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Abstract

Sleep can be considered to consist of two vefffedent phases: slow-wave sleep
(SWS) and rapid-eye-movement (REM) sleep. ReceBtlgyn-Ros£t al. (2005

have developed a mean-field model describing the average behaviour of popula-
tions of neurons in the cerebral cortex, and applied this model to sleep. The model
predicts that the transition between SWS and REM is a first-order phase transition,
analogous to ice melting into water. As a system crosses the critical point of the
phase transition, its fluctuations show discontinuous changes in power, correlation
and spectral distribution. These are hallmarks of all first-order phase transitions.

In this thesis, the scalp recorded voltage fluctuations, the electroencephalogram
(EEG), of sleeping humans and rats are examined to provide evidence of the phase
transitions predicted by theteyn-Ros®t al. (2005 model. Using extensive, orig-
inal MATLAB code, the previously mentioned statistics are calculated on the EEG
time-series and the SWS to REM transitions are identified. The results show high
values for the total power, low-frequency power and correlation time of the EEG
during SWS, on approach to the transition. At the transition into REM, these high
values suddenly drop, giving strong evidence that it is indeed a first-order phase
transition. While identifying abrupt changes in DC-coupled EEG, it is observed
that one-way, low-pass filtering a DC-shift produces waveforms that appear very
similar to another phenomenon: the K-complex.

Steyn-Roset al. [Journal of Biological Physics31, 3/4,547-569 (2005)]
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Chapter 1
Introduction

Sleep is essential to everyday life, but there is still much about it that remains un-
known. Psychologists initially assumed that the brain, particularly the cerebral cor-
tex, was idle during sleep and active during wakefulnddement and Kleitman

(1957 recorded the electroencephalogram (EEG) — the electrical activity of the
cortex measured with electrodes attached to the scalp — of a multitude of sleep

ing adult humans. They reported that “discrete periods of rapid eye movement
potentials” coincided with high-activity EEG that is similar to waking EEG. They
found that sleep went through cycles between two phases: low activity, with no
eye-movements and high activity, with rapid eye-movements. They then divided
sleep into two main categories: rapid-eye-movement (REM) sleep, and non-REM
sleep. Non-REM was further sub-categorised, from lightest sleep to deepest sleep,
as stages 1, 2, 3 and 4.

When people fall asleep they begin with stage 1 or 2, and usually proceed up
to stage 3 and stage 4. The stages generally progress with 1-4 Hz oscillations
increasing in amplitude and occurrence. In stages 3 and 4, the 1-4 Hz slow-waves
are the dominating feature. Non-REM sleep has also come to be known as EEG-
synchronised sleep, or slow-wave sleep (SWS). REM sleep, because its EEG looks
similar to the waking EEG, is also known as paradoxical sleep. (EEG examples for
the different sleep states are shown in B on Pg.33)

While many were trying to mark the similarities between paradoxical and EEG-
synchronised sleep, Dement commented that the two “are as far as night and day”.
He went on to state, “I would even go so far as to suggest that there may be some
validity in questioning whether they should be subsumed under the general heading
of sleep.” Steriade and McCarlep005 Pg. 9).

With advances in technology, there has been a big leap in the understanding
of the diferences between SWS and REM, particularly at the neurophysiological

1



2 Introduction

level. By surgically implanting the electrodes into the brains of mammals such as
rats and cats, voltage signals can be recorded from the cortex and other structures
such as the thalamus. Research has also been performed on microscopic slices of
the brain tissue of animals. Individual neurons are chemically or electrically stim-
ulated and their responses are measured. During SWS there is a decreased amount
of information transfer from the outside world, but the cortico-cortico and cortico-
thalamic messages are still preserv&tie(iade and McCarley005 Pg. 10). In

REM sleep the EEG is in an activated state, where the neurons in the cortical net-
work are brought closer to the threshold where they can respond quickly to mes-
sages from the outside world. The paradox of REM sleep is that although the cortex
Is in this activated state, the motoric arousal threshold is much greater than it is for
SWS Steriade and McCarlep005 Pg. 19).

Recently, research into the sleeping states have used models of the brain to de-
scribe the waveforms observed in the EEG. THéedent approaches of modelling
can be classified into two groups. One is tiairal networkwhere the individual
neurons and their connections are modelled. This approach has been udéld by
and Tononi2005 andBavhenowet al. (2002. The other type of models, first used
by Nunez (1974 and byFreeman(1992, are continuum, omean-fieldmodels,
where populations of tens of thousands of neurons are grouped together and aver-
ages are computed. Taking averages of this many neurons may seem like a huge ap-
proximation, but the EEG itself is an average of the voltages of the neurons directly
beneath the electrode. Other contributors to mean-field models indluidét and
Liley (1996, Robinsoret al. (1997, Liley et al. (1999 andRennieet al. (2000.

Steyn-Roset al. (1999 2001ab) have taken the mean-field model of the cortex
by Liley et al. (1999, a system of coupled flerential equations describing the aver-
age voltages of the neurons, and adapted it to modeffeete of anaesthetic agents
such as propofol. They solved their system of equations as a function of anaesthetic
concentration and found that for low levels and high levels of anaesthetic, there was
only one solution, but at intermediate concentrations, there were three solutions.
Solutions of this form lead to phase transitions, which are commonly seen in ther-
modynamics. A stability analysis revealed that where three solutions existed, only
two of them were stable. The model showed that if the concentration of the anaes-
thetic was increased enough, the cortex would make a discontinuous jump from
the conscious state to the unconscious state. Once the cortex was anaesthetised, the
cortex would not make the jump back to consciousness until the anaesthetic concen-
tration was reduced to a much lower level. The jumps in and out of consciousness
seen in the&steyn-Roset al. (1999 2001ab) model are first-order phase transitions,
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analogous to ice melting into water.

More recently, Moira and Alistair Steyn-Ross have become interested in natural
sleep, and whether the change from SWS to REM may also be a phase transition. In
their paperSteyn-Ros®t al. (2005 design a new model to account for the neuro-
modulator éects that have been observed during sleep using the same philosophy
as their anaesthesia model. The natural sleep model does indeed predict the exis-
tence of a phase transition between SWS and REM.

Dement claimed that SWS and REM were as far apart as night and day. In this
thesis, | look for phase transitions between SWS and REM and try to see if they are
as far apart as ice and water.

1.1 Thesis Overview

The Steyn-Rosegt al. (2005 model for natural sleep makes a number of predictions
describing how the characteristics of the EEG fluctuations will change as the cortex
undergoes the SWS to REM phase transition. The primary aim of my research
was to analyse real EEG obtained from both human sleep subjects and laboratory
rats, and attempt to find evidence of the cortical phase transitions. At the SWS
to REM transition, the model predicts sharp discontinuous changes in statistical
values calculated from the EEG fluctuations. The same statistics are calculated on
real EEG and the SWS to REM transitions are identified and compared with phase
transitions. The model also predicts that there will be a quick upwards jump in the
DC voltage level of the EEG at the phase transition. To test for this, EEG of the
rats had been recorded down to zero frequency. A new algorithm was developed for
detecting these DC-shifts.

1.2 Thesis Structure

In Chapter2 | present the relevant theory necessary for describingthgn-Ross

et al. (2005 model. This includes: elementary neurophysiology, ltiiey et al.
(1999 equations on which the Steyn-Ross model is based, stability analysis, a pre-
vious anaesthesia model and its predictid®ieyn-Ros&t al., 2001ab), and finally

the natural sleep model and its predictions.

Chapter3 contains a summary of common practices involved with sleep stud-
ies, particularly recording EEG and other bio-signals and categorising sleep into its
stages. | also give details specific to my EEG data, such as how, where and from
whom the recordings were obtained. The chapter is concluded with a small section
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describing the filters that were used in pre-processing the EEG.

Chapter describes the time-series statistics that were calculated for the analysis
of the EEG data. The analytical equations given are not my own work, but | did
write the functions that were used to implement them myself. The four time-series
statistics are: total power, frequency band power fractions, correlation time and
spectral entropy. During the process of writing the functions | devised a method
of overlapping the time epochs vertfieiently. This is explained at the end of the
chapter along with results of a quick experiment measuring its computation time.

In Chapters the measures taken for detecting and removing artefacts from the
signal are described. The figures showing the results of the time-series analysis of
the human EEG are then presented and the SWS to REM transitions are described.
The chapter also gives a small discussion on how the heart beats of the electro-
cardiogram (ECG) can be found in the EEG, and how these arteffiets the
time-series statistics.

Chapter6 presents the results of the time-series statistics that were calculated
on the fluctuations of the rat EEG. The data is presented as a time-series of the full
recording, and also as averages of small data subsets that have been time-aligned so
the SWS to REM transitions occur simultaneously. The focus of the chapter then
moves on to the detection of DC-shifts. The transitions that do and do not show
DC-shifts at the SWS to REM transition are discussed. Towards the end of the
chapter is a section describing a certain waveform known as the K-complex. | make
an observation and give results indicating the possibility that another phenomenon
could be misclassified as a K-complex.

Chapter7 gives the details of a DC-shift detection algorithm that | have devel-
oped. | give the basic idea behind the algorithm and the results it produces in its
current form. | conclude the chapter by listing the limitations of the algorithm and
giving suggestions on how it could be improved.

Chapter8 is a summary of the conclusions made from the research presented in
this thesis. It also contains things that did not work so well and that | would change
if more time were available. It then concludes with future research topics to provide
answers to questions that have arisen during work on the current topic.

1.3 Original Work

For the sake of completeness, this thesis briefly presents work that is not my own.
However, the majority of this thesis is my own original work. Specifically, my
original contributions are:
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e All the necessary code that has been used to assist with data display and
analysis with the exception of a few toolboxes (a summary of the time-series
signal processing functions and other utility codes that have been written is
given in AppendixA).

¢ All figures presented in this thesis, unless otherwise stated. Most of the re-
printed figures are found in Chapt2r

e The overlapping algorithm that is implemented in the time-series statistics
functions (Chapted).

o Artefact detection and removal from the EEG time-series (Ch&)ter
e The calculation and analysis of the time-series statistics (Chaptard6).

e The final alignment of the time-aligned transitions (ChagderLogan Voss
extracted the data subsets containing the SWS to REM transitions from the
full time-series.

e Analysis of the rat DC data (Chapté.

e The observation of the similarities between low-pass filtered DC-shifts and
K-complexes (Chaptes).

e The development of the DC-shift detection algorithm, with initial inspiration
from Jamie Sleigh and Alistair Steyn-Ross (Chagder






Chapter 2
Cortical Modelling Theory

This chapter summarises the theory that has been adopted and developed in the
Steyn-Ross model of the cortex. The equations and concepts described here are
explained in greater detail in previous papeséefyn-Rosst al, 1999 20013b,

2003 2004 2005 Liley et al., 1999 Wilson et al., 2005 and thesesSteyn-Ross

2002 Whiting, 2003.

2.1 Basic Neurophysiology

The human brain consists of manyffdrent parts such as the cerebellum, brain
stem, thalamus and cerebrum. The largest of these is the cerebrum. Its outer layer
of grey matter, about 2—3 mm thick, is called the cerebral cortex. It is twisted and
folded to compact its large surface area into a small volume. The cerebral cortex
Is responsible for sensing, thinking, learning, emotion, voluntary movements and
consciousnesdNeiten 1992.

2.1.1 Neuronal Operation

The brain cells that make up the cortex are called neurons. A typical neuron is
shown in Fig.2.1 Many neurons connect together, sending and receiving elec-
tronic signals. The main body of the neuron is Hwna Signals leave the soma
through theaxon then at thesynapsesthey jump to thelendritesof other neurons.

A single neuron may have as many as 15,000 synaptic connectaite( 1992).

The dendrites of the neuron collect the synaptic input voltages and bring the sig-
nals back to the soma where they are integrated together. When the voltage of the
soma increases above a threshold, a large voltage spike (action potential) is gener-
ated and it travels down the axon. At the end of the axon, it branches out to many

7
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Axon terminal
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Figure 2.1: A schematic diagram of a neuron. The dendrites of a neuron collect
(1) excitatory or (2) inhibitory voltage pulses that have come from a presynaptic
neuron. The pulses propagate down the dendritic tree and are combined at the cell
body (soma). If the soma voltage is raised above the threshold voltage a large
voltage spike, called an action potential (3a), is released and it travels down the
axon. At each of the nodes of Ranvier (3b, 3c), the action potential is boosted again.
At the end of the axon the action potential propagates down the to the axon terminals
where neurotransmitters are released to stimulate more neurons (4). [image source:
Hammond(2007) ]
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terminals which connect to the dendrites of more neurons via more synapses. At
the synapse, neurotransmitter chemicals are released fropmesgnapticneuron,

and are received by tigostsynapticmeuron. There will be either a positive (excita-
tory) or negative (inhibitory) voltage pulse, which is callegastsynaptic potential
(PSP), in the dendrites after they have received the neurotransmitter. A positive
PSP (EPSP) arises from stimulation from an excitatory neuron, while a negative
PSP (IPSP) comes from an inhibitory neuron. In the cortex, roughly 85% of the
neurons are excitatory and 15% are inhibitdByditenberg and Sch{i2991).

2.1.2 \Voltages of Neurons

If the potential diference between the intracellular and extracellular fluids of a cor-
tical neuron were measured, one would record a voltage of approximidtety
—70 mV. This is the resting potential of the neuron. The voltadgedince is due
to the fact that the intracellular and extracellular fluids havéedgnt ionic con-
centrations. Inside the cell there is an abundance ofwile outside the cell the
concentrations of Naand Ct are high.
The Nernst potentidly is the voltage across the membrane due to tiferdince

in concentrations of ion X. It is defined as:

RT [X],

W= V-V, = —=In 22,
X ZF [X];

(2.1)

whereR = 8.314 J K mol! is the ideal gas constarf, is the temperature;, is

the ion charge (i.e., Nahas a charge of 1), anfl = 9.648 x 10* C mol is the
Faraday constant. The square brackets [X] mean the concentration of X, and the
subscripts ando denote inside and outside the cell respectively. Tadldists the
concentrations and Nernst potentials for the common ions.

Table 2.1: lon concentrations (in mmol/L) and Nernst potentials (mV) for a resting
human neuron. The Nernst potentials were calculated usingZEl). With T =
37°C, which givesRT/ F = 26.7 mV. [Values fromSteyn-R0s$2002)]

Concentration
lon Inside Outside Nernst Potential
Na* 10 140 +70
K+ 140 4 -95
Cl- 4 103 —-87

The diferences in concentrations of the ions are needed to form action poten-
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tials. When the potential ffierence across the soma membrane (soma voltage) ex-
ceeds a certain threshold, the sodium ion channels opemntush into the neuron to
balance out the concentrations, consequently raising the soma voltage. At the peak
of the action potential, the potassium ion channels open and allowo kescape,
which lowers the soma voltage again. The concentration gradients are maintained
by ion pumpswhich bring two Kt ions into the cell and expel three Nans. The
Nernst potential is also called theversalpotential because the direction of ion
flow will reverse if the soma voltage is greater than the Nernst potential.

The Goldman—Hodgkin—Katz formula has a similar form as BEql)( but it
combines the concentrations of the ions [X] and their permeabilgie®gether.
RT Pc[K], + Pna[Na], + Pci[Cl];

Vo= ? In Px[K]; + Pna[Na]; + Pgi[Cl], (22)

The exact values of the permeabilities need not be known, just their ratios. The
permeabilitiesP : Pya : Pcy With respect taP¢ are 1: 0.05 : 0.25. At a temperature
of 37°C, V = —=70.2 mV, which is the resting potential.

2.2 The Macrocolumn and the EEG

Because the cortex contains billions of neurons-ahd* synapses, modelling each
connection would be impossible. Rather than attempting this unfeasible task, the
Steyn-Ross model opts for the mean-field approach where neurons occupying the
same volume are grouped together to give averages. The Steyn-Ross model is an
adaption of the Liley modell(ley et al, 1999. The basic building block of both
models is thanacrocolumnThe macrocolumn is a cylindrical volume0.3—1 mm

in diameter and as deep as the cortical tissge3 mm. A schematic diagram is
shown in Fig.2.2

The voltages of the excitatory and inhibitory neurons are averaged and labelled
asV, andV; respectively. When an action potential is fired down the axon, a dipole is
created. As seenin Fig.2 the excitatory neurons are aligned so that their dendrites
and axons are roughly perpendicular to the scalp, so the dipoles sum together. The
inhibitory neurons are randomly orientated so their dipoles approximately cancel.
Therefore, the EEG measured from the scalp can be broadly considered to arise
from the average behaviour of the excitatory neurons over a small area immediately
below the electrode.
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~2—3mm

Key: Connectivity type \ |
1. Short-range (intracortical) e —e @ .
2. " " e i el \
3. i-e Pik L i
4. i oi ong-range input Long-range output
5. Long-range (cortico-cortical) e —e (cortico-cortical (cortico-cortical
6. " " e i Exogenous input afferent) efferent)
7. Exogenous (subcortical) e —e (subcortical afferent)
8. " " e i

Figure 2.2: The macrocolumn is a cylindrical volume of the cortex containing
~100,000 neurons (only four are showr)85% are (pyramidal) excitatory neurons
which are actually triangular in shape and line up with their axons pointing away
from the scalp. The other15% are (stellate or basket) inhibitory neurons which
have a more circular shape and are aligned arbitrarily. Outputs connections from an
excitatory neurond—e, e—i) can be short-range, long-range and subcortical, but
inhibitory neuron output connections<e, i—i) can only be short-range.

[image sourceSteyn-Ros$2002)]
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2.3 Cortico-Dynamic Equations

The original equations describing the dynamics of the macrocolumn used in the
Steyn-Ros®t al. (1999 model, were the same as were used gy et al. (1999.

Since then there have been some small modifications. This section follows the
theory presented in one of their more recent pap@tsyn-Rost al., 2005.

The model consists of a set of eightfdrential equations, in two-dimensional
space and time. In these equations, the subscripisd i denote excitatory and
inhibitory neurons. In some of the terms, there are two subscripts (e.@.)in
The first subscript is the type of the presynaptic neuron, while the second is the
postsynaptic neuron.

2.3.1 Integral Equations

The first two of the eight equations describe how the average voltages of the ex-
citatory and inhibitory macrocolumri, andV;, react in time to dendritic inputs.
Before stating them in élierential form, it helps to understand them by first writing
them as integrals. Here, all the excitatory and inhibitory PSPs are convolved with
the soma impulse response functibmand then integrated together to give the soma
voltage. The two equations are identical apart from the subseriptsli of the
postsynaptic neuron, so only one equation has been writtek ead take the value
eori.

t
Vi = V&'+ J Li(t = 1) [pe werc (1) @i (1) + pr s () @ (1) | dr' - (2.3)
The impulse responsk; is defined as:
1
— expl-t/7]. t>0 soma response (2.4)
Tk

wherer; is time constant of the decay curve.
The termsp; y;x ©; (Wherej, k € {e,i}), in Eq. 2.3), are input perturbations
from other neurons. The produgt®.,,(z) is the excitatory voltage input to a type
k neuron. The strength of the synapse is modelled,byhich has units m\é and
@ is the input spike rate flux, with the units spikes. They;, are dimensionless
and they weight theféectiveness of the inpyt; ®;,. The equation governing this
weighting is:
erev -V

yrev _ Vrest' (2'5)
J k

Yik =
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To explain the weighting of the inputs, consider this example of an excitatory
neuron giving input, ®..(¢) to another excitatory neuron. If the potential of the
postsynaptic neurok, is at its resting potential/s! we have {®'— e /(e —
V'es) = 1 and the full voltage input is received. In another scenarid, ivere
already almost as high &5®", the numerator o, () would be close to zero, and
V. would increase by only a small fraction of the input. Thg weights constraify,
andV; to lie between the reversal potentiat§s¥ andV;"®". Figure2.3shows how the
weightsy., (r) andy;, () change with varying soma voltad® using the parameters
in the current model. (A full list of typical parameters is given in tabl2) The
soma potential of the postsynaptic neuromisreasedwith excitatory inputs, and
decreaseaith inhibitory inputs.

1
-80 -70 -60 -50 -40 -30 -20 -10 0 10

Soma Voltage,V, (mV)

Figure 2.3: The value aof;, weights the &ectiveness of the voltage inpyis® ;.
on the postsynaptic neuron. In the current mod&ikyn-Rosst al, 2005, the
value ofV/est= V'*'~ —64 mV, V/® = 0 mV andV;"®" = —70 mV. [image source:
Steyn-Rose®t al. (2009)]

The total input spike rate flu is an integration of all locald: within the same
macrocolumn), distantaf from other macrocolumns) and subcortical (sc: from

structures such as the thalamus and brainstem) voltage spikes. These are convolved

with the dendrite impulse response curile The total input spike rate is given
by the per-synapse spike rapg,, ¢, multiplied by the number o¢ — k,i —» k
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Table 2.2: Typical model constants for the neural macrocolumn. Subscriptkdabel
means destination cell can be either of typgexcitatory) ori (inhibitory). Note
that there is considerable uncertainty in many of these values.

