rat’s whiskers. A video camera

was synchronised with the recording equipment to assist with scoring the stages of

sleep. Logan Voss scored the rats’ sleep into three stages: waking, SWS and REM.

When humans sleep, we have a sleep-cycle of approximately 90 minutes (Rech-

tschaffen and Kale, 1968). In general, smaller mammals have a shorter sleep-cycle.

Our rats were found to have a cycle of only about 5–10 minutes, and after each cy-

cle they would often wake up and become active. When the rats wake up and move

around, their ECoG signals become overrun with EMG artefacts.

Many of the recordings contained too much noise or too many artefacts to per-

form a full time-series analysis. The three best (i.e., least noisy and most artefact-

free) recordings came from two rats. One recording came from rat 6 and two record-

ings came from rat 12. Their data were clear of artefacts and the rats were generally

healthy. I have used a naming convention for the form:rat#recording#. The three

recordings used are: 63, 122 and 123.

The statistics graphed in the following figures were computed using the time-

series statistics described in chapter4. They all had the same input parameters.

The epoch sizeT was 4 seconds and the epoch overlap fraction was set to 50%.

The sample rate of the raw data was 400 Hz. The time-series statistics have been

smoothed using a Whittaker smoother (sectionA.3.2) with difference orderd = 1

and smoothing strengthλ = 500.

Figure6.2is the time-series analysis for the full recording of rat 63. The first ob-

servation is the speed of the rat’s sleep cycles. The quick cycling makes it difficult to

detect anything of interest in the power except the large-amplitude noise during the

long wakeful periods (shown in lighter shade). The fractional band power efficiently

distinguishes REM from SWS and wakefulness. In the human results of chapter5,

the energy during SWS was concentrated below 4 Hz. With the rats, however, I

have found that the 4–15 Hz energy is higher during SWS than it is during REM



6.1 Full Rat Time-Series 83

sleep. To get the fractional band power to show the distinctive anti-phase pattern, I

used only two frequency bands, 0.1–15 Hz and 15–47 Hz. The correlation time and

spectral entropy both show the predicted changes, but the range is very small. To

see the contrasts properly, they-axis limits of both plots have to be greatly reduced.

When in SWS the total power is high and concentrated above 15 Hz, the correlation

time is high and the spectral entropy is low. When REM sleep begins the power

drops away and is distributed into higher frequencies, the correlation time becomes

shorter and the spectral entropy increases.

The DC ECoG contains a lot of amplifier drift. When combined with the move-

ment artefacts, it makes identifying any positive jumps in potential difficult. If there

are any of the predicted DC-shifts, they are too small to be seen at the resolution of

this graph.

The next two figures are separate recordings, 122 and 123, of the same rat.

Fig. 6.3 and Fig.6.4 contain time-series statistics that have similar trends to those

seen in Fig.6.2. The results in Fig.6.3are cleaner and the SWS to REM transitions

can be identified easily. Again, the DC ECoG does not contain any clear, positive

shifts.
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Figure 6.2: The time-series analysis of rat recording 63. The top four subplots
show the results of the signal processing statistics described in chapter4: power,
fractional band power, correlation time and spectral entropy. The next three subplots
are the time series of the three raw data channels: DC ECoG, AC ECoG and EMG.
The last subplot is the sleep stage. The portions of the sleep statistics that are shaded
lighter are movement artefacts from when the animal is awake. The vertical dashed
lines mark some of the SWS to REM transitions.
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Figure 6.3: The time-series analysis of rat recording 122. The spectral entropy and
fractional band power are the most effective means of detecting the REM state.
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Figure 6.4: The time-series analysis of rat recording 123. This time-series is noisier
than the other two. There are some changes in the DC channel, but they seem to
occur when the rat wakes and moves around.
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6.2 Time-Aligned Transitions

The three previous figures of the full rat time-series all show the basic changes in the

ECoG statistics that are consistent with the human results of chapter5. However,

the rats sleep-cycle so quickly and so much data is plotted, that it is hard to look

at one specific transition and determine exactly when it occurred. We were unable

to find any DC-shifts that corresponded with a transition from SWS to REM. Jamie

Sleigh and Alistair Steyn-Ross thought that it would be helpful to take many data

subsets containing SWS to REM transitions from the recordings and align them

in time so the point of transition for all subsets occurred simultaneously. Then

averages could be computed across all of the transitions, and DC-shifts might be

easier to detect.

6.2.1 Locating Transitions

Logan Voss, who did the hands-on work with the rats, went through the raw data

and found 88 clean SWS to REM transitions (and many more not so clean). For

each one, he saved two minutes of both AC and DC ECoG, with the transition

approximately at the centre.

My first task was to complete the time-aligning to mark the point of transition

as accurately as possible. As it can be difficult to pinpoint the transition using only

the ECoG time-series, the time-series statistics were calculated as they show a good

distinction between the two states. A program was written to calculate the sleep

statistics and graph them along with the raw AC and DC ECoG. The two minutes

of data were originally plotted fromt = [−60,60], with the SWS to REM transition

approximately in the centre. The time-series were slid up or down the time axis to

set the point of transition tot = 0. I wrote a function namedratrem zero to load,

calculate and plot data. The program had several user input features to help with

finding and setting the transition point. It supported the following features:

• Zoom capability in thex or y direction.

• Ability to change the frequency band displayed.

• Ability to remove slope andy-intercept from raw DC ECoG.

• Point of transition set tot = 0.

• Ability to change to another transition.

After the transition had been correctly identified, the program would save the

index of the closest point tot = 0, so that the data could be used in another program

to calculate averages.
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I found that certain statistics were more helpful than others in determining the

transition point. The power, spectral entropy, and spindle and gamma fractional

power bands showed the best contrast in the SWS and REM states. The correlation

time was not calculated because it computes much slower than the other statistics.

Figure6.5 is a screenshot of the display ofratrem zero. The data was calculated

with an epoch of 2 s and overlap of 90%. Att = 0, there is a clear SWS to REM

transition.
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Figure 6.5: A screenshot ofratrem zero displaying one of the transitions. The
time-series statistics were computed to assist with finding the position of the SWS to
REM transition. This was done for all 88 transitions. The total power fluctuates high
and low while in SWS and then drops away when REM begins. The spindle band
is high in SWS and then is much lower in REM. The gamma band is opposite. It is
nearly non-existent in SWS, then becomes high during REM. The other frequency
bands did not show a consistent change at the transition. The spectral entropy is
lower in SWS and jumps to a higher level at the transition. Notice that the time-
series starts before –60 s and ends before+60 s. It has been slightly shifted in time
so that the transition occurs att = 0 s.

6.2.2 Differences in ECoG Amplitude

When displaying the statistics, I noticed that the amplitudes of the ECoG time-series

varied from one recording to another. Figure6.6 (a) is a plot of the rms voltage

amplitude of the AC ECoG versus the transition number (1–88). The amplitudes of

the transitions are consistent within a single recording, but there is a great difference
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between recordings. The main explanation for the different rms voltage levels was

that different amplifier gain settings were used. The recordings 61, 63, 71 and 101
whose rms voltages are all at a similar level, had an amplifier gain of 100. The other

recordings all had a gain of 500, but there is much more variance in the recordings.

Figure6.6 (b) is a plot of the rms ECoG voltage, with the amplifier gain removed.
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Figure 6.6: The rms voltage levels of the ECoG of the 88 transitions. Transitions
belonging to the same recording have been plotted with the same marker (e.g.,◦,
×, +, O, etc). (a) Early recordings had the amplifier gain set to 100, while the later
recordings had a gain of 500. This was a major cause of differences in the ECoG
amplitudes. (b) The gain is removed, but there are still differences between the
recordings. The outlier in recording 61 is from a large artefact at the very end of the
two-minute data set.

Even with the gain removed from the signal, there is still quite a lot of difference

between the rms voltages. Even the three recordings of rat 12 all have different

rms voltages. Perhaps these differences could be from the electrodes moving from

their original position. Before each recording, the electrode wires would have to

be connected to the headset. Because the electrodes actually go through the rat’s

skull and directly into the cortex, a slight change in depth can alter the strength of

the recorded signal. Any movement by the rat could change the amplitude of the

ECoG.

When combined to calculate averages, the transitions were grouped by their

recording number so that their ECoG amplitudes would be all at the same level.
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6.2.3 Results of the Time-Aligned Transitions

To display the results of the time-aligned transitions, the raw DC and AC ECoG

and the time-series statistics have been plotted. The fractional band power was

calculated for the seven frequency bands previously listed in table5.1, but the slow-

wave (0.1–1 Hz) was always very close to zero so it was not plotted. The results

from rat recording 61 are shown in Fig.6.7. In each subplot, the main point of focus

is the average, which is superimposed on the top and rendered as a thick, dark line.

The data in the background are plotted to show the amount of fluctuation between

transitions.

In Fig.6.7, the expected drop in power and rise in spectral entropy at the SWS to

REM transition are present. The correlation time also becomes lower at the transi-

tion, but it is more vulnerable to artefacts, so there are many large spikes. The spikes

in the correlation time make the SWS and REM states not as distinguishable as they

are in the power and spectral entropy. The fractional band power is interesting. The

only frequency bands to show a clear change at the transition are the 12–15 Hz spin-

dle band and the 25–47 Hz gamma band. Most of the other, lower-frequency bands

slightly decrease, but it does not happen suddenly as with the spindle and gamma

bands.

The graphs of the other rat recordings are all very similar to Fig.6.7, and pro-

vide little extra information. They are included in AppendixB. All the figures are

consistent in that the power, spectral entropy and the spindle and gamma bands of

the fractional power most clearly show a sudden change at the transition from SWS

to REM.

The results of the time-aligned transitions show that the SWS to REM transi-

tion of a rat is very quick. The abrupt change in the time-series statistics is strong

evidence that the cortex undergoes a first-order phase transition as it switches from

SWS to REM, as predicted by the Steyn-Ross model.

