CHAPTER 17

Magnetic Resonance Imaging

Between 1978 and 1985 magnetic resonance imaging (MRI) (formerly called nuclear magnetic resonance
imaging) developed into a useful modality for medical diagnosis. It provides very-high-resolution images
without ionizing radiation. There is also the potential for more elaborate imaging, including phase effects,
flow, and the signature of particular atomic environments.

Magnetic resonance phenomena are more complicated than x-ray attenuation or photon emission by a
radioactive nucleus. Magnetic resonance imaging depends upon the behavior of atomic nuclei in a magnetic
field, in particular, the orientation and motion of the nuclear magnetic moment in the magnetic field. The
patient is placed in a strong static magnetic field (typically 1-4 T). This is usually provided by a hollow
cylindrical (solenoidal) magnet, though some machines are being made that use other configurations so that
the physician can carry out procedures on the patient while viewing the MRI image. Other coils apply
spatial gradients to the magnetic field, along with radio-frequency signals that cause the magnetization
changes described below. Still other coils detect the very weak radio-frequency signals resulting from these
changes.

First, we must understand the property that we are measuring. Section 17.1 describes the behavior of a
magnetic moment in a static magnetic field, and Sec. 17.2 shows how the nuclear spin is related to the
magnetic moment. Section 17.3 introduces the concept of the magnetization vector, which is the magnetic
moment per unit volume, while Sec. 17.4 develops the equations of motion for the magnetic moment. In
order to describe the motion of the magnetization, it is convenient—in fact, almost mandatory—to use the
rotating coordinate system described in section 17.5.

To make a measurement, the nuclear magnetic moments originally aligned with the static magnetic field
are made to rotate or precess in a plane perpendicular to the static field, after which the magnetization
gradually returns to its original value. This relaxation phenomenon is described in Sec. 17.6. Sections 17.7
and 17.8 describe ways in which the magnetization can be manipulated for measurement or imaging.

Imaging techniques are finally introduced in Sec. 17.9. Sections 17.10 and 17.11 describe how chemical
shifts and flow can affect the image or can themselves be imaged.

17.1. MAGNETIC MOMENTS IN AN
EXTERNAL MAGNETIC FIELD

Magnetic resonance imaging detects the magnetic dipoles
in the nuclei of atoms in the human body. We saw in Chap.
9 that isolated magnetic monopoles have never been
observed [see Eq. (9.6)], and that magnetic fields are
produced by moving charges or electric currents. In some
cases, such as bar magnets, the external field is the same as
if there were magnetic charges occurring in pairs or
dipoles.' The strength of a dipole is measured by its
magnetic dipole moment p. (In Chap. 9 the magnetic dipole

"Dipoles can be arranged so that their fields nearly cancel, giving rise to
still-higher-order moments such as the quadrupole moment or the octu-
pole moment. (See Chap. 7). A configuration for which the quadrupole
moment is important is two magnets in line arranged as N-S-S-N.
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moment was called m to avoid confusion with . In this
chapter we use u to avoid confusion with the quantum
number m and to be consistent with the literature in the
field.) The magnetic dipole moment is analogous to the
electric dipole moment of Chap. 7; however, it is produced
by a movement of charge, such as charge moving in a
circular path. The units of g are J T~! or A m?. We saw that
when a magnetic dipole is placed in a magnetic field as in
Fig. 17.1, it is necessary to apply an external torque 7.y, to
keep it in equilibrium. This torque, which is required to
cancel the torque exerted by the magnetic field, vanishes if
the dipole is aligned with the magnetic field. The torque
exerted on the dipole by the magnetic field is

=pxB (17.1)

[This is Eq. (9.4)].
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FIGURE 17.1. A dipole in a magnetic field. The dipole can
be either a bar magnet or a current loop.

The potential energy of the dipole is the work that must
be done by 7., to change the dipole’s orientation in the
magnetic field without changing any kinetic energy it might
have. To increase angle # by an amount d 6 requires that
work be done on the dipole-magnetic field system. This
work is the increase in potential energy of the system:

dU=uB sin 6 d#. 17.2)

This can be integrated to give the change in potential energy
when the angle changes from 6, to 6,:

U(6,)—U(6,)=—uB(cos 6,—cos 6;).

If the energy is considered to be zero when the dipole is at
right angles to the z axis, then the potential energy is

U(8)=—uB cos 6=—pu-B. (17.3)

In many cases the moving charges that give rise to the
magnetic moment of an object possess angular momentum.
Often the magnetic moment is parallel to and proportional
to the angular momentum: m=+yL. The proportionality
factor is called the gyromagnetic ratio (sometimes called
the magnetogyric ratio). When such an object is placed in a
uniform magnetic field, the resulting motion can be quite
complicated. The torque on the object is 7=uXB=yLXB.
It is not difficult to show (Problem 17.1) that the torque is
the rate of change of the angular momentum, 7=dL/dt.
Therefore the equation of motion is

LB—dL 4
HLXB)=— (17.42)

or

dp
Y(uXB)= e (17.4b)

Solutions to these equations are discussed in Sec. 17.4.

17.2. THE SOURCE OF THE MAGNETIC
MOMENT

Atomic electrons and the protons and neutrons in the atomic
nucleus can possess both angular momentum and a
magnetic moment. The magnetic moment of a particle is
related to its angular momentum. We can derive this rela-
tionship for a charged particle moving in a circular orbit.
We saw in Chap. 9 that the magnitude of the magnetic
moment of a current loop is the product of the current i and
the area of the loop §:

|| =p=is. (17.5)

The direction of the vector is perpendicular to the plane of
the loop. Its direction is defined by a right-hand rule: curl
the fingers of your right hand in the direction of current
flow and your thumb will point in the direction of g (see the
right-hand part of Fig. 17.1). This is the same right-hand
rule that relates the circular motion of a particle to the
direction of its angular momentum.

Suppose that a particle of charge g and mass m moves in
a circular orbit as in Fig. 17.2. The speed is v and the
magnitude of the angular momentum is L=muvr. The effec-
tive current is the charge ¢ multiplied by the number of
times it goes past a given point on the circumference of the
orbit in one second:

_qv
l_2wr'

The magnetic moment has magnitude

qur
=7;S = 22

p=iS=imr >

Since the angular momentum is L=muvr and p and L are

both perpendicular to the plane of the orbit, we can write

FIGURE 17.2. A particle of charge g and mass m travels in
a circular orbit. It has a magnetic moment u and angular
momentum L. if the charge is positive, u and L are parallel;
if it is negative they are in opposite directions.
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MZ(%)L= vL. (17.6)

The quantity y=g¢q/2m is the gyromagnetic ratio for this
system. The units of yare T7~! 57! (see Problem 17.2). The
magnetic moment and the orbital angular momentum are
parallel for a positive charge and antiparallel for a negative
charge.

An electron or a proton also has an intrinsic magnetic
moment quite separate from its orbital motion. It is associ-
ated with and proportional to the intrinsic or ‘‘spin”
angular momentum S of the particle. We write

n=17S. (17.7)

The value of vy for a spin is not equal to ¢/2m.

Two kinds of spin measurements have biological impor-
tance. One is associated with electron magnetic moments
and the other with the magnetic moments of nuclei. Most
neutral atoms in their ground state have no magnetic
moment due to the electrons. Exceptions are the transition
elements that exhibit paramagnetism. Free radicals, which
are often of biological interest, have an unpaired electron
and therefore have a magnetic moment. In most cases this
magnetic moment is due almost entirely to the spin of the
unpaired electron.

Magnetic resonance imaging is based on the magnetic
moments of atomic nuclei in the patient. The total angular
momentum and magnetic moment of an atomic nucleus are
due to the spins of the protons and neutrons, as well as any
orbital angular momentum they have inside the nucleus.
Table 17.1 lists the spin and gyromagnetic ratio of the elec-
tron and some nuclei of biological interest.

If the nuclear angular momentum is I with quantum
number /, the possible values of the z component of I are
Ih,(I=1)#,...,—I#. For I=3, the values are #/2 and #/2,
while for I=3 they are 3#/2, #/2, —#/2 and —3#A/2. The
direction of the external magnetic field defines the z axis,
and the energy of a spin is given by —u-B=—yIl-B=
— ym#AB. The difference between adjacent energy levels is
vB#, and the angular frequency of a photon corresponding
to that difference is wppoion= ¥B.

TABLE 17.1. Values of the spin and gyromagnetic ratio for
a free electron and various nuclei of interest.

Y= OLarmor/ B v/B

Particie Spin (s7'T Y (MHz T
Electron 3 1.7608x 10" 2.8025x 10*
Proton 3 2.6753x 108 42.5781
Neutron 3 1.8326% 108 29.1667
2Na 3 0.7076x 108 11.2618
31p 3 1.0829x 10° 17.2349

17.3. THE MAGNETIZATION

The MRI image depends on the magnetization of the tissue.
The magnetization of a sample, M, is the average magnetic
moment per unit volume. In the absence of an external
magnetic field to align the nuclear spins, the magnetization
is zero. As an external static magnetic field is applied, the
spins tend to align in spite of their thermal motion, and the
magnetization increases, proportional at first to the external
field. If the external field is strong enough, all of the nuclear
magnetic moments are aligned, and the magnetization
reaches its saturation value.

We can calculate the magnetization. Consider a collec-
tion of spins of a single nuclear species in an external
magnetic field. This might be the hydrogen nuclei (protons)
in a sample. The spins do not interact with each other but
are in thermal equilibrium with the surroundings, which are
at temperature 7. We do not consider the mechanism by
which they reach thermal equilibrium. Since the magneti-
zation is the average magnetic moment per unit volume, it
is the number of spins per unit volume, N, times the
average magnetic moment of each spin: M=N{ ).

