
Nuclear Magnetic Resonance of Hydrogen, 
Lithium, Fluorine, Boron, and Phosphorus Nuclei

Garrett Woods
University of California, Davis

Department of Physics

3/12/2010

ABSTRACT
     The purpose of this experiment was to accurately measure the g-factors 
of  the  nuclei  of  1H (g=  5.637 ± 0.001),  19F (g=5.4297 ± 0.0001),  7Li 
(g=2.11 ± 0.02), 11B (g=1.791 ± 0.001), and 31P (g=2.268 ± 0.001). These 
g-factors tend to conform nicely to current accepted values. In addition, 
the gyromagnetic ratios of these samples were calculated and compared to 
published values. The T2 relaxation times were also measured from the 
full width at half  max of the NMR signal curves, however, they suffer 
largely from systematic error and only serve as an upper bound for the 
measurement.
 

INTRODUCTION:

The concept of nuclear magnetic resonance 
uses several fundamental principles in physics to 
describe the environment and composition of a 
sample of atoms. The frequency at which an atom 
resonates while under the influence of a magnetic 
field represent a unique signature that can be used 
to identify that substance. These signatures have 
many wide ranging applications from medical 
imaging to physics and chemistry experiments. In 
this experiment, we measured the gyromagnetic 
ratios, g-factors, and spin-spin relaxation times of 
the nuclei of Hydrogen, Fluorine, Lithium, Boron, 
and Phosphorus.

An atom's nucleus has a magnetic moment 
described by the vector  . The magnetic 
moment is simply a description of which end of 
the nucleus is the magnetic north pole, and which 
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Figure 1: A nuclei's magnetic moment points from south to 
north just like a bar magnet. Just as a change in an external 
magnetic field would cause the bar magnet to move and 
realign itself, a nucleus will also be affected  and attempt to 
align itself with the magnetic field.



end is south (see figure 1). In a sample of material 
containing a large number of atoms, the nuclear 
moments have a cumulative effect on the 
macroscopic scale so it is useful to define the 
magnetization M to be

M=∑
i=1

n

i  (1)

  
which is the magnetic moment of the sample per 
unit volume. If we were to take this sample and 
place it in a magnetic field, each nucleus would 
have an energy described by 

E=⋅B  (2)

where B is the vector describing the magnetic 
field. When this field is applied to a large sample 
of atoms, it causes the spins of the nuclei to orient 
themselves either with the magnetic field, or
 perpendicular to it1. In quantum mechanics, this 
implies that the overall energy level of the sample 

1 For simplicity's sake, the theory presented will focus on 
a spin ½ nucleus where the energy gets split into two 
levels. In general however, the number of discrete energy 
state possibilities is 2S+1 where S is the spin of the 
nucleus. Some of our samples have S > ½ and thus have 
a larger number of energy levels, however the basic idea 
remains the same.

is split very slightly into two states. A nucleus is 
in the bottom state when it's magnetic moment is 
aligned along the direction of the magnetic field 
and it is in the top state when the moment is 
aligned perpendicular to the field. These two 
states are shown in figure 2.

Given these circumstances, the nucleus' 
magnetic moment experiences a torque 
equal to 

=×B  (3)

 
which will cause the moments to precess about the 
magnetic field vector with a frequency o (also 
known as the Larmor frequency) which is defined 
as 

o=
eg
2 m

B  (4)

where g is the g-factor, m is the mass of the 
nucleus, e is the elementary charge, and  B is the 
magnitude of the magnetic field vector.

As the magnetic field is static in this case, 
after their initial disturbance the nuclei quickly 
settle into the lowest energy state possible. This 
applies to spin ½ fermions so, only a certain 
number can be in the same energy state at the 
same time and thus the relaxed distribution is 
given by the Boltzmann distribution2. This simply 
means that as many nuclei as possible are in E1 

(the ground state) and the rest occupy the higher 
state. Mathematically, the Boltzmann distribution 
is described by the ratio of the number of particles 
in the E1 state N 1 to the number of particles in 
E2 N 2 :

N 2

N 1
=e

E
kb T  (5)

2 This is also known as “thermal equilibrium”.
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Figure 2: Under the influence of a magnetic field, the energy 
level of the  nucleus is split into two levels, E1 and E2. E1 is 
occupied by nuclei with their magnetic moments (and spins) 
aligned parallel with the magnetic field and E2 is occupied 
by nuclei with their moments aligned perpendicular to the 
field. After the field is turned on and the energy level split 
occurs, the nuclei quickly relax to a Boltzmann distribution 
with the maximum number of nuclei resting in E1.



where E is the energy difference between E1 

and E2, k b is the Boltzmann constant, and T is 
the temperature. 