6.3 Looking for the DC Shifts

As mentioned at the beginning of this chapter, the Steyn-Ross model predicts a

positive DC-shift in the EEG/ECoG as the cortex undergoes the phase transition

from SWS into REM. One of the goals of recording from the rats was to observe

and measure this DC-shift. With the time-aligned transitions from the previous

section, the corresponding DC ECoG could also be averaged to see if there was any

change in the potential.
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Figure 6.7: The 15 time-aligned SWS to REM transitions for rat recording 61. The
dark line is the mean of the 15 data sets. The SWS to REM transition is centred at
t = 0 where the AC ECoG and time-series statistics change abruptly. The power,
spectral entropy and the spindle and gamma frequency bands give the best evidence
of a change in state. In the DC channel, a small positive DC-shift is present in the
mean. The DC ECoG analysis follows in sec6.3.
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6.3.1 Removing the DC Drift

Time-aligning the transitions alone was not enough to prepare the DC ECoG for

averaging. The drift in the DC channel made comparisons between the transitions

difficult as they were all at different voltage levels. To make the DC transitions

comparable, each DC ECoG time-series needed to be modified. First, a subset of

the time-series that contained drift was selected. The slope of that subset was then

computed via linear regression. The slope andy-intercept of the fitted line were

then subtracted from the DC ECoG time-series leaving a new time-series that was

close to zero, but still contained any DC-shifts that were present. An example of

this procedure is shown in Fig.6.8with the DC ECoG from the 73rd transition. The

programratrem zero had an option to allow the user to select the data subset;

then it would calculate the straight line and subtract it from the time-series. The

coefficients of the straight line were later saved to a data file.
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Figure 6.8: A demonstration of how the drift was removed from the DC ECoG.
(a) A linear portion of the time-series is selected. (b) A linear, least-squares line is
computed from the data points inside the selected region. The line is extrapolated to
be the same length as the time-series. (c) The line is subtracted from the time-series.
After the drift is removed, there is a slight increase in DC potential at transition, but
it occurs slowly over∼10 s, not as fast as predicted by our model.

Figure6.9shows how modifying the DC data helps. The DC ECoG time-series

of the SWS to REM transitions of rat recording 6.1 are plotted in Fig.6.9 a. Each

transition has a different average DC voltage. By bringing them back towards zero,

they can be compared and averaged. In Fig.6.9 b the DC time-series have been

modified. They now all fit into a smaller range and an average can be easily calcu-
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Figure 6.9: (a) The DC ECoG of 15 transitions of recording 6.1 are all at different
voltage levels because of the drift in the DC channel. (b) The slopes andy-intercepts
are removed to aid in comparison. Several of the transitions have positive DC-shifts
at t = 0, but only one can be easily seen here. Subplot (b) was plotted earlier in
Fig. 6.7where the mean was also calculated.

By altering the DC ECoG in this way, the final and initial potentials of any

DC-shift were ignored. At this point in the research, however, we were more in-

terested in finding whether there was any DC-shift associated with the SWS–REM

transition.
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6.3.2 How Many Transitions Show a DC Shift?

Most of the transitions in Fig.6.9 do not have a DC-shift. To find those that do

have a jump in the potential, the time-series from recording 61 have been plotted

along with their first derivative in Fig.6.10. If a DC-shift is present, the derivative

should show an upward spike. Because the DC-shift is predicted to occur quickly,

only 10 s either side of zero are shown. The data has been smoothed to remove

the AC components of the ECoG. Smoothing is applied because if the numerical

derivative is computed on the raw DC ECoG, the fluctuations are amplified, which

hides the spike that is to be detected. Unfortunately, the smoothing also smooths

out the sharp DC shifts, making the spike in the derivative lower than it should be.

The parameters used for the Whittaker smoother wered = 3 andλ = 5× 107.

Five of the 15 time-series shown here have clear DC-shifts. They are all of

different amplitudes, the greatest of which is number 11. The change in potential

at the SWS to REM transition in number 11 is very large and it heavily influences

the mean, which was shown previously in Fig.6.7. There are many other DC-shifts

that have not been marked because they do not occur att = 0. There are also other

events that are noticeable in the DC time-series that do occur att = 0, but are not

well distinguished DC-shifts. One of these other events is a “down-up-down” kind

of waveform in number 8. Another is seen in number 7 where a quick, small jump

at the transition follows large, slower change in potential. It is hard to tell whether

these events are related to the SWS to REM transition.

The problem with detecting the DC-shifts by calculating the first derivative is

that each jump in potential is found manually. By eye, it is often easier to see the

DC-shift directly in the ECoG, rather than in the derivative. When the detection

is performed manually, there will always be biases. If a detection algorithm could

be implemented, ideally it would not be subject to human biases. The noise in the

derivative, coming especially from the large SWS fluctuations, makes automatic

software detection difficult. With some early help, I have developed an algorithm

for detecting DC-shifts. This is the subject of chapter7.

6.3.3 Should Transition 11 be Included?

As mentioned earlier, the DC-shift in transition number 11 is much larger than the

others. It is so large that it is almost too good to be true. The means across all of the

DC ECoG transitions, and their derivatives for numbers 1–15 have been calculated

both with and without transition number 11. In Fig.6.11, which includes number

11, there is a large, quick jump in the potential, which gives a tall spike in the
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Figure 6.10: The first 15 (smoothed) DC ECoG transitions and their first deriva-
tives. Circles mark the spikes in the derivatives that clearly indicate that there is a
DC-shift att = 0.
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derivative. Number 11 is excluded from the average in Fig.6.12and the positive

DC-shift is still present, but it is just not as large, and goes over a longer period of

time. In the derivative, there are two smaller peaks att = 0, but they do not stand

out well against the rest of the fluctuations.

The 11th transition has such a large effect on the means that one questions its

validity. Using the MATLAB commandfindstr1 the position of the 11th transition

was located in its original recording. As seen in Fig.6.13, this particular DC record-

ing has some large disturbances which change the DC potential by about 5 volts. It

is highly unlikely that the rat’s cortex could change by 5 V. There must have been

some electrical interference to cause such a huge change.

The region where transition 11 occurs looks to be on the decay curve of the am-

plifier as it recovers from the huge shift of∼5 V. In the two minutes containing the

DC-shift, there is not much fluctuation in the time-series apart from the DC-shift

itself, and another smaller one at 190:30 minutes. If the DC-shift is really an elec-

trical artefact, and not caused by the cortex changing state, then it is an unfortunate

coincidence that it happens simultaneously with the SWS to REM transition.

Because the change in DC potential is so large, and the signal seems to be influ-

enced by electrical interference, transition 11 should be excluded from the analysis.

It is encouraging that when 11 is excluded from the mean, we still see the rise in the

DC potential. At the moment, I can say that sometimes there is a positive DC-shift

as the cortex makes the transition from SWS to REM. Still to be answered is the

question of why some transitions do not contain any sign of a DC-shift.

To get more conclusive evidence, we need to make more recordings and take

better precautions to stop electrical and movement artefacts. A Faraday cage would

help to remove any electrical interference, but stopping movement artefacts would

be a more difficult matter. In a study byMarshalet al. (1998), she used a clamp

attached to the bed to restrain the heads of her human volunteers to stop them from

moving during their sleep. This eliminated all the movement artefacts which, can

drastically change the DC potential. In contrast, our rats were free to move around

in a container during the recording process.

1The functionfindstr is designed to find the indices of small strings hidden inside larger strings,
but it also works for numerical arrays provided they are arranged as row-vectors.



6.3 Looking for the DC Shifts 97

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

4

6
x 10

−3 Mean of DC ECoG:  Numbers 1−15
D

C
 E

C
oG

−10 −8 −6 −4 −2 0 2 4 6 8 10
−5

0

5

10
x 10

−5

D
C

 E
C

oG

Mean of Derivative: Numbers 1−15

time (s)

Figure 6.11: The means of the DC ECoG and their derivatives for transitions 1–15.
When transition number 11 is included in the mean, the DC-shift is very clear in
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Figure 6.12: The means of the DC ECoG and their derivatives but excluding tran-
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Figure 6.13: The location of the 11th transition comes from a region in recording 61

where there seem to be large electrical fluctuations.
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6.4 A K-complex or a DC-shift?

While examining the rat transitions, particularly number 11, I made an interesting

observation. Whenever there is a sharp change in the DC potential, from either the

cortex or an electrical artefact, the corresponding AC ECoG always has a waveform

that looks very similar to a K-complex. I believe that these waveforms are the result

of high-pass filtering of the true ECoG signal that contains all frequencies.

All amplifiers used for data acquisition have a built-in high-pass filter (unless

specifically measuring DC). When filtering pre-recorded, digitised data on a com-

puter, one often uses a function such asfiltfilt found on the MATLAB signal

processing toolbox. What is useful aboutfiltfilt is that the signal is filtered

twice, once forward and once backward. This eliminates any phase shift that would

come about from filtering in only one direction. During the data acquisition on the

other hand, the amplifier has to apply its filter in real time, and therefore cannot

filter in the backward direction.

In Fig. 6.14 there is a comparison between a real K-complex taken from hu-

man EEG, the apparent K-complex in the ECoG of transition number 11, and a K-

complex type waveform that was simulated by filtering noise containing an artificial

step. The shape and time-scale of all three are very similar. The filter parameters

needed some optimisation to get the simulated waveform to match the shape of the

other two. An elliptical filter was used with a cutoff frequency of 0.1 Hz and high-

pass frequency of 1 Hz. The amount of ripple allowed in the pass band was 0.5 dB.

The sharpness of this filtering required a filter order of 2. The magnitude and phase

response of the filter used are plotted on Fig.6.15.

From the results of Fig.6.14, it is quite clear that filtering a sharp step in the

DC potential, with a filter whose magnitude and phase response are similar to those

in Fig. 6.15, will result in a waveform that is very similar to the K-complex. The

filtered DC-shifts and real K-complexes are so alike that I believe that misclassifi-

cations could arise. If the Steyn-Ross model is correct, and there are DC-shifts at

the transition from SWS to REM, then a fake K-complex, arising from filtering out

the DC, could be mistaken for a real K-complex. Because K-complexes belong to

stage 2 sleep, the sleep stage would be assigned to stage 2 instead of REM.