To obtain the average value of the z component of the
magnetic moment, we must consider each possible value of
quantum number m. We multiply the value of w, corre-
sponding to each value of m by the probability that m has
that value. Since the spins are in thermal equilibrium with
the surroundings, the probability is proportional to the Bolt-
zmann factor of Chap. 3, exp(—U/kgT)=exp(ym#BlkgT).
The denominator in Eq. (17.8) normalizes the probability:

'yﬁEfn: _m exp(ym#B/kgT)

(k)= s!_ _exp(ymhBlkyT)

(17.8)

At room temperature y/AiB/kzyT<<1 (see Problem 17.4),
and it is possible to make the approximation e*~ 1+ x. The
sum in the numerator then has two terms:

yhB 5
§m+ kpT = m-.

The first sum vanishes. The second is I(/+1)(27+1)/3.
The denominator is

vhB

21+— m.

ksl <

The first term is 27+ 1; the second vanishes. Therefore we
obtain

YRA(I+1)

(B)= 37 (17.9)
The z component of M is
Nvy*R2I(I+1)
M,=N(u,)=——— B, (17.10)

3ksT
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which is proportional to the applied field.

17.4. BEHAVIOR OF THE MAGNETIZATION
VECTOR

A remarkable result of quantum mechanics is that the
average or expectation value of a spin obeys the classical
Equation (17.4b):

d{p)

;= Y{mXB) (17.11)

whether or not B is time dependent [Slichter (1978), p. 20].
Multiplying by the number of spins per unit volume we
obtain

aM
—=y(MXB)

7 (17.12)

This equation can lead to many different behaviors of M,
some of which are quite complicated.

The simplest motion occurs if M is parallel to B, in
which case M does not change because there is no torque.
Another relatively simple motion, called precession, is
shown in Figure 17.3. With the proper initial conditions M
(and (u)) precess about the direction of B. That is, they
both rotate about the direction of B with a constant angular
velocity and at a fixed angle 6 with the direction of B. Since
MXB is always at right angles to M, dM/dt is at right
angles to M, and the angular momentum does not change
magnitude. The analytic solution can be investigated by
writing Eq. (17.12) in Cartesian coordinates when B is
along the z axis:

“\B

R

AM =y(MxB)At

FIGURE 17.3. The system with initial magnetization M has
been given just enough additional angular momentum to
precess about the direction of the static magnetic field B. The
rate of change of M is perpendicular to both M and B. For
short time intervals, AM=y(MXB)At.

am,
dt

=yM,B,,

aM
dt

’=—yM,B,, (17.13)

Z

dM_O
dr

One possible solution to these equations is
MZ = M” = const,

M,=M, cos(—wt), (17.14)

My:MJ_ Sin(_(l}t).

You can verify that these are a solution for arbitrary values
of M, and M, as long as w=wy=yB,. This is called the
Larmor precession frequency. The minus sign means that
for positive y the rotation is clockwise in the xy plane. The
classical Larmor frequency is equal to the frequency of
photons corresponding to the energy difference given by
successive values of g-B. For this solution the initial values
of M at t=0 are M,(0)=ML, M,(0)=0, and M,(0)
=M.

W“e need to modify the equation of motion, Eq. (17.12),
to include changes in M that occur because of effects other
than the magnetic field. Suppose that M has somehow been
changed so that it no longer points along the z axis with the
equilibrium value given by Eq. (17.10). Thermal agitation
will change the populations of the levels so that M, returns
to the equilibrium value, which we call M. We postulate
that the rate of exchange of energy with the reservoir is
proportional to how far the value of M, is from equilibrium:

M, 1
dt T,

The quantity T;, which is the inverse of the proportionality
constant, is called the longitudinal relaxation time or spin—
lattice relaxation time.
We also postulate an exponential disappearance of the
x and y components of M. (This assumption is often not a
good one. For example, the decay of M, and M, in ice is
more nearly Gaussian than exponential.) The equations are
dM, M, dM, M

-2
T,

dt T, dt

The transverse relaxation time T, (sometimes called the
spin—spin relaxation time) is always shorter than 7,. A
change of M, requires an exchange of energy with the
reservoir. This is not necessary for changes confined to the
xy plane, since the potential energy (u-B) does not change
in that case. M, and M, can change as M ; changes, but they
can also change by other mechanisms, such as when indi-
vidual spins precess at slightly different frequencies, a
process known as dephasing. The angular velocity of
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precession of m can be slightly different for different
nuclear spins because of local variations in the static
magnetic field; the angular velocity can also fluctuate as the
field fluctuates with time. These variations and fluctuations
are caused by neighboring atomic or nuclear magnetic
moments or by inhomogeneities in the external magnetic
field B. Figure 17.4 shows how dephasing occurs if several
magnetic moments precess at different rates.

Combining these approximate equations for relaxation in
the absence of an applied magnetic field with Eq. (17.12)
for the effect of a magnetic field gives the Bloch equations:

M, _ 1 M,—M.)+v(MXB

dt —.ﬂ( 0 z) 7( )17
aM._ M"+ MXxB 17.15
dl - T2 7( )xv ( . )
M, _ My+ MXxB
dt - T2 7( )y'

While these equations are not rigorous and there is no
reason for the relaxation to be strictly exponential, they
have proven to be quite useful in explaining many facets of
nuclear spin magnetic resonance.

One can demonstrate by direct substitution the following
solution to Egs. (17.15) for a static magnetic field B along
the z axis:

M, =Mge "T2 cos(— wt),

M, =Mye "2 sin(— wyt),

. (17.16)

MZ=M0(1 —e_’/Tl),

where wy=vB. This solution corresponds to what happens
if M is somehow made to precess in the xy plane. (We will
see how to accomplish this in Sec. 17.5.) The magnetization
in the xy plane is initially Mg, and the amplitude decays
exponentially with time constant T,. The initial value of
M is zero, and it “‘decays’’ back to M with time constant
T, . A perspective plot of the trajectory of the tip of vector
M is shown in Fig. 17.5.

1

/ N
)

—

FIGURE 17.4. If two spins precess in the xy plane at slightly
different rates, the total spin amplitude decreases due to
dephasing.

X

FIGURE 17.5. The locus of the tip of the magnetization M
when it relaxes according to Egs. (17.16).

17.5. A ROTATING COORDINATE SYSTEM

It is much easier to describe the motion of M in a coordinate
system which is rotating at the Larmor frequency. Figure
17.6 shows a vector M and two coordinate systems, xy and
x’y’. Components of M along each axis are also shown. By
considering the components we see that

M,=M, cos 6—M,: sin 6,
M,=M, sin §+M, cos 6.

For a three-dimensional coordinate system rotating clock-
wise around the z axis, #= — wt, the z-component of M is

unchanged, and the transformation equations are
M,=M, cos(—wt)—M

yr sin(—wt),

M,=M,, sin(—wt)+M,: cos(—wt), (17.17)

y
y/
M
My

7] Vo

Myi , x’

7 Mx' !
X

- M,

FIGURE 17.6. The vector M can be represented by compo-
nents along x and y or along x’' and y’.
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MZ:MZ"

The time derivative of M is obtained by differentiating each
component and remembering that M’ can also depend on
t:

dM, dM,.

dt dt

yl

dt

cos(— wt) — sin( — wt)

+ oM, ssin(— wt)+ oM, cos(— wt),

M, dM,. LMy
- sin( — wt) = cos(— wt)
—wM,/ cos(—wt)+ oM, sin(—wt),
(17.18)
dM, dMm_,
dt  dt

We can use these expressions to write the equations of
motion in the rotating frame. First consider a system
without relaxation effects and with a static field B, along
the z axis. We will show that the components of M in a
system rotating at the Larmor frequency are constant. The
equations of motion are given in Eqs. (17.13). In terms of
variables in the rotating frame, the equation for dM ,/dt
becomes

aM .,
dt

yl

dt

cos( — wt) — sin( — wt)+ oM, sin(— wt)

+wM, cos(—wt)
=vy[M, sin( — wt)+M,, cos(—wt)]B,.

If the frame rotates at the Larmor frequency wg= vB,, the
third and fourth terms on the left are equal to the right-hand
side. The equation becomes

dM . aM,,
7 cos(— wyt) 7

sin( — wgt)=0.
Under the same circumstances, the equation for dM yldt
gives

am,.,
dt

yl

dt

d
sin( — wgt) +

cos(— wot)=0.

Solving these simultaneously shows that dM ., /dt=0 and
dM,:/dt=0. Therefore in the rotating system M, and
M, are constant. Equation (17.13) showed that M At
constant, so the components of M are constant in the frame
rotating at the Larmor frequency. Using Egs. (17.17) to
transform back to the laboratory system gives the solution
Eq. (17.14).2

The next problem we consider in the rotating coordinate
system is the addition of an oscillating magnetic field
B cos(wr) along the x axis, fixed in the laboratory system.
We will show that if the applied field is at the Larmor

frequency, the equations of motion in the rotating system,
Egs. (17.24), are quite simple but very important. They are
given as Egs. (17.24) below.

