
NMR Relaxation 
 

Phenomenology and Experimental Considerations 
 
 
Review of First-Order Rate Kinetics 
 
Imagine the simple first order process: 
 
 ⎯⎯→A Bk  
 
The time-dependence of the conversion of A to B depends upon the amount of A 
present according to the following expression: 
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or in terms of infinitesimally small variations: 
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This expression may be rearranged to produce the following 
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k is known as the rate constant of the first-order process or alternatively as the 
time-constant of the single-exponential reaction. 
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Nuclear Induction 
 
If a macroscopic sample of magnetically active nuclei is placed in a static 
magnetic field, a polarization or macroscopic magnetization will be produced 
within the sample.  This phenomenon is known as nuclear induction. 
 
 
This induced magnetization does not arise instantaneously, but instead 
accumulates at an exponential rate. 
 
 
If we define the orientation of the static magnetic field to be along and z-direction, 
then the induced polarization will also be along the z-axis. 
 
 
Again, the induced magnetization accumulates at an exponential rate. 
 
 ( ) −∝ −1 RtM t e  
 
 
A geometrical picture should help us develop a more intuitive sense of the effect: 
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Z-axis Recovery from Perturbation: Longitudinal Relaxation 
 
If we allow such a macroscopic magnetization to establish itself and then apply 
resonant RF irradiation to tip the vector away from the static field axis, and then 
monitor the magnitude of the magnetization along the z-axis we would find that 
the system will recover, or relax back to the original state at exactly the same 
rate as for the induction experiment. 
 
A concise mathematical expression for this behavior may be written as: 
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wherein M(0) is the magnetization immediately following the perturbation, M(∞) is 
the fully restored equilibrium magnetization and M(τ) is the magnetization at an 
interval, τ, following the perturbation and T1 is the time constant for the 
exponential recovery (1/T1 = R1). 
 
Again, the geometrical analysis may provide a clearer sense of the physics: 
 

 
 
The rate of recovery (the relaxation rate) of the magnetization along the z-
direction does not depend on the initial state of the system.  This means that the 
relaxation rate along the z-direction does not depend upon the extent of 
perturbation, i.e., the rate of recovery will not depend on whether we used a 30°- 
or 60°- or 120° pulses instead of the 180°-pulse. 
 

 3



Note that although the rate depends only upon the relative change in the 
amplitude, as we saw in the analysis of the first-order reaction, the actual value 
of the observable depends upon both the rate and the initial value of the 
observable. 
 
Relaxation in the XY-Plane: Transverse Relaxation 
 
In the preceding example we monitored the relaxation effects following an 
inversion pulse, a 180°-pulse.  Consider an alternative experiment in which we 
apply a 90°-pulse and again monitor the response of the system. 
 
If we monitor the recovery along the z-direction we would measure the exact 
same rate as in the previous example. 
 
If in this same experiment we were to monitor the amplitude of the magnetization 
along either the x- or y-directions, we would again find that the rate of change 
was exponential. 
 
We would also discover that the rate of change along the x-direction was exactly 
the same as the rate of change along the y-direction. 
 
Finally, we would find that rate of change in the x- or y-directions would differ 
from the rate at which magnetization recovered along the z direction. 
 
Specifically, we would observe that the amplitude of the magnetization 
decreased at a faster rate in the xy-direction that the z-direction. 
 
The results are shown schematically summarized below: 
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Bloch’s Equations 
 
A phenomenological equation is one that is derived to account for experimentally 
observed behavior.  Contrast this with a theoretical equation that expresses 
predicted behavior based on a hypothetical model. 
 
Bloch generated as series of expressions that account for observed dynamics of 
the macroscopic magnetization.  The resulting expressions are known as Bloch’s 
equations: 

 ( ) ( ) ( ) ( )γ ⎡ ⎤= × − −⎣ ⎦0
d M t M t B t R M t M
dt

 

 
M0 is the equilibrium value of M (its value in the absence of perturbations), and 
the inherent time-dependence of the components is emphasized. 
 
In Cartesian coordinate space, the magnetization may be decomposed into a 
series of differential equations along the x-, y- and z-axes: 
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Note that Bloch’s equations imply first-order relaxation, i.e., the recovery from 
perturbation is single-exponential. 
 
 
We may also write Bloch’s equations in matrix form.  In this case, M(t) is a vector 
which may be written as: 
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B(t) is also a vector and in general may be written as 
 

( ) ( ) ( ) ( )( )=B t x y zB t B t B t  
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If we consider only the applied static magnetic field, we may write: 
 
 ( )= 0B 0 0 B  
 
This expression indicates that the magnetic field has no time-dependence and is 
aligned along the z-direction. 
 