As M is related to  by equation (1) 
the magnetization of the system is related to the 
difference in populations of the two energy levels 
such that 

M=N 1−N 2  (6)

This is a static situation; i.e. the magnetic field, 
and distribution of the nuclei are unchanging with 
respect to time. So we would expect everything to 
relax into a static state after a short amount of 
time3. This time is known as the spin-lattice 
relaxation time, or T1 . The average time that a 
nucleus exists in the upper state cannot be greater 

3 This is sort of the equivalent of ringing a bell once. The 
bell will ring (the nuclei align to the field) but nothing 
happens after that and the bell slowly stops producing a 
sound (the nuclei enter a Boltzmann distribution). As 
we're looking for resonance of a nuclei, we're going to 
need something to repeatedly stir up the nuclei after 
they've relaxed.

than T1 and the uncertainty principle predicts that 
the energy level is broadened by an amount
 

h
T 1

 (7)

Now suppose we were to add an 
oscillating magnetic field with an energy equal to 
the difference of the two states of the nucleus. So:

h=E=E 2−E1  (8)

where h is planck's constant,  is the frequency 
of the magnetic field oscillations and E is the 
energy difference between the two spin states. 
This oscillating field is used to stir up the nuclei 
so that the populations of these two energy states 
are equalized. This causes energy to be absorbed 
by the nuclei as they transition from the lower to 
the higher energy state and energy to be emitted as 
they transition back down to the lower state. By 
the addition of our oscillating field, we are 
repeatedly randomizing the distribution of nuclei 
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Figure 3: As our magnetic field sweeps slowly up and down, at some point it will match the conditions under which the 
nucleus will resonate shown here is shown by the intersection of the magnetic field sweep with the NMR curve at 
approximately zero on the vertical axis.



so that we can observe the frequency at which 
they change states. The major limitation here is 
that we want the nuclei to relax before we stir 
them up again, so we require 

1

≫T 1  (9)

The amount of energy being imparted to 
each nucleus by the oscillating field is small when 
compared to the energy from the static field so we 
can use time-dependent perturbation theory to 
describe the interaction. If H is the energy given 
by the static field, and H' is the energy given by 
the oscillating field then 

H '=g N
S⋅B=h  (10)

where g is the so-called g-factor, N is the 
nuclear magneton4, S is the spin of the nucleus, 
and B is the magnetic field vector. The g-factor 
can be solved for such that

g= h
N

⋅
∣B∣

=ℏ
N

 (11)

 
where  is the gyromagnetic ratio of the 
nucleus. The g-factor represents the ratio of the 
number of Bohr Magnetons to the units of ℏ of 
angular momentum or to put it more simply, it is 
the point where the nucleus makes a transition 
from one spin state to another in units of MHz per 
Gauss and it is largely what we are attempting to 
find in our experiment.

The probability predicted for the transition 
from E2 to E1 (or the reverse) is given by Fermi's 
Golden Rule5 

4 See appendix for the value of N and other constants.
5 See Griffiths, David J. Introduction to Quantum 

Mechanics. Upper Saddle River, NJ: Pearson Prentice 
Hall, 2005. Print.  for more on this subject.

P= 2

o−22 sin2 o−22⋅t
2  (12)

where 

=
o H '

H
 (13)

t is time,  is the angular frequency induced 
from our oscillating field and o is the Larmor 
frequency6.