Perhaps all K-complexes are actually some kind of DC-shift, and the shape that

is so familiar is really just the impulse response of the amplifier filter.



100 Rat Data Results

−10 −8 −6 −4 −2 0 2 4 6 8 10
time (s)

Filtered DC−shifts mimic K−Complexes
(a) Human K−Complex 

(b) Rat DC Potential Shift 

(c) Corresponding Rat AC ECoG 

(d) Artificial noise with step 

(e) Phase shifted filtered signal 

Figure 6.14: Different waveforms that look similar to a K-complex. (a) A real K-
complex from a human sleeper. (b) The DC-shift from the transition 11 of the rat
time-aligned transitions. (c) The AC ECoG that was recorded after the amplifier
filtered the DC component from the true signal. (d) Artificial data made to look
similar to a DC-shift. (e) The result of high-pass filtering of the artificial data in (d)
in only the forward direction. The phase response of the filter distorts the sharp DC
shift and leaves the waveform that looks very similar to the K-complex.



6.5 Summary of Rat Results 101

0 2 4 6 8 10 12 14 16 18 20
0

55

90

135

180

Frequency (Hz)

P
h

as
e 

(d
eg

re
es

)

Phase Response of High Pass Filter

0 2 4 6 8 10 12 14 16 18 20
−100

−50

0

50

Frequency (Hz)

M
ag

n
it

u
d

e 
(d

B
)

Magnitude Response of High Pass Filter
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to filter out the DC component of the artificial data in Fig.6.14d.

6.5 Summary of Rat Results

The changes in the power, fractional band power, correlation time and spectral en-

tropy are consistent with both the human results of chapter5 and the predictions of

the phase transition model. At the transition from SWS to REM the power in the

ECoG greatly drops and it is distributed more into the lower frequencies. This is

accompanied by a drop in correlation time while the spectral entropy increases.

One difference in the results between the rats and the humans is the frequency

distribution. During SWS, there is much more energy in the 12–15 Hz spindle band

and much less in the 0.1–4 Hz slow-wave and delta bands for a rat. With a human,

almost 100% of the energy is concentrated below 4 Hz.

The quick cycling of the rats makes it difficult to see if there is a slow build-up

in power during SWS as there is with a human, but the qualitative changes in the

time-series statistics are still consistent with our phase transition model.

By aligning many time-series subsets that all contained SWS to REM transi-

tions, so that the transitions occurred simultaneously, averages were calculated. The
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averages very clearly showed that there was a sharp drop in power and a rise in spec-

tral entropy. The correlation time was not as effective at detecting the transition, but

the drop was still visible. Two of the six different frequency bands showed an eas-

ily observable change at the transition. There was a rise in the fractional power

in the 25–47 Hz gamma band and a drop in the 12–15 Hz spindle band. The 15–

25 Hz beta band also reduced slightly at the transition. Some of the other fractional

power bands, particularly the 4–8 Hz theta band, gave no hint of a change in state.

This was surprising as I had previously assumed that all the energy concentrated

in the low-frequency bands would be redistributed evenly throughout the higher-

frequency bands.

With the DC ECoG, it was easier to look at each transition separately. Five of

the 15 SWS to REM transitions showed a clear positive jump in potential which

was also seen as a spike in the first derivative. However, the jump was so large for

transition number 11 that it really should be excluded from the analysis, as it seems

to be an electrical interference artefact with very good timing. In the calculation of

the mean of the other 14 transitions, an increase in the potential was still present,

but it was too slow to be well distinguished above the noise in the mean of the

derivative. To get better, more reliable results, I believe more precautions need to

be taken to avoid artefacts when recording down to zero frequency.

One of the observations made while searching for DC-shifts was that the AC

recording contained a waveform that looked very similar to a K-complex. These are

the result of the high-pass filtering of the true bio-signal in real time, which is done

electronically by the amplifier. The sharp DC-shifts are phase-shifted by the filter

and produce what looks much like a K-complex. It could be that there are DC-shifts

at the transition into REM that appear to be K-complexes. This similarity could

lead to a misclassification. According to the sleep staging rules byRechtschaffen

and Kale(1968), this epoch would have to be scored as stage 2.

Overall, the results of this chapter provide good evidence that the Steyn-Ross

model is correct in predicting that the transition from SWS into REM can be classi-

fied as a first-order phase transition. So far, there is some encouraging evidence of

a DC-shift at the transition, but it is not observed consistently enough to give us any

certainty.



Chapter 7

DC-Shift Detection Algorithm

In the previous chapter some of the DC ECoG was analysed in the hopes of finding

positive jumps in the DC potential at the time of the SWS to REM transition. From

15 transitions, 5 contained DC-shifts that were easily identified by inspection of

both the DC ECoG itself, and its numerical derivative. As mentioned earlier, manual

identification of the DC-shifts is not ideal. Presented in this chapter is an algorithm

that I have developed for detecting the DC-shifts.

7.1 Developing the New Algorithm

At first glance the problem of detecting a DC-shift is similar to step detection that

would commonly occur in image processing, such as the ‘weak string’ byBlake and

Zisserman(1987). However, this and many other image processing step-detection

techniques require that a threshold be set, making them unsuitable for my data as

we do not know what the magnitude of the DC step will be, and therefore cannot

set a meaningful threshold.

Another possibility, would be the first derivative. If the signal is generally

smooth then any sudden step should show up as a large spike in the first derivative.

But, because the EEG is full of noise-like fluctuations, the first derivative seems to

amplify the fluctuations, making the voltage step difficult to discern. In chapter6

the first derivative was computed after the DC ECoG had been smoothed. Smooth-

ing the data did remove the fluctuations, but it also smoothed out any DC-shifts,

thus reducing height of the spike in the derivative.

103
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7.1.1 The Two Least-Squares Lines

With the help of Jamie Sleigh and Alistair Steyn-Ross, we thought of another

method. Two linear, least-squares lines were fitted to the data, the first at [t − ∆t, t]

and the second at [t, t+∆t]. There would be a difference in the vertical position, or

DC voltage∆V , of the two lines at timet. Thent could be varied along the time

axis with the lines being re-fitted for every position, giving a function of∆V (t). If

there is a DC-shift present in the signal, then it would be detected by the maximum

value of∆V . This is illustrated in Fig.7.1where the two lines have length∆t = 2 s

andt is varied to different positions along the time axis. Where there is no DC-shift

in the ECoG, there is only a small difference between the ends of the straight lines.

At t = 0, where there is a DC-shift, the two lines have a large separation and∆V is

measured.

In Fig. 7.1, only a few seconds either side of the SWS to REM transition have

been plotted. This is because the model predicts that the transition will be very

sudden. The data has already been time-aligned, so we know that the SWS to REM

transition is att = 0 (or very close to it). By varyingt to every time sample

between−2 and 2 s and evaluating the two least-squares lines within the region of

interest, the function∆V (t) is formed. The function corresponding to the example

of transition 5 shown in Fig.7.1, is graphed in Fig.7.2. The DC ECoG is plotted

in the interval [−4,4] while∆V only has the range [−2,2]. This is because the first

point of the change in potential,∆V (−2), is calculated from 4 s of ECoG data, -4 s

to 0 s.

7.1.2 Varying∆t to Make a Surface

A clear peak in∆V shows the position of the DC-shift, and the maximum value

gives its size. The value of∆t = 2 s is somewhat arbitrary. Jamie Sleigh originally

suggested to try to fit two lines ofabout2 s each to the DC data to see if there were

any noticeable changes in the potential. While developing the algorithm further, I

wondered if it would make much difference to vary the length of the least-squares

lines. Shorter values of∆t would make the fitted lines become more sensitive to

small changes in the DC signal, and would then introduce more fluctuations into

∆V (t). Conversely, if∆t is increased the signal would be less susceptible to change

and∆V would become smoother. Figure7.3shows how∆V changes when different

line lengths are used.

It is hard to say exactly what value of∆t is optimal, but between 0.5 and 2 s

seems to work well. Much bigger than a few seconds would smooth out∆V so
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DC−shift Detection, ∆t = 2

(b)

t = −1 s

(c)

t = −0.5 s

(d)

t = 0 s

(e)

t = 0.5 s

(f)

t = 1 s

−4 −3 −2 −1 0 1 2 3 4

(g)

t = 1.5 s

time (s)

Figure 7.1: Two least-squares lines, each of length∆t = 2 s, slide along the time
axis of the (smoothed) DC ECoG of transition 5. The vertical difference between
the two lines gives the change in the DC potential. By looking at the time-series,
there is obviously a voltage step att = 0. The two lines do a good job at detecting
the step att = 0 in plot (d).
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Figure 7.3: By changing∆t, the length of the least-squares lines, the sensitivity
of the DC-shift detection changes. When∆t is large, only the clear DC-shifts are
detected. As∆t is lowered, it becomes more sensitive to small fluctuations
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much that only very large DC-shifts (such as transition 11) would be detected. On

the other hand, lowering∆t down to only a few samples would make∆V fluctuate

so much it would be almost as noisy as the numerical derivative. Because the ideal

value of∆t is unknown, it can be made a variable, rather than a constant parameter.

The definition of∆V has now changed, it is a function of two variables and has

become a surface:∆V = ∆V (t,∆t).

In Fig. 7.4 the surface of∆V ((t,∆t) for transition 5 is plotted.∆t is varied

in reasonably large steps from 0.5 s to 2 s. The main feature of the surface is the

narrow hill centred att = 0, were the DC-shift has been detected. It is encouraging

that the maximum value of the hill is almost constant along the∆t axis. It shows

that when there is a clear DC-shift, it is detected no matter the length of the lines.

Away from t = 0, the surface changes a lot more. When∆t is short, there is more

fluctuation and a smaller peak emerges att ∼ −1.6 s. At the high end of∆t, either

side of the peak,V drops below zero, making wide troughs.