Symbol Description Value Unit
Tei membrane time constant 0.050, 0.050 S
V2 cell reversal potential 670 mV
y/*" cell resting potential —64,-64 mV
pei  Synaptic gain (1.005-1.05)x102 mV-s

N, .. long-rangee—k synaptic connections 3710, 3710 —
N,,., locale—k synaptic connections 410, 410 —
N,.ﬂe,,.,. locali—k synaptic connections 800, 800 -
N; ., subcorticak—k synaptic connections 50, 50 -
N;*;  subcortical—k synaptic connections 50, 50 -
\ axonal conduction speed 9 ms
Aeeei  axonal inverse-length scale 40, 40 “m
Yee.ci rate constant foe—k synaptic input 70,70 )
Vie.ii rate constant foi—k synaptic input 58.6, 58.6 -8
07 maximum firing rate for sigmoid 30, 60 -5
0., inflexion-point voltage for sigmoid —-585,-585 mV
Coi sigmoid width 4,6 mV

connectionsV,, Nji.

q>ek(t)=J Hu(t—1) [ NS @b () + ¢5() + N& ¢ (f) | df (2.6)
% — ) Y~ —

local subcortical distant

Puc(1) = j Hult =) [N” 6l.(¢) + 65(0) | 2.7)

Thegbfk andqbfk are the spike rates from other neurons within the macrocolgjn,

and g are spike rates from subcortical structures, gfidis the spike rate from
neurons in other macrocolumns. Notice that there isvijap, in Eq. 2.7). This is
because inhibitory neurons do not have long-range output connections (i.e., to other
macrocolumns). Th¢;’k andqbfk are dependent on the the soma voltagesndV;.

They are explained in the next section.

The H;, term is the dendrite impulse response curve. It models how the ion
channels open and let the excitatory or inhibitory voltage pulses enter thégell.
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is defined as:

Hy(t) =t yjzk expl-1 vl t>0 dendrite response (2.8)

The soma impulse response functidnand the dendrite impulse response func-
tion, H, are both zero when< 0. The functions are also normalised so that their
area is exactly 1. They are plotted in F§4. Notice thatH decays much faster
than L. This becomes important in the “slow membrane” approximation made in

the Steyn-Roset al. (2005 model.

(a) Soma Response Function

T T T T T
20 q
= 45t :
2
___10f 1
I st 1
0 _‘ ............ A pe ‘ ............ AR pe ‘ ............ e T = |
0 20 40 60 80 100 120 140 160 180 200
5 (b) Dendrite Response Function
T T T T T T T T T T

60 80 100 120 140 160 180 200
Time since impulse (ms)

Figure 2.4: The impulse response of the soma and dendrites. The potential of the
dendrite response equalises much faster than the soma after an input spike. [image

source:Steyn-Roset al. (2005]

2.3.2 Converting the Integrals to Derivatives.

As integrals the equations are easier to understand, but theyfacaltlto use in
analysis. With the use of the calculus theorem fdfedentiation of integrals with
variable limits (see page 83 8piegel(1963), Eq. 2.3) is converted in to a pair of
first-order diferential equations (one each foe e, i).

dv.
dt

Te = Verest_ Ve + pe Wee(t) q)ee(t) + pi Wie(t) q)ie(t) (2-9)
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dv;
T = VI = Vi + pe wei (1) @i (1) + pi wia (1) @i (1) (2.10)
If one ignores alp’s, w's and®’s from Eq. €.9), it should be recognisable as
an exponential decay &, from some initial level to its equilibrium positiok{®s,
with z, as the time constant. The situation is exactly the same for the inhibitory
neuron in Eq. 2.10).

By using the same calculus theorem agaivice Egs. .6, 2.7) are converted
into four second-order tferential equations. The first pair of equations describes
the excitatory postsynaptic neurons,

d 2
(L4) @ = Vot + NoQO+IRO] A 21D

J 2
<E + 7ie> o, = [Niﬂe Q:(1) + ¢5()] v (2.12)

and the second pair describes the inhibitory neurons,

2
<% + 7ii> D; = [N,/j Oi(1) + d’lszc(t)] Vizi (2.13)

d 2
(S4m) o0 = NGO+ VOO +050] 2 (219

In these last four equations, new variab{es have appeared and replaaﬁfq.
These were the internal macrocolumn spike rates, which are assumed to be equal
to the mean rate of spiking of the macrocolumn. The new vari@dkean average
spike rate that is determined by the average soma voltage; the higher the soma
voltage, the higher the firing rate. All the neurons have a threshold soma voltage that
must be exceeded before they will fire an action potential. Among the population of
neurons, the thresholds are assumed to have a Gaussian distribution with,mean
and standard deviatios, ;. Q. ; is then the cumulative sum of the distribution and
Is described by a sigmoid function.

Qmax
e,i
1+ exp [—n m,,-(r)—ee,,-)]

Qe,i = (2 . 15)

\@o’e,,‘

The last two of the set of eight ftlerential equations describe the long-range
excitatory inputs from distant macrocolumns. They are modelled as damped waves
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Firing Rate vs Soma Voltage Sigmoid

max

e,i
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Figure 2.5: The sigmoid functions that give the firing ra@sand Q; plotted

against the soma voltage. The firing rag&s have been normalised by their maxi-
mums firing ratesQ™ = 30 s’t, 0" = 60 s1.

that are generated by other sour¢e$r, r), propagating along the 2-D cortex.

2
[(%JFVAee) —VIVE @7 1) = (VAw)® Qe(F.1) (2.16)

2
[(% +VA”> —V?V2| @GR 1) = (vA)? Q.7 1) (2.17)

The v in the above equations is the average speed that an action potential trav-
els down the axon. The other new parameteyr is the inverse-length scale for
long-range connections. It governs the average distance that action potentials travel
(analogous to the time-constants for the decays of the impulse responses earlier).
Equations 2.9-2.17) make up the (slightly modified)iley et al. (1999 model
as used bysteyn-Rose®t al. (2005.
To keep their model of the cortex consistent with the real coB8tyn-Ross

et al. (2005 feed the system with white noigg (¢) through the subcortical terms
@5 seenin Egs.4.11-2.14).

5 (1) = 5507 + 1/ 5, O™ - En(1). (2.18)

Herem can take the values = 1 forj =e,k =e,m=2forj =i,k =e,m =3



18 Cortical Modelling Theory

forj=e k=iandm = 4 forj =i,k = i. Each, is completely independent of
all the others, and they all have a mean of z€(r)) = 0. The other parameters
s;x are just scalers to allow variability to the level of the noise.

2.3.3 Approximations and Stability of the Steady States

The Steyn-Rosst al. (2005 model makes an approximation that was made in
previous work Steyn-Roset al, 2001ab, 2003 2004, namely, the “slow neuron”
adiabatic limit. The assumption is that the relaxation time of the impulse response
of the dendrites is much quicker than the relaxation time impulse response of the
soma, i.e.ng‘kl < 1. To implement their approximations the temporal derivatives
d/dt in Egs. €.11-2.14 and Eqs. 2.16-2.17) are set to 0. The cortex is also
assumed to be homogeneous, meaning that all macrocolumns are identical so only
one macrocolumn needs to be modelled. fliee this means that the Laplaci&i

in Egs. R.16-2.17) can be set to zero. The Eq2.9-2.17) now reduce to only two
equations:

dv, 1
dt = - {VereSt_ Ve(t) + peWee(t) [(Nge + Neﬂe)Qe + SeeQLnaX]
Te
+owe(0) | NLQi+ 50| +T.(0) | (2.19)
dv; 1
S = 20 + s [(NE+ NDO. + 5,077
Ti

+piwii(t) [N,'lei + SiiQ;naX] + Fi(t)} (2.20)
The white-noise (stochastic) terms are writtei"'as

Fe(t) = pel//ee(t) \Y% SeeQLnaX : 51(1‘) + pil//ie(t) SieQ,r‘naX - 52(1) (221)
Li(1) = pewei(t) VsaOe - E3(1) + piwii(t) A/ 550 - Ea(t) (2.22)

Another member of the cortical modelling group at Waikato, Marcus Wilson,
has run numerical simulations on a two-dimensional grid of macrocolumns without
using the adiabatic approximation. His results on the dynamics of the system are
reported inWilson et al. (2005.

By also setting to zero the white noise terins, the steady states df, and
V; can be found — i.e., solutions wheFg,(7, ) is constant in space and time. In
most cases there is only one solution, but for a particular parameter set more than
solution may exist. The region in the parameter space where solutions cease to
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exist is usually of most interest. If there are multiple solutions the the stability of
the steady states must be checked. Some states can be stable and others can be
unstable.

A stable steady state is analogous to a ball sitting in the valley of two hills (two
dimensions, height and width). If the ball is pushed part way up the hill, it will roll
back down. It may oscillate back and fourth, but it will eventually settle back to its
equilibrium position. An unstable state, conversely, is analogous to a ball sitting on
the top of a hill. The ball is not moving, so the top of the hill is steady. It is not
stable though, because if the ball is slightly pushed one way or another, it will roll
down and not return to the top.

To analyse the stability of the steady states and to consider the size of fluc-
tuations about these stat8seyn-Rosg2002 first wrote the equations for soma
voltages as the sum of deterministic and stochastic parts:

dv.

o = htl0/z (2.23)
% = F+T10)/x (2.24)

where Fy , are all the terms on the right hand side of E2.10 2.20) exceptl'y ».
The stability is determined by perturbing the soma voltEgaway from its steady
stateV? by a small amoungV;.

~
I

V0 + 6V, (2.25)
Vi = V246V (2.26)

The linear approximations to the deterministic part of EQs2§ 2.24) are com-
bined in the matrix equation,

oV, oV,
4 = A (2.27)
dt | sV; 5V,
whereA is the 2x 2 Jacobian matrixA needs to be computed at every steady state
position (72, V).

oF, O0F;
A A 74

A= |7 7 Ve IV (2.28)
Az A 0F; O0F,

ov, dV;
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The eigenvalues, , of A are then calculated via the formula

T ++\T?-4D

> (2.29)

A2 =

whereT is the trace and the determinant oA. The solutions of the ffierential
equations2.19 2.20 are then written:

6V, = a;e™ +aye™ (2.30)
8Vi = byie™ 4+ bye™ (2.31)

Herea,, andb,, are constants that depend on the initial conditions. Both eigen-
values must be negative for the steady state to be stable. If one of the eigenvalues
is not negative, the fluctuations will grow exponentially. The eigenvalues can be
complex, which will lead to oscillatory components, but their real part must still be
negative.

2.4 Expanding from Anaesthesia to Natural Sleep

2.4.1 The Anaesthesia Model

In earlier work Steyn-Ros®t al, 1999 2001ab, 2003 2004 the model was used
to predict changes in the cortex when it was under ffeceof an anaesthetic such
as propofol. It was easier to model anaesthesia than natural sleep, because there is
only one major control variable: the concentration of the anaesthetic drug.

The drug propofol works by enhancing the inhibitoffeet of the neurotrans-
mitter GABA (gamma-amino butyric acid) by holding the chloride ion channel open
longer and allowing more Clto enter the postsynaptic neuron. This causes the
soma voltage to be lowered further from its firing threshold. To incorporate the ef-
fect of the anaesthetic into their model, the parameterndy;; were divided by a
dimensionless factot.

Vi = %k (2.32)

In Fig. 2.6 the thick curve in (a) marks the steady states of EQ9-2.17)
as a function of anaesthetidfect 1. There are three branches of the “S-bend”
corresponding to three solutions for a particular range.of he upper and lower
branches are stable, but the middle branch is unstable. As the concentration of
anaesthetic concentration increases and the average soma voltage decreases along
the steady state curve, the amplitudes of its fluctuations get larger. When the corner
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of the “S-bend” is reached (marked)Athe soma voltage must suddenly drop from
the upper branch to the lower branch. Following this, the fluctuation amplitude
dramatically decreases. This behaviour for the fluctuations is a hallmark of a first-
order phase transition.

(a) hg Time-series (b) Fluctuations Time-series

-10 0.12

20 | l ] 0.1}

0.08}

-30 |
0.06}
-40 |
0.04}

=0y 0.02}

-60

he Soma Voltage (mV)
he Fluctuations (mV)

70t 0.02 f

80| -0.04 |

-0.06 |

-90

: : : : -0.08 : : : :
0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5
Anaesthetic Effect, A Anaesthetic Effect, A

Figure 2.6: An EEG time-series simulation of an anaesthetised cortex from an
earlier model $teyn-Ros®t al, 20013. In their older notatiork, was the symbol
assigned to the excitatory soma voltage (ng\w The change from one branch to
another makes this a first-order phase transition similar to those commonly seen in
thermodynamics. In (a) the amplitude of the fluctuations was scaled up by 300 to
make them visible; they are at their true size in (b). [image souBteyn-Ross

et al. (20019]

The large increase in soma voltage fluctuations as a patient approaches anaes-
thesia is well known by anaesthetists and is referred to as a biphasic response. This
experimental behaviour is consistent with the predictions of the model.

2.4.2 Modelling Natural Sleep

A figure in a paper bypestexheet al. (1999 (reprinted here in Fig2.7) is remi-
niscent of the results of the anaesthetic modelling. This prompted the question as
to whether phase transitions also occur in natural sleep — specifically the transition
from SWS to REM sleep.

Sleep becomes more complex to model than anaesthesia because there are many
neuromodulators that are involved in the sleep cycle. To try to keep the model as
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Figure 2.7: The EEG, fractional band power, and space constant of a sleeping cat
studied byDestexheet al. (1999. The sharp drop in the EEG fluctuations is similar
to what was observed in Fig.6



2.4 Expanding from Anaesthesia to Natural Sleep 23

simple as possibl8&teyn-Ros&t al. (2005 model the éect of only two neuromod-
ulators:adenosinendacetylcholine

Adenosine seems to control tiredness, or fatigue. Its concentration steadily in-
creases while one is awake, and then decreases again during Bkspa(and
Scammell2004). Adenosine works by increasing‘eak current. This lowers the
resting voltagd’*s'and makes the cells less likely to filddsselmp1995.

The second neuromodulator, acetylcholine (ACh), has a high concentration dur-
ing REM sleep, but during non-REM sleep, the concentration drops to almost zero
(Espda and Scammel2004). There are two majorfects of ACh. The first is op-
posite to that of adenosine. ACh reduces thdéak current, which raisgg**'and
makes the cells more likely to fire. The secofiiet of ACh is somewhat contrary
to the first. While it increaseB®*! it also reduces the amplitude of the excitatory
PSP Hasselmp1995. This corresponds to a decrease in the excitatory gain

The two neuromodulatorfects are included into theférential equations by
changing the parametebg®standp, from Egs @.9) and .10):

Vrest N Vrest+ AVl’ESt (233)
Pe — /1ACh Pe (234)

whereiach is a dimensionless scalar to model the concentration of AChAAfE

Is an additive constant. A high ACh concentration corresponds to a low value of
Anch. Steyn-Roset al. (2005 have chosen to not include the\V,*!into they
weights of Eq. 2.5) to avoid unnecessary complexity. The soma voltage equations
now become:

dv, 1
dt = T_ {I/erest+ AVJESt— I/e(t) + lAChpeWee(t) [(Nge + Nfe)Qe + SeeQrenaX]
o) | NLQ:+ 50| +T(0) | (2.35)
av; 1
T = {0 + dnenpevan) [(NG + N+ 5407
+piwi (1) [leQi + SiiQ,maX] + Fi(f)} (2.36)

The steady states of EqR.85 and @.36) were found on the domain defined
by the new parametersV,*s'and Aach. The steady states fdf, in the model also
contains an “S-bend”, but now there is a 3-D manifold (shown in Eif). The
amount of overlap in the three steady states reducesVa® rises until there is
only one steady state.
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Figure 2.8: The steady stateslif of the macrocolumn for th&teyn-Ros®t al.

(2005 model of natural sleep are plotted as a functiod&f®'and Aach. For most

of the surface there is only one steady state, but on the left side of the graph, inside
the greerm> shape, the upper and lower surfaces overlap and three steady states
exist. The thick black line traces out an elliptical tour. This will be explained later

in section2.4.3 [image sourceSteyn-Roset al. (2005]

2.4.3 Predictions of the Steyn-Ross Model

TheSteyn-Roset al. (2005 model makes predictions of how the EEG will change
as a sleeper progresses through his sleep cycle. The ellipse drawn on to the manifold
of steady states marks out a hypothetical sleep cycle oAKJ&" ixch domain. A
bird’s-eye view of the manifold is shown in Fig.9. The starting position, marked
as (), is on the lower branch on what is presumed to be SWS. The trajectory of
the ellipse takes it towards the edge of the cusp (marked by the green curve). From
here there is nowhere else to go except to the upper branch which is assumed to be
REM sleep. This jump, occurring at the position markey {s a first-order phase
transition. The ellipse trajectory continues around the manifold where only one
steady state exists. It eventually passes under the upper branch again and returns to
the start. This cycle was chosen to agree with the evidence that the SWS to REM
transition is a sudden change, but the transition back from REM to SWS is not (see
chapterb).

Steyn-Roset al. (2005 also calculated the theoretical changes in statistics that
can be measured from real EEG. Fig@r&0shows the predicted changes in EEG
time-series statistics for one complete sleep cycle that follows the elliptical tour.



2.4 Expanding from Anaesthesia to Natural Sleep 25

2.2

REM

Synaptic efficiency, KACh

08 _

06 -

0.4 | | | | |
-6 -4 -2 0 2 4 6

AVe rest (V)

Figure 2.9: A bird’s-eye view of the sleep manifold from F&8. The elliptical
tour starts at-{) and undergoes a first-order phase transition as it passes from SWS
to REM sleep atq). [image sourceSteyn-Ros®t al. (2009)]

The model predicts that there will be a large surge in both the total power and cor-
relation time of the fluctuations of the EEG at the SWS to REM transition (These
guantities are discussed in more detail in chagjerThis is followed by a sharp
drop to a lower level. The power fractions show how the energy is spectrally dis-
tributed. Before the transition more than 50% of the energy will be contained below
4 Hz, with all power concentrated at zero frequency the instant before transition. Af-
ter REM begins, there is much more energy located in the higher frequency band.
The changes predicted by the model are qualitatively consistent with experimental
results presented yestexheet al. (1999 for their sleeping cat (Fig2.7).

The results of the time-series statistics computed for real EEG are presented in
chapter5 for human sleep patients, and also chagtfar laboratory rats.

In a three second, numerical simulati@teyn-Ros®t al. (2005 showed how
V, changes as the macrocolumn makes the SWS to REM transition. 112 .El.
the macrocolumn starts on the bottom branch of Zi§very close to the cusp and
the white noise causéds to fluctuate about’,®®" ~ —64.4 mV. At about 2 s into
the simulationl, becomes greater than the unstable middle branch and rises up to
Veo'TOp ~ —539 mV on the top branch. Here the amplitude of the fluctuations has

greatly diminished and only the high-frequency activity remains.
When the macrocolumn transitions from SWS to REM, the average excitatory
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Figure 2.10: Time-series statistics that were predicted by taking the elliptical tour
of the sleep cycle shown in Fig8.8and2.9. These statistics are calculated on real
EEG in chapter$ and6. [image sourceSteyn-Ros&t al. (2005]

soma voltagd/, increases byw10.5 mV. This change in the DC voltage should

be possible to detect if one can accurately record EEG down to zero frequency.
The EEG of laboratory rats were recorded using a DC-coupled amplifier so that the
predicted DC-shift could be observed. The results of the DC EEG are presented
with the other rat results in chaptér
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Figure 2.11: A numerical simulation of the nonlineafféeiential equations2(19

2.20) describing a macrocolumn as it transitions from SWS to REM. The starting
position was an ellipse angle 6f = 34° (with thed, = 0° andéd, ~ 3508 in
Fig.2.9). (a) Atr ~ 2 s the fluctuations become large enough to cross the unstable
mid branch and the macrocolumn jumps up to the higher voltage level. (b) The
fluctuationssV, as what might be seen in an AC-coupled chart recorder. Before
transition: 5V, = V, — V2B, After transition: sV, = V.'° — V,. [image source:

Steyn-Rose®t al. (2009)]






Chapter 3
EEG Recording and Filtering

In this chapter the details of recording the raw EEG for a sleep study are described.
The EEG electrode positions and the positions of electrodes for measuring other
useful bio-potentials are given. The raw recordings contained 50 Hz interference
from the mains power supply. The filter that was designed to remove the interfer-
ence is also explained.

3.1 The Raw Sleep Recordings

3.1.1 Electrode Configuration

When recording the EEG from the scalp of a human subject, there is a standard set
of positions for placing the electrodes. It is called the International 10-20 System
of Electrode Placements. The 10-20 system labels certain areas of the human scalp
with a letter that corresponds to the cortical lobe that is located in that area.3Table

is the list of cortical lobes from which EEG signals are recorded.

3.1.2 Sleep Stages

For sleep studie®echtschiien and Kal€1968 recommend that the recorded EEG
should be the dierence of the EEG signals from the central lobe and the mastoid
on the opposite side (e.g., EE& C3—A, and EEG = C4—A,). The EEG record is
usually displayed in time epochs of about 30 seconds. By observing the character-
istics of the EEG signal (looking for certain amplitude and frequency waveforms)
the stage of sleep can be scored. Some important EEG waveforms that are used as
sleep staging markers are:

alpha waves 8-12 Hz oscillations usually seen when one is relaxing with their eyes

29
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Table 3.1: The meanings of the labels used in the International 10-20 System of
Electrode Placement. Odd numbers are on the left hemisphere while even numbers
are on the right. A subscript “Z” indicates the line down the middle of the head,
between the two hemispheres of the cortex.

Label Cerebral Cortex Lobe

Front polar lobe
Frontal lobe
Central lobe
Temporal lobe
Parietal lobe
Occipital lobe
Ear (mastoid)

>0 UT-HO T

Inion 10%

Figure 3.1: The electrode positions used for recording EEG as specified
by the International 10-20 System of Electrode Placement. [image source:
http://butler.cc.tut.fitmalmivuo/bem/bembook/13/13.hfm
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closed, but still awake.

spindles Coherent bursts of 12—15 Hz oscillations that rise and fall in less than one
second. Commonly seen in stage 2. They are simultaneously detected over
the cortex, and are believed to come from the thalamus.