We now have a situation where the spins 
and magnetic moments are flipping up and down 
together with a certain frequency however, over 
time, the nuclei will not remain in sync with each 
other. Their transitions begin to become 
randomized such that, the cumulative effect is that 
there is no net change. That is, with randomized 
transitions, the number of nuclei making the 
upward transition is equal to the number of nuclei 
making a downward transition at any given time 
yielding a net change of zero. This is proven by 
using N 1−N 2=0 in equation (6). This 
relaxation of the overall magnetization is the spin-
spin relaxation time T2 . In general, for a liquid, T1 

and T2 tend to be equal, however for solids T1 

typically is larger than T2.
After time T2 the oscillations of the sin2 

term in equation (12) are damped to an average of 
½, yielding a transition probability of 

P=
2

o−22⋅
1
2  (14)

The change in the x, y, and z components 
of the magnetization with respect to time are 
related to T1 and T2 by the so-called Bloch 
equations7.

6 We see a resonance when =o .
7 Kittel, Charles. Introduction to Solid State Physics. New 

York: Wiley, 1996. Print.
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Figure 4: Our apparatus consisted of two large DC magnets (the source of our constant magnetic field) and a smaller coil was 
wrapped around the sample and provided the oscillating field. This oscillation was provided by an RF oscillator which also 
served as our sensor for detecting resonances.  One output of the oscillator was sent to the HP Counter which gave a digital 
readout of the frequency of oscillations of the alternating field while a second output was sent to our data acquisition system 
(DAQ). We also had an audio generator's signal amplified and sent through a phase shifter before being sent to the DAQ. The 
audio signal allows us to sweep the magnetic field up and down slightly to give us a window where we can observe a 
resonance. As the signal sweeps back and forth across the oscilloscope, we use a phase shifter to adjust them so the two 
signals match up. In addition, we inserted a DC magnetometer next to the sample in order to measure the static magnetic field. 
The DAQ was used to take an average of the resonant waveform over the course of many resonances and output the waveform 
with as much noise as possible subtracted away.



dM x t
dt

= M t ×Bt x−
M x t 

T 2
 (15)

dM y t 
dt

= M t ×Bt y−
M y t 

T 2
 (16)

dM zt 
dt

= M t ×Bt z−
M z t −M o

T 1
 (17)

where  is the gyro-magnetic ratio of the object 
and 

B t=BoB zt   (18)

which is to say that the magnetic field overall is 
comprised of two components: the first from the 
static (DC) field and the second from the 
oscillating (AC) field which is changing with time.

In the Bloch equations, our magnetic fields 
are pointing in the z direction thus illustrating 
the axial symmetry implied by equations (15) and 
(16).

EXPERIMENTAL PROCEDURE

The main goal of this experiment is to 
observe nuclear magnetic resonance in various 
substances. Specifically, we are measuring the 
resonances of the nuclei of Hydrogen8, Florine, 
Lithium, Boron, and Phosphorus using substances 
which contain these elements as shown in table 1. 

Our apparatus consisted of two large DC 
magnets (the source of our constant magnetic 
field) and a smaller coil near the sample to provide 
the oscillating field. This oscillation was provided 
by an RF oscillator which also served as our 
sensor for detecting a resonance. 

8 The Hydrogen nucleus is comprised only of a proton so 
we're essentially measuring the resonance of the proton 
itself.

This  RF oscillator is essentially an RLC 
circuit with the inductor wrapped around our 
sample. This circuit has a certain Q-factor or 
quality factor associated with it 

Q= L
R  (19)

and 

=2  (20)

where  is as defined in equation (8).
The oscillator actively polarizes the 

magnetic moments of the nuclei. The measure of 
how the field polarizes the nuclei is known as the 
magnetic susceptibility  :

=
M
B

 (21)
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Nucleus Sample(s) 
used

Approximate 
gyromagnetic 

ratio

Spin

1H H2O
CnH2n+2 

42.5775 1/2

19F C6H5CF3

CnF2n+2

40.0776 1/2

7Li C2H3LiO2 16.5483 3/2
11B HBF4 13.6630 3/2
31P H3PO4

K2HPO4

17.2515 1/2

Table 1: Shows the substances used to make measurements 
of the NMR properties of the nuclei of the listed elements. 
We used the given gyromagnetic ratios and spins to predict 
where we should see a resonance in order to prevent us from 
taking a measurement of a different nucleus. Approximate 
values taken from the CRC handbook or Chemistry and 
Physics, 86th Edition. 