In the more general sense we might include additional fields due to RF pulses, in 
this case we would write 
 
 ( )( )ω ω= −1 1cos( ) sinB B t B t B0  
 
the explicit time-dependence of the B1 field (RF) is included via the trigonometric 
factor, e.g., it is an oscillating field. 
 
The relaxation operator, R, accounts for the propensity of the magnetic moment 
to reestablish its equilibrium polarization subsequent to its perturbation by an 
external source. 
 
The general form of R may be written equivalently as a relaxation matrix as 
shown below: 
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The nonzero elements of R correspond to the rates of decay/recovery of the 
macroscopic magnetic moment (polarization), which we observe to be a single 
exponential. 
 
The relaxation rates parallel, 1/T1, and perpendicular, 1/T2, to the direction of the 
external magnetic field are distinct, as per common observation. 
 
Relaxation in the z-direction is named longitudinal relaxation or spin-lattice 
relaxation and the time-constant is T1. 
 
Relaxation in the xy-plane is named transverse relaxation or spin-spin relaxation. 
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We can now reconsider the phenomena of relaxation again with a more 
quantitative view. 
 
Longitudinal Relaxation 

 
 
 
Transverse Relaxation 
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Experimental Determination of T1: Gated Inversion Recovery Experiment 
 
The gated inversion recovery pulse sequence (IR) makes use of a 180°(x)-pulse 
followed by a delay during which time T1 relaxation occurs, and is followed by a 
90°(x)-pulse which allows the recovered magnetization to be measured: 
 

 
 

 
 
The IR experiment is repeated with an array of delays, τ, between the 180°-pulse 
and 90°-pulse that cover the range from complete inversion through complete 
recovery. 
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It is inconvenient to write vector diagrams and a shorthand notation has been 
adopted to describe pulse sequences: 
 

τ− − − −  180     90   detect(FID)d x xT  
 
wherein Td represents a delay interval during which the spin system returns to 
(virtually complete) equilibrium. 
 
In the inversion recovery experiment, typically 10-20 delays are employed to 
support robust fitting of the intensity versus time data. 
 
We can rearrange our original expression predicting the recovery of longitudinal 
magnetization following a perturbation to generate a method for analyzing the IR 
results: 
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The expression above remains completely general, under the specific conditions 
of the IR experiment, M(0) should be identical to -M(∞), in which case we obtain: 
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In addition to the variable delay between the 180°-pulse and 90°-pulse we must 
also use an additional delay between experiments to insure that the spin system 
is at equilibrium at the beginning of each experiment. 
 
The delay, Td, used between experiments must be > 5 T1 intervals: 
 
 ( ) ( ) ( )( ) ( )ττ − −= ∞ − = ∞ − = ∞1 5(1 2 ) 1 2 0.99TM M e M e M  
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In a properly recorded IR experiment, the observed magnetization varies from -
M0 to +M0, thus producing a 2M0 range in amplitude.  Alternative methods such 
as saturation recovery produce only an amplitude range of M0.  The challenges 
associated with proper implementation of IR are significant however.  First, there 
is the issue of setting a proper recovery delay (Td), which must be greater than 
5×T1 values.  This dependency compromises the sensitivity of the experiment.  
More subtle, but of equal importance is the fact that accurate fitting of the data 
requires that the value of M(∞) be established, e.g., measurement of the intensity 
of the magnetization at recovery intervals approaching 5×T1, which likewise 
defeats sensitivity.  Both of these considerations can be compensated by 
employing a three parameter fit to the data: 
 
 ( ) ( ) ( ) ( )( ) 10 TM M M M e ττ −= ∞ + − ∞  
 
An important alternative of the inversion recovery approach is due to Ray 
Freeman and Howard Hill known as the Freeman-Hill modification (FHIR).  This 
experiment combines conventional gated inversion recovery with a second 
simple observe experiment. The timing diagram of this experiment is given as: 
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Data from the two experiments are combined in the host computer memory as 
the difference between FID2 and FID1.  The result of the modification is that the 
time dependence of the recovery is converted into the following form: 
 

( ) ( ) ( ) ( ) ( ) ( )1 1
2 1FID FID (1 2 ) 2t T t T t TM M e M M M e M e− −− = ∞ − ∞ − = ∞ − ∞ + ∞ = ∞ 1−  

 
There are several advantages to the FHIR approach.  Establishing the values of 
M(0) and M(∞) are no longer necessary.  Waiting for full recovery of equilibrium 
magnetization is likewise no longer necessary since the response of the system 
is truly exponential, e.g., selection of Td < 5×T1 only scales the sensitivity of the 
experiment.  Finally, if the recovery if biphasic, the data could be fitted using 4 
parameters as opposed to 6 (generally impossible).  
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Experimental Determination of T2: CPMG variation of the Hahn Echo 
 
Although in principle the measurement of the transverse relaxation could be 
derived from a simple 90°-detect pulse scheme, complication in the 
measurement of T2 arises due to Larmor precession and the limited spatial 
homogeneity of the sample chamber. 
 
