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In this experiment, the phenomenon of Nuclear Magnetic Resonance(NMR) is used to determine
the magnetic moments of the proton and the fluorine nucleus. The spin-lattice and spin-spin relax-
ation times are determined from the measurements of free-induction signals and spin echoes. The
variation of relaxation constants with viscosity and concentration of paramagnetic ions is studied.

1. PREPARATORY QUESTIONS

1. Show that a particle with angular momentum ~I and
magnetic moment ~µ = γ~I placed in a uniform mag-
netic field ~B0 precesses with angular frequency ~ω0

(called the Larmor angular frequency) that is in-
dependent of the angle between ~µ and ~B0, given
by

~ω0 = −γ ~B0 ≡ −(gµN/~) ~B0. (1)

Here g is the counterpart of the Landé g-factor in
atomic spectroscopy and µN is the nuclear magne-
ton, e~/2mp.

For protons, g = 5.58, so γ = 26.8 × 103 radians
sec−1 gauss−1, which corresponds to a Larmor fre-
quency of 4.26 MHz at 1 kGauss magnetic field.
Note that 1 Gauss = 10−4 Tesla.

2. Derive the classical expression for the potential en-
ergy of a magnetic dipole in a magnetic field.

3. According to quantum mechanics the component
of angular momentum in a given direction, e.g. the
direction of ~B0, is an integer or half-integer multiple
of ~. Write an expression for the energies Um of all
the possible states of a nucleus with total angular
momentum quantum number I in a magnetic field.
Draw on a single diagram the variation of all Um’s
with B0 over the range 0 to 10,000 Gauss for the
proton and the fluorine nucleus.

4. Show on the above diagrams the frequencies of pho-
tons which would cause transitions among the var-
ious levels at B0 = 1770 Gauss. Confirm that the
photon frequencies are the same as the correspond-
ing Larmor frequencies.

5. The samples used in the NMR measurements
contain very large numbers of the dipoles being
studied. These interact with one another and
are in thermal equilibrium at room temperature.
The relative populations of their allowed energy
states therefore follow the Boltzmann distribution,
namely N ∝ e−E/kT . Calculate the fractional dif-
ference in the populations of the magnetic states
of the proton, that is, (n+ − n−)/(n+ + n−), in a
sample at room temperature in a magnetic field of
1770 Gauss.

2. PROGRESS CHECK

By the end of your 2nd session in lab you should have
a determination of the nuclear magnetic moment of fluo-
rine. You should also have a preliminary value of T2 for
100% glycerine.

3. THEORY OF NMR

The NMR method for measuring nuclear magnetic mo-
ments was conceived independently in the late 1940’s by
Felix Bloch and Edward Purcell [1–3]. Both investiga-
tors, applying somewhat different techniques, developed
methods for determining the magnetic moments of nuclei
in solid and liquid samples by measuring the frequencies
of oscillating electromagnetic fields that induced tran-
sitions among their magnetic substates resulting in the
transfer of energy between the sample and the measur-
ing device. Although the amounts of energy transferred
are extremely small, the fact that the energy transfer
is a resonance phenomenon enabled it to be measured.
Bloch and Purcell both irradiated their samples with a
continuous wave (CW) of constant frequency while si-
multaneously sweeping the magnetic field through the
resonance condition. CW methods are rarely used in
modern NMR experiments. Radiofrequency (rf) energy
is usually applied in the form of short bursts of radiation
(pulsed NMR) and the effects of the induced energy level
transitions are observed in the time between bursts. It is
experimentally much easier to detect the extremely small
effects of the transitions if this detection phase is sepa-
rated in time from the rf burst phase. More importantly,
as we shall see, it is much easier to sort out the various
relaxation effects in pulse nmr experiments. The present
experiment demonstrates the essential process common
to all NMR techniques: the detection and interpretation
of the effects of a known perturbation on a system of mag-
netic dipoles embedded in a solid or liquid. In addition,
the effects of perturbations caused by the embedding ma-
terial yield interesting information about the structure of
the material.

3.1. Classical Motion of a Single Spin

One can describe the dynamics of a particle with spin
in a magnetic field by drawing an analogy with a gyro-
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scope in a gravitational field. The spin vector precesses
about the field direction and then, as energy is trans-
ferred to or from the particle, the angle between its spin
axis and the field axis gradually changes. This latter
motion is called nutation.

The trouble with the gyroscope analogy would appear
to be that an individual spin which obeys quantum me-
chanics cannot nutate continuously, since its projection
on the field direction is quantized. Bloch, in 1956, pro-
posed a vector model in which he showed that although
nuclear spins obey quantum laws, the ensemble average
taken over a large number of spins behaves like a classical
system, obeying the familiar laws of classical mechanics.
Thus one can gain significant insight by a classical anal-
ysis of a spinning rigid magnetized body in a magnetic
field.

Following the discussion given by [4], we consider the
motion of a nucleus with angular momentum ~I and mag-
netic moment ~µ = γ~I in a magnetic field ~B = ~B0 + ~B1

composed of a strong steady component B0k̂ and a weak
oscillating component B1 sin(ωt)̂ı perpendicular to B0.
Here ı̂, ̂, k̂ are the unit vectors in the laboratory reference
frame x, y, z. The quantity γ is called the gyromagnetic
ratio. (In the present experiment, the strong steady field
has a magnitude of several kiloGauss; the weak oscillating
field is the field inside a small solenoid 2 cm long, wound
with 10 turns, and connected to a crystal-controlled
fixed-frequency generator and wide-band power amplifier
producing an rf alternating current with a peak ampli-
tude of ∼ 1 mA at 5.00 × 106 Hz. A simple calculation
will confirm that under such conditions B1 � B0). The
equation of motion of the particle is

d~I

dt
= γ~I × ~B. (2)

If B1 = 0, the motion in a reference frame fixed in
the laboratory is a rapid precession of the angular mo-
mentum about the direction of ~B0 (the z-axis) with the
Larmor precession frequency γB0, as shown in one of the
preparatory questions. To understand the perturbing ef-
fects of the small-amplitude oscillating field on the mo-
tion we first represent it as the vector sum ~B1 = ~Br + ~Bl
of two counter-rotating circularly polarized components
given by the equations

~Br = 1
2 (B1 cosωt ı̂+B1 sinωt ̂)

~Bl = 1
2 (B1 cosωt ı̂−B1 sinωt ̂),

(3)

where the subscript l denotes the component rotating in
the direction of rapid precession (the proton precesses in
the left hand direction as can be seen by solving Eq. 2),
and r denotes the component rotating in the opposite
direction.