K-complex A quick spike that over shoots on its recovery then settles back to nor-
mal EEG rhythms. The whole waveform lasts about 0.5 s. Most common
to stage 2, and have been found to be evoked if the sleeper hears a startling
noise.

delta waves large amplitude 1-4 Hz oscillations. Stage 3 and 4 are defined by the
amount of delta waves.

The EEG is of primary importance, but the sleep stages carffib@itito discern
with the EEG alone. Voltage signals are also recorded from other locations to assist
with the sleep staging.

The very title of REM sleep gives away one of the staging signals. The eyes
of the sleeper can move very fast during REM sleep, making the electro-oculogram
(EOG) a good distinctive feature. REMs are much faster than normal movements,
but they are not unnatural movements where, for example, one eye looks up while
the other looks down. The eyeball has an electric dipole with the positive end at
the cornea; the electrodes measure the change in electric field due to the moving
dipole. Usually the EOG is recorded for both eyes. If one electrode is positioned
upper-left of the left eye and the other is lower-right of the right eye, the two EOG
channels will change in anti-phase with normal eye movements (both eyes looking
in the same direction). Eye-blinks can distinguished from REMs because the two
EOG signals change in-phase.

Another useful bio-signal is the muscle tone or electromyogram (EMG). During
REM sleep the muscles become more relaxed so the EMG voltage becomes lower.
It is also helpful for scoring wakefulness and movement. In sleep studies, the EMG
is often recorded from under the chin.

The rules on categorising the stages of sleep as writteRdmhtschéien and
Kale (1968 are summarised below.

wake Not a stage of sleep, but must be recorded when the sleeper is not sleeping.
It can be identified by large EMG indicating movements, or more than 50%
of the epoch contains alpha activity in the EEG.

stage 1 This is a transitionary phase lasting several minutes and containing many
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Figure 3.2: Electrode placements for recording EEG, EMG and EOG during sleep
studies. [image sourc®echtschiien and Kalg1968)]

small arousals. The EEG contains low amplitude theta (4—8 Hz) and possibly
delta, less than 50% alpha, and no spindles or K-complexes.

stage 2 Usually follows stage 1. The EEG contains mostly theta and some delta
(less than 20% of the epoch). Spindles and K-complexes are seen. Scoring
as stage 2 continues until there is good reason to change to another stage.

stage 3 The EEG has more than 20% delta, but less than 50%. The amplitudes are
much larger than what has been seen in previous stages, greater then 75
Spindles and K-complexes are less common. There is no specific EMG level
for stage 3 but it is typically lower than it was for stage 2.

stage 4 The EEG has more than 50% delta with high-amplitude. Stage 3 and
stage 4 are often considered together as the transition is gradual and can the
stage can alternate.

REM The EEG is low-amplitude and high-frequency, resembling wake or stage 1.
Very sharp eye movements begin seen in the EOG and the EMG should be
minimal, but may not be much lower than what was seen in stage 3 or 4.
If a spindle or K-complex is seen during REM, then the epoch should be
reclassified as stage 2.

In the figures below are samples of EEG from the various stages of sleep. Notice
that from stages 1-4 there is an increase of low-frequency, high-amplitude activity.
The sample of REM EEG is also platted with the left and right eye EOG. The very
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sharp movements are also called saccades, and can have a peak angular velocity of
greater than 500s™! (Steriade and McCarle005).
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Figure 3.3: Sample EEG of theftBrent stages of sleep, 1-4 and REM. The EOG
is included with REM to show the quick movements.

3.2 Human Sleep Recordings

The human EEG recordings that are analysed in ch&xtame from patients who
were all diagnosed with sleep apnea, a disorder in which tfersun repeatedly
stops breathing and wakes up during the night. It disturbs people’s sleeping habits
so that they always feel tired and, in extreme cases, they can fall asleep during
everyday activities. The patients whose sleep records were supplied to me were
being treated using Fisher & Paykel Healthcare’s CPAP (continuous positive airway
pressure) respirators. The original purpose of recording the patients’ EEG was to
determine how the CPAP respirators were helping their sleeping patterns. They had
all agreed to the release of their sleep records for research purposes.

The patients’ sleep records were taken at two locations, Fisher & Paykel Health-
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care and Greenlane Hospital. The two locations h&eémtint recording equipment.
Fisher & Paykel Healthcare had a reasonably new plant with up-to-date computer
hardware. The sleep recordings made there used sampling rates of 256 Hz for the
EEG. The EEG from the four scalp locations mentioned in the previous sectpn, C
Ca, A1 and A, were all recorded independently (referenced g nd the EEG
=C3—A,, EEG, = C4,—A; were performed by their analysis software.

At Greenlane, the equipment was much older. In finreto save electronic
storage space, they made the EE{Bd EEG subtractions during the recording,
presumably with a dierential amplifier. The Greenlane data also used lower sam-
pling rates. The EEG was sampled at only 125 Hz. They also had a low clipping
levet which cut some of the higher peaks short.

3.3 The Binary Data Format

The commercial software that was used for acquisition and analysis of the sleep
studies at Fisher & Paykel Healthcare and at Greenlane hospital, were not avail-
able at Waikato, so the data was exported in the European data format (EDF). The
EDF format is a relatively straight forward binary format capable of storing many
channels of data. The channels can even haterdnt sample rates.

The binary data files for the human patients were opened and read ATtoAY
with the use the BOSIG toolbox. It is a set of MTLAB-compatible functions to
aid in analysis of EEG and other bio-signals written by Alois Schléegl.

3.4 Filtering Electrical Interference

3.4.1 Filtering Human EEG

The unfiltered data contained a lot of 50 Hz electrical interference from the mains
power supplies. An elliptical low-pass filter was designed to remove the 50 Hz.
Elliptical filters can provide large attenuations over a very small frequency range
with only a small filter order. The cost of using such a filter is that there is ripple

attenuation in the pass-band. The filter specifications used were:

Lclipping level: the limits of maximum and/or minimum values that can possibly be recorded
2 B10SIG toolbox: http://sourceforge.net/projects/biosig


http://sourceforge.net/projects/biosig
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pass band frequency ctifo  f, = 47 Hz
stop band frequency cufo fs = 49Hz
pass band ripple attenuationa, = 1dB
stop band attenuation: as = 40dB

The minimum filter order was calculated to be 7 by the func&amipord,
which is found on the MTLAB signal processing toolbox. The magnitude and
phase response are plotted in Bgl Both the attenuation and the phase response
of the filter above~50 Hz greatly fluctuate, which is typical for elliptical filters.
This is not a problem, however, because most of the EEG patterns studied (delta,
alpha, spindle etc.) have a frequency less than 50 Hz. The exception is gamma
frequency band which goes up to 60 Hatériade and McCarle®005. To better
observe the ripple attenuation in the magnitude, a zoomed-in graph has also been
plotted.

In Fig. 3.5 the power spectral density (PSD) of the EEG is shown. Before
filtering there is a very strong spike at 50 Hz. In fact, the interference is so large that
the EEG just looks like a pure 50 Hz sine wave. After filtering, the PSD still shows
the 50 Hz spike, but it is low enough that it will not be noticed in the EEG. The
filter specifications required that the stop band attenuation was 40 dB, which can be
observed on the magnitude response in Bid. The PSD of the filtered EEG has
the 50 Hz spike reduced te80 dB. This is because the filter was applied twice via
the functionfiltfilt, which filters the data forward then backward to remove any
phase shifts.
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Magnitude Response of Elliptic Low—pass Filter
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Figure 3.4: The magnitude and phase response for the low-pass filter designed to
remove the 50 Hz mains interference. As seen in the zoomed in plot, there are
minimums in the ripple at19, 40 and 46 Hz where the attenuation reachkesiB
(scaled down by.0.79)
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EEG Spectrum before Filtering
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Figure 3.5: The PSD of an EEG channel before and after low-pass filtering to
remove 50 Hz electrical interference. The spike at 50 Hz has been removed
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3.4.2 Filtering Rat EEG

As the rat EEG was recorded, the mains interference was filtered electronically by
a 50 Hz notch. However, the notch was not strong enough to completely remove
the mains interference. In Fi§.6the PSD of a sample of rat EEG is shown. The
50 Hz peak, is so large that is emerges out of the notch. The harmonics of the 50 Hz
signal, 100, 150 and 200 Hz, are also present in the PSD. An elliptical, low-pass
filter, similar to the human EEG filter, was used to further lower these peaks. The
only difference was that the stop band attenuation was only set to 20 dB, as the
interference peaks were already at a value of ab&®dB

Spectrum of Rat EEG before Filtering
_30 T T T T T T T

PSD (dB)

-80 ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200

Frequency (Hz)

Figure 3.6: The rat EEG was filtered during the recording using a 50 Hz notch
filter. The PSD of Rat EEG shows that the notch was not deep enough to remove
all the 50 Hz. The PSD reveals that the harmonics of 50 Hz are also present in the
EEG.



Chapter 4
Time Series Signal Processing

The number of data points that come from a sleep study can be very large. If the
scalp voltages are sampled at 256 Hz, then for a 6 hour overnight sleep recording,
there are about.5 million data points stored per channel. In order to analyse and
display such large volumes of data, it is necessary to compute statistical averages
that can be compared with cortical modelling predictions. The averaging calcu-
lations described here are designed to split each data channel into time-blocks or
epochs of lengthT", and then to evaluate selected statistics for each epoch. Four
such statistics were used: total power, fractional band power, correlation time and
spectral entropy.

4.1 Total Power

The total power of the EEG, voltage sigité{t), averaged over the epoch peribgd
is defined to be:

(.
Pot = = | V(t)dr. (4.1)
T 0

In discrete form, this equation becomes:
N

Po = 7 D VPAL (4.2)
i=1

Remembering that the epoch lengtiTis= N At, the equation can be rewritten as

1
Por = — Z V2 (4.3)
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Equation 4.3) can be implementedfciently in MATLAB, as the formula can be
applied to an entire data channel aftete@hape command.

| find that the total power is a valuable first analysis tool. It shows how the
squared amplitude of an EEG (or any other) signal changes with time, so it is use-
ful for detecting artefacts, as these often show up as large power spikes that are
generated when the sleeper moves causing the EEG to become corrupted with high-
amplitude EMG.

4.2 Fractional Band Power

In order to get results comparable Bestexheet al. (1999 (Fig. 2.7, Pg.22), |
needed to calculate the amount of power concentratedfiereint frequency bands

and then normalise these against the total power. This was achieved by first taking
the modulus-squared of the Fourier transfo#m,for each time epoch to give the
power spectral density (PSDY{(f):

S(f) = |FIvnl|® (4.4)

Then the fractional band powét in a specified spectral ban] < f < f, is given
by

1 f2

FPand — —[ S(f)df (4.5)

Prot f1
The superscript “band” indicates which frequency bahdf, is being analysed.
e.g., the alpha band would giveé = 8 Hz andf, = 12 Hz. In discrete form,
Eg. 4.5 becomes

1
Fort = o= DS fi<fi<fe (4.6)

The fractional band power is usually calculated twice or more, wiffewtint
values for f; and f>, giving a low frequency band such as 0.1-4 Hz and a high
frequency band, 15-47 Hz. In the analysis, the high band limit of 47 Hz was chosen
because a low-pass filter had been applied to the raw data to remove the 50-Hz mains
power supply interference. The low band limit of 0.1 Hz was chosen to remove very
low frequency artefacts arising from eye-blinks and movement;1§'10 £ fmin and

M = fmax and the other frequency limitg" /5, are equal, then the two traces will

be exact complements, changing in anti-phase with their sums adding to unity.

As we shall see in chaptér the fractional band power is very good at making
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Two signals: a 2-Hz sinewave and 5-Hz pulse
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Figure 4.1: A demonstration of the results of the fractional band power calculation.
T =2s, f, = 400 Hz, window overlap= 80%, f'° = 0-3 Hz andf" = 3-8 Hz

distinctions between SWS and REM sleep. During SWS, most of the energy in a
sleeper's EEG is concentrated below 4 Hz. After the transition into REM sleep,
the PSD of the EEG changes to contain a larger proportion of the total energy in
the high frequencies bands. By calculating both a high and a low frequency power
fraction, the two will change in anti-phase as the sleeper cycles between SWS and
REM sleep.

4.3 Correlation Time

The autocorrelation of a time series can be used to estimate a signal’s temporal
coherence. The autocorrelati@Ghue(z) of a zero-mean signd (¢) is defined as

[ee]

Ciue(7) = J V) V(t+7)dt 4.7)

—0o0
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The variabler is referred to as thkag time (C(r) measures the degree of similarity

betweerV (1) andV (¢ +7), a copy ofl/ (r) which has been delayed (lagged) by time

7). C(r) is always maximum when is zero because the signal is perfectly corre-

lated with a zero-lagged copy of itself. The autocorrelation of a noisy or random

signal drops very quickly and can be approximated by an exponential decay. The

correlation timer. is then defined to be the value ofit which the autocorrelation

has fallen td/, of its zero-lag value:
C(re) 1

co) = ;038 (4.8)

In practice, Eq. 4.7) is not very helpful, as it is impossible to have an infinite
data set. Another problem with this form of the autocorrelation is that in time-
series analysis, we are looking for changes in the signal over time, so calculating
the autocorrelation for the entire signal would be unhelpful, as we would miss all
of changes we are looking for. It is better to take many autocorrelation samples,
each of period T, where T is chosen to be small enough to track the changes in
correlation statistics, but large enough to smooth out the random fluctuations in the
statistic. For these reasondmsed finite autocorrelation is used to estimate the

true autocorrelation: .

C(x) = %L V() V(t +7)dt (4.9)

In a discrete form, Eq.4(9) becomes:

N-1
ViV, Jj=-(N-1).....N-1 (4.10)

i=—N+1

1
C, = N
Herej is not the lag time, it is the lag index, amd is the number of samples in the
epoch,N = f,T. To calculate the lag timg,must be divided by the sampling rate
of the signal: ‘

J .
T (4.11)

Using MATLAB, EqQ. @.10) is evaluated with thecorr function, found in the signal
processing toolbox:

[C,lags] = xcorr(data, ‘biased’);

the ‘biased’ option tellsxcorr to divide by N as in Eq. 4.10). The second output
argumentags is optional, but it is useful, as it corresponds to all the possible values
of j,-(N -1)...(N -1).

To demonstrate the calculation of the correlation time, | created some random
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data with mean 0, standard deviation 1, and time step 1 ms. The data was then
smoothed by using a Whittaker smooth&ilérs, 1994 with different smoothing
strengths, to give three new signals, labelled 1, 2 and 3. The autocorrelation function
for each signal was calculated. As shown in H@ the correlation time is longer

for the smoother, less random signal-3 than it is for the less smoothed, signal-1.
This means that signal-3 is more coherent than signal-1.

Signal 1, A = 10 Autocorrelation of Signal 1
15 0.08
1 0.06
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- 05 L 004
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Figure 4.2: Left: A random, Gaussian signal smoothed using a Whittaker smoother
(Eilers, 1994); 1 specifies the degree of smoothing. Right: The autocorrelations of
the random signal and the best-fit exponential decay curves. The smoother signals
have longer correlation times. The time axis extends all the way #&899 ms to

1999 ms, but we are only interested in the decay centree &
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4.4 Spectral Entropy

Entropy is a measure of the disorder in a system. Jpectralentropy is then a
measure of the disorder in the frequency spectrum of a signal. White noise, which
has a flat spectrum, is highly disordered, and therefore has a high entropy. A pure
sine wave, on the other hand, has only a single spike in its spectrum, meaning all
the energy is concentrated in a very ordered state, and hence its spectrum has a low
spectral entropy.

A starting point for the spectral entropy is the discrete Shannon information
entropyH; (Shannon and Weavet949),

N
Hy = - pnp. (4.12)

wherep is the probability density function approximated from the RS(@) with a
histogram which has a bin width @fw, andN is the total number of spectral bins.
Hencew;, = iAw,i =1,2,..., N. Because each is aprobability, ). p; = 1.
Steyn-Rosq2002 showed that the discrete Shannon form is unsatisfactory
since it gives aiasedestimate of the spectral entropy of a continuous signal that
has been discretely sampled. It turns out that the bin wAdbhplays an important
role in correctly calculating the entropy. Steyn-Ross shows thdtiftegramspec-
tral entropy H, gives anunbiasedestimate of the underlying continuous spectral
entropy:

N
H, = —Aw Z s; Ins; (4.13)

where
Di S;

e N 4.14
Aw Aw Y S, ( )

Si =

and

s;iAw = 1. (4.15)

M=

i=1
In order to normalise Eq.4(13), Steyn-Ross then shows that the maximum
entropy possible i#7'® = In[N Aw]. The normalised histogram spectral entropy
IS now

norm __

2 |n[NAw] Z sins;. (4.16)

To demonstrate the spectral entropy, | have used the same original functions
as in Fig.4.1 and then also added zero-mean noise whose standard deviation is
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exponentially growing in amplitude. Figuke3 shows the spectral entropy grow

and reach a local maxima as the 5 Hz pulse reaches the same magnitude as the 2-Hz
sinewave. The entropy then drops again as more energy is concentrated in the pulse.
Later, at~5 s, the random noise starts to increase and the spectral entropy grows
towards unity.

Three Signals: 2 Hz sinewave, 5 Hz pulse and Growing white noise
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Figure 4.3: A test signal formed by summing a 2-Hz sinewave, a 5-Hz and expo-
nentially growing noise (top two panels). The spectral entropy of the composite
signal is shown in the bottom panel.

4.5 Epoch Overlap

In time-series analysis, the calculations are usually performed on small time epochs
of lengthT. For example when looking at 6 hours of data, perhaps one point for
each 30 seconds is appropriate and then a smooth curve can be fitted to the data.
However, when looking at smaller time periods of only a few minutes, then epochs
lengths of 30 s, or even 5 s, may not give enough data points to observe changes
accurately. To overcome this paucity of observation points, | decidedddapthe

time epochs. The use of overlapping epochs is quite common and in the literature,
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the simplest method would be to make a calculation on data in the time range of
[¢,t+T] and then increaseby (1- X) x T, whereX is the overlap fraction, before
making the next calculation.

X = overlap fraction
T = time epoch
i=1

while (t+T) < length(data)
answer (1) = function (data(t:t+T))

t=t+ (X-1) x T
i=1i+1
end while

This method is fine for (compiled) languages such as C or FORTRAN, but in
MATLAB it does not make use of the very fast array and matrix operations available.
In fact, in MATLAB this method runs very slowly.

4.5.1 A New Overlapping Algorithm

| thought of a better way to overlap the time epochs inTMAB. My idea was
to calculate the result for the whole data channel, as if there was no overlap, then
re-calculate with the starting position moved forwardXy T', and repeat until all
the required overlaps have been processed. Figdrshows how a data vector of
length 17x % seconds would be calculated in four iterations if the epoch overlap
were set to 75%.

After the overlapping algorithm has finished, the resulting array from figure 4

would look like
la 1b 1c 1d

2a 2b 2¢ 2d
3a 3b 3c NaN
4a 4b 4c NaN

(4.17)

The array is then reshaped columnwise back into a vector and the NaN’s are re-
moved from the end as they are just place holders.

(la 2a 3a 4a 1b 2b--- 1d 2d) (4.18)

This is now a new time-series with four data points every egoch
The relationship between the fraction of overlé@mnd the number of iterations
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Data vector

Figure 4.4: An illustration showing how the overlapping algorithm, set to 75%,
would perform calculations on a data vector. The full calculation over the vector
takes four iterations, with the starting position increaseébyeach time. Note the

two NaN's where 3d and 4d should be, which are there because there is not enough
data in the vector to define a full epoch (NaN means “not a number”).

comes from looking at the fraction that the ep@civances each iteration:
§=1-X. (4.19)

For example, in Fig4.4the overlap fraction i = 0.75, so the advance per itera-
tion isé = 0.25. The number of iteration¥ is then

1 1
M===— 4.20
) 1-X ( )
Numerically, it helps ifX is a rational fraction, whose numerator and denominator
are both factors oV the number of samples in the epoch. This is because at each
iteration the code moves the starting positiorslxyN samples, and errors can occur
if indices are not integers. In the beginning of the algorithm | have a a few lines of

test code to conver into a rational fraction and change its value if necessary.

Usually X is set to a fraction of the forr¥=t, such as or 3. This meanss
has the form}%. If this is not the case, i.e., the numerator is greater than 1, then the
example in Fig4.4is not correct. Figurd.5shows an example of the overla,
setto: = 5 = &.

As the eye follows down the first column a the epoch is moved to the rig%t by
each time. At the start of the next column b, one notices that 1b obefiose3a.
The epoch at 1b cannot exist with the overlap s%t tdhe next epoci%> after epoch
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Data vector

N o e N, o N, N e

la Ic le
2a 2¢ 2e
3a 3c NaN

Figure 4.5: With the overlap set to 33.3%, the second and fourth columns (b and d)
are never used.