They are derived as follows. From the x component of Eq.
(17.12),

M,
— =YM,B.~M.B,),

we obtain (remembering that the x’y’ system is rotating at
the Larmor frequency w)
dMXl

7 COS( - wot)—

dMy/ . .
o sin(— wt) + woM .+ sin(— awyt)

+awpM, cos(—awgt)

= ‘sz[Mx’ sin(—- wot)+My, COS(- wot)].
Since wo=yB,, the last two terms on the left cancel the
terms on the right, leaving

M, M,
o cos(—wgyt)~ o sin(—wgt)=0. (17.19)
Similarly, the y-component of Eq. (17.12),
M,
7: ‘)'(MZBX—MXBZ),

’

transforms to (remembering that M,=M )

de! . yl
i sin(—wyt) + 7 cos(—wot)— woM,r cos(— wyt)
+woM s sin(— wyr)
=yM B cos(wt) = yB[M,: cos(— wyt)—M,, sin
(_(I)Ot)],
which reduces to
M, M,y
i sin(—wyt) + o cos(—wyt)=yBiM_+ cos(wt).
(17.20)
The z-component of Eq. (17.12) is
M.,
— = YM.B,~M,B,), (17.21)

which transforms to
am,,
dt
It is possible to eliminate M,, from Egs. (17.19) and
(17.20) by multiplying Eq. (17.19) by — sin(— wq#), multi-
plying Eq. (17.20) by cos(—wyt), and adding. The result is

dMy!

dt

=~ ¥BiM,s cos(wr) sin(—wyt)— yB 1M, cos(wt) cos(— wpt).

= yB1M icos(w t)cos(— wyt). (17.22)

“For those familiar with vector analysis, the general relationship between
the time derivative of any vector M in the laboratory system and a system
rotating with angular velocity £} is

)
=|— + O XM.

)
dt laboratory rotating
This can be applied to the magnetization combined with Eq. 17.21 to give

g
B+ —|,
Y

M
(7) = ‘y(MXB)—QXM= YMX
rot

which vanishes if yB=—).
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A similar technique can be used to eliminate M, from
these two equations, giving

dM,
dr

=B M, sin(wt) cos(— wg?). (17.23)
Equations (17.21)—(17.23) are the equations of motion for
the components of M in the rotating system. If o # w,, the
motion is complicated but averaged over many Larmor
periods the right-hand side of each equation is zero. If the
applied field oscillates at the Larmor frequency, w= w,,
then the cos®(w,f) factors average to 3 while factors like
sin(wgt)cos(— wyt) average to zero.

The averaged equations are our very important result:

Mo _, 17.24
dt (17.242)
dM ’ ’)/Bl
J - ’
- > M., (17.24b)
sz/ ')’Bl
= My (17.24c)

The first equation says that if M, is initially zero, it
remains zero. Let us define a new angular frequency

;= Y—Bl . (17.25)
2

It is the frequency of nutation or rotation caused by B,

oscillating at the Larmor frequency. It is much lower than

the Larmor frequency because B;<B, . In terms of it, Egs.

(17.24b) and (17.24¢) become

dMZI dMy/
dt =—w1My:, 7=w1Mz,.

These are a pair of coupled linear differential equations
with constant coefficients. Differentiating one and substi-
tuting it in the other gives

d°M. M,
=—w
dt* Udr

=—wiM,, (17.26)

which has a solution (a and b are constants of integration)

M, =a sin(wt)+b cos(w;t). (17.27)
From Eq. (17.24c) we get
1 aM, _
M, =- w_1 P cos(wt)+b sin(w,t).
(17.28)

The values of a and b are determined from the initial
conditions. For example, if M is initially along the z axis,
a=0 and b=M,. Then

MXIZO,

M_v’:MO Siﬂ(wlt), (1729)

M, =Mycos(wt).

This kind of motion—precession about the z axis combined
with a change of the projection of M on z—is called nuta-
tion. From Egs. (17.29) it is easy to see that turning B, on
for a quarter of a period of w; (a 90° pulse or 7/2 pulse,
t=T/4= 7/2w, nutates M into the x’'y’ plane, while a 180°
or 7 pulse nutates M to point along the —z axis. M nutates
about the rotating x” axis. Shifting the phase of B, changes
the axis in the x'y’ plane about which M nutates. It may
seem strange that an oscillating magnetic field pointing
along an axis fixed in the laboratory frame causes rotation
about an axis in the rotating frame. The reason is that B, is
also oscillating at the Larmor frequency, so that its ampli-
tude changes in just the right way to cause this behavior of
M. Figures 17.7 and 17.8 show this nutation in both the
rotating frame and the laboratory frame for a 7/2 pulse and
a 7 pulse.

Figure 17.7(c) emphasizes the difference between nuta-
tion and relaxation by plotting M, vs the projection of M in
the x"y’ plane. For nutation the components of M are given
by Egs. (17.29), the magnitude of M is unchanged, and the
locus is a circle. For relaxation the components are given by
Eqgs. (17.16).

Another interesting solution is one for which the initial
value of M is

M. .(0)=M, cos a,
Myl(O):MO sin «,
M, (0)=0.

This corresponds to an M that has already been nutated into
the x'y’ plane. Substituting these values in Egs. (17.27) and
(17.28) shows that b=0 and a=—M, sin «. Then the
solution is

M. (t)=M, cos «,
M, /(t)=M, sin a cos(w,1),

M, (t)=—M, sin a sin(w,?) (17.30)

This solution is plotted in Fig. 17.9 in both the rotating
frame and the laboratory frame for the case of a 7 pulse (a
pulse of duration 7/w,). The effect is to nutate M about the
x' axis in the rotating coordinate system. We will see later
that this is a very useful pulse.

17.6. RELAXATION TIMES

Since longitudinal relaxation changes the value of M, and
hence u-B, it is associated with a change of energy of the
nucleus. The principal force that can do work on the nuclear
spin and change its energy arises from the fact that the
nucleus is in a fluctuating magnetic field due to neighboring
nuclei and the electrons in paramagnetic atoms.
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M.
/ Nutation
Relaxation
1/2
(M3 + M)
()

FIGURE 17.7. The locus of the tip of the magnetization M
when an oscillating magnetic field B, is applied for a time ¢
such that wt=w/2. This is often called a “«/2 pulse.” (a) The
rotating frame. (b) The laboratory frame. (c) Plots of M, vs
(M2+ M2)"2 showing the difference between nutation and
relaxation.

One way to analyze the effect of this magnetic field is to
say that the change of spin energy AE is accompanied by
the emission or absorption of a photon of frequency
®photon= AE/f, OF 0ppo0n= @g . An increase of spin energy
requires the absorption of a photon at the Larmor
frequency. This will have a high probability if the fluctu-
ating magnetic field has a large Fourier component at the
Larmor frequency. A decrease of spin energy is accompa-
nied by the emission of a photon. This can happen sponta-
neously in a vacuum (spontaneous emission), or it can be

]/

FIGURE 17.8. A pulse of B, applied twice as long rotates M
to point along the —z axis. (a) The rotating frame. (b) The
laboratory frame.

stimulated by the presence of other photons at the Larmor
frequency (stimulated emission). These relative probabili-
ties can be calculated using quantum mechanics. Stimulated
emission or absorption is much more probable than is spon-
taneous emission. If the random magnetic field at the
nucleus changes rapidly enough due to molecular motion, it
will have Fourier components at the Larmor frequency that
can induce transitions that cause M, to change. To get an
idea of the strength of the field involved, consider the field
at one hydrogen nucleus in a water molecule due to the
other hydrogen nucleus. The field due to a magnetic dipcle
is given by

_ B 2B
T Ag P ’
Mo M|
By= 4—7T—351n o,

(17.31)
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(@)

),

(b)

FIGURE 17.9. A magnetic field B; pointing along the labo-
ratory x axis and oscillating at the Larmor frequency causes
nutation of M around the rotating x’ axis. In this case M was
initially in the xy plane. The motion shown here is plotted
from Egs. (17.29) in (a) the rotating and (b) the laboratory
frames.

FIGURE 17.10. The magnetic field components of a dipole
in spherical coordinates point in the directions shown.

W

e
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FIGURE 17.11. The z components of the magnetic
moments of two protons in a water molecule are shown for
two different molecular orientations, a and b. When the
water molecule is fixed in space, as in ice, the magnetic field
that one proton produces in the neighborhood of the other is
static. When the water molecule tumbles, as in a liquid or
gas, the field that one proton produces at the other changes
with time.

where angle 6 is defined in Fig. 17.10. (The factor
mo/4m=10""Tm A™! is required in SI units.) The
magnetic field at one hydrogen nucleus in a water molecule
due to the other hydrogen nucleus is about (3-4)
X10"* T (see Problem 17.13). Consider the water
molecule shown in Fig. 17.11. We refer to each hydrogen
nucleus as a proton. The z components of the proton
magnetic moments are shown. If the water molecule is
oriented as in Fig. 17.11(a), the field at one proton due to
the other has a certain value. If the water molecule remains
fixed in space, as in ice, the field is constant with time. If the
molecule is tumbling as in liquid water, the orientation
changes as in Fig. 17.11(b), and the field changes with time.

When the molecules are moving randomly, the fluctu-
ating magnetic field components are best described by their
autocorrelation functions. The simplest assumption one can
make? is that the autocorrelation function of each magnetic
field component is exponential and that each field compo-
nent has the same correlation time 7.:

du(r)xexp(—|7l/7,). (17.32)

The Fourier transform of the autocorrelation function gives
the power at different frequencies. It has only cosine terms
because the autocorrelation is even. Comparison with the
Fourier transform pair of Eq. (11.100) shows that the power
at frequency w is proportional to 7¢/(1+ w?7%). With the
assumption that the transition rate, which is 1/7;, is propor-
tional to the power at the Larmor frequency, we have [see
also Slichter (1978), p. 167, or Dixon et al. (1985)]

A more complete model recognizes that different atoms experience fluc-
tuating fields with different correlation times and that frequency compo-
nents at twice the Larmor frequency also contribute.
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FIGURE 17.12. Plot of T, and T, vs correlation time of the
fluctuating magnetic field at the nucleus. Experimental points
are shown for water (open dot) and ice (solid dot).