Next we consider the situation from the point of view
of an observer in a reference frame x′, y′, z′ rotating in
the direction of precession with angular velocity ω and

unit vectors:

ı̂′ = cosωt ı̂+ sinωt ̂
̂′ = − sinωt ı̂+ cosωt ̂
k̂′ = k̂.

(4)

In this rotating frame ~Br is a constant vector (B1/2)̂ı′,
~Bl is rotating with angular velocity −2ω, and the rapid
precession will have angular frequency γ(B0 − ω/γ), as
though the particle were in a field whose z-component
is B0 plus a fictitious field in the opposite direction of
magnitude ω/γ. Suppose now that ω is adjusted so that
ω = γB0. Then the rapid precession will vanish, i.e. its
frequency in the rotating frame will be zero, and the par-
ticle will precess slowly about the direction of the steady
field (B1/2)̂ı′ with angular velocity γB1/2, with only a
tiny flutter averaging to zero due to the counter-rotating
component. If ~I is initially parallel to B0, then in time
π/(γB1) the spin direction will precess by 90◦, putting ~I
in the x′y′ plane, perpendicular to B0. If the oscillating
field is now turned off, the particle will be left with its
magnetic moment in the x′y′ plane and, from the point
of view of an observer in the laboratory frame, it will
be rotating in the xy-plane with angular frequency γB0

about the z-direction.

3.2. Dynamics of an Ensemble of Spins

According to the Bloch theorem, this classical treat-
ment of a single magnetized spinning body is actually
valid for an ensemble of quantized magnetic moments.

Consider such a sample containing protons placed be-
tween the poles of the magnet. According to the Boltz-
mann distribution law, if the sample is in thermal equi-
librium at temperature T , then the ratio of the number of
protons n+ with z components of spin up to the number
with z components down is

n+/n− = e(−E++E−)/kT = eµpB0/kT , (5)

where µp is the magnetic moment of the proton. At
room temperature in a field of several kilogauss this ratio
is only slightly greater than one, which means that the
magnetization due to alignment of the proton moments
in the z-direction is very slight.

Now, if the ensemble is rotated 90◦ by application of an
rf field under the conditions described above for the cor-
rect amount of time (a “90◦ rf burst”), then the nuclear
magnetization will end up in the plane perpendicular to
B0 and precess with angular velocity γB0 about the z
direction. The precessing magnetization creates an al-
ternating magnetic flux in the solenoid which, according
to Faraday’s law, induces an rf voltage. This rf voltage
can be readily detected after the rf burst has been ter-
minated, thereby proving that the resonance condition
was achieved and that the applied frequency was equal
to or very close to the precession frequency of the pro-
tons. Knowledge of the field strength and the resonance
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frequency allows the determination of the gyromagnetic
ratio of the proton, which is a measurement of funda-
mental importance in nuclear physics.

To detect the nuclear-induced rf signal of angular fre-
quency γB0 that appears across the terminals of the
solenoid immediately after the 90◦ rf burst, it is mixed
with a steady signal of frequency ω from the fixed os-
cillator to produce a beat signal of comparatively low
frequency |γB0 − ω| which can be observed directly on
an oscilloscope. The 90◦ rotation of magnetization still
works even if ω is slightly off resonance.

However, the precession of spins in the transverse plane
does not last forever. It decays because of three distinct
effects:

1. The field of the magnet is not perfectly uniform so
that the protons in different parts of the sample
precess at slightly different frequencies and get out
of phase with one another, thereby gradually de-
creasing the net magnetization of the sample. This
effect, although physically the least interesting, is
always the dominant effect.

2. Protons in any given substance are generally lo-
cated in several different molecular environments
in each of which the precession frequency will be
perturbed in a slightly different amount by mag-
netic dipole interactions. As in 1) the result is a
gradual loss of phase coherence and a decay of the
resultant magnetization.

3. Electromagnetic interactions between the protons
and the surrounding particles cause transitions be-
tween the spin up and spin down states whose co-
herent combination is manifested as magnetization
rotating in the xy-plane. The result is a gradual
decay of these coherent combinations and a return
to the state of thermal equilibrium in which the
magnetization is in the z-direction and therefore no
longer capable of inducing a signal in the solenoid.

The oscillatory induced signal modulated by a decay-
ing exponential (Figure 1) is referred as the Free Induc-
tion Decay (FID.) An excellent reference describing these
relaxation effects is given in [5] and is available from the
Junior Lab e-library.

3.3. Spin-Lattice Relaxation Time, T1

Application of rf pulses and the consequent rotation of
the spins from the z-axis to the xy-plane is a disruption
of the thermal equilibrium of the spins. Effect number 3
described above is called thermal relaxation, that is, the
approach to thermal equilibrium after being disturbed by
the rf pulse.

How fast the spins regain equilibrium is a measure of
the coupling of the protons to their environment. The ap-
proach to equilibrium is exponential and is characterized

90◦ RF Pulse

Free Induction Decay (FID)

envelope = exp(−t/T ∗
2 )

FIG. 1: The Free Induction Decay.

by a time constant denoted by T1, called the spin-lattice
or the longitudinal relaxation time. We can write

Mz(t) = Meq
z + (Mz(0)−Meq

z )e−t/T1 ,

where Mz(t) is the z-magnetization at time t and Meq
z

is the value of z-magnetization at thermal equilibrium.
The process of thermal relaxation is governed by the ease
with which the nuclei are able to exchange energy with
their surroundings. Transfer of energy from the spins to
the lattice requires that there be a fluctuating magnetic
field with Fourier components vibrating near the Larmor
precession frequency in order to induce NMR transitions.
The field originates from magnetic dipoles which are in
thermal agitation.