3ais epoch 1c. Itis clear from the diagram in Hgb that the whole of column b
is redundant and the same holds for the column d. The resulting array will for this
example will look like

la 1c 1le
2a 2c 2e (4.21)
3a 3c NaN

As columns b and d are not required, there is no point in calculating them. The
way to find which columns will be redundant comes from the advance fraétion
The fractioné can be expressed aﬁ%ﬁ;{)r = Z. Then only every™ column
after the first needs to be calculated. The best way to do this is to remove the
unwanted data at the start of each iteration. IaTMAB this is easy as the data is
first reshaped from a vector to an array. Then the unwanted data can be removed
with the command

newdata = data(:,1:n:end);

To demonstrate theffectiveness of overlapping the epochs, | have plotted the
total power for 2 minutes of rat EEG in Fi@.6. It has been calculated with
sleeppower and the amount of overlap was set to 0%, 50%, 80% and 95%. At
0% and 50%, the plot looks a little sparse, and one is left wondering what happens
in between the points. At 80%, there is five points in every epoch, and the graph
looks good. Not much more is gained by going up to 95%, but the computation
time now begins to become annoying, becay_%gg = 20 iterations. | have found
that for most small data sets (about 2 min long) 75% or 80% overlap is the best
compromise between detail and computation time.
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Epoch overlap of EEG Data
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Figure 4.6: The power of some rat EEG data calculatesillegppower. The epoch
was set to 4 s and the amount of overlap was varied: 0%, 50%, 80%, 95%

4.5.2 Overlap Time Trials

To test the #ectiveness of the epoch overlapping algorithm, the total power of a
artificial data set, of length IGamples, was computed. My overlapping algorithm
was compared with the simple one outlined on péd§eThe power was calculated
and the computation time was recorded. The results are shown intdble

The simple algorithm was slightly faster only for the case where there was no
overlap, but for high overlap fractions, it is outclassed. Figu/éshows a plot
of the data. For both methods, the computation time increases with the amount of
overlap, but the growth is much slower for my new method.
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Table 4.1: The time for the power to be calculated for & d@ment data vector
with varying degrees of epoch overlap.

Overlap Simple Algorithm New Algorithm

X time (s) time (s)

0 0.581 1.542
0.5 3.368 2.751
0.75 15.32 4.927
0.8 23.27 5.998
0.875 62.59 9.304
0.9 97.32 11.51
0.95 363.7 22.33

Comparison of Overlapping methods
400 T T T T

—©— New Algorithm
3501 | — Simple Algorithm i

300 a

250 N

200 N
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Computation Time t (s)
|_\
o
o

a1
o
T
1

0.2 0.4 0.6 0.8 1
Overlap X

Oéﬁ , ® ras 6,96/@
0

Figure 4.7: The time taken to compute the power of a large data vectbs&hd-
ples) using two dferent epoch overlapping methods



Chapter 5
Human Data Results

The Steyn-Ross model makes predictions on how the EEG recorded from a sleeping
cortex will change over time. The single prediction that is the focus of this thesis is
that when the cortex makes the transition from EEG-synchronised SWS and goes
into the active, paradoxical REM sleep, this is in fact a first-order phase transition,
analogous to ice melting into water. When any system undergoes a first-order phase
transition, there are measurable changes in power, temporal/spatial correlation and
entropy. With the use of the time-series statistics described in chéptes can
attempt to detect the SWS to REM transitions and compare them with the theory
common to all first-order phase transitions.

For our cortical phase transition, the model predicts a surge in the low-frequency
power of the EEG during SWS as the approach towards REM is made. Simulta-
neously we should see an increase in the correlation time and a reduction in the
spectral entropy. At the SWS to REM transition, the model predicts a sudden drop
in the total power and the energy should spread out into higher frequencies. This
is accompanied by the correlation time becoming shorter and the spectral entropy
increasing $teyn-Roset al,, 2005.

In this chapter | present the results that came from the human sleep volunteers.
The subjects were all fiering from obstructive sleep apnoea, but were being suc-
cessfully treated using Fisher & Paykel Healthcare’'s CPAP (Continuous Positive
Airway Pressure) respirators. The patients’ EEG were recorded from four locations
of the scalp. Using the 10-20 system of standard electrode positions, the electrodes
were placed at & C4, A; and A, and were referenced tq,f at the front of the
forehead.

51
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5.1 Sleep Staging

Before the time-series of the sleep records could be analysed, | needed to look
through the data set and double-check the stage of sleep that had been assigned to
each 30-second epoch of the time-series. The staging had already been scored by
the sleep technician. However, | still needed to go through the data to get a feel
for the number of artefacts. | wrote the software tebkepwork (described in
AppendixA.2.2) to assist with the viewing of the time-series, assigning of stages
and flagging of artefacts. The staging was scored through observation of the EEG,
EMG and EOG. From these three bio-signals, one can discern the correct stage of
sleep.

Because sleep staging is scored manually, the application of the standard rules
by Rechtschiien and Kalg1968 are subject to human error. fierent people who
score the same time-series will usually come up with discrepancies. There are times
when it is dfficult to assign one particular sleep stage. The EEG may not show the
telltale signs of any particular stage (spindles, slow-waves, etc). The EOG can
show light activity that causes the epoch to resemble REM. It seems that sometimes
epochs are scored as stage 2 because of a lack of anything else to call them. An
example of this is shown in Fid. 1

Examples of possible misclassifications in the sleep records have been shown
in Figs.5.1and5.2 Both figures show epochs that have some high-amplitude and
low-frequency waves and neither contain sleep spindles. The epoch ib.Eltas
been classified as stage 2, but it contains more activity in the EOG (labelled LOC:
left ocular, ROC: right ocular) than the epoch in Fsg2 which has been scored as
REM.

Another problem with manual sleep staging comes from the scorer sometimes
relaxing the rules depending on the need for accuracy and speed. For instance,
sometimes every epoch is not given its own score; the scorer just notes the time
and new stage every time the sleeper changes state. Recording of sleep stages in
this way means that brief changes are ignored. To make matters worse, when the
sleeper is alternating between two stages, or is very close to the boundary, a rough
average of the two is given. Stage 3 and 4 are often combined to become 3.5, while
stage 1 and 2 become 1.5.

It seems that the sleep staging can be somewhat arbitrary and for the purpose of
this analysis it should be used only as a guide.
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Possible REM but Classified As Stage 2
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Figure 5.1: This epoch was classified as stage 2. The EEG is a little high-amplitude
and contains some low frequencies, but it does not have any of the stage-2-defining
spindles. LOC and ROC are the left and right EOG channels. The EOG has enough
movement for the technician to consider scoring the epoch as REM.

An Epoch classified as REM by Sleep Technician
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Figure 5.2: This epoch has similar EEG to Fagl It has less activity in the EOG,
but it was classified as REM by the sleep technician (the downward spikes are ECG
artefacts).
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5.2 Pre-processing — Artefacts Detection

When an artefact arises in the EEG, it is worthwhile checking to see what could
have caused it. It is helpful then, to have access to signals other than the EEG,
EOG and EMG. The sleep records | received contained a leg movement channel,
an airflow channel and even a microphone. These were all very useful in detecting
artefacts. The leg movement channel was good for detecting full body movements
which cause the EEG to completely overrun with high-amplitude noise. Although
the sleepers were all being successfully treated for sleep apnoea, they would still
occasionally stop breathing and wake up. The airflow channel was helpful in ex-
plaining artefacts arising from these awakenings. The microphone channel was
helpful if an artefact came from a cough or snoring.

While the patients were awake, the amplitude of their EEG was rather low, but
there were often many artefacts that came from eye-blinks and other movements. In
terms of flagging unwanted or bad data, the waking state and artefacts were handled
in the same way. | assigned them a sleep score ofzexwake. If the patient was
actually awake, the whole 30-second epoch would be scored awake. It was unusual
for an artefact to last 30 seconds, so for the flagging of small artefacts, the 30-second
epochs were broken into six five-second epochs. Then only a subset containing the
artefact needed to be scored as awake and the rest of the epoch can remain as its
correct status. Figurg.3is a screen shot taken fromleepwork. It shows a large
movement artefact in the middle of a stage 3 epoch. By splitting the 30 seconds into
six epochs, only 10 seconds need to be flagged as an artefact.

The total EEG power of patient one has been calculated and graphed ¥4-ig.
Here one can see the need for artefact detection, as the sleep cycles are not well
observed among the high-amplitude artefact spikes. In contrast, the same data is
plotted again in Fig5.5with the artefact detection turned on. There are still large
amounts of fluctuation in the time-series, so a smooth curve has been fitted to the
data.

One observation that can be made directly from Bi§.s the consistency over
the four channels. The electrodes were positioned approximately 5 cm apart on
the patient’s scalp, but on this time scale the power traces are extremely similar,
showing a high degree of synchrony across the cortex.

During REM there are many high-amplitude eye-movements that can corrupt
the EEG. They occur so often that to flag each one as an artefact would leave out a
great deal of the time-series. | found that a reasonable way of removing the REMs
was to use a 1 Hz high-pass filter. In Fl§6, 30 seconds of patient two’s sleep
record are plotted. The left and right EOG (LOC and ROC) are wired in such a
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Patient 1, Start time = 01 30:45, Epoch length = 30 sec, Epoch # 182, Sleep Stage 3

=2
01:30:45 01:30:50 01:30:55 01:31:00 01:31:05 01:31:10 01:31:15
| J
Artefact

Figure 5.3: The patient is in stage 3 sleep. There is a movement artefact at time
1:30:55. There is artefact signal on the microphone and the leg channel, indicating
that the patient has momentarily stirred then gone back to sleep. Notice how much
the EEG, LOC/ROC and EMG channels are corrupted. This artefact would produce
a large spike in the results and therefore must be flagged so that it can be elimi-
nated from the analysis. (The EEG channels 1 and 2 are ffexatice between

the EEG recorded from two scalp locations as recommendé&kbitschiien and

Kale (1968 EEG1=C, - A, EEG2=C5 - A2)

way that REMs produce voltage signals that change in anti-phase, while blinking
of the eyelids makes the signal change in phase. In calculations of the total power
of the EOG, the ROC was subtracted from the LOC so the in-phase eye-blinks and
high-amplitude slow-waves from the EEG would cancel out, Meanwhile, the out-
of-phase REMs would combine to create a stronger signal.

5.3 Full Sleep Record Results

In this section | present the results of the time-series analysis. In the following
subsectionsq.3.15.3.9), | have plotted the EEG time-series statistics described
in chapterd. The total power, fractional band power, correlation time and spectral
entropy are all graphed as functions of time. The power of the EOG and EMG are
also included as these can help in distinguishing SWS from REM sleep. The sleep
staging that was scored by the sleep technician is also included.

When calculating these statistics, | used a consistent set of parameters. The the
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Total EEG Power of a Full Nights Sleep. No Artefact Detection
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Figure 5.4: The total power calculated from four EEG channels without the artefacts
being flagged. There was one point calculated every 5 seconds. The interesting parts
of the time-series are the clear sleep-cycles at 1-3 hours. The large spikes are from

the unflagged artefacts.
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Figure 5.5: The same data as shown in Big.with the artefacts all flagged and re-

moved. The two sleep-cycles at the beginning become much more clear. A smooth
curve has been fitted to the data using the Whittaker smoothing technique described

in AppendixA.3.2
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Rapid Eye Movements corrupting EEG
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Figure 5.6: Rapid eye-movements during REM sleep are the cause of some artefacts
in the EEG. A 1 Hz high-pass filter removes most of the artefact without losing
much of the real EEG signal.

epochT length for each calculation was 5 s. The overlap fraction was set to zero,
as the raw time-series data are so long | did not require intermediate points. The
sample frequency, was 256 Hz for the first three patients, whose recordings were
taken at Fisher & Paykel Healthcare. The other three patients (four, five and six)
had their sleep records taken at Greenlane Hospital and the sample rate was only
125 Hz.

The frequency bands used in the fractional band power calculation had the de-
fault value: F'© = 0.1-4 Hz andF™ = 15-47 Hz. These were chosen because they
were the same adestexheet al. (1999 used for their sleeping cat. (Their high-
frequency limit was actually 75 Hz but | was low-pass filtering to remove 50 Hz
mains power supply interference.) The frequency limits used for evaluating the
spectral entropy were 0.1-47 Hz. The minimum frequency bin width is determined
by the epoch sizeAf = % The 5 s epoch gave a bin width of 0.2 Hz (see Ap-
pendixA.1.4).

Because the resulting graphs were so noisy, a Whittaker smoother was used to
draw a smooth curve to the data. Thé&elience order wag = 2 and the smoothing
strength wast = 100 (see AppendiR.3.2).



58 Human Data Results

Graphs showing only the fractional band power calculated for fifferdint fre-
guency bands are also plotted. This is because, in humans, n@neai EEG
patterns occur in the range 4-15 Hz. Spindles, one of the defining characteristics
of stage 2, have frequencies in the range of 12—15 Hz. Alpha activity, 8-12 Hz, is
associated with the subject being awake and relaxed, with eye cl8ssthfe and
McCarley, 2005 Pg. 256). The alpha band can serve as an indicator to see if sleep
has begun, as it disappears when the subject has fallen asleep.

The common frequency bands used in EEG analysis are listed in&dbl€he
exact values of the frequency limits may vary from one author to another. The
frequency limits used for this analysis came fréarshalet al. (2003 with the
exception of the gamma band stopping at 47 Hz from my low-pass filter (Marshal
has a 30 Hz low-pass filter so leaves out gamma altogether), and the slow-wave
band beginning at 0.1 Hz (Marshal uses 0.2 Hz).

Table 5.1: Frequency bands commonly used in EEG analysis.

Frequency Band Frequency range (Hz)

slow-wave 0.1-1
delta 1-4
theta 4-8
alpha 8-12

spindle 12-15
beta 15-25
gamma 25-47

5.3.1 Patient One

The time-series analysis of patient one is shown in big. The top graph is the
total power time-series. When the patient is in deep SWS (stage 3 or stage 4) the
EEG amplitude is high, resulting in a large power. REM sleep, on the other hand,
has a much smaller amplitude than SWS and therefore a lower power. Patient one
went through two clear sleep cycles during the first few hours of the recording. He
then woke up at around the time his next REM phase should have occurred. The
last cycle consists of mostly light, stage 2 sleep, then a long REM phase.

We are particularly interested in the transitions from SWS to REM sleep. These
are marked by the vertical dashed lines. The first of the three transitions into REM is
the clearest. There is a sudden drop in the total power, and from the fractional band
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Sleep Statistics for Patient one
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power we see there is a change in the spectral distribution of the energy. Before
the transition, almost 100% of the energy is concentrated below 4 Hz. After the
transition, however, it is reduced to about 75%. This is also seen by the 15-47 Hz
band increasing from almost zero before the transition, to about 10% of the total
power after the transition. (The middle band of 4-15 Hz also increases, but it was
excluded from the graph to avoid cluttering.) In Fig8 the fraction band power
calculated for several frequency bands has been graphed.

The high correlation time during SWS is due to the high-amplitude and low-
frequency of the slow-waves. Once the cortex has transitioned into REM, the cor-
relation time is greatly reduced. This is because the slow-waves go away with the
drop in low-frequency power, and all that is left are the higher frequencies that have
a shorter correlation time. The work 8teyn-Rosg2002 suggests that spectral
entropy will change in anti-phase with the correlation time. This is exactly what
we observe here. During the highly coherent SWS phase, the spectral entropy is
low, meaning the energy in the signal is well ordered in the low-frequency band.
After the transition, when the energy is more evenly spread across all frequencies,
the spectral entropy is higher, because the spectrum is in a more disordered state.

The second sleep cycle contains an even more dramatic change in the time-
series statistics at~ 3:10 hours. However, this is not a transition from SWS to
REM. It is a transition from stage 4 to stage 2. After inspecting the raw EEG time-
series, | believe the scorer has correctly staged this period as stage 2 as there are
many spindles present. The transition into REM occurs slightly later. The predicted
changes in the time-series statistics are still present, but not nearly as distinguishable
as they were in the first sleep cycle.

The third REM period occurs near the end of the sleep record’&80. Here
the patient only briefly enters deep, stage 3 or stage 4 SWS, then goes back into
stage 2. At the transition into REM, the total power reduces slightly, but it is not
very noticeable, as the power was not very large before the transition.

If attention is turned back to the graph of the correlation time in 6i@. one
will notice a large concentration of data points, marked by the arrow, at a value
of ~25 ms which is lower than all the other data points. These occur primarily
during stage 2 and arise from the autocorrelation of spindles. In53gya) the
autocorrelation of some typical stage 2 EEG is plotted. The exponential decay
approximation matches the drop in correlation reasonably well down to the point
1/,. On the other hand, Fig.9 (b) is the autocorrelation of stage 2 EEG that
contains a spindle. The exponential decay follows the first downward oscillation of
the autocorrelation. This gives a correlation time that is much quicker than it should
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Figure 5.8: The fractional band power of patient one calculated for five frequency
bands. The spindle band is helpful in distinguishing low-amplitude stage 2 from
REM, as REM does not contain sleep spindles. The alpha band can assist with
detecting the relaxed but awake period before the onset of asleep.
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be. The exponential decay curve should pass through the middle of the oscillations

in the autocorrelation decay.

(a) Autocorrelation of Stage 2 EEG
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Figure 5.9: The correlation time of stage 2 sleep EEG is around 0.6-0.8 s as seen
in (a). When there is a spindle in the EEG epoch the autocorrelation oscillates at
the spindle frequency 13 Hz, and a much shorter correlation time is measured.
The oscillations in the autocorrelation should be removed before calculating the

correlation time.

Spindles have a frequency ofL3 Hz which is a period of 0.077 s. The spindle
is about!/3 or 1/, through its period when it reachég., which gives correla-
tion time as 0.019-0.026 s. These numbers are consistent with what is seen on the
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graph. Ideally, the spindle resonance in the autocorrelation should be removed be-
fore computation of the correlation time for a more accurate result. This is one of
the unfinished tasks that | would like to complete in the future.

5.3.2 Patient Two

The sleep record for patient two shows similar trends to that of patient one. During
stage 3 and stage 4 SWS the power is high and concentrated in the low frequencies.
At 70 minutes into the recording, there is what looks like a transition, but the patient
does not enter REM; he wakes up. The waking and REM states are very similar,
and this event could still be a phase transition. In earlier wStkyn-Ros=t al.

(1999 20014ab) give evidence that the transitions from wakefulness to induced un-
consciousness via an anaesthetic, and back again, are also both first-order phase
transitions.

At t = 2:10 hours, the patient enters REM for the first time. This is an interest-
ing transition, as the patient was in stage 3 SWS and seems to transition down to
stage 1 for about five minutes, then makes the full transition into REM. All of the
calculated statistics show a kind of step pattern. The power drops as stage 3 goes to
stage 1, then it drops again as stage 1 goes to REM. The fractional power shows two
successive reductions in low-frequency power. There are also drops in correlation
time and jumps in spectral entropy. In Figl11, where diferent fractional power
bands have been plotted, there is a jump in the spindle band but then it falls away
after REM begins.

The second SWS to REM transition occurs at about four hours. Although the
patient was only in stage 1 and stage 2 prior to the transition, there is still a good deal
of change in the sleep statistics. Part-way through the REM phase the total power
of the EEG seems to increase and die away again when the patient leaves REM and
starts the next sleep cycle. The other statistics show trends that are consistent with
power increases. This increase in power is actually caused by REM artefacts. This
can be verified by a comparison with the eye-power time-series, which has a very
similar shape.

The third SWS to REM transition also shows the same changes in sleep statistics
that are consistent with a phase transition, although there is not a great deal of
contrast.

It should be noted that the raw EEG time-series contains a lot of ECG signal
which can be seen as sharp spikes at very regular intervals. The ECG included
in an EEG signal does slightly change the results in the sleep statistics, but the
sleep cycles are still visible and not changed in time. This is investigated later in
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Sleep Statistics for Patient two
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Figure 5.10: The time-series analysis of the sleep recordings of patient two
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Fractional Band Power Patient two
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sectionb5.4.

5.3.3 Patient Three

Patient three’s sleep record is shown in FHdl2 He has four REM phases. How-
ever, the last is very short and the preceding SWS is low-amplitude stage 2, making
the transition dticult to determine from the statistics. The other three transitions
are much clearer.

The second sleep cycle contains a very sharp SWS to REM transition. The
power steadily grows and then suddenly drops away. The same abrupt change is
seen in the other statistics. During SWS the EEG amplitude and the correlation
time are increasing, while the spectral entropy is decreasing. Then, while in deep
sleep, the cortex abruptly transitions into REM.

The fractional band power has been plotted again in %i$y3 showing more
frequency bands. This figure isftirent from the similar graphs of patients one
and two (Fig5.8and Fig.5.11). They show strong tlierences in the 8-12 Hz, 12—

15 Hz and 15-47 Hz bands during stage 2 and REM. For patient three, however,
all these bands show very similar trends. They all are high during REM, very low
during stages 3 and 4, and at an intermediate level during stage 2.

In Fig. 5.12the smooth curve is perhaps too smooth. To show how abrupt the
transition is, | have plotted three minutes of the raw EEG and EOG time-series in
Fig. 5.14 Here we see on the left of the figure, that the EEG amplitude is pulsat-
ing high and low with a period of£10 s. The slow-waves switching on anff o
are possibly evidence of a phenomenon calleshraslow oscillationdescribed by
Vanhatalcet al. (2004). During the SWS phase, the EOG remains low and unevent-
ful. At r = 2:48:50 hours, the last pulse of slow-waves ends and large REMs begin.
The EEG remains low in amplitude, while the EOG becomes active with the sharp,
unpredictable movements that are characteristic of REM sleep.

The transition shown in Figh.14 is the best SWS to REM transition | have
found out of the six human sleep records that were provided to me. The change in
state occurs very quickly, as if a switch has been flipped.
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Sleep Statistics for Patient three
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Figure 5.12: The time-series analysis of the sleep recordings of patient three
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Fractional Band Power Patient three
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Figure 5.14: The raw time-series of patient three. At the start of the graph, the
patient is in deep stage 3 SWS. Then, very suddenly, the EEG amplitude reduces
and large REMs begin. The thick lines in the EEG time-series are total power
(amplitude-squared) scaled to fit on the graph. The oscillations between high and
low-amplitude during SWS have a period-f0 s and are reminiscent of infraslow
oscillations. Yanhatalcet al,, 2004 (The repeating downward spikes in EEG2 are
ECG heartbeat artefacts)
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5.3.4 Patients Four, Five and Six

The three patients four, five and six all had their sleep recordings taken at Greenlane
Hospital. At Greenlane, the data acquisition equipment is older than that used at
Fisher & Paykel Healthcare, so electronic storage space is saved by lowering the
sampling rates, and clipping levels.