The mean value of the surface∆V is then calculated across∆t to compress it

back into a one variable function oft, ¯∆V (t). Then the DC-shift and its position

can be measured with a simplemax1 command. The mean of the surface,̄∆V (t),

is plotted in Fig.7.5. The vertical, red line denotes the position and size of the

DC-shift.

7.2 Applying the Algorithm to the DC Transitions

This method works very well when it is applied to data with a clear jump in the

potential, such as transition 5, which was the test data that was used in generating

the last few diagrams. It accurately determines the position of the maximum change

in the DC potential. The algorithm seems elaborate considering that taking the

derivative also found the position of the DC-shift in only a fraction of the time.

But this algorithm does have advantages over the derivative. It also finds the height

of the DC-shift and is more resistant to noise and artefacts. To test how well the

algorithm works, it needs to be applied to data with less obvious DC-shifts. In the

diagrams that follow, Figs.7.6and7.7, the transitions 1–15 (except 5 as it was used

previously) from rat recording 61 are plotted.

As seen in the Figs.7.6and7.7, wherever there is a true DC-shift, it is accurately

detected. In a few cases (transition 2, 7 and 12), the algorithm marked DC-shifts

occurring close the SWS to REM transition att = 0 that could not be clearly marked

1The MATLAB commandmax can return the maximum value and its index:
[mx, i] = max(data);
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Figure 7.4: A plot of the surface∆V (t,∆t). t is the time axis, and∆t is the length
of the least-squares lines used to measure the DC-shift. The maximum point of the
peak that runs alongt = 0 is the DC-shift. For this transition, varying the length of
the lines does not change the position of the DC shift.
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Figure 7.5: The surface∆V ((t,∆t) has been averaged over∆t, to form a one
variable function, ¯∆V (t). The red vertical line is the DC-shift whose position and
length were calculated by finding the maximum of̄∆V (t). The line has been copied
to the second subplot of the DC ECoG to show how well the algorithm detects the
DC-shift.

when using the first derivative. The idea of using the two least-squares lines to find

the shift definitely works when there is a shift. But the problem is that when there

really is no DC-shift, themax command forces one to be found. Some kind of test

needs to be included so that data without a shift gets marked as having no shift.

More logic needs to be programmed into the algorithm to exclude shifts that

are not actually there. Such as in transition 11, for example, the positive shift is

very clear, but the algorithm also detects a lower amplitude negative shift after the

positive one. This seems to happen wherever there is a clear, positive (or negative)

spike in∆V . Preceding and following the spike there are always smaller amplitude

local minima (or maxima), which are not at all associated with their own DC-shift.

Even more logic needs to be included into the algorithm so that other real shifts that,

show up as local maxima in̄∆V , are correctly marked as DC-shifts. After these have

been implemented, it would be simple to include detection for negative shifts too.

The simple solution would be to set a threshold that a shift must overcome before it

is detected. However, there is a large range in the magnitudes of the good DC-shifts

seen in Figs.7.6and7.7.
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Figure 7.6: Because the algorithm finds the maximum value of∆̄V , only one DC-
shift is detected in each data set. Transitions 2, 3, 6 and 7 have positive DC-shifts
that were detected within 1 s oft = 0. Number 3 has a clear DC-shift, but its slow
rise makes the predicted value lower than it should be. The other transitions, 1 and
4, both have other peaks showing smaller positive shifts. They also contain large
negative shifts (the deep troughs in̄∆V ) that are closer tot = 0.
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Figure 7.7: Three very clean DC-shifts are detected in transitions 11, 13 and 15.
Although earlier it was decided that number 11 is probably an electrical artefact
an should be excluded, it is still a good step which is accurately detected by the
algorithm. Transition 12 is also very close tot = 0, The overall slope of the DC
ECog seems to change at the transition att = 0, and seems to boost the amount of
the DC-shift. In transition 9 a shift has been identified that is very small. Here the
DC-shift occurs over a long period of about 1.5 s. The at the point in the DC ECoG
that is marked as the shift, there is a small ‘down-up’ which gives it the maximum
value. Transitions 8, 10 and 14 show large negative shifts close tot = 0. The
positive shifts that are marked, are quite far away from the transition point.
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7.3 How Well do the Lines Fit the Data?

One way of further increasing the sensitivity of the algorithm that could be used

to eliminate some of the questionable or arbitrary maxima in∆V , is to include a

measure of “goodness of fit” of the least-squares lines into the algorithm. When

there is a clear shift in potential, the two lines fit the data points best when either

both are on one side of the shift or one line is before the shift, and the other is after.

If a straight line is fitted to the corner of a step, the fit will poor, as the residuals will

be large. In Fig.7.8 transition 5 is plotted again with the two least-squares lines

calculated at three positions,t = −0.5, 0 and 0.5 s. The norm2 of the residuals have

been calculated for each of the straight lines. A low norm value indicates a better

fit. For each pair of lines, the average of the two norms has been divided by the

square-root of the number of elements in the line. For example if the number of

elements isn, then

Rnorm =
Rnorm,1 + Rnorm,2

2
√
n

(7.1)

The MATLAB functionpolyfit is used to calculate the least-squares lines. It

can return the norm of the residuals as an optional output, so to computeRnorm takes

only a few extra lines of code, and it does not increase the computation time.

In the same manner as∆V (t) was computed earlier, a new functionRnorm(t) can

also be computed. The new function will have a minimum at the position of the shift

where the two least-squares lines fit to the data well. The new functionRnorm(t) is

plotted in Fig.7.9along with∆V (t). The two are then combined by dividing∆V by

Rnorm(t) to make a new function with a more distinct peak. Note this new function

can only be used to find the time value of the DC-shift. To find the magnitude of

the DC-shift, the time index would have to be referred back to∆V .

In Fig. 7.9 the functions∆V andRnorm(t) are exactly the same size. This stays

true when∆t is varied and the functions become surfaces. Without altering the

process for locating the DC-shift, except for dividing∆V with Rnorm(t), the DC-

shifts of transitions 1–15 were located again. Figures7.10and7.11show the results.

When there is a clear shift present in the data, using the norms of the residuals

of the least-squares lines does make the peak of the maximum more sharp. When

the data is noisy, and there is no obvious shift, using the norms does not particularly

help. This is because the ‘goodness of fit’ measure is usually better for the short

lines than it is for the long ones, as they are more free to move to better fit the data.

So far only results from the first 15 transitions have been shown. To condense

2The norm of a data set is calculated the same way as finding the length of a vector:√
(x1

2 + x2
2 + · · · + xn2). If the elements ofx have a Gaussian distribution, then norm(x) ∝

√
n
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Figure 7.8: The “goodness of fit” can be quantified by using the norm of the resid-
uals. The quantityRnorm is the sum of the norms of the residuals of the two least-
squares lines. Plot (b), where the lines best detect the DC-shift, has a lower value
of Rnorm that the other two plots, (a) and (c).

the results of all 87 transitions (number 11 has been excluded), the times of the

detected DC-shifts have been graphed as a histogram. The algorithm was still only

using themax command, so one position was returned per transition whether there

was a real DC-shift present or not. They were detected both with and without the

use of the norms. For each case, two histograms have been plotted. One with a

bin width of 0.129 s, giving 15 bins, and the second has a bin width of 0.267 s

amounting to 31 bins. In all the histograms, shown in Fig.7.12, there is a higher

than average number of shifts detected close tot = 0. WhenRnorm is used in the

detection, there is a slight increase in the number of DC-shifts close to zero. It

seems that there are some DC-shifts at the SWS to REM transition, but with most

of the transitions analysed here, it has not been observed. With more precautions to

reduce movement and electrical artefacts during the recording process, cleaner and

more reliable DC data could be gathered.

Something that is interesting is that number of detected shifts on the left side
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Figure 7.9: The functions∆V andRnorm. Dividing ∆V by Rnorm produces a new
function that has a very sharp peak that is easy to detect.

(during SWS) is decreased whenRnorm is included. This is probably due to the

straight lines having a poor fit to the large fluctuations that are seen in SWS. Even

though the time-series was smoothed first to remove the fluctuations, sometimes

they were still not smooth enough.

7.4 DC-shift Detection – A Work in Progress

I have come to the conclusion that this algorithm shows promise and could be de-

veloped further. The two least-squares lines, which slide along the time-axis, nicely

detect all the obvious DC-shifts by tracing out local maxima (or minima for negative

shifts) on the∆V curve. But it really needs some logic to choose which maxima

on ∆V should be identified as coming from a DC-shift, rather that just the global

maximum. This could be difficult to implement without setting thresholds, which

were originally avoided because magnitudes of the DC-shifts we hope to detect are

unlnown.

Even more important than detecting secondary shifts, is eliminating poor quality

maxima all together so they are not mistaken as DC-shifts. Using the norms of the
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Figure 7.10: The norms of the residuals, which is a measure of the “goodness of
fit” of the two least-squares lines, have been included into the DC-shift detection
algorithm to increase its sensitivity. When the lines fit the data well, the peaks that
indicate DC-shifts should be made more distinct. The same transitions as seen in
Fig. 7.6are shown here to see if the positions of any of the DC-shifts have changed.
From these six, only the positive shift in transition 1 has changed. The peak on
the left side has been reduced to a lower amplitude than the peak on the right. The
shapes of the graphs of the other transitions have changed too, but not enough to
mark a different position for the DC shift.
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Figure 7.11: The transitions 8–15 that are shown here were also shown earlier in
Fig.7.7. After modifying the algorithm to include the norms of the residuals, 10 and
12 have got DC-shifts that are marked at different positions. A least-squares line
passing through the fluctuations, betweent = −1.4 s andt = −0.5 s, of transition
10, would have large residuals and therefore, a large value ofRnorm at t = −1.4.
The highRnorm causes the maxima att = −1.4 to be reduced in height. In contrast
the value ofRnorm corresponding to the small “blip” in the time-series att = 2 s
would be much smaller. In transition 12, it is a similar situation. The DC-shift
was detected close tot = 0, but all the fluctuations in that region would cause the
spike to be lowered. The maxima corresponding to three clearest shifts, in numbers
11, 13 and 15, have all been enhanced by the inclusion ofRnorm into the detection
algorithm
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Figure 7.12: The positions of the detected DC-shifts whenRnorm is and is not
included in the detection algorithm. There is a small increase in the number of DC-
shifts that occur close tot = 0, but it does not stand out well against the fluctuations
of the rest of the graph and cannot be considered as evidence that a shift att = 0 is
more likely than anywhere else. WhenRnorm is used in the detection algorithm, less
DC-shifts are detected on the right hand side,t < 0, which is during SWS.