3.4. Spin-Spin Relaxation Time, T2

The time constant T1 described in the previous sec-
tion measures the regaining of longitudinal magnetiza-
tion. However, there is another process that happens.
With the passage of time after the rf pulse puts the spins
in the transverse plane, the magnetic moments interact
with one another and lose their phase coherence in the
xy-plane (this is effect number 2 described above). This
loss of transverse magnetization is characterized by the
time constant T2, called the spin-spin or the transverse
relaxation time.
T ∗2 is the name given to the observed value of the decay

constant. This observed time constant consists of two
components

1/T ∗2 = 1/T2 + γ∆H0, (6)

where T2 is the spin-spin, or the transverse relaxation
time and ∆H0 is the inhomogeneity of the magnetic field
over the sample volume. The second term on the right is
always larger than 1/T2 and is sometimes referred to in
the literature as 1/T ′2.

The measurement of T2 is the basis for the powerful
method of pulsed NMR chemical analysis based on mea-
surement of the various perturbed precession frequencies
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due to the various locations of the protons within the
molecule. Given the spectrum of these frequencies for a
new complex organic compound, an expert can practi-
cally write out the chemical formula.

In many cases, the same physical mechanisms deter-
mine T1 and T2 so that they are equal. The cases of
interest are those where there are additional mechanisms
for spin-spin relaxation such that T2 is shorter than T1.
After a 90◦ pulse all phase coherence may be lost be-
fore any substantial z-magnetization is recovered. The
transverse magnetization, and thus also the rf voltage in-
duced in the sample coil, fall off as the phase coherence
is lost. The dominant effect of magnet inhomogeneity,
which could be fatal for such precision measurements,
can be virtually eliminated by the remarkable invention
of Hahn who discovered the phenomenon of “spin echoes”
[6, 7]. Fig. 1 shows an FID (Free Induction Decay).

4. MEASUREMENT TECHNIQUES

4.1. The Measurement of T2: Spin Echoes

To see how a spin echo is produced, consider a typical
sample which has an enormous number of protons, of
the order of 1023. They can be divided into millions of
ensembles, each one of which consists of a still enormous
number of protons in a region where the external field has
values within a very narrow range. Each ensemble will
have a certain net magnetization which contributes to
the total magnetization, but each such magnetization will
precess with a slightly different frequency and therefore
gradually get out of phase with respect to the others.

Suppose that after a sufficiently long time interval τ , a
second transverse rf burst of double duration, i.e. a 180◦
burst, is applied to the sample.

The magnetization of each ensemble will be flipped by
180◦ about the direction of the applied pulse. This puts
the magnetization back in the xy-plane where it will re-
sume its precession motion. But now the accumulated
phase differences between the various ensembles are all
precisely reversed. Those that were ahead of the average
are now behind by the same amount, and as the preces-
sion proceeds, the dephasing of the ensembles is gradu-
ally reversed. After precisely the same time interval τ all
the ensembles are back in phase, the total magnetization
reaches a maximum, and a “spin echo” signal is induced
in the solenoid.

The amplitude of the echo is usually smaller than that
of the original FID. There will be some loss in magni-
tude of the magnetization due to thermal relaxation and
the effects of random fluctuations in the local fields that
perturb the precession of the nuclear moments and it is
precisely the relaxation time of this loss that we wish to
measure. The spin-echo method enables one to eliminate
the otherwise dominant effects of the nonuniformity of
the magnetic field. If the two-pulse sequence is repeated
for several different values of τ , the height of the echo

180◦ RF Pulse

Free Induction Decay (FID)

90◦ RF Pulse Spin Echo

FIG. 2: The NMR signal observed when the applied rf fre-
quency is offset slightly from the Larmor frequency. The fast
oscillations corresponds to the beat between the two frequen-
cies.

should vary as exp(−t/T2).
A necessary assumption implied in the spin-echo tech-

nique is that a particular spin feels the same constant
magnetic field before and after the “refocusing” 180◦
pulse. If, because of Brownian motion, a spin has dif-
fused to a different region of magnetic field before the
echo, then that spin will not be refocused by the 180◦
pulse. This is often the case for non-viscous liquids and
will result in a decay of echoes which is not quite expo-
nential and somewhat faster than that observed in vis-
cous liquids. The Carr-Purcell technique, described in
[8, 9] and summarized below, elegantly addresses this dif-
ficulty. The section of this lab guide entitled “measure-
ments” will ask you to take data to measure the apparent
T2 for two samples (e.g. a viscous sample such as glycer-
ine and a non-viscous one such as H2O containing Fe3+)
to compare with later measurements taken from the same
samples by the Carr-Purcell technique.

4.2. The Measurement of T1

We describe three methods of measuring T1.

4.2.1. 90◦ − 90◦

As mentioned above, the spin-lattice relaxation time
(T1) can be measured by examining the time dependence
of the z-magnetization after equilibrium is disturbed.
This can be done by saturating the spins with a 90◦ pulse,
so that the z magnetization is zero. Immediately after
the first pulse one should be able to observe a free induc-
tion decay (as in Fig.1) whose amplitude is proportional
to the z-magnetization just before the pulse. One then
waits a measured amount of time, τ , so that some mag-
netization has been reestablished, and then applies a 90◦
pulse to the recovering system. The second 90◦ pulse will
rotate any z magnetization into the xy plane, where it
will produce a FID signal proportional to the recovered
magnitude it had just before the second pulse. If the
two-pulse sequence is repeated for different values of τ ,
the amplitude of the FID as a function of t will give the
value of T1.
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FIG. 3: An example data set using the “Three-Pulse” tech-
nique with the oscilloscope set to infinite-persist.

4.2.2. 180◦ − 90◦

Another sequence, the 180◦ − τ − 90◦, is also used. A
180◦ pulse is applied to the equilibrium system, causing
the population of the states to be precisely inverted, and
thus leaving the xy-magnetization at zero. In this case,
there should be little or no FID immediately after the
first pulse. The system is then allowed to approach equi-
librium for a specified delay, after which a 90◦ pulse is
applied to rotate the partially recovered z-magnetization
into the xy-plane. The magnitude of the FID gives a
measure of the size of the magnetization, which can be
plotted against the delay to give the exponential time
constant. In this case, the magnetization actually re-
verses, going through zero at time T1 ln 2.