Patient four has only one clean SWS to REM transition in his sleep record which
Is shown in Fig5.15 At 5:50 hours, he leaves stage 4 SWS and enters REM with
only a few minutes of stage 1 in between. At this transition all the signal process-
ing statistics have trends that are consistent with our phase transition theory. In
Fig. 5.16 we see that for this transition there is a great increase in the fractional
band power for the theta, alpha, beta and gamma bands, but the spindle band in-
creases only slightly at the start of REM then drops away.

Patient four’s sleep record is far from ideal, as he woke often throughout the
night, and one of the EEG channels is bad due to a loose electrode.

Figure5.17is the sleep record of patient five. It has three good sleep cycles, the
first of which contains the cleanest SWS to REM transition at 2:00 hours. For this
transition, the theoretical predictions are observed. In%it8the fractional band
power of all the bands higher than 4 Hz increases for all of this REM phase. The
other two transitions do not show such clear changes in state. As with patient two,
the EEG of patient five has a lot of ECG artefacts.

The sleep staging file that came with this sleep record contained many non-
integer labels (1.5, 2.5, 3.5) indicating the patient is often alternating between two
stages. The staging record for this patient is more arbitrary than records for the
other patients.

Patient six’s sleep record in Fi§.19 contains one long REM phase at four
hours. The expected drop in low-frequency power and correlation time combined
with the jump in spectral entropy are all present. There is another very short REM
period at 2:35 hours. This is interesting as it shows the 0.1-4 Hz low-frequency
power goes well below 50%, and also the correlation time drops very low. In
Fig. 5.20 we see that the fractional band power for this transition rises the most
in the alpha, beta and gamma bands.
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Sleep Statistics for Patient four

EEG Power
%

Fractional
Band Power

o
[
a

Correlation
time (s)

Spectral
Entropy

EMG Power
%

Eye Power
M%)

i i i i i i i
0 1 2 3 4 5 6 7
time (hours)

Figure 5.15: The time-series analysis of the sleep recordings of patient four
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Fractional Band Power Patient four
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Figure 5.16: The fractional band power of patient four calculated for five frequency
bands.
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Figure 5.17: The time-series analysis of the sleep recordings of patient five
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5.4 How Does ECG Afect the Results?

Several of the patients had ECG artefacts in their EEG time-series. The ECG is
difficult to remove without losing information from the EEG, so | did not attempt
to remove it. Eye-blink and movement artefacts usually appear as sharp spikes in
the calculated statistics, making them easy to identify. ECG artefactsféeeedi.

They are a constant periodic spiking signal that is usually most noticeable when the
sleeper has low-amplitude EEG. One quick prediction is that the total power will
increase, but it is diicult to say what would happen to the other statistics.

To investigate how much the sleep statistics diieched by ECG, | took the sleep
record of patient one, whose EEG was free of ECG corruption, and deliberately
added his ECG channel to the EEG. The ECG channel records the signal with
much greater amplitude than is seen in the EEG, so ECG was scalgdblyis is
shown in Fig5.21 The sleep statistics were then calculated for the new time-series.

Artificially Corrupting the EEG with ECG

0.2 T T T

1/25 ECG +
EEG (mV)
o
|

|
o
)

|
2 4 6 8 10 12 14 16 18 20
time (s)

Figure 5.21: The EEG was corrupted with ECG to see how the sleep statistics are
changed when ECG is present.

Figure5.22shows the time-series statistics for both the clean EEG and the EEG
that was corrupted with ECG. The ECG changes the time-series statisti¢gein di
ent ways. The total power is simply displaced upwards to a higher level. This is
because the ECG is so regular and at a constant amplitude. In the three fractional
band power graphs (labelled F B P) the same trends are followed, but there is more
high-frequency energy in the signal. The 15-47 Hz band has lost much of its fine
detail. It seems to miss out many of the sharp peaks. The correlation time has been
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shortened and slightly smoothed. The spectral entropy has Ifksetea the most
by the ECG. It has been increased, but unevenly. Most of the features in the graph
have gone except the high-amplitude SWS centred at three hours.
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Figure 5.22: The sleep statistics are calculated again for a portion of patient one’s
EEG. A new time-series was made by adding ECG to the EEG to compare how the
artefacts in the signal change the statistics.

fix heading

From these results, we see that the overall trends of the sleep cycle and the SWS
to REM transition are still observed. The total power and the low-frequency frac-
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tional power are still usable, but, some of the other time-series statistics, especially
spectral entropy, are changed to the extent that quantitative measurements would
be questionable. Only qualitative statements could be made about results produced
from EEG with these types of artefacts.

5.5 Summary of the Human Results

The results of this chapter show a discontinuous change in the time-series statistics
calculated from a sleeping subject's EEG. When the cortex is in the SWS state,
the power of the EEG is high and concentrated at low frequencies (below 4 Hz).
The correlation time of the EEG is relatively long and the spectral entropy is low.
When the transition into the REM state occurs there is a sudden drop in the power
and correlation time. The spectral distribution of the EEG power also becomes
flatter, which is apparent by the increase in spectral entropy, the drop in relative
low-frequency power and the rise in high-frequency power. These abrupt changes
in the time-series statistics give strong evidence verifying that the SWS to REM
transition is indeed a first-order phase transition, as predicted bgt#yam-Ross

et al. (2005 model.

From the four diferent time-series statistics that were computed from the pa-
tients’ EEG, the total power and spectral entropy were found to be the fastest. Both
were useful for displaying the sleep cycles and detecting the SWS to REM transi-
tion. The fractional band power was often even better at distinguishing the SWS
and REM states. The correlation time also showed the sleep cycles well, but its
computation time is much longer than for the other statistics. The correlation time
(by accident) detected spindles, a defining characteristic of stage 2 sleep. Epochs
containing spindles had a shorter-than-usual correlation time and stood out from the
rest of the data.

It was evident to me that the transition from SWS to REM was best defined on
people who slept well throughout the recording. All of the raw data came from
people who were diagnosed with sleep apnoea and were using the CPAP respirators
manufactured by Fisher & Paykel Healthcare. They were being successfully treated,
but most of them still woke several times during the recording. When people wake
often in the night, as is the case with sleep apnoea, their sleep cycle is disturbed
and they may not enter the REM phase of sleep at all. In order to analyse more
well-defined SWS to REM transitions to further verify the model, we should record
the EEG from people who do notfser from sleep dysfunctions.






Chapter 6
Rat Data Results

After some encouraging results with the human sleep recordings, Alistair Steyn-
Ross and Jamie Sleigh decided to take recordings of laboratory rats. Then | could
apply a similar analysis and determine whether the SWS to REM transition of a rat
also showed evidence of a phase transition. High-quality amplifiers, able to record
down to very low frequencies, were purchased. This was necessary to verify the
theoretical prediction of a positive DC-shift in the potential of the excitatory neurons
V, at the point of transition from SWS to REM (see sect®é.3on Pg.24).

Logan Voss, a colleague of Jamie Sleigh, did the hands-on work with the lab
rats. To record bio-signals from the rats, Logan surgically implanted the electrodes
directly into the rats’ cortices. Each set of electrodes was fixed in place by a small
headset screwed into the skull. A photograph of one of the rats wearing a headset is
shown in Fig.6.1

Figure 6.1: A photograph of one of the laboratory rats wearing its surgically at-
tached electrode headset. [image source: Logan Voss (personal communication)]

81
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A bio-signal recorded from cortical electrodes is not called EEG. It is called the
electrocorticogram, or ECoG. When recording voltages from the scalp (EEG), the
skull and skin act as low-pass filters. So when recording the ECoG, much more
high-frequency energy is expected.

6.1 Full Rat Time-Series

When | received the rat time-series data, | tried an analysis similar to the human
data analysis, to plot all the sleep statistics as functions of time. There was not a
channel reserved for recording the EOG, but it was not required. With close obser-
vation, REM can be identified by twitches in the rat's whiskers. A video camera
was synchronised with the recording equipment to assist with scoring the stages of
sleep. Logan Voss scored the rats’ sleep into three stages: waking, SWS and REM.

When humans sleep, we have a sleep-cycle of approximately 90 miReelk-(
tschdfen and Kale1969. In general, smaller mammals have a shorter sleep-cycle.
Our rats were found to have a cycle of only about 5-10 minutes, and after each cy-
cle they would often wake up and become active. When the rats wake up and move
around, their ECoG signals become overrun with EMG artefacts.

Many of the recordings contained too much noise or too many artefacts to per-
form a full time-series analysis. The three best (i.e., least noisy and most artefact-
free) recordings came from two rats. One recording came from rat 6 and two record-
ings came from rat 12. Their data were clear of artefacts and the rats were generally
healthy. | have used a naming convention for the fomait#ecoing:: The three
recordings used are3 612 and 13.

The statistics graphed in the following figures were computed using the time-
series statistics described in chapder They all had the same input parameters.
The epoch sizd" was 4 seconds and the epoch overlap fraction was set to 50%.
The sample rate of the raw data was 400 Hz. The time-series statistics have been
smoothed using a Whittaker smoother (sec#08.2) with difference ordet = 1
and smoothing strength= 500.

Figure6.2is the time-series analysis for the full recording of ratBhe first ob-
servation is the speed of the rat’s sleep cycles. The quick cycling makéscultito
detect anything of interest in the power except the large-amplitude noise during the
long wakeful periods (shown in lighter shade). The fractional band potfieiestly
distinguishes REM from SWS and wakefulness. In the human results of claapter
the energy during SWS was concentrated below 4 Hz. With the rats, however, |
have found that the 4-15 Hz energy is higher during SWS than it is during REM
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sleep. To get the fractional band power to show the distinctive anti-phase pattern, |
used only two frequency bands, 0.1-15 Hz and 15-47 Hz. The correlation time and
spectral entropy both show the predicted changes, but the range is very small. To
see the contrasts properly, thexis limits of both plots have to be greatly reduced.
When in SWS the total power is high and concentrated above 15 Hz, the correlation
time is high and the spectral entropy is low. When REM sleep begins the power
drops away and is distributed into higher frequencies, the correlation time becomes
shorter and the spectral entropy increases.

The DC ECoG contains a lot of amplifier drift. When combined with the move-
ment artefacts, it makes identifying any positive jumps in potenttétdit. If there
are any of the predicted DC-shifts, they are too small to be seen at the resolution of
this graph.

The next two figures are separate recordings, d#d 123, of the same rat.
Fig. 6.3 and Fig.6.4 contain time-series statistics that have similar trends to those
seen in Fig6.2 The results in Fig6.3are cleaner and the SWS to REM transitions
can be identified easily. Again, the DC ECoG does not contain any clear, positive
shifts.
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Figure 6.2: The time-series analysis of rat recordigg ®he top four subplots

show the results of the signal processing statistics described in clagtewer,
fractional band power, correlation time and spectral entropy. The next three subplots
are the time series of the three raw data channels: DC ECoG, AC ECoG and EMG.
The last subplot is the sleep stage. The portions of the sleep statistics that are shaded
lighter are movement artefacts from when the animal is awake. The vertical dashed
lines mark some of the SWS to REM transitions.
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Figure 6.3: The time-series analysis of rat recording The spectral entropy and
fractional band power are the mosfextive means of detecting the REM state.
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Figure 6.4: The time-series analysis of rat recording This time-series is noisier
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6.2 Time-Aligned Transitions

The three previous figures of the full rat time-series all show the basic changesin the
ECoG statistics that are consistent with the human results of ch&ptelowever,

the rats sleep-cycle so quickly and so much data is plotted, that it is hard to look
at one specific transition and determine exactly when it occurred. We were unable
to find any DC-shifts that corresponded with a transition from SWS to REM. Jamie
Sleigh and Alistair Steyn-Ross thought that it would be helpful to take many data
subsets containing SWS to REM transitions from the recordings and align them
in time so the point of transition for all subsets occurred simultaneously. Then
averages could be computed across all of the transitions, and DC-shifts might be
easier to detect.

6.2.1 Locating Transitions

Logan Voss, who did the hands-on work with the rats, went through the raw data
and found 88 clean SWS to REM transitions (and many more not so clean). For
each one, he saved two minutes of both AC and DC ECoG, with the transition
approximately at the centre.

My first task was to complete the time-aligning to mark the point of transition
as accurately as possible. As it can b#idilt to pinpoint the transition using only
the ECoG time-series, the time-series statistics were calculated as they show a good
distinction between the two states. A program was written to calculate the sleep
statistics and graph them along with the raw AC and DC ECoG. The two minutes
of data were originally plotted from= [-60, 60], with the SWS to REM transition
approximately in the centre. The time-series were slid up or down the time axis to
set the point of transition to= 0. | wrote a function nameglatrem_zero to load,
calculate and plot data. The program had several user input features to help with
finding and setting the transition point. It supported the following features:

e Zoom capability in thex or y direction.

¢ Ability to change the frequency band displayed.

e Ability to remove slope ang-intercept from raw DC ECoG.
e Point of transition set to= 0.

¢ Ability to change to another transition.

After the transition had been correctly identified, the program would save the
index of the closest point to= 0, so that the data could be used in another program
to calculate averages.



88 Rat Data Results

| found that certain statistics were more helpful than others in determining the
transition point. The power, spectral entropy, and spindle and gamma fractional
power bands showed the best contrast in the SWS and REM states. The correlation
time was not calculated because it computes much slower than the other statistics.
Figure6.5is a screenshot of the display sdtrem zero. The data was calculated
with an epoch of 2 s and overlap of 90%. A& 0, there is a clear SWS to REM
transition.

Current Transition, Tn =73
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Figure 6.5: A screenshot afatrem_zero displaying one of the transitions. The
time-series statistics were computed to assist with finding the position of the SWS to
REM transition. This was done for all 88 transitions. The total power fluctuates high
and low while in SWS and then drops away when REM begins. The spindle band
is high in SWS and then is much lower in REM. The gamma band is opposite. It is
nearly non-existent in SWS, then becomes high during REM. The other frequency
bands did not show a consistent change at the transition. The spectral entropy is
lower in SWS and jumps to a higher level at the transition. Notice that the time-
series starts before —60 s and ends befdi@ s. It has been slightly shifted in time

so that the transition occursat O s.

6.2.2 Dfferences in ECoG Amplitude

When displaying the statistics, | noticed that the amplitudes of the ECoG time-series
varied from one recording to another. Fig@& (a) is a plot of the rms voltage
amplitude of the AC ECoG versus the transition number (1-88). The amplitudes of
the transitions are consistent within a single recording, but there is a gffeaedce
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between recordings. The main explanation for tHéedent rms voltage levels was
that diferent amplifier gain settings were used. The recording$% 7; and 1Q
whose rms voltages are all at a similar level, had an amplifier gain of 100. The other
recordings all had a gain of 500, but there is much more variance in the recordings.
Figure6.6 (b) is a plot of the rms ECoG voltage, with the amplifier gain removed.
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Figure 6.6: The rms voltage levels of the ECoG of the 88 transitions. Transitions
belonging to the same recording have been plotted with the same markee(e.g.,
x, +, Vv, etc). (a) Early recordings had the amplifier gain set to 100, while the later
recordings had a gain of 500. This was a major causeftdrdnces in the ECoG
amplitudes. (b) The gain is removed, but there are stitedences between the
recordings. The outlier in recording & from a large artefact at the very end of the
two-minute data set.

Even with the gain removed from the signal, there is still quite a lotféécknce
between the rms voltages. Even the three recordings of rat 12 all hifieesdt
rms voltages. Perhaps theséeliences could be from the electrodes moving from
their original position. Before each recording, the electrode wires would have to
be connected to the headset. Because the electrodes actually go through the rat's
skull and directly into the cortex, a slight change in depth can alter the strength of
the recorded signal. Any movement by the rat could change the amplitude of the
ECoG.

When combined to calculate averages, the transitions were grouped by their
recording number so that their ECoG amplitudes would be all at the same level.
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6.2.3 Results of the Time-Aligned Transitions

To display the results of the time-aligned transitions, the raw DC and AC ECoG
and the time-series statistics have been plotted. The fractional band power was
calculated for the seven frequency bands previously listed in Eahleut the slow-

wave (0.1-1 Hz) was always very close to zero so it was not plotted. The results
from rat recording are shown in Fig6.7. In each subplot, the main point of focus

is the average, which is superimposed on the top and rendered as a thick, dark line.
The data in the background are plotted to show the amount of fluctuation between
transitions.

In Fig. 6.7, the expected drop in power and rise in spectral entropy at the SWS to
REM transition are present. The correlation time also becomes lower at the transi-
tion, but it is more vulnerable to artefacts, so there are many large spikes. The spikes
in the correlation time make the SWS and REM states not as distinguishable as they
are in the power and spectral entropy. The fractional band power is interesting. The
only frequency bands to show a clear change at the transition are the 12—-15 Hz spin-
dle band and the 25-47 Hz gamma band. Most of the other, lower-frequency bands
slightly decrease, but it does not happen suddenly as with the spindle and gamma
bands.

The graphs of the other rat recordings are all very similar to &ig.and pro-
vide little extra information. They are included in Appendix All the figures are
consistent in that the power, spectral entropy and the spindle and gamma bands of
the fractional power most clearly show a sudden change at the transition from SWS
to REM.

The results of the time-aligned transitions show that the SWS to REM transi-
tion of a rat is very quick. The abrupt change in the time-series statistics is strong
evidence that the cortex undergoes a first-order phase transition as it switches from
SWS to REM, as predicted by the Steyn-Ross model.

6.3 Looking for the DC Shifts

As mentioned at the beginning of this chapter, the Steyn-Ross model predicts a
positive DC-shift in the EEG/ECo0G as the cortex undergoes the phase transition
from SWS into REM. One of the goals of recording from the rats was to observe
and measure this DC-shift. With the time-aligned transitions from the previous
section, the corresponding DC ECoG could also be averaged to see if there was any
change in the potential.
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Figure 6.7: The 15 time-aligned SWS to REM transitions for rat recording 6e

dark line is the mean of the 15 data sets. The SWS to REM transition is centred at

t = 0 where the AC ECoG and time-series statistics change abruptly. The power,
spectral entropy and the spindle and gamma frequency bands give the best evidence
of a change in state. In the DC channel, a small positive DC-shift is present in the
mean. The DC ECoG analysis follows in &8
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6.3.1 Removing the DC Dirift

Time-aligning the transitions alone was not enough to prepare the DC ECoG for
averaging. The drift in the DC channel made comparisons between the transitions
difficult as they were all at fferent voltage levels. To make the DC transitions
comparable, each DC ECoG time-series needed to be modified. First, a subset of
the time-series that contained drift was selected. The slope of that subset was then
computed via linear regression. The slope gndtercept of the fitted line were

then subtracted from the DC ECoG time-series leaving a new time-series that was
close to zero, but still contained any DC-shifts that were present. An example of
this procedure is shown in Fi§.8 with the DC ECoG from the 73transition. The
programratrem_zero had an option to allow the user to select the data subset;
then it would calculate the straight line and subtract it from the time-series. The
codficients of the straight line were later saved to a data file.

(a) Subset of DC EEG Time-Series is Selected
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Figure 6.8: A demonstration of how the drift was removed from the DC ECoG.
(a) A linear portion of the time-series is selected. (b) A linear, least-squares line is
computed from the data points inside the selected region. The line is extrapolated to
be the same length as the time-series. (c) The line is subtracted from the time-series.
After the drift is removed, there is a slight increase in DC potential at transition, but

it occurs slowly over 10 s, not as fast as predicted by our model.

Figure6.9 shows how modifying the DC data helps. The DC ECoG time-series
of the SWS to REM transitions of rat recording 6.1 are plotted in €i§a. Each
transition has a dlierent average DC voltage. By bringing them back towards zero,
they can be compared and averaged. In Bi§.b the DC time-series have been
modified. They now all fit into a smaller range and an average can be easily calcu-
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lated.
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Figure 6.9: (a) The DC ECoG of 15 transitions of recording 6.1 are allftgrdnt
voltage levels because of the driftin the DC channel. (b) The slopeg-artdrcepts

are removed to aid in comparison. Several of the transitions have positive DC-shifts
atr = 0, but only one can be easily seen here. Subplot (b) was plotted earlier in
Fig. 6.7 where the mean was also calculated.

By altering the DC ECoG in this way, the final and initial potentials of any
DC-shift were ignored. At this point in the research, however, we were more in-
terested in finding whether there was any DC-shift associated with the SWS—REM
transition.
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6.3.2 How Many Transitions Show a DC Shift?

Most of the transitions in Fig6.9 do not have a DC-shift. To find those that do
have a jump in the potential, the time-series from recordinba&e been plotted
along with their first derivative in Figs.1Q If a DC-shift is present, the derivative
should show an upward spike. Because the DC-shift is predicted to occur quickly,
only 10 s either side of zero are shown. The data has been smoothed to remove
the AC components of the ECoG. Smoothing is applied because if the numerical
derivative is computed on the raw DC ECoG, the fluctuations are amplified, which
hides the spike that is to be detected. Unfortunately, the smoothing also smooths
out the sharp DC shifts, making the spike in the derivative lower than it should be.
The parameters used for the Whittaker smoother wete3 andi = 5 x 10'.