If we consider a sample composed of spins in a single chemical environment, 
i.e., a single chemical shift, then we could set our carrier frequency to that exact 
resonance. 
 
In such a situation, if we applied an exact 90°(x)-pulse then the spins would be 
rotated exactly onto the the –y-axis as we have previously seen: 
 

 
 
In our perfect-world experiment, the magnitude of the magnetization along the 
y-direction would decrease without complication, due to T2 relaxation as we have 
already noted. 
 
In a real-world experiment however, the magnetic field in different parts of the 
sample varies due to the finite field homogeneity.   
 
Thus spins in the various regions of the sample cell have different Larmor 
frequencies: 
 ( )0 0effB Bω γ γ= − = − + ∆B  
 
wherein ∆B0 represents microscopic field gradients. 
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In a standard lock-in detection system, spins with resonance frequencies that are 
higher than the carrier frequency rotate in one sense, while spins with resonance 
frequencies lower than the carrier frequency rotate in the opposite sense: 
 

 
 
 
 
In a simple experiment the decrease in measured magnitude (intensity) will thus 
be the sum of an artifactual component arising from finite field homogeneity 
(inhomogeneous broadening) and the actual T2 relaxation.  Distinguishing these 
effects is critical to accurate measurement of T2.  
 
The experiment is named the Carr-Purcell-Meiboom-Gill experiment, CPMG 
more commonly, and the approach is based on the original spin-echo technique 
invented by Erwin Hahn. 
 
Imagine a system that contains multiple spins with different chemical shifts.  In 
this situation, perhaps none of the spins may resonate at the carrier frequency.  
These spins will precess about the z-axis in the same ways as we have just 
discussed. 
 
Hahn discovered that the direction of the precession could be reversed by 
applying a 180°-pulse – this experiment has become known as the Hahn spin-
echo experiment because the intensity of monitored magnetization appears to 
first decrease and the increase again. 
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The Spin-Echo Experiment 
 
 

 
 
 
In this experiment, the amplitude of magnetization recovered at the end of the 
sequence is not the original amount but is less due to T2 relaxation: 
 
 ( ) ( ) 22 T

xyM t M e τ−= ∞  
 
wherein 2τ  is the interval during which time the spins are allowed to precess in 
the xy-plane. 
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In our shorthand notation we would write this sequence as: 
 
  τ τ− − − −90     180     detectx y

 
In the CPMG variant, the (τ  – 180°

y   –  τ) component of the Hahn echo is 
repeated, thus allowing an array of time intervals to be produced. 
 
The CPMG sequence may thus be written as: 
 

( )τ τ− − − −
n

90     180     detectx y  

 
The total length of the transverse relation interval will thus be defined by the 
length of a CPMG-cycle multiplied by the number of cycles. 
 
 
Origins of NMR Relaxation: Motional Coupling 
 
A careful analysis of the interaction of light and matter; which lies beyond the 
scope of the current discussion, leads to the conclusion that a spin subjected to a 
fluctuating magnetic field will be induced to undergo transitions between all 
available energy levels at a rate that is proportional to the intensity of field. 
 
QM time-dependent perturbation theory provides us with an expression known as 
Fermi’s golden rule: 
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2 0 0
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′ ′′ ′ ′′∫ ∫
 

 
wherein ijω  is the transition frequency (rad s–1). 

 
The expression is the Fourier transform of the Hamiltonian composed with itself 
and evaluated over time. 
 
This expression is entirely general, and is used to calculate the transition rates 
stimulated by any sort of time-dependent magnetic field. 
 
The magnetic field may be external, as in the magnetic component of an applied 
RF pulse or it may arise from within the sample itself dues to modulations of field-
spin or spin-spin interactions that are modulated by molecular reorientation. 
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For a pair of uncoupled spin-1/2 nuclei the Wij may defined with respect to our 
energy level diagram: 

 
 
 ( )0W W αβ βα= ↔  

( ) (1 1;I IW W W )αα βα αβ ββ′= ↔ = ↔  

( ) (1 1;S SW W W W )αα αβ βα ββ′= ↔ = ↔  

( )2W W αα ββ= ↔  
 
In the presence of coupling (J > 0), the energy levels, E1 and E4 increase while 
E2 and E3 decrease. 
 