4.2.3. 180◦ − τ − 90◦ 180◦

It was mentioned earlier that it is experimentally much
easier to detect the extremely small effects of transi-
tions if they are separated in time from the multi-watt
rf bursts. Unfortunately, the usual “Inversion Recovery”
method requires observation of the FID immediately af-
ter the second rf pulse. This problem was addressed sev-
eral years ago by two Junior Lab students1, who proposed
the “Three-Pulse” sequence [10]. See Figure 3 for a sam-
ple data set using this technique.

The first pulse (180◦) inverts the population along the
z axis as in the normal Inversion-Recovery method. After
a delay of τ , the second and third pulses can be under-
stood as a normal 180◦ − τ − 90◦ sequence, which is
used to measure the fraction of spins which are in the
| + z〉 state at the moment that the pulses are applied.
The time between the second and third pulses is kept

1 Both of these students, Rahul Sarpeshkar and Isaac Chuang, are
now M.I.T. professors. Creativity in Junior Lab is one indicator
of future success in science!

small to minimize T2 effects. The amplitude of the echo
is therefore related to the amount of T1 decay (or recov-
ery) for a given value of τ . Varying τ will have the form
A(1− 2 exp(−τ/T1)).

The three experiments mentioned so far, (i.e. the spin-
echo, the 90◦ − 90◦ and the 180◦ − 90◦ sequences) have
each been performed successfully many times in this lab.
However, each has its intrinsic difficulties leading to var-
ious modifications which will be discussed.

5. EXPERIMENTAL APPARATUS

This experiment uses a permanent magnet whose field
is ∼ 1770 Gauss (0.177 Tesla). Care should be taken to
avoid bringing any magnetizable material (such as iron
or steel) near the magnet as this may be pulled in and
damage the magnet.

The experimental apparatus, shown in Figure 4 con-
sists of a gated rf pulse generator with variable pulse
widths and spacings, a probe circuit that delivers rf power
to the sample and picks up the signal from the sample,
a preamp that amplifies the signal, and a phase detector
which outputs an audio signal whose frequency corre-
sponds to the difference between the Larmor frequency
and the frequency of the signal generator. Details of how
to design and build NMR probes can be found in [11].

The rf pulse generating system is made up of a 15
MHz frequency synthesizer (Agilent 33120A), a digital
pulse programmer based on a STAMP micro-controller,
a double-balanced mixer used as an rf switch (Mini-
Circuits ZAS-3), a variable attenuator, and an rf power
amplifier capable of 2 watts output.

The frequency synthesizer feeds a +10dBm rf sine
wave to the power splitter. The power splitter keeps all
impedances appropriately matched while feeding one half
of the rf power to a double-balanced mixer (DBM) used
as a gate for the rf. The other half is used as a refer-
ence signal in the phase detector. The gate is opened
and closed by TTL pulses provided by the digital pulse
programmer. After the switching stage, the rf pulses
pass into a constant-gain (+33 dBm) rf power amplifier.
The power amplifier feeds the amplified pulsed rf into the
probe circuit.

The signal out of the sample, as well as a considerable
amount of leakage during pulses, comes from the probe
circuit, and is amplified by a sensitive preamp (Tron-
Tech W110F). The signal then goes into a phase de-
tector (Mini-Circuits ZRPD-1), where it is mixed with
the reference signal coming out of the other port of the
power splitter. Since the NMR signal is, in general, not
precisely at the frequency of the transmitter, when the
two signals are mixed, a signal is produced at the differ-
ence frequency of the resonance signal and the applied
rf. Since we are looking at NMR signals in the vicinity of
1-8 MHz, mixing this down to a lower frequency makes
it easier to see the structure of the signal.
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FIG. 4: The Experimental Setup. The magnet and the probe circuit are not shown

5.1. The probe circuit

PreamplifierProbehead
Cm

Ct

FIG. 5: Schematic of the probehead circuit.

The probe circuit is a tuned LC circuit, impedance
matched to 50 ohms at the resonant frequency for effi-
cient power transmission to the sample. The inductor L
in the circuit is the sample coil, a ten turn coil of #18
copper wire wound to accommodate a standard 10mm
NMR sample tube. The coil is connected to ground at
each end through tunable capacitors Cm and Ct, to allow
frequency and impedance matching. Power in and signal
out pass through the same point on the resonant circuit,
so that both the power amplifier and the signal preamp
have a properly matched load. Between the power am-
plifier and the sample is a pair of crossed diodes, in se-
ries with the probe circuit from the point of view of the
power amplifier. By becoming non-conducting at low ap-
plied voltages, these serve to isolate the probe circuit and
preamp from the power amplifier between pulses, reduc-
ing the problems associated with power amplifier noise.
The crossed diodes however, will pass the high rf voltages
that arrive when the transmitter is on. The signal out
of the probe circuit passes through a quarter-wavelength
line to reach another pair of grounded crossed diodes at
the input of the preamp. The diodes short the preamp
end of the cable when the transmitter is on, causing that
end of the cable to act like a short circuit. This helps to

protect the delicate preamp from the high rf power put
out by the power amplifier. Any quarter-wave transmis-
sion line transforms impedance according to the following
relation:

Zin = Z2
0/Zout (7)

where Z0 is the characteristic impedance of the line.
Therefore during the rf pulse, the preamp circuit with

the quarter-wave line looks like an open circuit to the
probe and does not load it down. Between pulses, the
voltage across the diodes is too small to turn them on,
and they act like an open circuit, allowing the small NMR
signal to pass undiminished to the preamp.

6. EXPERIMENTAL PROCEDURE

Although it is the policy in Junior Lab to discour-
age the use of pre-wired experiments, there are two
reasons why the present set-up should not be (lightly)
changed. Several of the components, particularly the
double-balanced mixers (DBM) and the low-level TRON-
TECH pre-amplifier, are easily damaged if the rf power
level they are exposed to exceeds their specified limit.
Furthermore, the lengths of some of the cables have been
specifically selected to fix the relative phase relationship
of different signals.