This oscillator's coil is placed in the DC 
magnetic field at a 90 degree angle so that as the 
magnetization of the sample oscillates about the z-
axis9, the x and y components of this rotation 
induce a change in magnetic flux in the coil which 
can thus be measured.

One output of the oscillator was sent to the 
HP counter which gave a digital readout of the 
frequency of the alternating field while a second 
output was sent to our data acquisition system 
(DAQ). We also had an audio generator's signal 
amplified and sent through a phase shifter before 
being sent to the DAQ. The audio signal drives the 
DC magnetic field up and down slightly to give us 
a window where we can observe a resonance. That 
is, rather than trying to find a signal at an exact 
frequency and field strength, we vary the magnetic 
field slightly in order to take a snapshot of how the 
resonance behaves around a specific point As the 
signal sweeps back and forth across the 
oscilloscope, we use a phase shifter to adjust them 
so the two signals match up (see figures 13 - 17 
for an example).

In addition, we inserted a DC 
magnetometer next to the sample in order to 
measure the DC magnetic field. The DAQ was 
used to take an average of the resonant NMR 
signal over 10,000 waveforms and output the the 
result with as much noise as possible subtracted 
away (see apparatus diagram in figure 4). The 
magnetic field measurements made by the DC 
magnetometer and the readout of the HP counter 
were inserted into equation (11) to find the g-
factor and gyromagnetic ratio for that particular 
nucleus. In general, the magnetic fields we were 
using were on the order of a few thousand Gauss 
and the frequencies used were on the order of a 
few MHz.

The equipment used in our experiment is 
as follows:

• HP Universal Counter Model 5328A

• Varian DC Magnet

9 A reminder: the z-axis points in direction of the DC 
magnetic field.

• Alphalab DC Magnetometer

• Altec Lansing Model 1268 Power 
Amplifier

• Tektronix Model SG-502 Oscillator

• A home-built phase shifter

• A home-built RF Oscillator

• 2 UC Davis Physics Model Amp-A Audio 
Buffer Amplifiers

The T2 relaxation time could also be 
measured using the collected data.  To measure 
T2, we used our computer (DAQ) to average our 
NMR signal 10,000 times. We could then measure 
the full width at half max of the NMR signal's 
main dip as proportional to the relaxation time.

In general, we have some error associated 
with the data that we were recording. This error is 
based only on the perceived accuracy of the 
devices used to obtain our data points. The DC 
magnetometer that we were using to record the 
magnetic field tended to be stable only to about 1 
Gauss and for this reason, all measurements taken 
with it are assumed to have an uncertainty of ± 1 
Gauss. In addition, HP counter had an 
approximate uncertainty of about 1 KHz. This 
may be due to either a lack of stability in the RF 
Oscillator or the counter itself having trouble 
measuring the frequency. Either way, the error 
would manifest itself on the counter and thus all 
measurements taken with it have an uncertainty of 
± 1 KHz.

DATA ANALYSIS and RESULTS

In order to measure the g-factors of our 
samples, we graphed the points where we 
observed a resonance on a plot of magnetic field 
versus the radio frequency of our oscillator. We 
then took a least squares fit of the data  and as 
indicated by equation (11), the slope is directly 
related to the gyromagnetic ratio. All of our data 
indicated a linear relationship between the radio 
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frequency and the magnetic field strength, so a 
linear fit was used. All of the data sets had 2

values which were very close to zero which 
indicates that the software package that we were 
using to perform our fit (Wavemetrics' IGOR) 
may have been performing some incorrect 
calculations with our error while creating a 2

value for the fit line. The slope, however seems to 
be unaffected by this10 and we still consider that 
measurement to be a good match to the data. 
These plots are shown in figures 5 through 12.

The slope values obtained were in units of 
MHz per Gauss and thus to compare to published 
values (given in units of MHz per Tesla) a 
conversion was required. The converted values 
and the current accepted published values of 
gyromagnetic ratios are shown in table 3.