118 DC-Shift Detection Algorithm

residuals as a measure of the quality of the fit was intended to help reduce the

likelihood of detecting an unwanted shift, but it did not work as well as I had hoped.

The shorter lines are always able to fit the data better than the longer lines, and the

distribution of the residuals is far from Gaussian, so dividing by
√
n did not help

matters. Perhaps varying∆t is not required and an optimal value could be found.

Only using one value of∆t would also drastically reduce the computation time.

Another way to test for good DC-shifts would be to measure the sharpness of

the corresponding peak in∆V . This could be done with a FWHM (full-width half-

maximum). After the maximum of a peak is found and it height is measured, width

of the peak at half its maximum value is also measured. Then if the width is greater

than some threshold, then the peak is discarded and a different peak would be lo-

cated. As mentioned earlier, setting thresholds has been avoided, but in this case

it is a threshold in the time domain, not in voltage. After seeing the results of the

algorithm so far, meaningful time thresholds for a FWHM could be set. The shape

of the peaks that correspond to good DC-shifts are well known now and and the

minimum FWHM could be set to∼0.6 s.

I was pleased that the algorithm correctly identified the obvious shifts, but it

seems that in most cases the data used either did not have any change in the DC

potential, or it had so many changes that pinpointing only one was difficult.



Chapter 8

Conclusions and Future Work

The goal of this thesis was to find evidence supporting theSteyn-Rosset al. (2005)

model of the sleeping cortex. The major prediction of the model is that the transition

from SWS to REM sleep is a first-order phase transition.

The model predicts that as the cortex undergoes the phase transition, statistics

describing the EEG fluctuations will dramatically change. During SWS, on ap-

proach towards the phase transition, there will be an increase in power and correla-

tion time of the EEG and the energy will become more concentrated at low frequen-

cies. Simultaneously the spectral entropy will decrease. At the point of transition

the model predicts that power and correlation time will surge toward infinity and

the energy will be concentrated at zero frequency. After the transition into REM

has been made, the power and correlation time of the EEG will both drop to a much

lower value and the frequency distribution will be much more even, leading to a

higher spectral entropy.

In the human results presented in chapter5, the time-series statistics — power,

correlation time, fractional frequency band power and spectral entropy — were

calculated on real EEG. The sharp drop in power, correlation time and fractional

low-frequency power and the rise in spectral entropy after the transition were ob-

served consistently. The large surge in power and correlation time were not seen

every time. This was usually because a short period of stage 1 or 2 existed between

the high-amplitude stage 3 and stage 4. One SWS to REM transition in particular

showed an exceptionally good agreement with the predictions of the model. This

occurred in the second sleep cycle of patient 3 (Fig.5.12on Pg.67). This transition

was so clear that the raw EEG and EOG time-series were also shown (Fig.5.14

on Pg.69). The transition was very abrupt, and the time of the transition can be

pinpointed to within a few seconds.

In chapter6, the same time-series statistics were also calculated on the ECoG
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(similar to EEG but electrodes touch the surface of the cortex) of lab rats. Full

time-series were difficult to analyse because the rats complete their sleep cycles so

quickly. The best results came from time-aligning many time-series subsets so that

the SWS to REM transitions occurred simultaneously. Averages were calculated

and sharp drops in the power and correlation time and the jump in spectral entropy

were all clearly visible. The fractional band power behaved slightly differently for

the rats from the way it behaved for the humans. The low-frequency (0.1–4 Hz)

did not show a consistent change. The frequency bands of most interest were the

spindle (12–15 Hz) and gamma (25–47 Hz) bands. At the transition, the spindle

band suddenly reduced and the gamma band increased.

The DC-coupled ECoG of the rats were also recorded in an attempt to detect the

jump of Ve from the bottom branch of the manifold (Fig.2.8 on Pg.24) to the top

branch that is predicted by theSteyn-Rosset al. (2005) model. These results were

less convincing. In 14 SWS to REM transitions, a clear DC-shift was observed in

only four of them. There were many irregular fluctuations in the DC ECoG that

could possibly have been from electrical interference. To get more reliable results,

more precautions need to be taken when recording down to zero frequency. DC

signals are very sensitive and even a slight movement of the electrode wire can

drastically change the DC potential.

I made the observation that one-way, high-pass filtering of a DC-shift returns

a phase-shifted impulse response that looks very similar to a K-complex. Most

EEG time-series are recorded using such a filter built into the amplifier. Perhaps

DC-shifts do occur as the cortex transitions from SWS into REM, but in the AC-

coupled EEG, they would appear to be K-complexes. According to the rules by

Rechtschaffen and Kale(1968), seeing a K-complex is reason to score an epoch of

sleep as stage 2.

Overall, the results presented in this thesis give good evidence supporting the

phase transition theory ofSteyn-Rosset al. (2005), with the most convincing evi-

dence in the time-series statistics of patient 3 shown in Fig.5.12(Pg.67).

8.1 Unfinished Work

During my own research, I needed to write many codes and functions to assist with

the time series analysis. There are pieces of code that I am unhappy with in their

present form.

One of the larger unfinished projects is the DC-shift detection algorithm that

was the subject of chapter7. I believe that the idea of this method shows promise,
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but at the moment themax command is used to find the DC-shift. It does detect the

obvious DC-shifts, but when there are several possible shifts, or no obvious shifts,

the position and size of the DC-shift returned are sometimes questionable. There

needs to be better logic conditions for specifying a “good” DC-shift.

In the human results, the correlation time showed a set of data points that were

much lower than the rest (Fig.5.7 on Pg.59). These were the result of computing

the autocorrelation of EEG containing spindles. The correlation time, as it stands,

is defined as the lag time where the autocorrelation, Eq. (4.9), drops to 1/e of

its maximum value. When the autocorrelation function oscillates as was shown

in Fig. 5.9 (Pg. 62) the lag time recorded is only about1/4 of the period of the

resonant oscillation. Marcus Wilson later informed me of another definition of the

correlation time:

τC =
1

C(0)

∫∞

0
C(t) dt (8.1)

Here the area of the autocorrelation function is calculated from zero lag right out

to infinity, but the correlation time is usually only calculated on small epochs of

only ∼4 s. In the results, the correlation time came to be less than 200 ms. If

an exponential decay with a time constant of 200 ms fits the autocorrelation well,

then the decay will have fallen to less than 99% of its starting value after 1 s. For

the EEG analysed in this thesis, setting the upper limit of Eq. (8.1) to 4 s is a

fair approximation to infinity. If this new definition were implemented, it would

probably evaluate faster than the current implementation, because this uses only a

sum-and-divide operation. In the current form, the lag time is interpolated from the

point whereC(τ)/C(0) reaches 1/e.

8.2 Future Work

The recordings of the DC-coupled ECoG made from the rats contained a lot of

artefacts. These include movements and electrical interference. The evidence sup-

porting a DC-shift as the cortex transitions from SWS to REM was not conclusive.

To find conclusive evidence, we need to obtain DC recordings that are more reliable

and free of artefacts.

It has been observed that K-complexes can be evoked in the EEG by the sleeper

hearing a startling sound. If the DC-coupled EEG were also recorded then evoked

K-complexes could be compared with their corresponding DC-EEG waveform. It

is conceivable, though unlikely that all K-complexes are actually DC-shifts.

In some of the human sleep records, the ECG was clearly visible in the EEG

as sharp spikes at a rate of about one per second. In sleep studies where only
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the amount of time spent in SWS and REM is considered, the ECG artefact is not

a problem. But the ECG does change the spectral distribution, so the results of

any time-series statistics will also be changed. I would like to try to remove the

ECG from the EEG. If the ECG is also recorded on its own channel, then using a

correlation function or differential filter could be useful.



Appendix A

Matlab Codes Written

The most useful codes that were written are explained in this Appendix. The fist

section gives the details of the functions that were written to compute the time-series

statistics from real EEG. The second section describes some very useful utility func-

tions that were written to assist with displaying data. The third section discusses two

different methods of data smoothing.

A.1 Time-Series Statistics Functions

A.1.1 Function: sleeppower

P = sleeppower(data, fs, epoch);

P = sleeppower(data, fs, epoch, overlap);

[P, t] = sleeppower(...);

I implemented the total power calculation in MATLAB with a function named

sleeppower (power is already a built-in MATLAB command). It requires 3 basic

inputs. The first is the original time-series data, which can contain multiple channels

of the time-series, but it should be arranged as a column-vector. The second input

is the frequency that the data was sampled at,fs. The third input argument is the

epoch size, which is the timeT (see Eq. (4.1)) that the calculation is to be performed

over. There is a fourth input argument, which is optional. Theoverlap argument

is a fraction between 0 and 1 that specifies how much each epoch should overlap

with the previous one. The overlapping feature was described in Chapter4.5. if

overlap is not entered, it defaults to be zero.

The output ofsleeppower is the result of the power calculationP. It will be

returned as an array with the new time-series going downwards in columns, with as

many channels as were originally input. The units ofP are the square of the units of

123



124 Matlab Codes Written

the original data. For example, if the EEG is measured inµV, then the power will

be returned as (µV)2. There is also an optional output argument,t. This is a time

vector, in units of seconds, which is for plotting againstP. The time vector does not

start at zero. Its first element has the value of one-half the epoch time. This is so

that every data point will be plotted on the time axis at the centre of the of its epoch.