Most of the controls that you will manipulate are on
the digital pulse programmer, the oscilloscope or the
function generator. The keypad of the Digital Pulse Pro-
grammer is shown in Figure 6. Press any of the four
buttons on the right to select a parameter (First Pulse
Width (PW1), Second Pulse Width (PW2), Tau (τ), or
Repeat Time). Then use the arrow buttons to set the cor-
responding time for that parameter. The default times
are: PW1 = 24µs, PW2 = 48µs, τ = 2ms, and Repeat
Time = 100ms. The top two buttons on the left de-
termine whether a two-pulse sequence occurs only once
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FIG. 6: The Pulse Programmer Interface.

(the Single Pair of Pulses buttom), or repeats continu-
ously (the Repeated Pairs of Pulses button) with a pause
between sequences of a length set by the Repeat Time pa-
rameter. The third button, labeled “Carr-Purcell,” will
create a series of pulses corresponding to the Carr-Purcell
technique described in Section 6.3. Finally, the fourth
button, “Three Pulse,” outputs 180◦ − τ − 90◦ 180◦
pulses for a measurement.

Set the delay, τ , to the minimum position and observe
the amplified rf pulses from the port marked “transmit-
ter” on channel 2 of the oscilloscope. The pulses should
be approximately 20-30 volts peak-to-peak. Choose the
slowest possible sweep speed; this will enable both pulses
to be viewed simultaneously. A good starting pair of
pulse-widths might be 24 µs and 48 µs, corresponding to
approximately 90◦ and 180◦. Now switch to channel 1,
which displays the output of the phase detector (through
the low-pass filter). Incidentally, there is another low-
pass filter which is part of the scope itself. On the Tek-
tronix analog scope there is a button marked “BW limit
20 MHz”, which limits the allowed bandwidth. This but-
ton should be pressed in (active). On the HP digital
scope the BW limit is set by one of the soft keys. On an
Agilent scope, this is set in the channel 1 or channel 2
menu. Set the y-sensitivity to about 10 mV/div at first.
Channel 1 will display the NMR signal. Place the glycer-
ine vial in the probe and place the probe in the magnet.
Now the fun begins!

Refer to Figure 2, which is a highly stylized version of
the signals you might obtain. The form of the voltage
displayed during the two bursts is unimportant. You
will be focusing your attention on the FID signals that
appear after each burst, and on the echo. For five or
ten microseconds after the rf pulse the amplifier is still
in the recovery phase, so this part of the signal should be
ignored.

6.1. Free Induction Decay (FID)

As mentioned above, the oscillations following the first
pulse represent a beat between the applied rf frequency
and the Larmor frequency. Since the latter is propor-
tional to B0, you should see high-frequency oscillations
as you raise ω from below the resonance condition. They
will spread out in time, pass through a zero-beat condi-
tion and then begin to increase in frequency again as the
field continues to increase. These oscillations with their
exponentially decaying envelope is referred to as the Free
Induction Decay (FID).

6.2. Setting Pulse Widths

It is sometimes easiest to set the pulse widths with the
magnetic field slightly off resonance so that the FID is
well displayed. The size of the FID should be maximum
after a 90◦ or 270◦ pulse, minimum or zero after a 180◦
pulse. It is usually easiest to set the pulse-width to 180◦
by minimizing the FID. Then, if you want a 90◦ pulse,
halve the pulse-width.

You have four or more degrees of freedom, including
the widths of each of the two pulses, the delay between
the pulses, and the frequency of the applied current. Ex-
periment with all of them. Look for FID’s; vary the FID
so that you get varying amounts of oscillations (beats),
and try to explain the beats. Once you find oscillatory
FID’s, move the probe slightly between the pole pieces of
the magnet in a direction perpendicular to the magnetic
field. Explain the changes you see. Use these changes
to find the most homogeneous position in the field, then
leave the probe there for the remainder of the experiment.
Measure T ∗2 . Using various combinations of 90◦ and 180◦
rf pulses, obtain data from which you can determine T1

and T2 in several samples (see Section 7.)

6.3. The Carr-Purcell Experiment

The Carr-Purcell experiment is a technique used to
measure T2. As mentioned above, if diffusion causes nu-
clei to move from one point of an inhomogeneous mag-
netic field to another in a time less than 2τ , the echo
amplitude is reduced. It can be shown that the echo
amplitude for a pulse separation τ is

E(2τ) = E(0) exp
[
−2τ
T2
− 2

3
γ2G2Dτ3

]
, (8)

where G is the gradient of the inhomogeneous field and D
is the diffusion constant. Because of the τ3 dependence,
the effects of diffusion are pronounced for large values
of t and thus affect the measurement of long T2’s. Carr
and Purcell [8] introduced a pulse sequence which can
be described as follows: π/2, τ, π, 2τ, π, 2τ, π, 2τ ... (i.e.
90 deg pulse at time 0, followed by 180 deg pulses at times
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FIG. 7: The Carr-Purcell pulse and echo sequence

τ, 3τ, 5τ , etc.) Echoes will be observed at times 2τ, 4τ, 6τ ,
etc.

When you are ready to do a Carr-Purcell, set up the
pulse width and magnetic field first with a two-pulse spin
echo and then switch to the Carr-Purcell mode using the
pulse programmer. The scope readout should resemble
Figure 7.

7. MEASUREMENTS

7.1. Magnetic Moments of Hydrogen and Fluorine

With this apparatus, we can measure the magnetic mo-
ments of two nuclei: the proton 1H and the Fluorine nu-
cleus 19F . One of the strongest signals you can detect is
due to hydrogen in glycerine. Once you have obtained a
good resonance, remove the sample and replace it with
the transverse probe of the Hall Gaussmeter. From the
magnetic field strength (∼ 1770 Gauss) and the mea-
sured frequency you can calculate the magnetic moment.
Repeat the measurement for fluorine using the trifluoric
acetic acid sample or the hexafluorobenzene (you may
wish to consult the CRC or another source to get an idea
of what resonant frequency you are looking for). The
former is a strong acid and should be handled with ex-
treme care. Before looking for the fluorine resonance,
move the knob on the probe circuit in the magnet to
point to “F”. Also note that the T1 relaxation time for
our fluorine sample is long and if you use the default (100
ms) repetition rate of the pulse sequence, the observed
signal will be small! Finally, be creative with the pulse
programmer. For example, by setting pw2 = 1µs you can
effectively create a one pulse sequence.