1 Cr,
T 1+w(2)7§, (17.33)
where C is the proportionality constant.

The correlation time in a solid is much longer than in a
liquid. For example, in liquid water at 20 °C it is about
3.5X 10712 s; in ice it is about 2 X 107® s. Figure 17.12
shows the behavior of T'| as a function of correlation time,
plotted from Eq. (17.33) with C=5.43x10'° 572, For short
correlation times 7, does not depend on the Larmor
frequency. At long correlation times 7' is proportional to
the Larmor frequency, as can be seen from Eq. (17.33). The
minimum in 7'} occurs when wy= 1/7, in this model.

Table 17.2 shows some typical values of the relaxation
times at 20 MHz. Neighboring paramagnetic atoms reduce
the relaxation time by causing a fluctuating magnetic field.
For example, adding 20 ppm of Fe* to water reduces T, to
20 ms.

Differences in relaxation time are easily detected in an
image. Different tissues have different relaxation times. A

TABLE 17.2. Approximate relaxation times at 20 MHz.

Ty (ms) T2 (ms)
Whole blood 900 200
Muscle 500 35
Fat 200 60
Water 3000 3000

contrast agent containing gadolinium is often used in
magnetic resonance imaging. It is combined with many of
the same pharmaceuticals used with 99mTe. and it reduces
the relaxation time of nearby nuclei. The hemoglobin that
carries oxygen in the blood exists in two forms: oxyhemo-
globin and deoxyhemoglobin. The former is diamagnetic
and the latter is paramagnetic, so the relaxation time in
blood depends on the amount of oxygen in the hemoglobin.
The technique that exploits this is called BOLD (blood
oxygen level dependence).

It was pointed out in Sec. 17.4 that because of dephasing,
T, is less than or equal to T,. The same model for the
fluctuating fields which led to Eq. (17.33) gives an expres-
sion for T :

1 Cr, 1

T, 2 2T,

(17.34)

There is a slight frequency dependency to T, for values of
the correlation time close to the reciprocal of the Larmor
frequency.

Another effect that causes the magnetization to rapidly
decrease is dephasing. Dephasing across the sample occurs
because of inhomogeneities in the externally applied field.
Suppose that the spread in Larmor frequency and the trans-
verse relaxation time are related by ThAw=K. (Usually
K is taken to be 2.) The spread in Larmor frequencies Aw is
due to a spread in magnetic field AB experienced by the
nuclear spins in different atoms. The total variation in B is
due to fluctuations caused by the magnetic field of neigh-
bors and to variation in the applied magnetic field across the
sample:

ABtot= ABintemal + A‘Bextemal .
Therefore
A (Ol Aow internal +Aw external

The total spread is associated with the experimental relax-
ation time, 7§ =K/Aw,;. The ‘‘true’’ or ‘‘non-recover-
able’” relaxation time T,=K/A @jyema 1S due to the fluc-
tuations in the magnetic field intrinsic to the sample. There-
fore

1 L_*_ YABexternal (17 35)
Ty T, K ’ ’

T, is called the nonrecoverable relaxation time because
various experimental techniques can be used to compensate
for the external inhomogeneities, but not the atomic ones.

17.7. DETECTING THE SIGNAL

We have now seen that a sample of nuclear spins in a strong
magnetic field has an induced magnetic moment, that it is
possible to apply a sinusoidally varying magnetic field and
nutate the magnetic moment to precess at any arbitrary
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angle with respect to the static field, and that the magneti-
zation then relaxes or returns to its original state with two
characteristic time constants, the longitudinal and trans-
verse relaxation times. We next consider how a useful
signal can be obtained from these spins. This is done be
measuring the weak magnetic field generated by the magne-
tization as it precesses in the xy plane.

Suppose that one has a sample at the origin. The motions
plotted in Fig. 17.7 suggest that one way to produce a
magnetization rotating in the xy plane is to have a static
field along the z axis, combined with a coil in the yz plane
{(perpendicular to the x axis) connected to a generator of
alternating current at frequency ;. Turning on the
generator for a time Ar=m/2w;=m/yB| rotates the
magnetization into the xy plane. This is called a 90° pulse
or 7/2 pulse. If the generator is then turned off, the same
coil can be used to detect the changing magnetic flux due to
the rotating magnetic moments. The resulting signal, an
exponentially damped sine wave, is called the free induc-
tion decay (FID).

To estimate the size of the signal induced in the coil,
imagine a magnetic moment =M AV rotating in the xy
plane as shown in Fig. 17.13. The voltage induced in a
one-turn coil in the yz plane is the rate of change of the
magnetic flux through the coil:
oD d

——= | B-dS.

A==

The magnetic field far from a magnetic dipole can be
written most simply in spherical coordinates [Egs. (17.31)].
We need the flux through the coil of radius a in the yz
plane. However, Eqs. (17.31) are not valid close to the
dipole. Since a fundamental property of the magnetic field

y Coil

FIGURE 17.13. A magnetic moment rotating in the xy plane
induces a voltage in a pickup coil in the yz plane.

is that for a closed surface [[B-dS=0, the flux ® through
the coil in Fig. 17.13 is the negative of the flux through the
hemispherical cap in Fig. 17.14:

4 " /2
(I)=—JB,27TCI2=—5—;; a,u f cos 6 sin 8 d6
0
Mo 27Tlu’x

At any instant g can be resolved into components along
x and y. The component pointing along y contributes no net
flux through the spherical cap of Fig. 17.14. Therefore, the
flux for a magnetic moment u=M AV, where M is given
by Eqgs. (17.16), is

2aM AV
b=- 5—7(; TO e T2 cos(— wyt).

The induced voltage is — P/ dt:
_ Mo 27TMOAV

4T
= e 2
da a

1
v = cos( — wgt) + wq sin( — wgt) |.
T,

Since 1/T,<<w,, this can be simplified to

Mo W - .
v= 727TM0AV e T2 sin( — wyt).

If the value of M, which exists at thermal equilibrium has
been nutated into the xy plane, then M, is given by the
M, of Eq. (17.10). For a spin-} particle (and using the fact
that wy= yB,) we obtain

wo TN AV Y’H2B}

~in Ta e T2 cos(— wgt).

(17.37)

v=

FIGURE 17.14. A dipole along the x axis generates a flux
through the circle in the yz plane that is equal and opposite
to that through the spherical cap.
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Here N AV is the total number of nuclear spins involved,
B, is the field along the z axis, and a is the radius of the coil
that detects the free-induction-decay signal. For a volume
element of fixed size, as in magnetic resonance imaging, the
sensitivity is inversely proportional to the coil radius. If the
sample fills the coil, as in most laboratory spectrometers,
then the sensitivity is proportional to a.

17.8. SOME USEFUL PULSE SEQUENCES

Many different ways of applying radio-frequency pulses to
generate B have been developed by nuclear magnetic reso-
nance spectroscopists for measuring relaxation times. There
are five “‘classic’” sequences, which also form the basis for
magnetic resonance imaging.

17.8.1. Free-Induction-Decay (FID) Sequence

Free induction decay was described in Sec. 17.7. A #/2
pulse nutates M into the xy plane, where its precession
induces a signal in a pickup coil. The signal is of the form
exp(—t/T¥)cos(— wyt), where T% is the experimental trans-
verse relaxation time, including magnetic field inhomoge-
neities due to the apparatus as well as those intrinsic to the
sample. Figure 17.15 shows the pulse sequence, the value
of M, and the value of M,. The signal is proportional to
M. The pulses can be repeated after time Tp for signal
averaging. It is necessary for Ty to be greater than 5T, in
order for M, to return nearly to its equilibrium value
between pulses.

Pulse h /2 /2
-— TR —
M, 1-e""
| |
“A hh

FIGURE 17.15. Pulse sequence and signal for a free induc-
tion-Decay measurement.

17.8.2. Inversion-Recovery (IR) Sequence

The inversion-recovery sequence allows measurement of
T,. A 7 pulse causes M to point along the —z axis. There
is not yet any signal at this point. M, returns to equilibrium
according to M,=My[1—2 exp(—#/Ty)]. A m/2 interroga-
tion pulse at time 7T, rotates the instantaneous value of
M, into the xy plane, thereby giving a signal proportional to
Mgo[1—2exp(—T;/T)], as shown in Fig. 17.16. The
process can be repeated; again the repeat time must exceed
57;.

You can see from Fig. 17.16 that there will be no signal
at all if T,/T,=0.693. If T, is less than this, the M, signal
will be inverted (negative). Unless special detector circuits
are used which allow one to determine that M is negative,
the results can be confusing.

Inversion recovery images take a long time to acquire
and there is ambiguity in the sign of the signal. There are
also problems with the use of a 7 pulse for slice selection
[defined in Sec. 17.9; the details of the problems are found
in Joseph and Axel (1984)].

17.8.3. Spin—Echo (SE) Sequence

The pulse sequence shown in Fig. 17.17 can be used to
determine T, rather than 7% . Initially a 7r/2 pulse nutates
M about the x’ axis so that all spins lie along the rotating
y' axis. Figure 17.17(a) shows two such spins. Spin a
continues to precess at the same frequency as the rotating
coordinate system; spin b is subject to a slightly smaller
magnetic field and precesses at a slightly lower frequency,
so that at time T/2 it has moved clockwise in the rotating
frame by angle 6, as shown in Fig. 17.17(b). At this time a
7 pulse is applied that rotates all spins around the x" axis.