A.1.2 Function: fract pwr

F = fract pwr(data, fs, epoch);

F = fract pwr(data, fs, epoch, overlap);

F = fract pwr(data, fs, epoch, overlap, bands);

[F, t] = fract pwr(...);

The fractional band power is calculated with the functionfract pwr. It has

the same basic inputs and the optional time vector output assleeppower. There

is a fifth input argument,bands, which specifies what frequency bands are to be

calculated. Its default value is:

bands = [0.1, 4, 15, 47];

which means thatF will be calculated for 3 different frequency bands,

low : 0.1 ≤ f < 4 Hz,

mid : 4 ≤ f < 15 Hz,

high : 15 ≤ f < 47 Hz.

The variablebands must have at least two elements to specify the upper and lower

frequency limits. I have also provided an option to quickly setbands to the com-

monly used Greek alphabet frequency bands (see table5.1on Pg.58). This is done

by settingbands to the string ‘greek’.

WhenF is returned, it is arranged as a three dimensional array. The time-series

runs down the columns, the different channels run across the rows, and the fre-

quency bands go back into the third dimension. This is illustrated in Fig.A.1 for an

array containing 4 channels and 3 frequency bands. If only one channel was entered

into the function, however, rather than returning an n by 1 by 3 array, the function

will eliminate the singular dimension and return a two dimensional, n by 3, array.

A.1.3 Function: correlation time

tau = correlation time(data, fs, epoch);

tau = correlation time(data, fs, epoch, overlap);

[tau, t] = correlation time(...);
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The functioncorrelation time has the same basic inputs and optional time

vector output assleeppower. Evaluating the correlation time is much more time

consuming than the other time-series statistics described here. This is because the

autocorrelation calculation must be performed for every epoch in the time-series.

To make matters worse, the correlation time must be interpolated from the auto-

correlation. Because the calculation runs so slowly, I would not use the correlation

time for early analysis.

A.1.4 Function: entropy

H = entropy(data, fs, epoch);

H = entropy(data, fs, epoch, overlap);

H = entropy(data, fs, epoch, overlap, df);

H = entropy(data, fs, epoch, overlap, df, f lim);

[H, t] = entropy(...);

The functionentropy has the same basic data, sample rate epoch length and

overlap input arguments assleeppower. It also has two extra inputs.

The first input is the frequency bin widthdf, whose default value is1
2π ≈

0.159 Hz. This is to make∆ω = 1 rad s−1. This value fordf is not always possible,

and needs to be checked.

When performing a discrete Fourier transform (DFT), the number of data points

returned is the same as the number of points that was entered,N. Because the DFT

of a purely real function (such as an EEG time-series) gives a function whose real

part is symmetric, the negative frequencies are all redundant. The spacing of the

Figure A.1: The arrangement of the array that is returned byfract pwr
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frequencies after the DFT is

∆f =
1

N∆t
=
fs
N
, (A.1)

and the number of samples in the epochT is

N =
T

∆t
= Tfs . (A.2)

Now rearranging we find

T =
N

fs
=

1
∆f

(A.3)

and therefore,

∆f =
1
T
. (A.4)

So the minimum bin width is1
T

. To get∆f to stay at 1
2π , the epoch period must be

greater than 2π ≈ 6.3 seconds.

The function contains a check to test whether the the specified (or default) value

of df is less than the minimum possible∆f = 1
T

. If test is true, thendf is changed

to be equal to∆f .

The second optional input,f lim, is a two-element vector containing the fre-

quency limits. It has form [fmin, fmax]. If it is not specified,f lim defaults to [0.1,

47] Hz.

A.2 Utility Software Tools

During the data analysis, I quickly realised that there were some simple signal pro-

cessing and display tasks that would need to be performed very often. I wrote

several MATLAB functions to open data files and display results, allowing for user

input from either the mouse or keyboard in order to zoom, scroll, and even tog-

gle which data trace is being displayed. These utility functions aresleepwork

showline, zoomall andextreme. They are described below.

A.2.1 Matlab Graphics

Before I can proceed with the explaining how the functions work, the graphics

handling in MATLAB needs to be explained.

The MATLAB graphics environment maintains a hierarchical system of ‘parent’

and ‘children’ objects within each figure. The root level is at the top, and all figure

elements are children of the root. All subplots contained within a given figure are
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children of that figure. The subplots are then parents of many more graphics ob-

jects such as lines, surfaces and text. Each graphics object has a double-precision,

floating-point identifier associated with it called a ‘handle’. The handle points to a

large list of ‘properties’ and ‘property values’. For example a text label inserted into

a graph has the property ’position’, and its property value is an (x, y, z) co-ordinate.

A.2.2 Data Display Software

The patient data I first received from Fisher & Paykel Heathcare had already been

sleep-staged by a sleep technician. I was given summary printouts of the sleep

recording which contained a chart of sleep stage versus time. One of my first tasks

was to view the patients’ sleep EEG and understand how the sleep staging rules of

Rechtschaffen and Kale(1968) are applied. This meant plotting data in∼30 second

epochs and double checking the score that each epoch had been assigned. I did

not want a simple loop that in each iteration only plotted the next 30 seconds of

data. I wanted to be able to scroll forwards and backwards, increase or decrease the

epoch size and easily choose what channels were to be displayed. There were also

other operations that I wanted to include into the code, such as displaying the power

spectral density or autocorrelation of the current epoch.

The final code had the following structure:

1. Initial user input

- raw data file name

- which channels are to be displayed, total= n

- where in the file to start displaying from

2. Initialise figure

- create figure

- createn sub-plots

3. Begin while loop, stop when Escape is pressed

- read and filter raw data

- plot each channel in relevant subplot
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- wait for user input
→ or ← scroll forward or backward
↑ or ↓ zoom in or zoom out
0 . . . 5 assign sleep stage. 0=wake, 1= stage 1, 2= stage 2,

3= stage 3, 4= stage 4, 5= REM (these are disabled
once staging is finalised)

f then i display PSD of channeli (wherei is one of the nu-
merical keys)

c then i display autocorrelation of channeli

- reset the start and stop index for reading in next epoch of data

4. Save the current state of the sleep-staging file

This code proved to be very useful for viewing data and helping me get a feel

for EEG sleep staging and artefact detection. As this was the first work I did on

the project, I (perhaps foolishly) named the programsleepwork. FigureA.2 is a

screenshot of the display produced bysleepwork. It displays each different channel

in its own subplot. When fewer channels are specified, it will adjust the height of

each subplot so that the display fills the screen. FigureA.3 shows examples the PSD

and autocorrelation that are displayed after pressing thef or c keys.

←: previous, →: next, ↑ : zoom in, ↓ : zoom out, f: PSD, c: autocorrelation, Esc: quit
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Figure A.2: A screen shot of the display ofsleepwork. The bold face labels
at the left of each subplot are the names of the channels. LOC/ROC= left/right
electroocculogram (EOG). LEG= leg movements, MIC= microphone, FLOW=
airflow.
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Figure A.3: Screenshots of the new figures that are displayed when using the psd or
autocorrelation options ofsleepwork.

A.2.3 Function: showline

showline

showline(L)

showline(L,string)

The functionshowline operates on a set of subplots containing many plotted

traces, clearing all but one from the display. Pressing the left or right arrow key

causes the visible trace to disappear and the next trace in the sequence to appear.

This is very useful when examining cluttered graphs.

It has two main ways of starting. The first is to automatically detect the handles

l of all n traces in each of them subplots and arranges the handles in an array:

L =

























l1,1

l2,1
...

ln,1

























l1,2

l2,2
...

ln,2













· · ·
· · ·
...

· · ·













l1,m

l2,m
...

ln,m

























(A.5)

The subscripti andj, of li,j, mean theith trace of thejth subplot. This method fails if

there are a different number of traces in each axes, because the columns ofL would

have different lengths.

The second method of startingshowline is to inputL as an argument. In that

case, it does not matter how the trace handles are arranged inL , just as long as

L is rectangular. The function then goes through the process of making all traces

whose handles are in thejth row of L visible, while all the other traces are rendered

invisible. This means that if the number of traces contained in each subplot are not

the same,L can be made rectangular by entering one handle intoL more than once.

For example, Fig.A.4 shows one subplot with three traces, while the second subplot
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has only one trace. Forshowline to alternate only tracesla, lb and lc in the first

subplot, the arrayL could be be constructed as:

L =













la

lb

lc













ld

ld

ld













or L =







la

lb

lc







(A.6)
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Figure A.4: An example described above of three traces in the first subplot and only
one in the second subplot. To getla, lb andlc to alternate usingshowline, L would
have to be constructed as in Eq. (A.6).

In both cases forL , showline will perform in the same way. The plots in the

first subplot will alternate between the three traces,la, lb andlc, while the second

subplot will continuously show the one trace,ld. The function will run slightly

slower for the firstL , as it will make the trace in the second subplot invisible then

visible every time. Using the second version ofL , showline will leave theld trace

alone and it will stay visible all the time.

The functionshowline contains awhile loop that sets thevisible property

to off for the handles contained inL , then turns it back on forli, wherei = 1

as an initial condition. This displays all traces whose handles are in theith row in

the arrayL , and hides all the others. The function then goes into a “paused while

waiting for user input” state with the use of the built-in MATLAB functionginput.

Only the←,→, space andEsc keys are acceptable input in this state. If a← or→
is input, i is decreased or increased by 1. The function also checksif i < 1, then

i = n, and alsoif i > n, theni = 1, which gives the variablei periodic boundary

conditions. The function then goes back to the start of thewhile loop with a new

value fori. The loop is ended when the Escape key or space bar is pressed and the

function ends. The difference between Esc and space is that space will leave the

figure with all the traces exceptli invisible, while Esc will make all traces become

visible again.
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There is a second optional input argument that was included to provide a label

for each different trace. This label was often just the channel number of the trace

being displayed. The second argument needs to be a character array, with the same

number of rows asL . When theith trace is displayed, theith row of the character

array would be displayed in the top right corner of the plot.

An unexpected, but useful result from using theshowline function was that the

scale of the axes changes automatically to fit the currently visible trace. This occurs

because of MATLAB ’ S default behavior to set the axis properties‘xlimmode’ and

‘ylimmode’ to ‘auto’. It can be overwritten by the command:axis(axis)1,

which holds the limits at their current values.