Five of the 15 time-series shown here have clear DC-shifts. They are all of
different amplitudes, the greatest of which is number 11. The change in potential
at the SWS to REM transition in number 11 is very large and it heavily influences
the mean, which was shown previously in FégZ. There are many other DC-shifts
that have not been marked because they do not oceut & There are also other
events that are noticeable in the DC time-series that do oceu« 43, but are not
well distinguished DC-shifts. One of these other events is a “down-up-down” kind
of waveform in number 8. Another is seen in number 7 where a quick, small jump
at the transition follows large, slower change in potential. It is hard to tell whether
these events are related to the SWS to REM transition.

The problem with detecting the DC-shifts by calculating the first derivative is
that each jump in potential is found manually. By eye, it is often easier to see the
DC-shift directly in the ECoG, rather than in the derivative. When the detection
is performed manually, there will always be biases. If a detection algorithm could
be implemented, ideally it would not be subject to human biases. The noise in the
derivative, coming especially from the large SWS fluctuations, makes automatic
software detection dlicult. With some early help, | have developed an algorithm
for detecting DC-shifts. This is the subject of chapter

6.3.3 Should Transition 11 be Included?

As mentioned earlier, the DC-shift in transition number 11 is much larger than the
others. Itis so large that it is almost too good to be true. The means across all of the
DC ECoG transitions, and their derivatives for numbers 1-15 have been calculated
both with and without transition number 11. In Fg11 which includes number

11, there is a large, quick jump in the potential, which gives a tall spike in the
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Smoothed DC ECoG Transitions First Derivative of ECoG

time (s) time (s)

Figure 6.10: The first 15 (smoothed) DC ECoG transitions and their first deriva-
tives. Circles mark the spikes in the derivatives that clearly indicate that there is a
DC-shift atr = 0.
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derivative. Number 11 is excluded from the average in Bi§2and the positive
DC-shift is still present, but it is just not as large, and goes over a longer period of
time. In the derivative, there are two smaller peaks-at0, but they do not stand

out well against the rest of the fluctuations.

The 11" transition has such a largéfect on the means that one questions its
validity. Using the MaTLAB commandfindstr?! the position of the 11 transition
was located in its original recording. As seen in FBdL3 this particular DC record-
ing has some large disturbances which change the DC potential by about 5 volts. It
is highly unlikely that the rat’s cortex could change by 5 V. There must have been
some electrical interference to cause such a huge change.

The region where transition 11 occurs looks to be on the decay curve of the am-
plifier as it recovers from the huge shift @6 V. In the two minutes containing the
DC-shift, there is not much fluctuation in the time-series apart from the DC-shift
itself, and another smaller one at 190:30 minutes. If the DC-shift is really an elec-
trical artefact, and not caused by the cortex changing state, then it is an unfortunate
coincidence that it happens simultaneously with the SWS to REM transition.

Because the change in DC potential is so large, and the signal seems to be influ-
enced by electrical interference, transition 11 should be excluded from the analysis.
It is encouraging that when 11 is excluded from the mean, we still see the rise in the
DC potential. At the moment, | can say that sometimes there is a positive DC-shift
as the cortex makes the transition from SWS to REM. Still to be answered is the
guestion of why some transitions do not contain any sign of a DC-shift.

To get more conclusive evidence, we need to make more recordings and take
better precautions to stop electrical and movement artefacts. A Faraday cage would
help to remove any electrical interference, but stopping movement artefacts would
be a more dficult matter. In a study bmarshalet al. (1998, she used a clamp
attached to the bed to restrain the heads of her human volunteers to stop them from
moving during their sleep. This eliminated all the movement artefacts which, can
drastically change the DC potential. In contrast, our rats were free to move around
in a container during the recording process.

1The functionf indstr is designed to find the indices of small strings hidden inside larger strings,
but it also works for numerical arrays provided they are arranged as row-vectors.
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Figure 6.11: The means of the DC ECoG and their derivatives for transitions 1-15.
When transition number 11 is included in the mean, the DC-shift is very clear in
both plots.
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Figure 6.12: The means of the DC ECoG and their derivatives but excluding tran-
sition 11. The change in potential is still present in the DC ECoG, but it is not very
distinguishable in the derivative, as the shifts do not all happen simultaneously,
which causes the shift in the mean to occur more slowly than ing=id.
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DC ECoG of recording 61
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Figure 6.13: The location of the Tlransition comes from a region in recording 6
where there seem to be large electrical fluctuations.
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6.4 A K-complex or a DC-shift?

While examining the rat transitions, particularly number 11, | made an interesting
observation. Whenever there is a sharp change in the DC potential, from either the
cortex or an electrical artefact, the corresponding AC ECoG always has a waveform
that looks very similar to a K-complex. | believe that these waveforms are the result
of high-pass filtering of the true ECoG signal that contains all frequencies.

All amplifiers used for data acquisition have a built-in high-pass filter (unless
specifically measuring DC). When filtering pre-recorded, digitised data on a com-
puter, one often uses a function suchfadtfilt found on the M\TLAB signal
processing toolbox. What is useful abdiititfilt is that the signal is filtered
twice, once forward and once backward. This eliminates any phase shift that would
come about from filtering in only one direction. During the data acquisition on the
other hand, the amplifier has to apply its filter in real time, and therefore cannot
filter in the backward direction.

In Fig. 6.14 there is a comparison between a real K-complex taken from hu-
man EEG, the apparent K-complex in the ECoG of transition number 11, and a K-
complex type waveform that was simulated by filtering noise containing an artificial
step. The shape and time-scale of all three are very similar. The filter parameters
needed some optimisation to get the simulated waveform to match the shape of the
other two. An elliptical filter was used with a cuifdrequency of 0.1 Hz and high-
pass frequency of 1 Hz. The amount of ripple allowed in the pass band was 0.5 dB.
The sharpness of this filtering required a filter order of 2. The magnitude and phase
response of the filter used are plotted on Bid.5

From the results of Fig6.14 it is quite clear that filtering a sharp step in the
DC potential, with a filter whose magnitude and phase response are similar to those
in Fig. 6.15 will result in a waveform that is very similar to the K-complex. The
filtered DC-shifts and real K-complexes are so alike that | believe that misclassifi-
cations could arise. If the Steyn-Ross model is correct, and there are DC-shifts at
the transition from SWS to REM, then a fake K-complex, arising from filtering out
the DC, could be mistaken for a real K-complex. Because K-complexes belong to
stage 2 sleep, the sleep stage would be assigned to stage 2 instead of REM.

Perhaps all K-complexes are actually some kind of DC-shift, and the shape that
is so familiar is really just the impulse response of the amplifier filter.
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Filtered DC-shifts mimic K-Complexes

| (@) Human K-Complex |

-(b) Rat DC Potential Shift i

~(c) Corresponding Rat AC ECoG 7

| (d) Artificial noise with step
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Figure 6.14: Diferent waveforms that look similar to a K-complex. (a) A real K-
complex from a human sleeper. (b) The DC-shift from the transition 11 of the rat
time-aligned transitions. (c) The AC ECoG that was recorded after the amplifier
filtered the DC component from the true signal. (d) Artificial data made to look
similar to a DC-shift. (e) The result of high-pass filtering of the artificial data in (d)
in only the forward direction. The phase response of the filter distorts the sharp DC
shift and leaves the waveform that looks very similar to the K-complex.
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Figure 6.15: The magnitude and phase response of the high-pass filter that was used
to filter out the DC component of the artificial data in Fégl4d.

6.5 Summary of Rat Results

The changes in the power, fractional band power, correlation time and spectral en-
tropy are consistent with both the human results of chdpéerd the predictions of
the phase transition model. At the transition from SWS to REM the power in the
ECoG greatly drops and it is distributed more into the lower frequencies. This is
accompanied by a drop in correlation time while the spectral entropy increases.

One diference in the results between the rats and the humans is the frequency
distribution. During SWS, there is much more energy in the 12-15 Hz spindle band
and much less in the 0.1-4 Hz slow-wave and delta bands for a rat. With a human,
almost 100% of the energy is concentrated below 4 Hz.

The quick cycling of the rats makes itfficult to see if there is a slow build-up
in power during SWS as there is with a human, but the qualitative changes in the
time-series statistics are still consistent with our phase transition model.

By aligning many time-series subsets that all contained SWS to REM transi-
tions, so that the transitions occurred simultaneously, averages were calculated. The
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averages very clearly showed that there was a sharp drop in power and a rise in spec-
tral entropy. The correlation time was not deetive at detecting the transition, but

the drop was still visible. Two of the six fflierent frequency bands showed an eas-

ily observable change at the transition. There was a rise in the fractional power
in the 25-47 Hz gamma band and a drop in the 12-15 Hz spindle band. The 15—
25 Hz beta band also reduced slightly at the transition. Some of the other fractional
power bands, particularly the 4—-8 Hz theta band, gave no hint of a change in state.
This was surprising as | had previously assumed that all the energy concentrated
in the low-frequency bands would be redistributed evenly throughout the higher-
frequency bands.

With the DC ECoG, it was easier to look at each transition separately. Five of
the 15 SWS to REM transitions showed a clear positive jump in potential which
was also seen as a spike in the first derivative. However, the jump was so large for
transition number 11 that it really should be excluded from the analysis, as it seems
to be an electrical interference artefact with very good timing. In the calculation of
the mean of the other 14 transitions, an increase in the potential was still present,
but it was too slow to be well distinguished above the noise in the mean of the
derivative. To get better, more reliable results, | believe more precautions need to
be taken to avoid artefacts when recording down to zero frequency.

One of the observations made while searching for DC-shifts was that the AC
recording contained a waveform that looked very similar to a K-complex. These are
the result of the high-pass filtering of the true bio-signal in real time, which is done
electronically by the amplifier. The sharp DC-shifts are phase-shifted by the filter
and produce what looks much like a K-complex. It could be that there are DC-shifts
at the transition into REM that appear to be K-complexes. This similarity could
lead to a misclassification. According to the sleep staging ruleRdmhtschffen
and Kale(1968), this epoch would have to be scored as stage 2.

Overall, the results of this chapter provide good evidence that the Steyn-Ross
model is correct in predicting that the transition from SWS into REM can be classi-
fied as a first-order phase transition. So far, there is some encouraging evidence of
a DC-shift at the transition, but it is not observed consistently enough to give us any
certainty.



Chapter 7

DC-Shift Detection Algorithm

In the previous chapter some of the DC ECoG was analysed in the hopes of finding
positive jumps in the DC potential at the time of the SWS to REM transition. From
15 transitions, 5 contained DC-shifts that were easily identified by inspection of
both the DC ECoG itself, and its numerical derivative. As mentioned earlier, manual
identification of the DC-shifts is not ideal. Presented in this chapter is an algorithm
that | have developed for detecting the DC-shifts.

7.1 Developing the New Algorithm

At first glance the problem of detecting a DC-shift is similar to step detection that
would commonly occur in image processing, such as the ‘weak stringldlke and
Zisserman(1987. However, this and many other image processing step-detection
techniques require that a threshold be set, making them unsuitable for my data as
we do not know what the magnitude of the DC step will be, and therefore cannot
set a meaningful threshold.

Another possibility, would be the first derivative. If the signal is generally
smooth then any sudden step should show up as a large spike in the first derivative.
But, because the EEG is full of noise-like fluctuations, the first derivative seems to
amplify the fluctuations, making the voltage steffidult to discern. In chaptes
the first derivative was computed after the DC ECoG had been smoothed. Smooth-
ing the data did remove the fluctuations, but it also smoothed out any DC-shifts,
thus reducing height of the spike in the derivative.

103
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7.1.1 The Two Least-Squares Lines

With the help of Jamie Sleigh and Alistair Steyn-Ross, we thought of another
method. Two linear, least-squares lines were fitted to the data, the first air[ ]

and the second at,[f + Ar]. There would be a diierence in the vertical position, or
DC voltageAV, of the two lines at time. Thenr could be varied along the time
axis with the lines being re-fitted for every position, giving a functiol\df(z). If

there is a DC-shift present in the signal, then it would be detected by the maximum
value of AV. This s illustrated in Fig7.1where the two lines have lengttr = 2 s

andt is varied to dfferent positions along the time axis. Where there is no DC-shift
in the ECo0G, there is only a smallfference between the ends of the straight lines.
At t = 0, where there is a DC-shift, the two lines have a large separatioA BEnd
measured.

In Fig. 7.1, only a few seconds either side of the SWS to REM transition have
been plotted. This is because the model predicts that the transition will be very
sudden. The data has already been time-aligned, so we know that the SWS to REM
transition is atr = 0 (or very close to it). By varying to every time sample
between-2 and 2 s and evaluating the two least-squares lines within the region of
interest, the functiod V' (¢) is formed. The function corresponding to the example
of transition 5 shown in Fig7.1, is graphed in Fig7.2 The DC ECoG is plotted
in the interval -4, 4] while AV only has the range{2, 2]. This is because the first
point of the change in potentiah V' (-2), is calculated from 4 s of ECoG data, -4 s
to0s.

7.1.2 Varying At to Make a Surface

A clear peak inAV shows the position of the DC-shift, and the maximum value
gives its size. The value &z = 2 s is somewhat arbitrary. Jamie Sleigh originally
suggested to try to fit two lines about2 s each to the DC data to see if there were
any noticeable changes in the potential. While developing the algorithm further, |
wondered if it would make much fierence to vary the length of the least-squares
lines. Shorter values akr would make the fitted lines become more sensitive to
small changes in the DC signal, and would then introduce more fluctuations into
AV (t). Conversely, ifAz is increased the signal would be less susceptible to change
andAV would become smoother. Figureé3shows howAV changes when tferent
line lengths are used.

It is hard to say exactly what value aft is optimal, but between 0.5 and 2 s
seems to work well. Much bigger than a few seconds would smootiA&uso
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DC-shift Detection, At=2

time (s)

Figure 7.1. Two least-squares lines, each of lenth= 2 s, slide along the time
axis of the (smoothed) DC ECoG of transition 5. The verticffledence between
the two lines gives the change in the DC potential. By looking at the time-series,
there is obviously a voltage steprat 0. The two lines do a good job at detecting
the step at = 0 in plot (d).
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DC ECoG of Transition 5
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Figure 7.2: The functiolV (¢) is maximum at the same position as the DC-shift
in the ECoG. This is expected as the example shown contained a clear DC-shift.

Decreasing At increases the fluctuations in AV
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Figure 7.3: By changing\t, the length of the least-squares lines, the sensitivity

of the DC-shift detection changes. Whan is large, only the clear DC-shifts are
detected. A4\t is lowered, it becomes more sensitive to small fluctuations
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much that only very large DC-shifts (such as transition 11) would be detected. On
the other hand, lowering¢ down to only a few samples would makd” fluctuate
so much it would be almost as noisy as the numerical derivative. Because the ideal
value ofAr is unknown, it can be made a variable, rather than a constant parameter.
The definition of AV has now changed, it is a function of two variables and has
become a surfac&AV = AV (¢, Ar).

In Fig. 7.4 the surface ofAV ((z, Ar) for transition 5 is plotted.At is varied
in reasonably large steps from 0.5 s to 2 s. The main feature of the surface is the
narrow hill centred at = 0, were the DC-shift has been detected. It is encouraging
that the maximum value of the hill is almost constant alongAhaxis. It shows
that when there is a clear DC-shift, it is detected no matter the length of the lines.
Away fromt = 0, the surface changes a lot more. Whgns short, there is more
fluctuation and a smaller peak emerges at—1.6 s. At the high end oh¢, either
side of the peakl” drops below zero, making wide troughs.

The mean value of the surfagd” is then calculated acrogs to compress it
back into a one variable function o,fAV_(t). Then the DC-shift and its position
can be measured with a simplex! command. The mean of the surfa(zel,/_(t),
is plotted in Fig.7.5. The vertical, red line denotes the position and size of the
DC-shift.

7.2 Applying the Algorithm to the DC Transitions

This method works very well when it is applied to data with a clear jump in the
potential, such as transition 5, which was the test data that was used in generating
the last few diagrams. It accurately determines the position of the maximum change
in the DC potential. The algorithm seems elaborate considering that taking the
derivative also found the position of the DC-shift in only a fraction of the time.
But this algorithm does have advantages over the derivative. It also finds the height
of the DC-shift and is more resistant to noise and artefacts. To test how well the
algorithm works, it needs to be applied to data with less obvious DC-shifts. In the
diagrams that follow, Figs/.6and7.7, the transitions 1-15 (except 5 as it was used
previously) from rat recording,Gare plotted.

As seen in the Figg..6and7.7, wherever there is a true DC-shift, it is accurately
detected. In a few cases (transition 2, 7 and 12), the algorithm marked DC-shifts
occurring close the SWS to REM transitiorr at 0 that could not be clearly marked

1The MATLAB commandnax can return the maximum value and its index:
[mx, i] = max(data);
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Surface AV(t,At) for transition 5

AVI(mV) .

At (s)

-1 0 1 2
t (s)

Figure 7.4: A plot of the surfac&V (¢, Ar). t is the time axis, andv is the length

of the least-squares lines used to measure the DC-shift. The maximum point of the
peak that runs along= 0 is the DC-shift. For this transition, varying the length of
the lines does not change the position of the DC shift.
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Mean across At of Surface AV(t,At)
0.01F T T T T T ]

0.005

mean(AV)
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The Size and Position of the DC-shift in transition 5

t(s)

Figure 7.5: The surfacaV ((z, Ar) has been averaged ovar, to form a one
variable function AV (). The red vertical line is the DC-shift whose position and
length were calculated by finding the maximumAdf (¢). The line has been copied

to the second subplot of the DC ECoG to show how well the algorithm detects the
DC-shift.

when using the first derivative. The idea of using the two least-squares lines to find
the shift definitely works when there is a shift. But the problem is that when there
really is no DC-shift, thenax command forces one to be found. Some kind of test
needs to be included so that data without a shift gets marked as having no shift.

More logic needs to be programmed into the algorithm to exclude shifts that
are not actually there. Such as in transition 11, for example, the positive shift is
very clear, but the algorithm also detects a lower amplitude negative shift after the
positive one. This seems to happen wherever there is a clear, positive (or negative)
spike inAV. Preceding and following the spike there are always smaller amplitude
local minima (or maxima), which are not at all associated with their own DC-shift.
Even more logic needs to be included into the algorithm so that other real shifts that,
show up as local maxima iy, are correctly marked as DC-shifts. After these have
been implemented, it would be simple to include detection for negative shifts too.
The simple solution would be to set a threshold that a shift must overcome before it
is detected. However, there is a large range in the magnitudes of the good DC-shifts
seen in Figs7.6and7.7.
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Figure 7.6: Because the algorithm finds the maximum valu&lof only one DC-

shift is detected in each data set. Transitions 2, 3, 6 and 7 have positive DC-shifts
that were detected within 1 s o= 0. Number 3 has a clear DC-shift, but its slow
rise makes the predicted value lower than it should be. The other transitions, 1 and
4, both have other peaks showing smaller positive shifts. They also contain large
negative shifts (the deep troughsA) that are closer to= 0.
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Figure 7.7. Three very clean DC-shifts are detected in transitions 11, 13 and 15.
Although earlier it was decided that number 11 is probably an electrical artefact
an should be excluded, it is still a good step which is accurately detected by the
algorithm. Transition 12 is also very closete= 0, The overall slope of the DC
ECog seems to change at the transitionat0, and seems to boost the amount of
the DC-shift. In transition 9 a shift has been identified that is very small. Here the
DC-shift occurs over a long period of about 1.5 s. The at the point in the DC ECoG
that is marked as the shift, there is a small ‘down-up’ which gives it the maximum
value. Transitions 8, 10 and 14 show large negative shifts close=tc0. The
positive shifts that are marked, are quite far away from the transition point.
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7.3 How Well do the Lines Fit the Data?

One way of further increasing the sensitivity of the algorithm that could be used
to eliminate some of the questionable or arbitrary maxima#f is to include a
measure of “goodness of fit” of the least-squares lines into the algorithm. When
there is a clear shift in potential, the two lines fit the data points best when either
both are on one side of the shift or one line is before the shift, and the other is after.
If a straight line is fitted to the corner of a step, the fit will poor, as the residuals will
be large. In Fig.7.8 transition 5 is plotted again with the two least-squares lines
calculated at three positionsz —0.5, 0 and 0.5 s. The norhof the residuals have
been calculated for each of the straight lines. A low norm value indicates a better
fit. For each pair of lines, the average of the two norms has been divided by the
square-root of the number of elements in the line. For example if the number of
elements ig, then

R + R
Rnorm — norm1 normz2 (7.1)

2v/n
The MATLAB functionpolyfit is used to calculate the least-squares lines. It
can return the norm of the residuals as an optional output, so to corRpsigakes
only a few extra lines of code, and it does not increase the computation time.

In the same manner &g/ (r) was computed earlier, a new functi®j,m(f) can
also be computed. The new function will have a minimum at the position of the shift
where the two least-squares lines fit to the data well. The new fun&igr(z) is
plotted in Fig.7.9along withAV (¢). The two are then combined by divididg” by
Ryorm(?) to make a new function with a more distinct peak. Note this new function
can only be used to find the time value of the DC-shift. To find the magnitude of
the DC-shift, the time index would have to be referred backka

In Fig. 7.9the functionsAV and R,om(t) are exactly the same size. This stays
true whenAr is varied and the functions become surfaces. Without altering the
process for locating the DC-shift, except for dividiad” with R,om(?), the DC-
shifts of transitions 1-15 were located again. Figaté®and7.11show the results.

When there is a clear shift present in the data, using the norms of the residuals
of the least-squares lines does make the peak of the maximum more sharp. When
the data is noisy, and there is no obvious shift, using the norms does not particularly
help. This is because the ‘goodness of fit' measure is usually better for the short
lines than it is for the long ones, as they are more free to move to better fit the data.