Pulse”“ ﬂn/2 u“ w2

- Tr -

M, F

FIGURE 17.16. The inversion recovery sequence allows
determination of T, by making successive measurements at
various values of the interrogation time T;.
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FIGURE 17.17. Two magnetic moments are shown in the
x'y’ plane in the rotating coordinate system. Moment a
rotates at the Larmor frequency and remains aligned along
the y’ axis. Moment b rotates clockwise with respect to
moment a. (a) Both moments are initially in phase. (b) After
time Tg/2 moment b is clockwise from moment a. (c) A 7
pulse nutates both moments about the x’ axis. (d) At time
Te both moments are in phase again.

Spin a then points along the —y’ axis; spin b rotates to the
angle shown in Fig. 17.17(c). If spin b still experiences the
larger magnetic field, it continues to precess clockwise in
the rotating frame. At time Tz both spins are in phase again,
pointing along ~y' as shown in Fig. 17.17(d). This argu-
ment depends only on the fact that the magnetic field at the
nucleus remained the same before and after the 7 pulse; it
does not depend on the specific value of the dephasing
angle. Therefore all of the spin dephasing that has been
caused by a time-independent magnetic field is reversed in
this process. There remains only the dephasing caused by
fluctuating magnetic fields. Figure 17.18 shows the pulse
sequence and signal.

17.8.4. Carr—Purcell (CP) Sequence

When a sequence of 7 pulses that nutate M about the x'
axis are applied at T¢/2, 3T:/2, STg/2, etc., a sequence of
echoes are formed, the amplitudes of which decay with
relaxation time 7. This is shown in Fig. 17.19. Referring
to Fig. 17.17, one can see that the echoes are aligned alter-
nately along the —y’ and +y’ axes. One advantage of the
Carr—Purcell sequence is that it allows one to determine
rapidly many points on the decay curve. Another advantage
relates to diffusion. The molecules that contain the excited
nuclei may diffuse. If the external magnetic field B is not
uniform, the molecules can diffuse to another region where
the magnetic field is slightly different. As a result the

-]
J
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l\
\
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<

FIGURE 17.18. The pulse sequence and magnetization
components for a spin-echo sequence.

rephasing after a 7 pulse does not completely cancel the
initial dephasing. This effect is reduced by the Carr—Purcell
sequence (see Problem 17.23).

17.8.5. Carr—Purcell-Meiboom-Gill
Sequence

(CPMG)

One disadvantage of the CP sequence is that the 7 pulse
must be very accurate or a cumulative error builds up in
successive pulses. The Carr—Purcell-Meiboom-Gill
sequence overcomes this problem. The initial 7/2 pulse
nutates M about the x’ axis as before, but the subsequent

Pulse hﬂ:/2 Hn Hn ” T ”n

Te/2 Te Te Te

FIGURE 17.19. The Carr-Purcell pulse sequence. All
pulses nutate about the x’ axis. Echoes alternate sign. The
envelope of echoes decays as exp(—t/T,), where T, is the
unrecoverable transverse relaxation time.
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7 pulses are shifted a quarter cycle in time and rotate about
the y' axis. This is shown in Figs. 17.20 and 17.21.

17.9. IMAGING

There are many more techniques available for imaging with
magnetic resonance than there are for computer tomog-
raphy (CT). They are reviewed by Joseph (1985) and by
Cho, Jones, and Singh (1993). An excellent new book that
discusses pulse sequences in great detail along with signal-
to-noise ratio and aspects of coil and electronics engi-
neering has been written by scientists at Phillips Medical
Systems [Vlaardingerbroek and den Boer (1996)].

We discuss two reconstruction methods here: projection
reconstruction, which is similar to CT reconstruction, and a
two-dimensional Fourier technique known as spin warp or
phase encoding, which forms the basis of the techniques
actually used in most machines. Our discussion is based on
a spin—echo pulse sequence, repeated with a repetition time
T as shown in Fig. 17.18.

17.9.1. Slice Selection

Suppose we were to apply a 7/2 pulse in a 1.5-T machine
(wo=401Xx10°% s™1; f,=63.9 MHz). If the duration of this
pulse is to be 5 ms, it will require a constant amplitude of
the radiofrequency magnetic field

—
i)
~
—_

(=2
~

/c

(©) (C)

FIGURE 17.20. The effect of the Carr—Purcell-Meiboom—
Gill pulse sequence on the magnetization. This is similar to
Fig. 17.17 except that the 7 pulses rotate around the y’ axis.
Moment b rotates clockwise in the x'y’ plane. (a) Both
moments are initially in phase. (b) After time Tz/2 moment b
is clockwise from moment a. (¢} A = pulse rotates both
moments about the y’ axis. (d) Attime T both moments are
in phase again.

H ny’) L\

FIGURE 17.21. The CPMG pulse sequence.

B,=m/yAt=235%X10"% T. (17.38)
The pulse lasts for 3X 10° cycles at the Larmor frequency.
The frequency spread of the pulse is about 200 Hz. This
would excite all the proton spins in the sample.

For MR imaging, we want to select a thin slice in the
sample. In order to select a thin slice (say Az=1cm) we
apply a magnetic field gradient in the z direction while
applying a specially shaped B signal. In a static magnetic
field By, the field lines are parallel. The field strength is
proportional to the number of lines per unit area and does
not change. With the gradient applied in the volume of
interest, the field lines converge, and the field increases
linearly with z as shown in Figs. 17.22(a) and 17.22(b):

B,(z)=By+G,z. (17.39)
During /2

pulse bz B
A T
k__//
T
\_//
N————
| |
- B, \\_//

€Y (b) ()

FIGURE 17.22. (a) Magnetic field lines for a magnetic field
that increases in the z direction. (b) A plot of B, vs z with and
without a gradient. (c) After application of a field gradient in
the z direction during the specially shaped rf pulse, all of the
spins in the shaded slice are excited, that is, they are
precessing in the xy plane.
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We adopt a notation in which G represents a partial deriva-
tive of the z component of the magnetic field:

G,=9B,/dx,
G,=0B,/dy, (17.40)
G,=9dB,/oz.

In a typical machine, G,=5X107°> Tm~!. For a slice

thickness Az=0.01 m, the Larmor frequency across the
slice varies from wy—Aw to wyt+Aw, where Aw
=yG,Az/2=6.68X10° s™! (Af=1.064 kHz).

It is possible to make the signal B,(z) consist of a
uniform distribution of frequencies between wy— Aw and
wo+ Aw, so that all protons are excited in a slice of thick-
ness +Az/2. Let the amplitude of B, in the interval
(w,dw) be A. Using Eq. (11.55), B,(¢) is given by

A wytAw
B.(t)= o f cos(wt)dw
wy—Aw
B AAw sin(Awt)

- Aot (17.41)

cos(wyt).
This has the form B (f)cos(wyt), where B(t)
=(AAw/m)sin(Awt)/(Awt). The function sin(x)/x has its
maximum value of 1 at x=0. It is also called the sinc(x)
function. The angle ¢ through which the spins are nutated
is

¢= f_:wl(t)dl= %/ lel(t)dt

_yAAw fw Sin(Awt)d
T 27 —»  Awt !

vA
=5
For a /2 pulse, A=m/7y. The maximum value of B, is
therefore Aw/y=G,Az/2, as shown in Fig. 17.23. The
B, pulse does not have an abrupt beginning; it grows and
decays as shown. In practice, it is truncated at some
distance from the peak where the lobes are small.

While the gradient is applied, the transverse components
of spins at different values of z precess at different rates.
Therefore it is necessary to apply a gradient G, of opposite
sign after the m/2 pulse is finished in order to bring the
spins back to the phase they had at the peak of the slice
selection signal. When the gradient is removed all of the
spins in the slice shown in Fig. 17.22(a) precess at the
Larmor frequency in the xy plane.

17.9.2. Readout in the x Direction

The voltage induced in the pickup coil surrounding the
sample is proportional to the free induction decay of M in
the entire slice. That is, the voltage signal induced in the
pickup coil is proportional to [M(x,y,z)cos(—we)f(H)dV,

AAw/m§
=Aw/y=G,Az/2

la— TT/A®
=2niy G,Az

C(w)

) — A® L0 Wy + A®

=y + YG,AZ/2

FIGURE 17.23. (a) The B,() signal shown is used to selec-
tively excite a slice. It consists of cos(wgf) modulated by a
“sinc(x)” or sin(x)/x pulse B4(t). (b) The frequency spectrum
contains a uniform distribution of frequencies.

where M (x,y,z) is the magnetization per unit volume that
was nutated into the xy plane, cos(—wyf) represents the
change in signal as M rotates in the xy plane at the Larmor
frequency, and f(z) represents relaxation, signal buildup
during an echo, and so on. The initial free-induction-decay
signal is ignored. Figure 17.24 shows the echo after a subse-
quent 7 pulse.

We assume that changes in f(7) are slow compared to the
Larmor frequency and neglect them here. Then the signal
from an element dx dy in the slice is

v(t)=A dx dyAz M(x,y,z)cos(—wgt). (17.42)

Constant A includes all the details of the detecting coils and
receiver.

Suppose that B, is given a gradient G, in the x direction
during the echo signal (‘‘during readout’’), as shown in Fig.