FigureA.5 shows three curves of the form

y =
sin(ωt)
t

(A.7)

whereω = 1, 2 and 4 radians per second. All three curves were plotted on the same

axes and then theshowline function was used to hide two of the curves from the

display. I also made use of the string argument to show the value ofω on each axes.

These plots also demonstrate the convenient auto-scaling action, as they-axis limits

change for the smaller amplitude functions.

A.2.4 Function: zoomall

zoomall

zoomall(‘x’)

zoomall(‘y’)

zoomall(‘xy’)

When working with time-series analysis, often many graphs are displayed and

all are plotted as a function of time. It is common to want to zoom in to take a closer

look at a selected subset of the data. A difficulty arises in that the zoom function

built into MATLAB , needs to be performed separately and manually on each subplot

within the graphics window. This is done by selecting a region of interest with the

mouse; after the button is released, the axes zooms in to display only what was

selected in the box. This selection procedure must then be repeated for each subplot

within the figure if all subplots are to share a common axis scaling. Because it is

extremely difficult to draw the same sized box for each subplot, the zoomed subplots

will usually have slightly different limits.

1axis has two modes of operation, giving an input argument:axis(limits), sets the current
axis limits to the values specified bylimits, while axis by itself returns the current axis limits
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Figure A.5: An example ofshowline in action. Upper-left: Three traces plotted
with different values ofω. Upper-right:showline removes two traces so only the
ω = 1 trace is plotted. Lower-left: Theω = 2 trace is made visible, the other two
are suppressed. Lower-right: Only theω = 4 trace is visible.

I wrote thezoomall function to allow the user to zoom within one subplot

and have the function automatically zoom all the other axes to the same limits.

This was achieved by first turning on the zoom attribute, then calling the function

waitforbuttonpress, which pauses the running function until a mouse button

or key is pressed. Fortunately, if zoom is turned on, thewaitforbuttonpress

function does not un-pause until the mouse button is released, and the axes has

zoomed in. The function finds the limits of the axis which was last ‘clicked’ in (the

axis command will return the limits of the current subplot). Thezoomall function

then sets all the axis limits to the correct values.

I found that it was more useful to implement the zooming operation by handling

thex-axis andy-axis separately. This meant that an option of zooming inx or y or

both could be included in as an input argument. In fact, as most of my data is plotted

with time on thex-axis, I set the default behavior to zoom only in thex direction.
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A.2.5 Function: extreme

x = extreme(data)

x = extreme(data,n)

At times it is desirable to plot the full∼six hours of raw data, but at a sample rate

of 256 Hz, this corresponds to∼5.5×106 sample points per channel. Attempting to

display this quantity of data can be slow and unwieldy if using an older computer.

To help with this, I decided tosubsamplethe data set when plotting raw time-series.

Often subsampling is performed by taking everyith sample, to reduce the data length

fromN samples by1
i

to give a subsampled data set of lengthn = N
i
. This, however,

may leave out a sharp peak, especially ifi is large (comparable to the sample rate).

I decided to subsample the data in a different way. In the functionextreme,

instead of taking one sample peri points, I tooktwo samples per 2i points, where

the two sample values were selected to be the local maximum and minimum val-

ues within that data subset. This was achieved by reshaping the data vector ofN

samples columnwise into an array of sizeR rows byC columns, where

R = 2i =
2N
n

(A.8)

and

C =
N

2i
=
n

2
(A.9)

Notice thatn must be even and a factor ofN to keep the values all integers. The

newR byC data arrayD looks like:

D =

























d1,1

d2,1
...

dR,1

























d1,2

d2,2
...

dR,2













· · ·
· · ·
...

· · ·













d1,C

d2,C

· · ·
dR,C

























. (A.10)

Using themax andmin commands, the maximum and minimum values for each

column in the arrayD are calculated and returned as row-vectors.

Dmax = max[D]

Dmax =







max







d1,1

d2,1
...







max







d1,2

d2,2
...







· · ·







Dmax =
(

dmax
1 dmax

2 · · ·
)

(A.11)
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and

Dmin = min[D]

Dmin =
(

dmin
1 dmin

2 · · ·
)

. (A.12)

Then theDmax andDmin row vectors are combined to give a new matrix:

[

Dmax

Dmin

]

=

[

dmax
1 dmax

2 · · ·
dmin

1 dmin
2 · · ·

]

(A.13)

This last array is reshaped into a column vector which contains only the extreme

values of the matrixD

Dextreme =

















dmax
1

dmin
1

dmax
2

dmin
2
...

















(A.14)

The code for the functionextreme also contains some important housekeeping

to ensure the original data vector can be reshaped into then
2 by 2N

n
matrixD. If

the number of points,N, of the original data vector is not a multiple ofC = n
2, D

cannot be constructed. This problem was fixed by first finding the closest values of

R andC that give a product only slightly larger thanN. The definitions ofR and

C had to be modified to

C = round
(n

2

)

(A.15)

and

R = ceil

(

N

C

)

(A.16)

where ‘round’ rounds up or down to the nearest integer and ‘ceil’ (ceiling) rounds

up to the nearest larger integer. The ‘ceiling’ operation in Eq. (A.16) is used to

enure thatR×C ≥ N. By adding (R×C)−N points, whose values are calculated

from local averages, into the original data vector, at regular intervals, the length of

the data vector is increased to be exactlyR × C.

To give an example of the operation ofextreme, let us work through a simple

numerical example. Let the vectorx be all integers in the interval [−8,9], and then

let y = x2. We haveN = 18 points and want to subsample down ton = 12. The
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matrix D will haveC = n
2 = 12

2 = 6 columns andR = 2N
n

= 2×18
12 = 3 rows.

D =













64

49

36













25

16

9













4

1

0













1

4

9













16

25

36













49

64

81













(A.17)

The followingDmax andDmin are:

Dmax = ( 64 25 4 9 36 81) (A.18)

Dmin = ( 36 9 0 1 16 49) (A.19)

The finalDextremevector, is now

Dextreme = ( 64 36 25 9 4 0 9 1 36 16 81 49) (A.20)

Notice how the values at the right-hand side of the vector begin to alternate high

and low. FigureA.6 shows a graph ofDextremeand the originaly = x2 data. When

plotting the new subsampledy values, the corresponding newx values are uniformly

spaced starting fromx1 and ending andx18 this leads to some distortion in thex-

axis. Theextreme function is clearly not suitable for small-scale subsampling as

shown here.
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Numerical example of extreme

x

y

y = x2

extreme(y,12)

Figure A.6: A plot of the functiony = x2 and data that has been subsampled from
18 points to 12 usingextreme

For a more realistic example, it is better to use real EEG. In Fig.A.7 I have

plotted 250 seconds of EEG data (fs = 400 Hz) that came from a lab rat. The raw
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data were subsampled usingextreme to give only 2000 data points. After zooming

in along thex-axis, the subsampling begins to be noticeable. When there are twice

as many data points than there are pixels on the screen, the subsampled graphs looks

fine, but when the ratio of pixels to points gets below 1:1, the zig-zag structure of

the subsampling becomes visible.

In functions whereextreme was used, I usually setn to be about three or four

thousand, as this was guaranteed to be greater than the number of pixels in the width

of the screen (e.g., 1024, 1152 or 1280).

A.3 Data Smoothing

During the time series analysis, I found that the results often had a lot of fluctuation

due to the small changes in the EEG amplitudes and frequencies. There were also

spikes due to artefacts in the raw data. The results needed to be smoothed. To get a

good idea of the gross changes,

A.3.1 Convolution Moving Average

The first smoothing technique I applied was a moving average. The most natural

way to apply a moving average smoother is to take the average of all the data points

from i to i + n then another average for the points fromi + 1 to i + n + 1 and so

on. This method is extremely slow, especially if the data set is large. A better way

is to convolvethe data set with a small vector of all ones. The convolution of two

functionsf andg is denoted byf ∗ g and defined as:

h(t) = (f ∗ g)(t) =
∫

f (τ) g(t − τ) dτ (A.21)

The convolution operation produces a third functionh, which is a measure of the

similarity betweenf andg at an offsetτ. When written in discretely Eq. (A.21)

becomes:

hk = (f ∗ g)k =
N
∑

j=1

fj gk+1−j (A.22)
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Figure A.7: Demonstration of theextreme function. Before plotting, the width of
thex-axis was set to exactly 500 pixels on the monitor. (a) 100,000 samples of raw
EEG data is plotted, giving 2,000 points plotted per pixel (the sample frequencyfs
is 400 Hz). (b) using theextreme function the raw data was subsampled to only
2,000 samples. At this resolution, there are four data points to every pixel To the
eye, there is no difference in (a) and (b). (c) The raw data has been zoomed in along
thex-axis to display only 16,000 samples, which is 32 samples per pixel. (d) The
subsampled data is zoomed in to the same time scale as (c) and now only has 320
data points to be displayed in the 500 pixels.
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whereN is the number of elements in the first vector,f . For an example letf =

(1,2,3,4) andg = (1,1,1). Then the first termh1 will be:

h1 =
4
∑

j=1

fj g1+1−j (A.23)

= f1 g1 + f2 g0 + f3 g−1 + f4 g−2

= 1× 1+ 2× 0+ 3× 0+ 4× 0

= 1

Notice that when the subscript index does not exist, as ing0 or g−1 the missing value

is replaced by zero. The other terms ofh are computed similarly. To better illustrate

the convolution procedure I have combinedf andg into an array of the form
[

f
g

]

.