7.2. Relaxation Constants for Water

In the case of water, the relaxation times (T1 equals T2

for most non-viscous liquids) are of the order of several
seconds. The measurement of T2 is quite difficult but the
equivalent measurement of T1 can be done as follows:

Set up a 90◦ − 180◦ echo sequence with the shortest
possible delay between pulses. As mentioned above, one
must usually wait at least 5 times T1 between successive
repeats of this pulse sequence to allow sufficient time for
equilibrium to be re-established. If less time is taken, the
echo signal is diminished. Taking advantage of this fact,
one can vary the repeat rate and plot the echo height
against the repeat time. For times less than about 3 sec,
you can read this repeat time from the small numerical
display on the scope (push the button marked “per”).
For slower rates switch to the manual (“one-shot”) mode
and use your watch to wait a specified amount of time in
between pulses. Repeat the measurement for both tap-
water and distilled water.

The first measurements of T1 in distilled water stood
for about thirty years. Since then careful measurements
have produced a number which is about 50% higher. The
difference is due to the effect of dissolved oxygen in the
water (O2 is paramagnetic). As an optional experiment,
you might try to carefully remove the dissolved oxygen
from a sample of distilled water. Bubbling pure nitrogen
through the water will work as will other methods in the
literature. A challenging question which you might dis-
cuss in your oral examination is why O2 is paramagnetic
while N2 is diamagnetic.

7.3. Effects of Paramagnetic Ions

An extremely small amount of any substance with un-
paired electron spins has a very dramatic effect of reduc-
ing T1. There is a bottle of FeCl3.6H20 in the lab. The
standard starting solution has a molarity of 0.166M cor-
responding to approximately 1020 Fe+++ ions/cc. There
are 10 molar dilutions made from the standard solution
with which measurements of both T1 and T2 should be
taken. Repeat your measurements across the dilutions
several times to ensure accuracy and precision. Plot the
relaxation times versus concentration on a log-log scale.

7.4. Effect of Viscosity

It has been shown that the major contribution to both
T1 and T2 processes comes from the fluctuating dipo-
lar fields of other nuclear (and unpaired electron ) spins
in the immediate region. Only those fluctuations which
have a sizeable Fourier component at the Larmor fre-
quency can affect T1, but spin-spin relaxation is also sen-
sitive to fluctuations near zero frequency. It is for this
reason that viscous liquids (whose fluctuations have a
sizeable low-frequency component) exhibit a T2 less than



Id: 12.nmr.tex,v 1.107 2011/02/08 22:18:59 woodson Exp 9

Viscosity of Aqueous Glycerine Solutions
in Centipoises/mPa s

Temperatur e (°C)

Glycerine
percent
weight 0 10 20 30 40 50 60 70 80 90 100

0 (1) 1.792 1.308 1.005 0.8007 0.6560 0.5494 0.4688 0.4061 0.3565 0.3165 0.2838
10 2.44 1.74 1.31 1.03 0.826 0.680 0.575 0.500 – – –
20 3.44 2.41 1.76 1.35 1.07 0.879 0.731 0.635 – – –
30 5.14 3.49 2.50 1.87 1.46 1.16 0.956 0.816 0.690 – –
40 8.25 5.37 3.72 2.72 2.07 1.62 1.30 1.09 0.918 0.763 0.668
50 14.6 9.01 6.00 4.21 3.10 2.37 1.86 1.53 1.25 1.05 0.910
60 29.9 17.4 10.8 7.19 5.08 3.76 2.85 2.29 1.84 1.52 1.28
65 45.7 25.3 15.2 9.85 6.80 4.89 3.66 2.91 2.28 1.86 1.55
67 55.5 29.9 17.7 11.3 7.73 5.50 4.09 3.23 2.50 2.03 1.68
70 76 38.8 22.5 14.1 9.40 6.61 4.86 3.78 2.90 2.34 1.93
75 132 65.2 35.5 21.2 13.6 9.25 6.61 5.01 3.80 3.00 2.43
80 255 116 60.1 33.9 20.8 13.6 9.42 6.94 5.13 4.03 3.18
85 540 223 109 58 33.5 21.2 14.2 10.0 7.28 5.52 4.24
90 1310 498 219 109 60.0 35.5 22.5 15.5 11.0 7.93 6.00
91 1590 592 259 127 68.1 39.8 25.1 17.1 11.9 8.62 6.40
92 1950 729 310 147 78.3 44.8 28.0 19.0 13.1 9.46 6.82
93 2400 860 367 172 89 51.5 31.6 21.2 14.4 10.3 7.54
94 2930 1040 437 202 105 58.4 35.4 23.6 15.8 11.2 8.19
95 3690 1270 523 237 121 67.0 39.9 26.4 17.5 12.4 9.08
96 4600 1580 624 281 142 77.8 45.4 29.7 19.6 13.6 10.1
97 5770 1950 765 340 166 88.9 51.9 33.6 21.9 15.1 10.9
98 7370 2460 939 409 196 104 59.8 38.5 24.8 17.0 12.2
99 9420 3090 1150 500 235 122 69.1 43.6 27.8 19.0 13.3

100 12070 3900 1410 612 284 142 81.3 50.6 31.9 21.3 14.8

(1)Viscosity of water taken from “Properties of Ordinary Water-Substance.” N.E. Dorsey, p. 184. New York (1940)

Temperature (º C)!

FIG. 8: The viscocity of water-glycerine mixtures. Taken
from http://www.dow.com/glycerine/resources/table18.htm

T1. You will find a series of samples of glycerine-water
mixtures in different ratios. Each will be marked with its
viscosity2 Measure T2 by the Carr-Purcell method and T1

by the 180◦−90◦ method, the three-pulse method or the
method suggested in Subsection 7.2. With the aid of
Figure 8, compare your results with those found in the
extraordinary thesis of Bloembergen [12] started in the
year that NMR was discovered.