B« [,

+

FIGURE 17.24. A slice selection pulse sequence. A /2
B, (rf) pulse while a gradient G, is applied nutates the spins
in a slice of thickness Az into the xy plane. A negative G,
gradient restores the phase of the precessing spins. The
echo after the 7 pulse is from the entire slice.
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FIGURE 17.25. The pulse sequence for x readout. After
slice selection, a gradient G, is applied during readout. The
echo signal between o and w+ dw is proportional to the
magnetization in a strip between x and x+ dx, integrated
over all values of y.

17.25. The spins that echo in the shaded slice between x and
x+dx in Fig. 17.26 will be precessing with a Larmor
frequency between w and w+dw, where w=wy+ yG,x.
The signal from the entire slice is

v(t)=AAzfdx(f dy M(x,y,z))cos[—w(x)t].
(17.43)

We use the fact that w(x) = wy+ yG,x to write the signal as

v(t)=AAzf dx(fa’y M(x,y,z))cos(w0t+ vG xt).
(17.44)

Since the z slice has already been selected, let us simplify
the notation by dropping the z dependence of M. The elec-
tronics in the detector multiply v(#) by cos(wy) or

.

—

X

FIGURE 17.26. Because the gradient G, is applied during
readout, the Larmor frequency of all spins in the shaded slice
is between w and w+ dw.

sin(wyt) and average over many cycles at the Larmor
frequency. The results are two signals that form the basis
for constructing the image:

sc(t):v(t)cos(wot)OCJ' J' dx dy M(x,y)cos(yG xt),

ss(t)zv(t)sin(wot)mf fdxdyM(x,y)sin(nyxt).
(17.45)

The time average is over many cycles at the Larmor
frequency but a time short compared to 27/ yG X pay -

17.9.2.1. Projection Reconstruction

By inspection of Eq. (17.45) and remembering the relation-
ship between w and x, we see that the Fourier transforms of
s.(t) and s,(t) are both proportional to [dy M(x,y). (Of
course, the signals are digitized and one actually deals with
discrete transforms.) This means that s or s, can be Fourier
analyzed to determine the amount of signal in the frequency
interval (w,dw) corresponding to (x,dx), which is propor-
tional to the projection fM(x,y) dy along the shaded strip.
In Sec. 12.8 we learned how to reconstruct an image from a
set of projections. The entire readout process can be there-
fore be repeated with the gradient rotated slightly in the
xy plane (that is, with a combination of G, and G, during
readout). This is indicated in Fig. 17.27, which indicates
many scans, with different values of G, and G,, related by

/2 L
B« |4 ]

\AJ

B
G, i

+

FIGURE 17.27. Projection reconstruction techniques can be
used to form an image. A series of measurements are taken,
each with simultaneous gradients G, and G, .
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G,/G,=tan 6, where 0 is the angle between the projection
and the x axis. All of the techniques for reconstruction from
projections that were developed for computed tomography
can be used to reconstruct M(x,y). Sending the proper
combination of currents through the x and y gradient coils
rotates the gradient; no rotating mechanical components are
needed.

17.9.2.2. Phase Encoding

Techniques are available for magnetic resonance imaging
that are not available for computed tomography. They are
based on determining directly the Fourier coefficients in
two or three dimensions. The basic technique is called spin
warp or phase encoding.

We wish to construct an image of M(x,y), modified by
the function f(z) that accounts for relaxation, etc. For
simplicity of notation we again assume f is unity and
suppress the z dependence, since slice selection has already
been done. We will construct M(x,y) from its Fourier
transform. The Fourier transform of M(x,y) is given by
Egs. (12.9):

1 2 reo %
M(x,y)= ﬁ) f_mdkxf_xdky[akx Jy)cos(kx+k,y)

+S(ky Ky )sin(kyx+kyy)]. (17.46a)

with the coefficients given by

C(kx,ky)=f dxf dy M(x,y)cos(k,x+k,y),
(17.46b)

S(kx,ky)=f de dy M(x,y)sin(kx+k,y).
(17.46¢)

Our problem is to determine C and S and from them
construct the image.

The information from the x readout gives us C(k, ,0) and
S(k,.,0) directly. We show this for the cosine transform.
From Eq. (17.46b)

C(kx,0)=f dx(fdyM(x,y))cos(kxx). (17.47)

Comparing this to the expression for s.(¢) in Eq. (17.45),
we see that

C(k,0)xs (k,/vG,). (17.48a)

Similarly,

S(k,,0)es,(k,/yG,). (17.48b)

The times at which s, and s, are measured and therefore the
values of k, are, of course, discrete. The discussion in Sec.
12.6 shows that the values of k, are multiples of the lowest
spatial frequency:

k.=m Ak=2mm/D.

The corresponding times to measure the signal are

2mm
" DyG,’

t

The spatial extent of the image or ‘‘field of view’’ D deter-
mines the spacing Ak, . The desired pixel size determines
the maximum value of k, or m:

m D
Ax: —

k max 2 m max

The discrete values of k, are shown in Fig. 17.28(a).

The next problem is to make a similar determination for
nonzero values of ky. To do so, a gradient of B_ in the y
direction is applied at some time between slice selection
and readout. This makes the Larmor frequency vary in the
y direction. If the phase-encoding pulse is due to a uniform
gradient that lasts for a time 7',, the total phase change is

A¢=J o(t) dt=yG,T,y=k,y. (17.49)

The readout signal, Eq. (17.43), is replaced by

v(t)=A Azj dxf dy M(x,y)cos[ —w(x)t+k,y].
(17.50)

Note that the added phase does not depend on ¢t. However,
the cosine term must now be included in both the x and y
integrals. Carrying through the mathematics of the detection
process shows that temporal Fourier transformation of the
signals determines C(k, ,k,) and S(k,,k,) for all values of
k, and for the particular of k, determined by the phase
selection pulse. Different values of the y gradient pulse give
the coefficients for different values of k’v , as shown in Fig.
17.28. Both positive and negative gradients are used to give
both positive and negative values of k,. Application of a
gradient G, during the phase-encoding time (in addition to
the readout gradient) changes the starting value of k, . This
allows one to determine the coefficients for negative values
of k,. This figure has been drawn without taking into
account that the application of a 7 pulse changes k, to
—k, and k, to —k,. The gradients and signals for this
spin—echo determination are shown in Fig. 17.29. The coef-
ficients are substituted in Eq. (17.46a) to reconstruct
M (x,y,z) for the z slice in question.
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FIGURE 17.28. (a) The signal measured while the x
gradient is applied gives the spatial Fourier transform of the
image along the k, axis. (b) The addition of a phase-en-
coding gradient sets a nonzero value for k, so that the
readout determines the spatial Fourier transform along a line
parallel to the k, axis. (c) Phase encoding along the x axis as
well shifts the line along which the coefficients are deter-
mined.

17.9.3. Image Contrast and the Pulse
Parameters

The appearance of an MR image can be changed drastically
by adjusting the repetition time and the echo time. Problem
17.22 derives a general expression for the amplitude of the
echo signal when a series of 7/2 pulses are repeated every
Ty seconds. The magnetic moment in the sample at the time
of the measurement, considering both longitudinal and
transverse relaxation, is

M(Tg,Te)=My(1—2e TRITIFTERT1 4 = Tr/T1) o= Tp /Ty,
(17.51)

If Tx>Tp, this simplifies to

/2 14
B« | |

e, [
]

+

FIGURE 17.29. The signals in a standard phase encoding.
The pulse sequence is repeated for each value of k.

M(Tg,Tg)=My(1—e To/T)e Te/T2 - (17.52)

where M, is proportional to the number of proton spins per
unit volume N, as shown in Eq. (17.10). We consider an
example that compares muscle (My=1.02, T,=500 ms,
and T,=35ms) with fat (My=1.24, T{=200ms, and
T,=60 ms).

Figure 17.30 shows two examples where Ty is relatively
long and M returns nearly to its initial value between
pulses. If the echo time is short, then the image is nearly
independent of both 7| and T, and it is called a density-
weighted image. If T is longer, then the transverse decay
term dominates and it is called a T,-weighted image. The
signal is often weak and therefore noisy because there has
been so much decay.

Figure 17.31 shows what happens if the repetition time is
made small compared to 7';. This is a T|-weighted image
because the differences in T, are responsible for most of the
difference in signal intensity. Notice also that the very first
pulse nutates the full M, into the transverse plane, so an
echo after the first pulse would give an anomalous reading.
Echoes are measured only for the second and later pulses.
Suppose that the value of T, for fat had been shorter than
the value for muscle. Then there would have been a value of
Ty for which the two transverse magnetization curves
crossed, and the two tissues would have been indistinguish-
able in the image. At larger values of T, their relative
brightnesses would have been reversed. Figure 17.32 shows
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FIGURE 17.30. The intensity of the signal from different
tissues depends on the relationship between the repetition
time and echo times of the pulse sequence, and the relax-
ation times of the tissues being imaged. This figure and the
next show the magnetization curves for two tissues: muscle
(relative proton density 1.02, T;=500ms, T,=35 ms) and
fat (relative proton density 1.24, T;=200 ms, T,=60 ms).
The repetition time is 1500 ms, which is long compared to
the longitudinal relaxation times. A long echo time gives an
image density that is very sensitive to T, values. A short
echo time (even shorter than shown) gives an image that
depends primarily on the spin density.
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FIGURE 17.31. The tissue parameters are the same as in
Fig. 17.30. The repetition time is short compared to the longi-
tudinal relaxation time. As a result, the first echo must be
ignored. With a short Tg, the image density depends
strongly on the value of T;.