Now the next terms in the convolution process can be computed by taking the sums

of the columnwise products. (The use here of the symbols
∑

and
∏

are not strictly

correct)

h2 =
∑

[

∏

(

(1 2 3 4)

(1 1 1)

)]

(A.24)

=
∑

[

0 1 2 0 0
]

= 3

h3 =
∑

[

∏

(

(1 2 3 4)

(1 1 1)

)]

(A.25)

=
∑

[

1 2 3 0
]

= 6

h4 =
∑

[

∏

(

(1 2 3 4)

(1 1 1)

)]

(A.26)

=
∑

[

0 2 3 4
]

= 9
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h5 =
∑

[

∏

(

(1 2 3 4)

(1 1 1)

)]

(A.27)

=
∑

[

0 0 3 4 0
]

= 7

h6 =
∑

[

∏

(

(1 2 3 4)

(1 1 1)

)]

(A.28)

=
∑

[

0 0 0 4 0 0
]

= 4

Thus for this example,h = f ∗ g

h = (1 3 6 9 7 4) (A.29)

The first and last elements ofh have very little meaning as only one non-zero term

was used in their calculation. Whenever a convolution is evaluated close to the end

points of a data vector, the resulting points loose their significance.

A convolution may not sound like a fast method, for performing something as

trivial as a moving average. However, by applying the convolution theorem from

mathematics (Spiegel, 1963), we can find an algorithm that is very quickly imple-

mented numerically.

F [f ∗ g] = (F [f ] · F [g]) (A.30)

whereF is the Fourier transform operator. By applying the inverse Fourier trans-

formF−1 we get

f ∗ g = F−1
[

F [f ] · F [g]
]

(A.31)

MATLAB has a built-in function, calledconv, which evaluates convolutions us-

ing Eq. (A.31). It needs to do some zero-padding to keep the numerical calculation

exact (Mathworks, 2002). If we have the two vectorsf andg, then the convolution

f ∗ g can be evaluated by:

F = fft([f zeros(1,length(g)-1)])

G = fft([g zeros(1,length(f)-1)])

then

conv(f,g) = ifft(F.*G).

For the moving average calculation,f is the data set andg is a small vector of

lengthn containing only ones. The result of the convolution is not exactly a moving
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average yet, it must be divided by the sum ofg which in this case is simplyn.

For my implementation of the convolution moving average, I actually used another

MATLAB function calledconvn, which is a multi-dimensional convolution. This

was used for two reasons. Firstly, so that multiple channels could be smoothed

simultaneously, and secondly, becauseconvn provides and optional input argument

to truncate the ends off ∗ g so that it becomes the same size asf . Using h =

convn(f,g,‘same’) to evaluate the example above, would returnh = [3 6 9

7] which has a the same number of elements asf , which has eliminated the most

meaningless points from the ends.

To demonstrate the convolution smoothing I have plotted the spectral entropy

(see section4.4) of two minutes of rat EEG. In Fig.A.8, there are 20 points plotted

per second. I set the convolution smoother to use a vector of 21 ones.
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Figure A.8: Smoothed data using a convolution moving average smoother. Notice
the flat, horizontal line at the edge of the data in(a) – this is an undesirable edge
effect.

One problem with the moving average smoother is that the end points become

very strongly pulled towards zero. This because at the edges of the data vector,
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less thann data points are summed but then they are still divided byn, making the

average less than what it should have been. I got around this by simply replacing

these distorted points with copies of the closest correct point. This left strange

looking horizontal lines at the edges of the data set, but was better than the earlier

problem, which is shown in Fig.A.9
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Figure A.9: The same data set as Fig.A.8 except the edges are pulled down towards
zero from the convolution process

A.3.2 Whittaker Difference Smoothing

z = whittaker(y,lambda)

z = whittaker(y,lambda,d)

Jamie Sleigh, one of my colleagues, informed me of another smoothing tech-

nique.Eilers(1994) gives a smoothing technique that was first published by Whit-

taker in 1923, who originally called it “graduation”. Using today’s language, Eilers

calls it “penalized least squares”.

Suppose we have a data series that consists ofm points yi sampled at equal

intervals, to which we want to fit a smoothed serieszi. A “goodness of fit” measure

is the sum of the squares of the residuals,

S1 =
m
∑

i=1

(yi − zi)2. (A.32)
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A similar equation can be written to describe the smoothness ofz in terms of suc-

cessivez-differences, of difference orderd, ∆zi = zi − zi+d,

S2 =
m
∑

i=2

(∆zi)2. (A.33)

S1 andS2 can be combined to give a measure of both fit and smoothness

S = S1 + λS2

S =
m
∑

i=1

(yi − zi)2 + λ
m
∑

i=2

(∆zi)2. (A.34)

The parameterλ is used to trade between smoothness ofz and fit to the datay. S

now needs to be minimised in the the same fashion as a least-squares polynomial fit.

In MATLAB this is best done using matrix arithmetic. In matrix notation Eq. (A.34)

is

S = |y − z|2 + λ|Dz|2 (A.35)

whereDz = ∆z, For example, whenm = 4 andd = 1,D is

D =







−1 1 0 0

0 −1 1 0

0 0 −1 1







(A.36)

and the product ofDz is

Dz =







−1 1 0 0

0 −1 1 0

0 0 −1 1



















z1

z2

z3

z4













=







−z1 + z2

−z2 + z3

−z3 + z4







(A.37)

The solution of minimising Eq. (A.35) is found by the system of linear equations

(I + λD′D)z = y (A.38)

The equation can be solved forz in one line of MATLAB code using the ‘left

matrix divide’ operator ‘\’

z = (I + lambda * D’ * D) \ y;

Note that if there is a missing value in the data, eg. one of theyi = NaN, then

the above line of code will returnz that contains only NaNs.Eilers (1994) gives a
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solution to this problem by flagging all missing values and assigning weights, one

for a true value and zero otherwise. The weights are arranged into a diagonal matrix

W which replaces both the identity matrixI and replacesy withW y in Eq. (A.38).

(W + λD′D)z = W y (A.39)

The Whittaker smoother is very fast and robust, and even better smoothing can

be achieved with using second or third order differences, e.g.,d = 2 ⇒ ∆2z =

zi − zi+2. One problem I have found, is that only experience can teach what to use

for the value ofλ. At first guess, I would tryλ = 10, 100 or 1000, but never less

than 1, because then it only returnsz ≈ y.

In Fig. A.10 I have plotted the same spectral entropy data as in Fig.A.8, but this

time smoothed using Whittaker’s method. I needed to get the Whittaker smoother to

produce similar results as the convolution smoother, but the parameters for the two

algorithms mean completely different things. To compare like with like, I performed

the Whittaker smoother with a range ofλ until its outputSW was very similar to

those of the convolution smootherSC . I settled on the parametersλ = 1000 and the

difference orderd = 2. The rms difference betweenSW andSC was only 0.0023.

A.3.3 Comparison of Convolution and Whittaker Smoothing

To compareSW andSC , there are a few factors that can be considered. The first

is the quality of the smoothing. Is the smoothed curve actually smooth? To help

answer this question I have plotted the two smoothed curves from above again, and

also their first (numerical) derivative in Fig.A.11.

It is clear that smoothing data using Whittaker’s method gives much smoother

results that a convolution moving average. There are also no bad edge effects with

the Whittaker smoother.

Another question to test the quality of smoothing should be asked. Is the smooth

curve true to the data? To help answer this, I have plotted the same spectral entropy

data again and made new smooth curesSC andSW . This time the number of points

used in the convolution was increased to 31. As before a new value ofλ had to be

chosen to give a minimum rms difference betweenSC andSW . At λ = 6000, the

rms difference was 0.0027; FigureA.12shows how the convolution moving average

curveSC sometimes changes in anti-phase with the data. This undesirable behavior

is due to the equal weighting of all the data points used in calculating the moving

average.

Perhaps a weighted moving average, that uses a Gaussian shape rather that the
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Figure A.10: Smoothed data using a Whittaker smoother,λ = 1000 andd = 2.
Notice that the curve follows the data points at the edge of the data in (a).

simple square shape I that have chosen, would give better smoothing results. How-

ever, The Whittaker smoothing technique performs so well that there is not much

point in persisting with the convolution moving average.
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Figure A.11: From looking at the first derivatives, the Whittaker smoother produces
much smoother curves than the convolution smoother
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Figure A.12: The convolution smoother is calculated withn = 31. Now the smooth
line seems to go in anti-phase with the fluctuations of the data. The Whittaker does
not have these problems.



Appendix B

Extra Rat Transition Results

The figures contained in this Appendix were calculated at the same time as Fig.6.7

on Pg.91. However, these results are all very similar and provide little extra in-

formation. If included in the main body they would only disrupt the flow of text.

The figures show a consistent drop in power, rise in spectral entropy, rise in gamma

frequency power and drop in spindle frequency power. For all The figures, the DC

ECoG shows many fluctuations, and no consistent trend. engineering

147
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Figure B.1: The 20 time-aligned SWS to REM transitions for rat recording 6.3. The
SWS to REM transition is again, most clear in the power, spectral entropy, spindle
band and gamma band. The DC channel shows no clear positive jump in potential.
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Figure B.2: The 5 time-aligned SWS to REM transitions for rat recording 6.4. Here
the alpha frequency band shows a slight increase in the REM state. It is still not as
distinctive as the gamma band, spindle bands, power or spectral entropy. There is
a increase in the slope of the average DC potential, but our theory predicts a much
quicker change than what is seen here.
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Figure B.3: The 7 time-aligned SWS to REM transitions for rat recording 11.2.
The SWS to REM transition is clear in the time-series statistics. Contrary to rat
recording 6.4 in Fig.B.2, the alpha frequency band decreases. Some of the DC time-
series have positive slopes while others are negative and they cancel out leaving the
average reasonably flat.
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Figure B.4: 8 time-aligned SWS to REM transitions for rat recording 12.1. The
changes in power, spectral entropy and spindle and gamma bands mark the transi-
tion att = 0. The DC ECoG time-series show no consistent trend.
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Figure B.5: 11 time-aligned SWS to REM transitions for rat recording 12.2. This is
one of the few rat recordings where the correlation time gives a sharp change similar
to the power and spectral entropy. The average DC potential seems to increase
slightly at the point of transition, but it is not fast enough to call a DC shift.
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Figure B.6: 8 time-aligned SWS to REM transitions for rat recording 12.3. The
DC average has a positive increase at about -5 seconds, it comes from one of the
transitions with a large DC shift.
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