8. SUPPLEMENTAL QUESTIONS

Each of the magnetic moments in a sample is influ-
enced by the magnetic fields of other moments in its
neighborhood. These differ from location to location in
the sample, depending on the relative distance and ori-
entation of neighbor moments to one another. An ap-
proximate measure of the magnetic field variation expe-
rienced by the proton moments in the water molecule is
the range corresponding to parallel alignment of two in-
teracting protons at one extreme to opposite alignment
at the other.

1. Using µ/r3 for the field of the neighbor moment,
show that the half-range in the Larmor precession
frequencies is given by ∆ω ≈ (gµn)2/hr3.

2. The return to normal of the transverse distribution
of the protons following resonance occurs as mo-
ments with different precession frequencies become
more and more randomly orientated in the preces-
sion angle. Estimate the transverse relaxation time
T2 for the water sample by finding the time re-
quired for two moments, differing by the average
∆ω calculated in part a., to move from in-phase to
π-out-of-phase positions.

As you’ve probably guessed, this lab is merely a step-
ping off point for an incredibly varied set of potential
investigations. Some good general references for this lab
(beyond the ones already cited in the text) are [13–19].

2

Recall that viscosity of a fluid, designated η is defined as the
ratio for the shear stress placed on a fluid to the resultant strain

rate. η =
F/A
v/l

From the units, one can see that the SI units must

be 1 Ns
m2 = 1Pa s It is much more common however to see the

corresponding ‘cgs’ unit 1 poise = 1 dyn s
m2 = 0.1 Pa s. From the

table one can see that the viscosity of water is 1.79 x 10−2 poise
at 0◦ which falls to 2.838x10−3 poise at 100◦. For comparison,
the viscosity of air at 20◦ is 181 x 10−6 poise and the viscosities
of lubricating oils are typically 1-10 poise.
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Appendix A: Quantum Mechanical Description of
NMR

Recall that for all spin-1/2 particles (protons, neu-
trons, electrons, quarks, leptons), there are just two
eigenstates, spin up: |S, Sz〉 = | 12 , 1

2 〉 → |0〉 and spin
down: |S, Sz〉 = | 12 , −1

2 〉 → |1〉. Using these as basis vec-
tors, the general state of a spin-1/2 particle can be ex-
pressed as a two-element column matrix called a spinor:

|ψ〉 = u|0〉+ d|1〉 =
[
u
d

]
. (A1)

Normalization imposes the constraint |u|2 + |d|2 = 1.
The system is governed by the Schrödinger equation:

i~
d

dt
|ψ〉 = H|ψ〉 (A2)

which has the solution |ψ(t)〉 = U |ψ(0)〉, where U =
e−iHt/~ is unitary. In pulsed NMR, the Hamiltonian

H = −~µ · ~B = −µ[σxBx + σyBy + σzBz] (A3)

is the potential energy of a magnetic moment placed in
an external magnetic field. The σ’s are the Pauli spin
matrices,

σx ≡
[

0 1
1 0

]
, σy ≡

[
0 −i
i 0

]
, σz ≡

[
1 0
0 −1

]
. (A4)

Inserting (A4),(A1) and (A3) into (A2), we get:

u̇ = µ [iBx +By] d+ iµBzu (A5)

ḋ = µ [iBx −By]u− iµBzd (A6)

If Bx = By = 0 and the equations reduce to

u̇ = iµBzu, ḋ = −iµBzd. (A7)

Integrating with respect to time yields

u = u0e
iµBzt = u0e

iω0t, d = d0e
−iµBzt = d0e

−iω0t

(A8)
where ω0 = µBz/~ is the Larmor Precession Fre-
quency. If an atom undergoes a spin-flip transition from
the ‘spin-up’ state to the ‘spin-down’ state, the emitted
photon has energy E = 2ω0~.

Now let’s add a small external magnetic field Bx but
still keeping By = 0 and such that Bx � Bz. Equations
A5 and A6 become:

u̇ = iµBxd/~− iµBzu/~ (A9)

ḋ = iµBxu/~ + iµBzd/~ (A10)

For a time varying magnetic field of the type produced
by an ‘RF-Burst’ as in pulsed NMR, Bx = Bx0 cosωt =
Bx0

(
eiωt + e−iωt

)
/2. Define ωx = µBx/~. We see that

u̇ = −iω0u+ iωx
(
eiωt + e−iωt

)
d/2 (A11)

ḋ = iω0d+ iωx
(
eiωt + e−iωt

)
u/2 (A12)

Using ωx � ω0 since Bx � B0, we can try for a solu-
tion of the form

u = Cu(t)e−iω0t, d = Cd(t)eiω0t (A13)

Inserting them into the differential equations for u and
d, we get

Ċu =
iωx
2
Cd

[
ei(ω−2ω0)t + e−i(ω−2ω0)t

]
(A14)

Ċd =
iωx
2
Cu

[
ei(ω−2ω0)t + e−i(ω+2ω0)t

]
(A15)

Now we use the approximation ω � ω0 to show that
the leading terms are very small. If we run at resonance
(ω = 2ω0):

Ċu =
iωx
2
Cd, Ċd =

iωx
2
Cu (A16)

Taking the derivatives of these equations, we see that
these coefficients act like harmonic oscillators of fre-
quency ωx/2. These have the general solution

Cu = a cos (ωxt/2) + b sin (ωxt/2) (A17)
Cd = ia sin (ωxt/2)− ib cos (ωxt/2) (A18)

Putting these in A13, we get the solution for u and d.
These are called Rabi Oscillations, valid for ωx � ω0.

Appendix B: Bloch Sphere Representation

A single qubit in the state a|0〉+ b|1〉 can be visualized
as a point (θ, φ) on the unit sphere, where a = cos(θ/2),
b = eiφ sin(θ/2), and a can be taken to be real because
the overall phase of the state is unobservable. This is
called the Bloch sphere representation, and the vector
(cosφ sin θ, sinφ sin θ, cos θ) is called the Bloch vector.