FIGURE 17.32. Spin-echo images taken with short and
long values of Tg, showing the difference in T, values for
different parts of the brain. Photograph courtesy of R. Morin,
Ph.D., Department of Diagnostic Radiology, University of
Minnesota.

spin—echo images taken with two different values of T,
for which the relative brightnesses are quite different.

17.9.4. Other Pulse Sequences

There are a large number of other pulse sequences in use,
all of which are based on the fundamentals presented here.
We mention only a few.

One of the problems with conventional spin echo is that
one must wait a time Ty between measurements for
different values of k, . One way to speed things up is to use
the intervening time to make measurement in a slice at a
different value of z.

Fast spin echo or turbo spin echo uses a single /2 pulse,
followed by a series of 7 pulses, as shown in Fig. 17.33.
Each 7 pulse produces an echo, though the echo amplitudes
decay and a correction for this must be made in the image
reconstruction. Each G, pulse increments or “‘winds’’ the
phase by a fixed amount. A negative G, pulse resets the
positions of the k, values. Faster image acquisition
sequences not only save time, but they may allow the image
to be obtained while the patient’s breath is held, thereby
eliminating motion artifacts.

A variation on this is echo planar imaging (EPI) which
eliminates the 7 pulses. It requires a magnet with a very
uniform magnetic field, so T, (in the absence of a gradient)
is only slightly greater than T3°. A small constant G, is
applied, and G, oscillates as shown in Fig. 17.34. One of
several applications is interlaced EPI. The /2 pulse is
synchronized with the heart beat. Data for several k, values
spread across the entire range of k space are acquired
during the first beat, with additional sets of interleaved
values acquired during subsequent beats (Fig. 17.35).

Other fast sequences only partially flip the spins into the
xy plane.

A 3-dimensional Fourier transform of the image can be
obtained by selecting the entire sample and then phase
encoding in both the y and z directions while doing
frequency readout along x. One must step through all
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FIGURE 17.33. A fast spin echo sequence uses a single
m/2 slice selection pulse followed by multiple echo rephasing
pulses. A correction must be made for the transverse decay.

values of k,, for each value of k,. This forms the basis for
imaging very small samples with very high resolution (MRI
microscopy).
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FIGURE 17.34. Echo planar imaging uses a very uniform
magnet and eliminates the = rephasing pulses.
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FIGURE 17.35. The excitation pulse for echo planar
imaging (EPI) of the heart can be triggered by the electro-
cardiogram. Several values of k, are sampled during the
beat. Widely separated values of k, are sampled on the first
beat, with interleaved values on subsequent beats.

High spatial frequencies give the sharp edge detail in an
image; the lowest spatial frequencies give the overall
contrast. (We saw this in Figs. 12.16 and 12.17.) Changing
the order of sampling points in k£ space can be useful. For
example, when the image may be distorted by blood flow
(see the Sec. 17.11), it is possible to change the gradients in
such a way that the values of k near zero are measured right
after the excitation. This gives the proper signal within the
volume of the vessel. The higher spatial frequencies, which
show vessel edges, are less sensitive to blood flow and are
acquired later. Some acquisition sequences vary G, and
G, as a function of time in such a way that a spiral path
through & space is followed.

17.10. CHEMICAL SHIFT

If the external magnetic field is very homogeneous, it is
possible to detect a shift of the Larmor frequency due to a
reduction of the magnetic field at the nucleus because of
diamagnetic shielding by the surrounding electron cloud.
The modified Larmor frequency can be written as

w=vyBy(1—0). (17.53)

Typical values of o are in the range 10~°~107°. They are
independent of B, as expected for a diamagnetic effect
proportional to By. Measurements are made by Fourier
transformation of the free-induction-decay signal, averaged
over many repetitions if necessary to provide the resolution
required to detect the shift.

A great deal of work has been done with 31p  pecause of
its presence in adenosine triphosphate and adenosine
diphosphate (ATP and ADP). Free energy is supplied for

many processes in the body by the conversion of ATP to
ADP. Figure 17.36 shows shifts in the >'P peaks due to



512 / CHAPTER 17

AN

90 SEC. ISCHEMIC EXERCISE

60 SEC. ISCHEMIC EXERCISE

30 SEC. ISCHEMIC EXERCISE

CONTROL

PPM

FIGURE 17.36. A series of 3'P NMR spectra from the forearm of a normal adult showing the change in various chemical-shift
peaks with exercise. Peak A is inorganic phosphate; C is phosphocreatine; D, E, and F are from the three phosphates in ATP.
One can see the disappearance of ATP and phosphocreatine with exercise, accompanied by the buildup of inorganic phos-
phate. From R. L. Nunally (1985). NMR spectroscopy for in vivo determination of metabolism; an overview, in S. R. Thomas and
R. L. Dixon, eds. NMR in Medicine: The Instrumentation and Clinical Applications, College Park, MD, AAPM. Used by permis-

sion.

metabolic changes. With exercise the ATP and phosphocre-
atine peaks diminish and the inorganic phosphate peak
increases.

It is also possible to make chemical shift images. An FID
signal is measured for each volume element. Slice selection
followed by phase encoding in two dimensions can be used
(Fig. 17.37), or phase encoding can be used in all three
directions. Because of the number of measurements
required, spatial resolution is usually limited to 32X 32 or
64X 64. Figure 17.38 shows an 'P image of the brain.

Metabolites containing hydrogen can also be measured,
but special efforts are required to eliminate artefacts (distor-
tions) due to the very strong signals from water and lipids
[Hu et al. (1995)].

17.11. FLOW EFFECTS

Flow effects can distort a magnetic resonance image. Spins
initially prepared with one value of M can flow out of a
slice before the echo and be replaced by spins that had a

different initial value of M. This is called washout. Spins
that have been shifted in phase by a field gradient can flow
to another location before the readout pulse is applied. Axel
(1985) reviews the effect on images. This technique has
also been used to measure blood flow [Battocletti ef al.
(1981)].

To understand the washout effect consider a simple
model in which a blood vessel is perpendicular to the slice,
as shown in Fig. 17.39. To simplify further, assume that all
the blood flows with the same speed v, independent of
where it is in the vessel. This is called plug flow.

First consider washout of the excited spins. Suppose that
at time T'z/2 a 7 pulse is applied to the slice in Fig. 17.39
and that the echo is measured at time T . The shaded area
in the vessel represents new blood that flows in during time
t. If the flow velocity is zero, no new blood flows in, all of
the blood in the slice was excited, and the signal has full
strength. If the velocity is greater than 2Az/T, all of the
spins that were flipped by the pulse will leave the sensitive
region by the time of the echo, and there will be no signal.
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/2 /2 Because we assume plug flow, the fraction washed out is a
By A A linear function of velocity up to the critical value of v. The
fraction of excited spins remaining at T is given by

G, || L vTe  v<2AT,
B f= 2Az7° . (17.54)
O, U>2AZ/TE

Now consider washout of spins between pulses. We saw
that the effect of repetition and echo times on the MRI
signal is given by Eq. (17.51), which, if Tp> T, simplifies
to Eq. (17.52). For low velocities (v<<Az/Tpg) there is an
enhancement of the signal because blood with a larger value
of M, flows into the sensitive region. For vTp<<Az, the
Gy factor in parentheses in Eq. (17.52) is replaced by

UTR ( UTR

kR IRy ey —TRIT
Az+1 AZ)(1 e "RMT)

X AM n m The first term represents spins that flow in and the second
UUUUVanAv“v“v"' those that still remain and that are still affected by the

previous pulse. This can be rearranged as

- UVip _
FIGURE 17.37. A possible pulse sequence to measure free (1—e TR/ + AL ¢ TriT, (17.55)
induction decay (FID). Slice selection is used in the z direc- £
tion, and phase encoding is applied in both the x and y
directions before the FID signal is measured.

This factor has the value 1 —exp(—Tx/T,) for small v and is
replaced by unity for v>Az/Ty . In this simple model, the
effect on the signal is the product of Egs. (17.54) and
(17.55).

PCr

10 0 -10 20
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(a)

FIGURE 17.38. A 3'P chemical shift image obtained by making a Fourier transform of the FID signal to determine the various
chemical peaks. (a) The chemical shift spectrum in a single volume element. (b) A map of the chemical shift image between +10
and —20 ppm. From X. Hu, W. Chen, M. Patel, and K. Ugurbil (1995). Chemical shift imaging: An introduction to its theory and
practice. Chap. 65.4 in J. D. Bronzino, ed. The Biomedical Engineering Handbook. Copyright © CRC Press, 1995.
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’

Az

FIGURE 17.39. A blood vessel is perpendicular to the slice.
The model developed in the text assumes plug flow, that is,
all of the blood is flowing with the same speed v.

More complicated models can be developed, and phase
changes because the blood flows through magnetic field
gradients are also important.
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PROBLEMS

Section 17.1

17.1. Show that for a particle of mass m located at posi-
tion r with respect to the origin, the torque about the origin
is the rate of change of the angular momentum about the
origin.

Section 17.2

17.2. Show that the units of y are T !s™1,
17.3. Find the ratio of the gyromagnetic ratio in Table
17.1 to the value ¢/2m for the electron and proton.

Section 17.3

17.4. Evaluate the quantity ym#AB/kgT and the Larmor
frequency for electron spins and proton spins in a magnetic
fields of 0.5 and 4.0 T at body temperature (310 K).

17.5. Verify that 21=27/+1, Em=0, and Em?=I(/
+1)(21+1)/3, when the sums are taken from —7 to I, in
the cases that /=1, 1, and 3.

17.6. Obtain an expression for the magnetization analo-
gous to Eq. (17.10) in the case /=2 when one cannot make
the assumption yAB/kzT<1. (This is called the Langevin
equation.)