So far only results from the first 15 transitions have been shown. To condense

2The norm of a data set is calculated the same way as finding the length of a vector:
V(x1? + x22 4+ - - - + x,,%). If the elements ok have a Gaussian distribution, then nosné +/n
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Residuals are Lower at the DC-shift
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Figure 7.8: The “goodness of fit” can be quantified by using the norm of the resid-
uals. The quantityR,om is the sum of the norms of the residuals of the two least-
squares lines. Plot (b), where the lines best detect the DC-shift, has a lower value
of Rnorm that the other two plots, (a) and (c).

the results of all 87 transitions (number 11 has been excluded), the times of the
detected DC-shifts have been graphed as a histogram. The algorithm was still only
using themax command, so one position was returned per transition whether there
was a real DC-shift present or not. They were detected both with and without the
use of the norms. For each case, two histograms have been plotted. One with a
bin width of 0.129 s, giving 15 bins, and the second has a bin width of 0.267 s
amounting to 31 bins. In all the histograms, shown in Fig.2, there is a higher

than average number of shifts detected close #00. WhenRom, is used in the
detection, there is a slight increase in the number of DC-shifts close to zero. It
seems that there are some DC-shifts at the SWS to REM transition, but with most
of the transitions analysed here, it has not been observed. With more precautions to
reduce movement and electrical artefacts during the recording process, cleaner and
more reliable DC data could be gathered.

Something that is interesting is that number of detected shifts on the left side
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Figure 7.9: The functiondV and Rnom. Dividing AV by Rporm produces a new
function that has a very sharp peak that is easy to detect.

(during SWS) is decreased whdom is included. This is probably due to the
straight lines having a poor fit to the large fluctuations that are seen in SWS. Even
though the time-series was smoothed first to remove the fluctuations, sometimes
they were still not smooth enough.

7.4 DC-shift Detection — A Work in Progress

| have come to the conclusion that this algorithm shows promise and could be de-
veloped further. The two least-squares lines, which slide along the time-axis, nicely
detect all the obvious DC-shifts by tracing out local maxima (or minima for negative
shifts) on theAV curve. But it really needs some logic to choose which maxima
on AV should be identified as coming from a DC-shift, rather that just the global
maximum. This could be #icult to implement without setting thresholds, which
were originally avoided because magnitudes of the DC-shifts we hope to detect are
uninown.

Even more important than detecting secondary shifts, is eliminating poor quality
maxima all together so they are not mistaken as DC-shifts. Using the norms of the
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Figure 7.10: The norms of the residuals, which is a measure of the “goodness of
fit” of the two least-squares lines, have been included into the DC-shift detection
algorithm to increase its sensitivity. When the lines fit the data well, the peaks that
indicate DC-shifts should be made more distinct. The same transitions as seen in
Fig. 7.6are shown here to see if the positions of any of the DC-shifts have changed.
From these six, only the positive shift in transition 1 has changed. The peak on
the left side has been reduced to a lower amplitude than the peak on the right. The
shapes of the graphs of the other transitions have changed too, but not enough to
mark a dfferent position for the DC shift.
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Figure 7.11: The transitions 8-15 that are shown here were also shown earlier in
Fig.7.7. After modifying the algorithm to include the norms of the residuals, 10 and
12 have got DC-shifts that are marked dffelient positions. A least-squares line
passing through the fluctuations, betweea —1.4 s andr = —0.5 s, of transition

10, would have large residuals and therefore, a large valug,gf, atr = —1.4.

The highR,om Causes the maxima at= —1.4 to be reduced in height. In contrast
the value ofR,om corresponding to the small “blip” in the time-seriestat 2 s
would be much smaller. In transition 12, it is a similar situation. The DC-shift
was detected close to= 0, but all the fluctuations in that region would cause the
spike to be lowered. The maxima corresponding to three clearest shifts, in numbers
11, 13 and 15, have all been enhanced by the inclusiak,gf, into the detection
algorithm
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Figure 7.12: The positions of the detected DC-shifts wiRgg is and is not

included in the detection algorithm. There is a small increase in the number of DC-
shifts that occur close to= 0, but it does not stand out well against the fluctuations

of the rest of the graph and cannot be considered as evidence that a skif0as
more likely than anywhere else. Wh&n, is used in the detection algorithm, less
DC-shifts are detected on the right hand side,0, which is during SWS.
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residuals as a measure of the quality of the fit was intended to help reduce the
likelihood of detecting an unwanted shift, but it did not work as well as | had hoped.
The shorter lines are always able to fit the data better than the longer lines, and the
distribution of the residuals is far from Gaussian, so dividing\fydid not help
matters. Perhaps varyiny is not required and an optimal value could be found.
Only using one value akr would also drastically reduce the computation time.

Another way to test for good DC-shifts would be to measure the sharpness of
the corresponding peak lal’. This could be done with a FWHM (full-width half-
maximum). After the maximum of a peak is found and it height is measured, width
of the peak at half its maximum value is also measured. Then if the width is greater
than some threshold, then the peak is discarded anffaxeht peak would be lo-
cated. As mentioned earlier, setting thresholds has been avoided, but in this case
it is a threshold in the time domain, not in voltage. After seeing the results of the
algorithm so far, meaningful time thresholds for a FWHM could be set. The shape
of the peaks that correspond to good DC-shifts are well known now and and the
minimum FWHM could be sette 0.6 s.

| was pleased that the algorithm correctly identified the obvious shifts, but it
seems that in most cases the data used either did not have any change in the DC
potential, or it had so many changes that pinpointing only one wasudi.



Chapter 8
Conclusions and Future Work

The goal of this thesis was to find evidence supportingSteyn-Rost al. (2005
model of the sleeping cortex. The major prediction of the model is that the transition
from SWS to REM sleep is a first-order phase transition.

The model predicts that as the cortex undergoes the phase transition, statistics
describing the EEG fluctuations will dramatically change. During SWS, on ap-
proach towards the phase transition, there will be an increase in power and correla-
tion time of the EEG and the energy will become more concentrated at low frequen-
cies. Simultaneously the spectral entropy will decrease. At the point of transition
the model predicts that power and correlation time will surge toward infinity and
the energy will be concentrated at zero frequency. After the transition into REM
has been made, the power and correlation time of the EEG will both drop to a much
lower value and the frequency distribution will be much more even, leading to a
higher spectral entropy.

In the human results presented in chapbethe time-series statistics — power,
correlation time, fractional frequency band power and spectral entropy — were
calculated on real EEG. The sharp drop in power, correlation time and fractional
low-frequency power and the rise in spectral entropy after the transition were ob-
served consistently. The large surge in power and correlation time were not seen
every time. This was usually because a short period of stage 1 or 2 existed between
the high-amplitude stage 3 and stage 4. One SWS to REM transition in particular
showed an exceptionally good agreement with the predictions of the model. This
occurred in the second sleep cycle of patient 3 (Bij2on Pg.67). This transition
was so clear that the raw EEG and EOG time-series were also showrb(Fg.
on Pg.69). The transition was very abrupt, and the time of the transition can be
pinpointed to within a few seconds.

In chapter, the same time-series statistics were also calculated on the ECoG

119
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(similar to EEG but electrodes touch the surface of the cortex) of lab rats. Full
time-series were dicult to analyse because the rats complete their sleep cycles so
quickly. The best results came from time-aligning many time-series subsets so that
the SWS to REM transitions occurred simultaneously. Averages were calculated
and sharp drops in the power and correlation time and the jump in spectral entropy
were all clearly visible. The fractional band power behaved slightledéntly for

the rats from the way it behaved for the humans. The low-frequency (0.1-4 Hz)
did not show a consistent change. The frequency bands of most interest were the
spindle (12-15 Hz) and gamma (25-47 Hz) bands. At the transition, the spindle
band suddenly reduced and the gamma band increased.

The DC-coupled ECoG of the rats were also recorded in an attempt to detect the
jump of V, from the bottom branch of the manifold (Fig.8 on Pg.24) to the top
branch that is predicted by ti&teyn-Ros®t al. (2005 model. These results were
less convincing. In 14 SWS to REM transitions, a clear DC-shift was observed in
only four of them. There were many irregular fluctuations in the DC ECoG that
could possibly have been from electrical interference. To get more reliable results,
more precautions need to be taken when recording down to zero frequency. DC
signals are very sensitive and even a slight movement of the electrode wire can
drastically change the DC potential.

I made the observation that one-way, high-pass filtering of a DC-shift returns
a phase-shifted impulse response that looks very similar to a K-complex. Most
EEG time-series are recorded using such a filter built into the amplifier. Perhaps
DC-shifts do occur as the cortex transitions from SWS into REM, but in the AC-
coupled EEG, they would appear to be K-complexes. According to the rules by
Rechtschffen and Kalg1968), seeing a K-complex is reason to score an epoch of
sleep as stage 2.

Overall, the results presented in this thesis give good evidence supporting the
phase transition theory @teyn-Rosst al. (2005, with the most convincing evi-
dence in the time-series statistics of patient 3 shown inF=i2 (Pg.67).

8.1 Unfinished Work

During my own research, | needed to write many codes and functions to assist with
the time series analysis. There are pieces of code that | am unhappy with in their
present form.

One of the larger unfinished projects is the DC-shift detection algorithm that
was the subject of chapt&r | believe that the idea of this method shows promise,
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but at the moment theax command is used to find the DC-shift. It does detect the
obvious DC-shifts, but when there are several possible shifts, or no obvious shifts,
the position and size of the DC-shift returned are sometimes questionable. There
needs to be better logic conditions for specifying a “good” DC-shift.

In the human results, the correlation time showed a set of data points that were
much lower than the rest (Fi§.7 on Pg.59). These were the result of computing
the autocorrelation of EEG containing spindles. The correlation time, as it stands,
is defined as the lag time where the autocorrelation, Bd),(drops to Ye of
its maximum value. When the autocorrelation function oscillates as was shown
in Fig. 5.9 (Pg. 62) the lag time recorded is only abott, of the period of the
resonant oscillation. Marcus Wilson later informed me of another definition of the
correlation time:

(e <]

1
Tc = mj C(I) dt (81)

0
Here the area of the autocorrelation function is calculated from zero lag right out
to infinity, but the correlation time is usually only calculated on small epochs of
only ~4 s. In the results, the correlation time came to be less than 200 ms. If
an exponential decay with a time constant of 200 ms fits the autocorrelation well,
then the decay will have fallen to less than 99% of its starting value after 1 s. For
the EEG analysed in this thesis, setting the upper limit of Bgl)(to 4 s is a
fair approximation to infinity. If this new definition were implemented, it would
probably evaluate faster than the current implementation, because this uses only a
sum-and-divide operation. In the current form, the lag time is interpolated from the
point whereC(z)/C(0) reaches Je.

8.2 Future Work

The recordings of the DC-coupled ECoG made from the rats contained a lot of
artefacts. These include movements and electrical interference. The evidence sup-
porting a DC-shift as the cortex transitions from SWS to REM was not conclusive.
To find conclusive evidence, we need to obtain DC recordings that are more reliable
and free of artefacts.

It has been observed that K-complexes can be evoked in the EEG by the sleeper
hearing a startling sound. If the DC-coupled EEG were also recorded then evoked
K-complexes could be compared with their corresponding DC-EEG waveform. It
is conceivable, though unlikely that all K-complexes are actually DC-shifts.

In some of the human sleep records, the ECG was clearly visible in the EEG
as sharp spikes at a rate of about one per second. In sleep studies where only
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the amount of time spent in SWS and REM is considered, the ECG artefact is not
a problem. But the ECG does change the spectral distribution, so the results of
any time-series statistics will also be changed. | would like to try to remove the
ECG from the EEG. If the ECG is also recorded on its own channel, then using a
correlation function or dferential filter could be useful.



Appendix A

Matlab Codes Written

The most useful codes that were written are explained in this Appendix. The fist

section gives the details of the functions that were written to compute the time-series
statistics from real EEG. The second section describes some very useful utility func-
tions that were written to assist with displaying data. The third section discusses two
different methods of data smoothing.

A.1 Time-Series Statistics Functions

A.1.1 Function: sleeppower

P = sleeppower(data, fs, epoch);
P = sleeppower(data, fs, epoch, overlap);
[P, t] = sleeppower(...);

| implemented the total power calculation inAVILAB with a function named
sleeppower (power is already a built-in MTLAB command). It requires 3 basic
inputs. The firstis the original time-series data, which can contain multiple channels
of the time-series, but it should be arranged as a column-vector. The second input
is the frequency that the data was sampledfat,The third input argument is the
epoch size, which is the tini#e (see Eq.4.1)) that the calculation is to be performed
over. There is a fourth input argument, which is optional. dherlap argument
is a fraction between 0 and 1 that specifies how much each epoch should overlap
with the previous one. The overlapping feature was described in Chéyteif
overlap is not entered, it defaults to be zero.

The output ofsleeppower is the result of the power calculatian It will be
returned as an array with the new time-series going downwards in columns, with as
many channels as were originally input. The unit® @ire the square of the units of
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the original data. For example, if the EEG is measureg\inthen the power will

be returned asi{V)?. There is also an optional output argument This is a time
vector, in units of seconds, which is for plotting agaihsThe time vector does not
start at zero. lIts first element has the value of one-half the epoch time. This is so
that every data point will be plotted on the time axis at the centre of the of its epoch.

A.1.2 Function: fract_pwr

F = fract_pwr(data, fs, epoch);
F = fract_pwr(data, fs, epoch, overlap);
F = fract_pwr(data, fs, epoch, overlap, bands);

[F, t] = fract pwr(...);

The fractional band power is calculated with the functfafact pwr. It has
the same basic inputs and the optional time vector outpsfasppower. There
Is a fifth input argumentbands, which specifies what frequency bands are to be
calculated. Its default value is:

bands = [0.1, 4, 15, 47];

which means that will be calculated for 3 dferent frequency bands,

low: 01 <f< 4Hz
md: 4 <f< 15Hz
high: 15 < f< 47Hz

The variablebands must have at least two elements to specify the upper and lower
frequency limits. | have also provided an option to quicklyiseids to the com-
monly used Greek alphabet frequency bands (see fablen Pg.58). This is done

by settingbands to the string ‘greek’.

WhenF is returned, it is arranged as a three dimensional array. The time-series
runs down the columns, theftBrent channels run across the rows, and the fre-
quency bands go back into the third dimension. This is illustrated inA&igfor an
array containing 4 channels and 3 frequency bands. If only one channel was entered
into the function, however, rather than returning an n by 1 by 3 array, the function
will eliminate the singular dimension and return a two dimensional, n by 3, array.

A.1.3 Function: correlation_time

tau = correlation time(data, fs, epoch);
tau = correlation time(data, fs, epoch, overlap);
[tau, t] = correlation time(...);
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The functioncorrelation_time has the same basic inputs and optional time
vector output asleeppower. Evaluating the correlation time is much more time
consuming than the other time-series statistics described here. This is because the
autocorrelation calculation must be performed for every epoch in the time-series.
To make matters worse, the correlation time must be interpolated from the auto-
correlation. Because the calculation runs so slowly, | would not use the correlation
time for early analysis.

A.1.4 Function: entropy

H = entropy(data, fs, epoch);

H = entropy(data, fs, epoch, overlap);

H = entropy(data, fs, epoch, overlap, df);

H = entropy(data, fs, epoch, overlap, df, f lim);
[H, t] = entropy(...);

The functionentropy has the same basic data, sample rate epoch length and
overlap input arguments adeeppower. It also has two extra inputs.

The first input is the frequency bin widttf, whose default value ig% ~
0.159 Hz. This is to makéw = 1 rad s*. This value fordf is not always possible,
and needs to be checked.

When performing a discrete Fourier transform (DFT), the number of data points
returned is the same as the number of points that was entéreBlecause the DFT
of a purely real function (such as an EEG time-series) gives a function whose real
part is symmetric, the negative frequencies are all redundant. The spacing of the
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Figure A.1: The arrangement of the array that is returnetiday t pwr
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frequencies after the DFT is

1 _ 5
Af = == (A1)

and the number of samples in the epd@cls

T
=5 = Tfs. (A.2)
Now rearranging we find
N 1
T = — = — A3
fs Af (A3
and therefore, 1
Af = =. A4
f=7 (A.4)

So the minimum bin width is. To getAf to stay ats-, the epoch period must be
greater than 2 ~ 6.3 seconds.

The function contains a check to test whether the the specified (or default) value
of df is less than the minimum possiblef = 1. If test is true, therif is changed
to be equal ta\ f.

The second optional inpuf, 1im, is a two-element vector containing the fre-
quency limits. It has formfmin, fmad- If it is not specified,f_1im defaults to [0.1,
47] Hz.

A.2 Utility Software Tools

During the data analysis, | quickly realised that there were some simple signal pro-
cessing and display tasks that would need to be performed very often. | wrote
several MaTLAB functions to open data files and display results, allowing for user
input from either the mouse or keyboard in order to zoom, scroll, and even tog-
gle which data trace is being displayed. These utility functionssaeepwork
showline, zoomall andextreme. They are described below.

A.2.1 Matlab Graphics

Before | can proceed with the explaining how the functions work, the graphics
handling in MATLAB needs to be explained.

The MATLAB graphics environment maintains a hierarchical system of ‘parent’
and ‘children’ objects within each figure. The root level is at the top, and all figure
elements are children of the root. All subplots contained within a given figure are
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children of that figure. The subplots are then parents of many more graphics ob-
jects such as lines, surfaces and text. Each graphics object has a double-precision,
floating-point identifier associated with it called a *handle’. The handle points to a
large list of ‘properties’ and ‘property values’. For example a text label inserted into

a graph has the property 'position’, and its property value is@am, ) co-ordinate.

A.2.2 Data Display Software

The patient data | first received from Fisher & Paykel Heathcare had already been
sleep-staged by a sleep technician. | was given summary printouts of the sleep
recording which contained a chart of sleep stage versus time. One of my first tasks
was to view the patients’ sleep EEG and understand how the sleep staging rules of
Rechtschffen and Kalg1968 are applied. This meant plotting data~480 second
epochs and double checking the score that each epoch had been assigned. | did
not want a simple loop that in each iteration only plotted the next 30 seconds of
data. | wanted to be able to scroll forwards and backwards, increase or decrease the
epoch size and easily choose what channels were to be displayed. There were also
other operations that | wanted to include into the code, such as displaying the power
spectral density or autocorrelation of the current epoch.

The final code had the following structure:

1. Initial user input

- raw data file name
- which channels are to be displayed, tctad

- where in the file to start displaying from
2. Initialise figure

- create figure

- createn sub-plots
3. Begin while loop, stop when Escape is pressed

- read and filter raw data

- plot each channel in relevant subplot
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- wait for user input
— or <« scroll forward or backward
t+ or | zoominorzoom out
0 ... 5 assignsleepstage=0wake, 1= stage 1, 2 stage 2,
3 = stage 3, 4 stage 4, 5= REM (these are disabled
once staging is finalised)
f then i display PSD of channel(wherei is one of the nu-

merical keys)
c then i display autocorrelation of channel

- reset the start and stop index for reading in next epoch of data

4. Save the current state of the sleep-staging file

This code proved to be very useful for viewing data and helping me get a feel
for EEG sleep staging and artefact detection. As this was the first work | did on
the project, | (perhaps foolishly) named the progrelmepwork. FigureA.2 is a
screenshot of the display produceddigepwork. It displays each dierent channel
in its own subplot. When fewer channels are specified, it will adjust the height of
each subplot so that the display fills the screen. FiguBshows examples the PSD
and autocorrelation that are displayed after pressing tivec keys.

patient 3, Start time = 02:30:00, Epoch length = 30 sec, Epoch # 301, Sleep Stage 3

08 1 T T T T

P W
= i

_poFLOW | | | | |

02:30:00 02:30:05 02:30:10 02:30:15 02:30:20 02:30:25 02:30:30

‘ « previous, —: next, 1: zoom in, |: zoom out, f: PSD, c: autocorrelation, Esc: quit ‘

Figure A.2: A screen shot of the display eieepwork. The bold face labels
at the left of each subplot are the names of the channels. LOCARG®R/right
electroocculogram (EOG). LE& leg movements, MIG= microphone, FLOW=
airflow.
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Figure A.3: Screenshots of the new figures that are displayed when using the psd or
autocorrelation options afleepwork.

A.2.3 Function: showline

showline
showline (L)
showline(L,string)

The functionshowline operates on a set of subplots containing many plotted
traces, clearing all but one from the display. Pressing the left or right arrow key
causes the visible trace to disappear and the next trace in the sequence to appear.
This is very useful when examining cluttered graphs.

It has two main ways of starting. The first is to automatically detect the handles
[ of all n traces in each of the subplots and arranges the handles in an array:

[0, | 12 | [ 1, ]
L = 12_’1 12_’2 lz_’”’ (A.5)
i lnl | i ln,2 i i lnm i

The subscriptandy, of /; ;, mean the"” trace of thej" subplot. This method fails if
there are a diierent number of traces in each axes, because the coluninaotild
have diferent lengths.

The second method of startisfjowline is to inputL as an argument. In that
case, it does not matter how the trace handles are arrandedjust as long as
L is rectangular. The function then goes through the process of making all traces
whose handles are in th# row of L visible, while all the other traces are rendered
invisible. This means that if the number of traces contained in each subplot are not
the samel. can be made rectangular by entering one handlelimtwre than once.
For example, FigA.4 shows one subplot with three traces, while the second subplot



130 Matlab Codes Written

has only one trace. Fathowline to alternate only tracek, /, andl. in the first
subplot, the array could be be constructed as:

I3 lg la
L = lb ld or L = lb (A6)
lC ld lC

Figure A.4: An example described above of three traces in the first subplot and only
one in the second subplot. To dgt/, and/ to alternate usinghowline, L would
have to be constructed as in E4.§).