The Pauli matrices give rise to three useful classes of
unitary matrices when they are exponentiated, the rota-
tion operators about the x̂, ŷ, and ẑ axes, defined by the
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equations:

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X

=
[

cos θ2 −i sin θ
2

−i sin θ
2 cos θ2

]
(B1)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y

=
[

cos θ2 − sin θ
2

sin θ
2 cos θ2

]
(B2)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z

=
[
e−iθ/2 0

0 eiθ/2

]
. (B3)

One reason why the Rn̂(θ) operators are referred to
as rotation operators is the following fact. Suppose a
single qubit has a state represented by the Bloch vector
~λ. Then the effect of the rotation Rn̂(θ) on the state is
to rotate it by an angle θ about the n̂ axis of the Bloch
sphere.

An arbitrary unitary operator on a single qubit can
be written in many ways as a combination of rotations,
together with global phase shifts on the qubit. A useful
theorem to remember is the following: Suppose U is a
unitary operation on a single qubit. Then there exist
real numbers α, β, γ and δ such that

U = eiαRx(β)Ry(γ)Rx(δ) . (B4)

Appendix C: Fundamental equations of magnetic
resonance

The magnetic interaction of a classical electromag-
netic field with a two-state spin is described by the
Hamiltonian H = −~µ · ~B, where ~µ is the spin, and
B = B0ẑ + B1(x̂ cosωt + ŷ sinωt) is a typical applied
magnetic field. B0 is static and very large, and B1 is
usually time varying and several orders of magnitude
smaller than B0 in strength, so that perturbation theory
is traditionally employed to study this system. However,
the Schrödinger equation for this system can be solved
straightforwardly without perturbation theory, in terms
of which the Hamiltonian can be written as

H =
ω0

2
Z + g(X cosωt+ Y sinωt) , (C1)

where g is related to the strength of the B1 field, and
ω0 to B0, and X,Y, Z are the Pauli matrices as usual.
Define |φ(t)〉 = eiωtZ/2|χ(t)〉, such that the Schrödinger
equation

i∂t|χ(t)〉 = H|χ(t)〉 (C2)

can be re-expressed as

i∂t|φ(t)〉 =
[
eiωZt/2He−iωZt/2 − ω

2
Z
]
|φ(t)〉 . (C3)

Since

eiωZt/2Xe−iωZt/2 = (X cosωt− Y sinωt) , (C4)

(C3) simplifies to become

i∂t|φ(t)〉 =
[
ω0 − ω

2
Z + gX

]
|φ(t)〉 , (C5)

where the terms on the right multiplying the state can be
identified as the effective ‘rotating frame’ Hamiltonian.
The solution to this equation is

|φ(t)〉 = e
i

»
ω0−ω

2 Z+gX

–
t|φ(0)〉 . (C6)

The concept of resonance arises from the behavior of
this solution, which can be understood to be a single
qubit rotation about the axis

n̂ =
ẑ + 2g

ω0−ω x̂√
1 +

(
2g

ω0−ω
)2

(C7)

by an angle

|~n| = t

√(
ω0 − ω

2

)2

+ g2 . (C8)

When ω is far from ω0, the spin is negligibly affected
by the B1 field; the axis of its rotation is nearly parallel
with ẑ, and its time evolution is nearly exactly that of the
free B0 Hamiltonian. On the other hand, when ω0 ≈ ω,
the B0 contribution becomes negligible, and a small B1

field can cause large changes in the state, corresponding
to rotations about the x̂ axis. The enormous effect a
small perturbation can have on the spin system, when
tuned to the appropriate frequency, is responsible for the
‘resonance’ in nuclear magnetic resonance.

In general, when ω = ω0, the single spin rotating frame
Hamiltonian can be written as

H = g1(t)X + g2(t)Y , (C9)

where g1 and g2 are functions of the applied transverse
RF fields.

Appendix D: Modeling the NMR Probe

The material in this appendix was provided by Profes-
sor Isaac Chuang. A tuned circuit is typically used to
efficiently irradiate a sample with electromagnetic fields
in the radiofrequency of microwave regime. This circuit
allows power to be transferred from a source with min-
imal reflection, while at the same time creating a large
electric of magnetic field around the sample, which is
typically placed within a coil that is part of it.



Id: 12.nmr.tex,v 1.107 2011/02/08 22:18:59 woodson Exp 12

FIG. 9: Schematatic diagram of NMR probe circuit. The
connector on the right goes off to the source and any detection
circuitry.

1. Circuit and Input Impedance

A typical probe circuit, as shown in Figure 7, consists
of an inductor L, its parasitic coil resistance R, a tuning
capacitor CT , and an impedance matching capacitor Cm.
We can analyze the behavior of this circuit using the
method of complex impedances, in which the capacitors
have impedance ZC = 1/iωC, inductors ZL = iωL, and
resistors ZR = R, with ω = 2πf being the frequency in
rad/sec. The input impedance is thus

Z = ZCm
+
[

1
ZCT

+
1

R+ ZL

]
−1

=
1

iωCm
+
[
iωCT +

1
R+ iωL

]
−1

=
1 + iωR(CT + Cm)− ω2L(CT + Cm)

iωCm(1 + iRωCT − ω2LCT )
. (D1)

2. Tune and Match Conditions

The resonant frequency of this circuit is set by

ω2
∗ =

1
L(CT + Cm)

, (D2)

and at this frequency, the input impedance is

Z0 =
R(CT + Cm)

Cm(1 + iRω∗CT − ω2∗LCT )
. (D3)

We would like this impedance to be 50 ohms, because
that is the typical impedance expected by RF or mi-
crowave sources and the coaxial cable which carries in
the signal. Setting Z0 = 50 we obtain:

50
R

=
(CT + Cm)2

Cm [Cm + iRω∗CT (CT + Cm)]
. (D4)

To good approximation, the iRω∗CT (CT + Cm) term in
the denominator may be neglected, giving

50
R

=
(

1 +
CT
Cm

)2

. (D5)

When these conditions are satisfied, almost all the
source power goes into the tuned resonator at the res-
onant frequency, thus creating the strongest possible os-
cillating magnetic field inside the coil L.