17.7. Calculate the coefficient of B in Eq. (17.10) for a
collection of hydrogen nuclei at 310 K when the number of
hydrogen nuclei per unit volume is the same as in water.

Section 17.4

17.8. Verify that Eqs. (17.16) are a solution of Egs.
(17.15).

17.9. Calculate the value of MZ+ M} + M? for relaxation
[Egs. (17.16)] when T, =T,.

17.10. Equations (17.16) correspond to a solution of the
Bloch equations in the presence of a static field B. What
would be the solutions if initially M,=0, M,=0, and
M_=—My?

Section 17.5

17.11. (a) Use Fig. 17.6 to derive Eq. (17.17). (b) Show
that

M, =M, cos 6+M, sin 6,
M, =—M, sin 6+M, cos 6.

(c) Combine these equations with the equations for M, and
M, to show that the application of both transformations
brings one back to the starting point.

17.12. Calculate M*=M?2+M2+M? for the solution of
Egs. (17.29) and compare it to the results of Problem 17.9.

Section 17.6

17.13. Use Egs. (17.31) to find the magnetic field at one
proton due to the other proton in a water molecule when
both proton spins are parallel to each other and perpen-
dicular to the line between the protons. The two protons
form an angle of 104.5° and are each 96.5X 10”2 m from
the oxygen.

17.14. The magnetic field at a distance of 0.15 nm from
a proton is 4X 10~* T. What change in Larmor frequency
does this AB cause? How long will it take for a phase
difference of 7 radians to occur between a precessing spin
feeling this extra field and one that is not?

17.15. Consider a collection of spins that are aligned
along the x axis at 1=0. They precess in the xy plane with
different angular frequencies spread uniformly between w
—Aw/2 and w+Aw/2. If the total magnetic moment per
unit volume is M at =0, show that at time T=4/A w it is
M, sin(2)/2=0.455M .

17.16. What is the contribution to the transverse relax-
ation time for a magnetic field of 1.5 T with a uniformity of
1 part per million? The nonrecoverable relaxation time of
brain is about 2.5 ms. What dominates the measured trans-
verse relaxation in brain?

Section 17.7

17.17. In solving this problem, you will develop a simple
model for estimating the radio-frequency energy absorption
in a patient undergoing an MRI procedure.

(a) Consider a uniform conductor with electrical conduc-
tivity o. If it is subject to a changing magnetic field
B (t)=B cos(wqt), apply Eq. (8.18) to a circular path of
radius R at right angles to the field to show that the electric
field at radius R has amplitude Ey=Rw,B /2. (Because this
is proportional to R, the model gives the skin dose, along
the path for which R is largest.)

(b) Use Ohm’s law in the form j= ¢ E to show that the
time average power dissipated per unit volume of material
is p=0E}/2=0R*w}B?/8 and that if the mass density of
the material is p, the specific absorbed rate (SAR) or dose
rate is SAR= R w}B/8p.

(c) If the radio-frequency signal is not continuous but is
pulsed, show that this must be modified by the °‘duty
cycle’’ factor At/Tg, where At is the pulse duration and
T is the repetition period.

(d) Combine these results with the fact that rotation
through an angle 6 (usually 7 or 77/2) in time Af requires
Bi=26/y At and that wy=7yB,, to obtain
SAR=(1/TxAt)(o/2p)(R*/4)B%6>.

() Use typical values for the human body—
R=0.17 m, 0=0.3 S m '—to evaluate this expression for
a w/2 pulse.

(f) For B;=0.5 T and SAR<0.4 W kg~ determine the
minimum value of At for T, =1s. Also find B;.
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(g) For 180 pulses, what is the dose in Gy? (This should
not be compared to an x-ray dose because this is non-ion-
izing radiation.)

17.18. Use Eq. (17.37) to calculate the initial amplitude
of a signal induced in a one-turn coil of radius 0.5 m for
protons in an 1-mm cube of water at 310 K in a magnetic
field of 1.0 T. (The answer will be too small a signal to be
useful; multiple-turn coils must be used.)

Section 17.8

17.19. Plot the maximum amplitude of an inversion
recovery signal vs the interrogation time if the detector is
sensitive to the sign of the signal and if it is not.

17.20. (a) Obtain an analytic expression for the
maximum value of the first and second echo amplitudes in
a Carr—Purcell pulse sequence in terms of T, and Tg. (b)
Repeat for a CPMG pulse sequence.

17.21. Consider the behavior of M, in Figs. 17.19 and
17.21. The general equation for M, is M,=My+Ae "1,
After several 7 pulses, the value of M, is flipping from
—b to b. Find the value of b.

17.22. Consider a spin—echo pulse sequence (Fig. 17.18).
Find

(a) M, just before the 7 pulse at Tz/2,

(b) M, just after the 7 pulse at Tg/2,

(¢) M, just before the /2 pulse at Tg, and

(d) the first and second echo amplitudes as a function of
Tg, Tg, T, and T,. (The second amplitude is the same as
all subsequent amplitudes.)

17.23. This problem shows how to extend the Bloch
equations to include the effect of diffusion of the molecules
containing the nuclear spins in an inhomogeneous external
magnetic field. Since M is the magnetization per unit
volume, it depends on the total number of particles per unit
volume with average spin components (u,), (u,), and
(). In the rotating coordinate system there is no 'preces—
sion. In the absence of relaxation effects (u) does not
change. In that case changes in M depend on changes in the
concentration of particles with particular components of
(m), so the rate of change of each component of () is
given by a diffusion equation. For example, for M,,,

oM.,
ot

=DV’M ..

If the processes are linear this diffusion term can be added
to the other terms in the Bloch equations. Suppose that there
is a uniform gradient in B,, G, and that the coordinate
system rotates with the Larmor frequency for z=0. When
z is not zero, the rotation term does not quite cancel the
(MXB), term.

(a) Show that the x and y Bloch equations become

oM M,
=+ szzMy’ -

L +DV2M .,
ot T, e

oM,
at

=—yG M ~ﬂ+DV2M
= ‘y ZZ x! T2 yl.

(b) Show that in the absence of diffusion

M. =M, (0)e "T2 cos(yG,,zt),
M, =M (0)e "2 sin(yG,zt).

(c) Suppose that M is uniform in all directions. At t=0
all spins are aligned. Spins that have been rotating faster in
the plane at z + Az will diffuse into plane z. Equal numbers
of slower spins will diffuse in from plane z — Az. Show that
this means that the phase of M will not change but the
amplitude will.

(d) It is reasonable to assume that the amplitude of the
diffusion-induced decay will not depend on z as long as we
are far from boundaries. Therefore try a solution of the form

M =M (0)e T2 cos(yG zt)A(1),
M, =M (0)e™ "2 sin(yG z1)A(1),

and show that A must obey the differential equation

1 dA
- P A22.2
TR AR

which has a solution A(t)=exp(—Dy*G>r/3).

(e) Show that if there is a rotation about y' at time
Tz/2, then at time Ty M, is given by

M (Tp)=—M, exp(—Tg/T,)exp(— Dy G2T3/12).

Hint: This can be done formally from the differential equa-
tions. However it is much easier to think physically about
what each factor in the expressions shown in (d) for M, and
M, mean. This result means that a CPMG sequence with
short Ty intervals can reduce the effect of diffusion when
there is an external gradient.

17.24. A commercial MRI machine is operated with a
magnetic gradient of 3 mTm™ ! while a slice is being
selected. What is the effect of diffusion? Use the diffusion
constant for self-diffusion in water and the results
of Problem 17.23. Compare the correction factor to
exp(—Tx/T,) when T,=75 ms.

Section 17.9

17.25. Show that an alternative expression for the field
amplitude required for a #/2 pulse is B=Bym/w, At
=By/2vAt.

17.26. A certain MRI machine has a static magnetic field
of 1.0 T. Spins are excited by applying a field gradient of
3Xx 1073 T m™ L If the slice is to be 5 mm thick, what is the
Larmor frequency and the spread in frequencies that is
required?
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17.27. Consider a pair of gradient coils of radius a
perpendicular to the z axis and located at z= *V3a/2. The
current flows in the opposite direction in each single-turn
coil.

(a) Use the results of Problem 8.6 to obtain an expression
for B, along the z axis.

(b) For a gradient of 5X1072 Tm™! at the origin and
a=10 cm, find the current required in a single-turn coil.

(c) Find the force on a coil in a field of 1.0 T.

17.28. Find a linear approximation for Eq. (17.52) for
very small values of T and Ty, and discuss why it is called
a T|-weighted image.

17.29. How rapid is the transverse dephasing during a
typical selection pulse if no compensating negative gradient
is used?

17.30. Relate the resolution in the y direction to G,, and
T,.

17.31. Discuss the length of time required to obtain a
256X256 image in terms of Ty and Ty . The field of view
is 15 cm square. Consider both projection reconstruction
and spin warp images. Introduce any other parameters you
need.

17.32. The limiting noise in a well-designed machine is
due to thermal currents in the body. The noise is propor-
tional to B, and the volume V, sampled by the radio-fre-
quency pickup coil. The noise is proportional to T 1z
where T is the time it takes to acquire the image. Show that
the signal-to-noise ratio is proportional to B,T'2V,/V,,
where V, is the volume of the picture element.

Section 17.11

17.33. Use the model of Sec. 17.11 to plot the flow
correction as a function of velocity for Tp=10ms, T,
=900 ms, and T,=400ms, when (a) Tz=50ms, (b) Tk
=200 ms.
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