The transition rates due to external RF irradiation are given by the following 
expression: 
 

( ) ( )22
1 1=2i j I S RF ijW B i H t jπγ γ δ ω ω→ −  

 
wherein ( 1ij )δ ω ω−  is a delta function in frequency. 
 
For spin-1/2 nuclei at moderate applied field strength, the dominant internal field 
is due to the dipolar interaction.  The classical expression for the energy of a pair 
of point-dipoles is given by: 

 ( ) ( )
3 53 I IS S ISI S

IS IS

r r
E

r r
µ µµ µ ⋅ ⋅ ⋅⋅

= −  

 
wherein  is the vector joining ISr Iµ  and Sµ . 
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The following diagram defines the physical picture: 
 

 
 
 
Transformation from the classical to the QM expression is accomplished using 
the following substitution: 
 ;I I S SI Sµ γ µ γ= =  
 
The energy of the interaction in the QM formalism is expressed as a Hamiltonian: 
 

 ( )( )2
3

1 1 3cos 3
2
γ γ θ= − − ⋅I S

dd z z
IS

H I
r

S I S  

 
wherein we have also converted the expression into polar coordinates, in which θ  
is the angle between r and the applied magnetic field (assume z-direction). 
 
Note that the interaction energy depends upon the cube of the internuclear 
distance and the orientation between the two spins and the applied magnetic 
field. 
 
As the molecule tumbles in solution, the magnitude of the vector between the two 
dipoles remains constant, but the orientation will clearly change, leading to a 
modulation of the energy. 
 
The stimulated transition rate may thus be written as: 
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The function G(t) reflects the degree to which the molecule reorients in a given 
time interval, and is thus named the autocorrelation function.  The geometric 
picture commonly employed describes the molecular motion as beginning in 
some arbitrary instant with a some orientation – at later times the molecule will 
have tumbled away from its original position 
 
The integral represents a Fourier transformation of the time domain function, 
G(t), e.g., a frequency-domain representation of the motion. 
 
The exact form of the correlation depends upon the nature of the motion.  For 
Brownian motion, G(t), may be suitably modeled as an exponential decay: 
 
 ( ) ctG t e τ−=  
 
wherein the correlation time, τc, characterizes the rate of tumbling.  For a roughly 
spherical molecule, hydrodynamic theory predicts that: 
 

 Veff
c

bk T
ητ =  

 
wherein η  is the solution viscosity, Veff is the effective molecular volume, kb is 
Boltzmann’s constant and T is the temperature in K. 
 
The Fourier transform of the correlation function is known as a spectral density 
function, ( )J ω , and describes the frequency distribution the motion. 
 
The Fourier transform of an exponential function is a Lorentzian function, and 
thus we may write that: 

 ( ) 2 21
CJ τω
ω τ

=
+

 

 
The value of the spectral density thus depends both on the transition frequency 
and the correlation time: 

 
Figure 8.1 from Becker, E.D. (2000) High Resolution NMR. Academic Press, New York 
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Notice that for 1ωτ  that the value of ( )J ω  decreases rapidly as a function of 
ωτ , whereas for 1ωτ  the opposite is true. 
 
If we substitute the dipolar coupling Hamiltonian into the transition rate 
expression, we will obtain the following: 
 

 ( ) ( ) ( )0 6 6 0  when I=S
2

I S I S
I S

IS IS

W W J J
r r
γ γ γ γαβ βα ω ω= ↔ ∝ − ≈  

( ) ( ) ( )1 6
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W W W J
r
γ γαα βα αβ ββ ω= ↔ ≈ ↔ ∝  

( ) ( ) ( )1 6
I S

S S
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W W W J
r
γ γαα αβ βα ββ ω= ↔ ≈ ↔ ∝  

( ) ( )2 6
I S

I S
IS

W W J
r
γ γαα ββ ω ω= ↔ ∝ +  

 
We may now also write the rates (again, rate constants actually) of longitudinal 
and transverse relaxation in term of these transition rates to obtain the following 
expressions: 
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The frequency dependence of the relaxation rate constants is shown in the figure 
below: 

 
Figure 8.2 from Becker, E.D. (2000) High Resolution NMR. Academic Press, New York. 
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