In both cases fokL, showline will perform in the same way. The plots in the
first subplot will alternate between the three tradgsl, and/., while the second
subplot will continuously show the one tradg, The function will run slightly
slower for the firsiL, as it will make the trace in the second subplot invisible then
visible every time. Using the second versionLgfshowline will leave thely trace
alone and it will stay visible all the time.

The functionshowline contains awhile loop that sets theisible property
to off for the handles contained iIn , then turns it back on fok, wherei = 1
as an initial condition. This displays all traces whose handles are iff'thaw in
the arraylL, and hides all the others. The function then goes into a “paused while
waiting for user input” state with the use of the built-inAVLAB functionginput.

Only the«, —, space andEsc keys are acceptable input in this state. ¥-aor —

is input, i is decreased or increased by 1. The function also chiécks: 1, then

i = n, and alsaf i > n, theni = 1, which gives the variableperiodic boundary
conditions. The function then goes back to the start ofvthéde loop with a new

value fori. The loop is ended when the Escape key or space bar is pressed and the
function ends. The flierence between Esc and space is that space will leave the
figure with all the traces excefptinvisible, while Esc will make all traces become
visible again.
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There is a second optional input argument that was included to provide a label
for each dfferent trace. This label was often just the channel number of the trace
being displayed. The second argument needs to be a character array, with the same
number of rows a&. When thei’” trace is displayed, th#" row of the character
array would be displayed in the top right corner of the plot.

An unexpected, but useful result from using g@wline function was that the
scale of the axes changes automatically to fit the currently visible trace. This occurs
because of MTLAB’ s default behavior to set the axis propertied immode’ and
‘ylimmode’ t0 ‘auto’. It can be overwritten by the commanexis (axis)?,
which holds the limits at their current values.

FigureA.5 shows three curves of the form

sin(wt)

y=— (A7)

wherew = 1, 2 and 4 radians per second. All three curves were plotted on the same
axes and then thshowline function was used to hide two of the curves from the
display. | also made use of the string argument to show the valweoofeach axes.
These plots also demonstrate the convenient auto-scaling actionyaaxfsdimits
change for the smaller amplitude functions.

A.2.4 Function: zoomall

zoomall
zoomall(‘x’)
zoomall(‘y?)
zoomall(‘xy’)

When working with time-series analysis, often many graphs are displayed and
all are plotted as a function of time. It is common to want to zoom in to take a closer
look at a selected subset of the data. &idulty arises in that the zoom function
builtinto MATLAB, needs to be performed separately and manually on each subplot
within the graphics window. This is done by selecting a region of interest with the
mouse; after the button is released, the axes zooms in to display only what was
selected in the box. This selection procedure must then be repeated for each subplot
within the figure if all subplots are to share a common axis scaling. Because it is
extremely dificult to draw the same sized box for each subplot, the zoomed subplots
will usually have slightly diferent limits.

laxis has two modes of operation, giving an input argumentis (1imits), sets the current
axis limits to the values specified hymits, while axis by itself returns the current axis limits
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y = sin(wt)

y = sin(wt)

g
-15

L
-10

0
time [s]

y = sin(wt)

0
time [s]

y = sin(wt)

time [s]

time [s]

Figure A.5: An example okhowline in action. Upper-left: Three traces plotted
with different values ofo. Upper-right:showline removes two traces so only the
w = 1 trace is plotted. Lower-left: The = 2 trace is made visible, the other two
are suppressed. Lower-right: Only ttae= 4 trace is visible.

| wrote thezoomall function to allow the user to zoom within one subplot
and have the function automatically zoom all the other axes to the same limits.
This was achieved by first turning on the zoom attribute, then calling the function
waitforbuttonpress, which pauses the running function until a mouse button
or key is pressed. Fortunately, if zoom is turned on, whétforbuttonpress
function does not un-pause until the mouse button is released, and the axes has
zoomed in. The function finds the limits of the axis which was last ‘clicked’ in (the
axis command will return the limits of the current subplot). Awmall function
then sets all the axis limits to the correct values.

| found that it was more useful to implement the zooming operation by handling
the x-axis andy-axis separately. This meant that an option of zooming am y or
both could be included in as an input argument. In fact, as most of my data is plotted
with time on thex-axis, | set the default behavior to zoom only in thdirection.
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A.2.5 Function: extreme

extreme(data)
extreme(data,n)

X
X

Attimes itis desirable to plot the fullsix hours of raw data, but at a sample rate
of 256 Hz, this corresponds tdb.5 x 10° sample points per channel. Attempting to
display this quantity of data can be slow and unwieldy if using an older computer.
To help with this, | decided teubsample¢he data set when plotting raw time-series.
Often subsampling is performed by taking evétysample, to reduce the data length
from N samples b)?; to give a subsampled data set of length ¥ This, however,
may leave out a sharp peak, especiallyiff large (comparable to the sample rate).

| decided to subsample the data in &elient way. In the functiorxtreme,
instead of taking one sample piepoints, | tooktwo samples per i2points, where
the two sample values were selected to be the local maximum and minimum val-
ues within that data subset. This was achieved by reshaping the data vedtor of
samples columnwise into an array of skeows byC columns, where

R =2 =2 (A.8)
n
and N
n
C==—=_ A.9
2i 2 (A-9)

Notice thatn must be even and a factor &f to keep the values all integers. The
new R by C data arrayD looks like:

dia di2 <o |dic
d d o
D = ?,l ?,2 2,C (AlO)
|dra1|  [dr2| - _dR,C_

Using themax andmin commands, the maximum and minimum values for each
column in the arrayD are calculated and returned as row-vectors.

Dmax

max|[D]

di1 di2
D™ = | max |dz1| max|dazz

pmax _ (drlnax dgﬁax . ) (A.11)
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and

D™ = min[D]
Dmin

(d;"i” AL ) (A.12)

Then theD™* and D™ row vectors are combined to give a new matrix:
Dmax dmax dmax ..
: = rooT2 (A.13)
Dmln dTII’] dg]ln -

This last array is reshaped into a column vector which contains only the extreme
values of the matribxD

drlnax 7]
drlnin
Dextreme — drznax (A 14)

min
d2

The code for the functioaxtreme also contains some important housekeeping
to ensure the original data vector can be reshaped intg the<* matrix D. If
the number of pointsiV, of the original data vector is not a multiple 6f= 3, D
cannot be constructed. This problem was fixed by first finding the closest values of
R andC that give a product only slightly larger thav. The definitions ofR and
C had to be modified to

C = round(%) (A.15)
and
R = ceil<ﬁ> (A.16)
C

where ‘round’ rounds up or down to the nearest integer and ‘ceil’ (ceiling) rounds
up to the nearest larger integer. The ‘ceiling’ operation in Eql$) is used to
enure thaiR x C > N. By adding R x C) — N points, whose values are calculated
from local averages, into the original data vector, at regular intervals, the length of
the data vector is increased to be exad&ly C.

To give an example of the operation @ftreme, let us work through a simple
numerical example. Let the vectoibe all integers in the intervalHg, 9], and then
lety = x2. We haveN = 18 points and want to subsample dowrite- 12. The
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matrix D will haveC = 4 = £ = 6 columns andR = &% = 218 = 3 rows.

n

64 [251[4][12][16]] 49
D = 49 | | 16 4|1 25] ]| 64 (A.17)
36 9 o||o9|]|36]]s1

|

The following D™ and D™" are:

D™ = (64 25 4 9 36 8] (A.18)
D™ = (36 9 0 1 16 49 (A.19)

The final D®®™eyector, is now
DM = (64 36 25 9 4 0 9 1 36 16 81 4p (A.20)

Notice how the values at the right-hand side of the vector begin to alternate high
and low. FigureA.6 shows a graph ob®®meand the originaly = x2 data. When
plotting the new subsamplgdvalues, the corresponding nawalues are uniformly
spaced starting from; and ending andg this leads to some distortion in the
axis. Theextreme function is clearly not suitable for small-scale subsampling as
shown here.

Numerical example of extreme
90 T T T T T T T T

80

70

60

50

40

30

20

10 o y=x

—*— extreme(y,12)
| |

-8 -6 -4 -2 0 2 4 6 8 10

Figure A.6: A plot of the functiory = x? and data that has been subsampled from
18 points to 12 usingxtreme

For a more realistic example, it is better to use real EEG. In kig.l have
plotted 250 seconds of EEG datA & 400 Hz) that came from a lab rat. The raw
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data were subsampled usiegtreme to give only 2000 data points. After zooming

in along thex-axis, the subsampling begins to be noticeable. When there are twice
as many data points than there are pixels on the screen, the subsampled graphs looks
fine, but when the ratio of pixels to points gets below 1:1, the zig-zag structure of
the subsampling becomes visible.

In functions whereextreme was used, | usually setto be about three or four
thousand, as this was guaranteed to be greater than the number of pixels in the width
of the screen (e.g., 1024, 1152 or 1280).

A.3 Data Smoothing

During the time series analysis, | found that the results often had a lot of fluctuation
due to the small changes in the EEG amplitudes and frequencies. There were also
spikes due to artefacts in the raw data. The results needed to be smoothed. To get a
good idea of the gross changes,

A.3.1 Convolution Moving Average

The first smoothing technique | applied was a moving average. The most natural
way to apply a moving average smoother is to take the average of all the data points
fromi to i + n then another average for the points from 1 toi + n + 1 and so

on. This method is extremely slow, especially if the data set is large. A better way
is to convolvethe data set with a small vector of all ones. The convolution of two
functionsf andg is denoted byf *« g and defined as:

W) = (f % £)(1) = jf(r) gt - 1) dr (A21)

The convolution operation produces a third functigrwhich is a measure of the
similarity betweenf andg at an dfsetz. When written in discretely EqQA(21)
becomes:

N
he = (f*i = ) f) 8w (A.22)

j=1
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(a) EEG data plotted at full resolution, N = 10° samples
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Figure A.7: Demonstration of thextreme function. Before plotting, the width of

the x-axis was set to exactly 500 pixels on the monitor. (a) 100,000 samples of raw
EEG data is plotted, giving 2,000 points plotted per pixel (the sample frequgncy

is 400 Hz). (b) using thextreme function the raw data was subsampled to only
2,000 samples. At this resolution, there are four data points to every pixel To the
eye, there is no dlierence in (a) and (b). (c) The raw data has been zoomed in along
the x-axis to display only 16,000 samples, which is 32 samples per pixel. (d) The
subsampled data is zoomed in to the same time scale as (c) and now only has 320
data points to be displayed in the 500 pixels.
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where N is the number of elements in the first vectgr, For an example lef =
(1,2,3,4) andg = (1,1, 1). Then the first terma; will be:

ha

4
Z fj 81+1—j (A-23)
j=1

f181+ f280+ f3g-1+ fag—o
I1x1+2x04+3x0+4x%x0
=1

Notice that when the subscript index does not exist, s 01 g_; the missing value

is replaced by zero. The other termsiaire computed similarly. To better illustrate

the convolution procedure | have combing@ndg into an array of the forn{g].

Now the next terms in the convolution process can be computed by taking the sums
of the columnwise products. (The use here of the sympo#d][] are not strictly
correct)

hy

(. C20) e
32[0 120 o]

ez e
- Y|123 0|

= 6

e -
|0 23 4]

=9
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oz, e
= Y003 40

=7

e Z[H<(l o (41) 1 1))] (A29)
> |0 00400

= 4

Thus for this example} = f x g
h= (13 6 9 7 4) (A.29)

The first and last elements #fhave very little meaning as only one non-zero term
was used in their calculation. Whenever a convolution is evaluated close to the end
points of a data vector, the resulting points loose their significance.

A convolution may not sound like a fast method, for performing something as
trivial as a moving average. However, by applying the convolution theorem from
mathematics$piege) 1963, we can find an algorithm that is very quickly imple-
mented numerically.

Flf =gl = (FIf1-Flel) (A.30)

whereF is the Fourier transform operator. By applying the inverse Fourier trans-
form 71 we get

[ =g = FFLf] Flgl] (A.31)

MATLAB has a built-in function, calledonv, which evaluates convolutions us-
ing Eq. A.31). It needs to do some zero-padding to keep the numerical calculation
exact Mathworks 2002. If we have the two vectorg andg, then the convolution
f = g can be evaluated by:

F = fft([f zeros(1l,length(g)-1)]1)
G = fft([g zeros(1l,length(£f)-1)])
then

conv(f,g) = ifft(F.*G).

For the moving average calculatiofi,is the data set anglis a small vector of
lengthn containing only ones. The result of the convolution is not exactly a moving
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average yet, it must be divided by the sumgotvhich in this case is simply.
For my implementation of the convolution moving average, | actually used another
MATLAB function calledconvn, which is a multi-dimensional convolution. This
was used for two reasons. Firstly, so that multiple channels could be smoothed
simultaneously, and secondly, becauseavn provides and optional input argument
to truncate the ends of * g so that it becomes the same sizefasUsingh =
convn(f,g, ‘same’) to evaluate the example above, would returs [3 6 9
7] which has a the same number of elementg awhich has eliminated the most
meaningless points from the ends.

To demonstrate the convolution smoothing | have plotted the spectral entropy
(see sectiod.4) of two minutes of rat EEG. In FigA.8, there are 20 points plotted
per second. | set the convolution smoother to use a vector of 21 ones.

Demonstration of Convolution Smoothing
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Figure A.8: Smoothed data using a convolution moving average smoother. Notice
the flat, horizontal line at the edge of the data in(a) — this is an undesirable edge
effect.

One problem with the moving average smoother is that the end points become
very strongly pulled towards zero. This because at the edges of the data vector,



A.3 Data Smoothing 141

less tham data points are summed but then they are still divided,byaking the
average less than what it should have been. | got around this by simply replacing
these distorted points with copies of the closest correct point. This left strange
looking horizontal lines at the edges of the data set, but was better than the earlier
problem, which is shown in FigA.9

Convolution smoothing with bad Edge Effects
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Figure A.9: The same data set as FAQ8 except the edges are pulled down towards
zero from the convolution process

A.3.2 Whittaker Difference Smoothing

whittaker(y,lambda)
whittaker(y,lambda,d)

Z
Z

Jamie Sleigh, one of my colleagues, informed me of another smoothing tech-
nique. Eilers (1994 gives a smoothing technique that was first published by Whit-
taker in 1923, who originally called it “graduation”. Using today’s language, Eilers
calls it “penalized least squares”.

Suppose we have a data series that consisis pbints y; sampled at equal
intervals, to which we want to fit a smoothed serigsA “goodness of fit” measure
is the sum of the squares of the residuals,

S1= Y i—u) (A:32)
i=1
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A similar equation can be written to describe the smoothnegsroferms of suc-
cessivez-differences, of dference orded, Az; = z; — Ziva,

S2 = Y (An)? (A.33)
i=2

S and.S; can be combined to give a measure of both fit and smoothness

S = S51+45

m

D =)+ 4 ) (Az) (A.34)
i=2

i=1

S

The parametet is used to trade between smoothnesg ahd fit to the datg. S
now needs to be minimised in the the same fashion as a least-squares polynomial fit.
In MATLAB this is best done using matrix arithmetic. In matrix notation Bqg34)
IS
S =y—zl*+ Dz (A.35)

whereDz = Az, For example, whem =4 andd =1, D is

-1 1 00
D = 0 -1 10 (A.36)
0O 0 -11
and the product oDz is
-1 1 00 “ -1+ 2o
pz=| 0-1 10|l ®|=] -2+ (A.37)
o o-11/°% —Za+ 24
24

The solution of minimising Eq.A.35) is found by the system of linear equations
(I+AD'D)z = y (A.38)

The equation can be solved fgrin one line of MATLAB code using the ‘left
matrix divide’ operator\’

z = (I + lambda * D’ * D) \ y;

Note that if there is a missing value in the data, eg. one ofythe NaN, then
the above line of code will returpthat contains only NaN<Eilers (1994 gives a
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solution to this problem by flagging all missing values and assigning weights, one
for atrue value and zero otherwise. The weights are arranged into a diagonal matrix
W which replaces both the identity matrband replacesg with Wy in Eq. (A.38).

(W+AD'D)z = Wy (A.39)

The Whittaker smoother is very fast and robust, and even better smoothing can
be achieved with using second or third ordeffefiences, e.gd = 2 = Ayz =
Zi — Ziz2- One problem | have found, is that only experience can teach what to use
for the value ofd. At first guess, | would tryA = 10, 100 or 1000, but never less
than 1, because then it only returns y.

In Fig. A.101 have plotted the same spectral entropy data as inAgy.but this
time smoothed using Whittaker's method. | needed to get the Whittaker smoother to
produce similar results as the convolution smoother, but the parameters for the two
algorithms mean completelyféerent things. To compare like with like, | performed
the Whittaker smoother with a range éfuntil its output.Sy, was very similar to
those of the convolution smoothS8. | settled on the parametets= 1000 and the
difference orde#i = 2. The rms diference betweefy and.S¢- was only 0.0023.

A.3.3 Comparison of Convolution and Whittaker Smoothing

To compareSy, and S¢, there are a few factors that can be considered. The first
is the quality of the smoothing. Is the smoothed curve actually smooth? To help
answer this question | have plotted the two smoothed curves from above again, and
also their first (numerical) derivative in Fig.11.

It is clear that smoothing data using Whittaker's method gives much smoother
results that a convolution moving average. There are also no bad ffdgts evith
the Whittaker smoother.

Another question to test the quality of smoothing should be asked. Is the smooth
curve true to the data? To help answer this, | have plotted the same spectral entropy
data again and made new smooth cu8gsand.Sy . This time the number of points
used in the convolution was increased to 31. As before a new valadad to be
chosen to give a minimum rmsftkrence betweeS¢: andSy,. At 4 = 6000, the
rms diference was 0.0027; Figufel2 shows how the convolution moving average
curveSc sometimes changes in anti-phase with the data. This undesirable behavior
is due to the equal weighting of all the data points used in calculating the moving
average.

Perhaps a weighted moving average, that uses a Gaussian shape rather that the
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Demonstration of Whittaker Smoothing
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Figure A.10: Smoothed data using a Whittaker smoothet, 1000 andd = 2.
Notice that the curve follows the data points at the edge of the data in (a).

simple square shape I that have chosen, would give better smoothing results. How-
ever, The Whittaker smoothing technique performs so well that there is not much
point in persisting with the convolution moving average.
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Convolution and Whittaker Smoothing
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Figure A.11: From looking at the first derivatives, the Whittaker smoother produces
much smoother curves than the convolution smoother
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Convolution and Whittaker Smoothing
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Figure A.12: The convolution smoother is calculated with 31. Now the smooth
line seems to go in anti-phase with the fluctuations of the data. The Whittaker does
not have these problems.



Appendix B

Extra Rat Transition Results

The figures contained in this Appendix were calculated at the same time & Fig.

on Pg.91. However, these results are all very similar and provide little extra in-
formation. If included in the main body they would only disrupt the flow of text.
The figures show a consistent drop in power, rise in spectral entropy, rise in gamma
frequency power and drop in spindle frequency power. For all The figures, the DC
ECoG shows many fluctuations, and no consistent trend. engineering
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Statistics of Recording 6 Fractional Band Power
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Figure B.1: The 20 time-aligned SWS to REM transitions for rat recording 6.3. The
SWS to REM transition is again, most clear in the power, spectral entropy, spindle
band and gamma band. The DC channel shows no clear positive jump in potential.
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Statistics of Recording 6 4 Fractional Band Power
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Figure B.2: The 5 time-aligned SWS to REM transitions for rat recording 6.4. Here
the alpha frequency band shows a slight increase in the REM state. It is still not as
distinctive as the gamma band, spindle bands, power or spectral entropy. There is
a increase in the slope of the average DC potential, but our theory predicts a much
quicker change than what is seen here.



150 Extra Rat Transition Results

Statistics of Recording 11 ) Fractional Band Power
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Figure B.3: The 7 time-aligned SWS to REM transitions for rat recording 11.2.
The SWS to REM transition is clear in the time-series statistics. Contrary to rat
recording 6.4 in FigB.2, the alpha frequency band decreases. Some of the DC time-
series have positive slopes while others are negative and they cancel out leaving the
average reasonably flat.
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Statistics of Recording 12 1 Fractional Band Power
1
40
Q 20 EE: ‘
s %305
3~ O M e
[a)
-20 0
0.6

T
© 0.4
]

AC ECoG
[nv]
=
o o
theta
o

-10
40
5 30
g =20
10
0
60
e 0
S
39 40 L 0.4
5% o
g€
20 g
QéO'ZMWM#W
0
0.95
3 2 0.4
g o o T
3%09 | Ez
§&0. %LAO.ZMM
N
0.85 0 .

0 50 -50 0 50
time [s] time [s]

|
A
o

Figure B.4: 8 time-aligned SWS to REM transitions for rat recording 12.1. The
changes in power, spectral entropy and spindle and gamma bands mark the transi-
tion atr = 0. The DC ECoG time-series show no consistent trend.
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Statistics of Recording 12 ) Fractional Band Power
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Figure B.5: 11 time-aligned SWS to REM transitions for rat recording 12.2. This is
one of the few rat recordings where the correlation time gives a sharp change similar
to the power and spectral entropy. The average DC potential seems to increase
slightly at the point of transition, but it is not fast enough to call a DC shift.



153

Statistics of Recording 12 Fractional Band Power
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Figure B.6: 8 time-aligned SWS to REM transitions for rat recording 12.3. The
DC average has a positive increase at about -5 seconds, it comes from one of the
transitions with a large DC shift.
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