In general, the gyromagnetic ratios that we 
measured were very close to published values. For 
example, our g-factor for Boron 11 is perhaps the 
strongest match to the published value with our 
result agreeing as far as the accuracy of our 

10 In fact, the slope calculated by the fit is very close to the 
slope that is calculated by taking the lowest and highest 
points of our data. As our data appears to be highly linear 
in nature, we can accept the least squares slope as 
accurate with a reasonable degree of confidence.

measurement allows. Aside from the Boron 
sample, our measurement of Phosphorus 
resonance was also in close proximity to the 
CRC's value. While our error bars don't quite 
include the CRC value, we are still quite close.

For the remaining three samples (Fluorine, 
Lithium, and Hydrogen) our measurements differ 
slightly from the CRC values, however, they are 
still within 1.5 MHz per Tesla at the largest 
deviation. Our measurements all tend to agree 
very closely with the majority of other published 
values.

From the gyromagnetic ratio, it is also 
possible to calculate the g-factor of the nucleus as 
shown in equation (11). The gyromagnetic ratios 
only differ from the g-factor by a constant factor 

of h⋅106

N

11 and their direct calculation merely 

serves to further validate our measurements. The 
g-factors calculated matched published values by 
the same relative amount of the gyromagnetic 
ratios further implying a good agreement(shown 
in table 3).

The final measurement that we took was of 
the T2 relaxation times of the samples. The plots 
shown in figures 13 through 17 are of the power 
absorption of the nucleus with respect to magnetic 
11 The factor of 106 comes from converting our frequency 

from MHz to Hz.
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Nucleus Measured 
gyromagnetic ratio 

(MHz/T)

Accepted 
gyromagnetic 

ratio
(MHz/T)

1H 43.00 ± 0.01 42.5775
19F 41.42 ± 0.01 40.0776
7Li 16.1 ± 0.2 16.5483
11B 13.66 ± 0.01 13.6630
31P 17.30 ± 0.01 17.2515

Table 2:  Table of measured gyromagnetic ratios as 
compared to accepted values taken from CRC Handbook of 
Chemistry and Physics, 86th edition. When 2 different values 
were obtained from our data (from multiple samples 
containing the same nucleus) the average is shown here.

Nucleus Measured g-factor Accepted g-
factor

1H 5.637 ± 0.001 5.5814
19F 5.4297 ± 0.0001 5.2537
7Li 2.11 ± 0.02 2.1693
11B 1.791 ± 0.001 1.7911
31P 2.268 ± 0.001 2.2615

Table 3:  Table of measured g-factors as compared to 
accepted values taken from CRC Handbook of Chemistry 
and Physics, 86th edition.  All values were calculated using 
equation (11) and table 2.



field fluctuations. As the x-axis is given in units of 
Gauss, we were required to attain a calibration 
factor to see how time was changing with respect 
to the magnetic field fluctuations. The relationship 
used was 

=B  (22)

where B is the full width at half max of the 
main dip in the NMR curve,  is the 
gyromagnetic ratio of the nucleus as given in table 
2, and  is the corresponding difference in 
frequency required for relaxation to occur. We 
could therefore take 

T 2≈
1


 (23)

These relaxation times, although an 
approximation, tend to be grouped quite closely. 
As published values were not available, it is 
difficult to ascertain how our calculations 
compare, however we can speculate on this effect. 
As the spin-spin relaxation time has to do with the 
motions of the nuclei in a medium, you would 
expect the time to be related in some manner to 
the gyromagnetic ratio of the nucleus. Seeing as 
how our ratios exhibit a significant spread in 

value, we would expect this spread to propagate in 
some fashion to  the relaxation times and we can 
therefore expect them to exhibit a similar 
distribution.

The cause of this apparent error is likely to 
be due to inhomogeneities in our magnetic field. If 
the magnetic field is fluctuating randomly about 
the resonant value, as our DAQ took the average 
of the waveform over many cycles, it would cause 
the waveform to smear or broaden in the x 
direction by the approximate amount of the 
fluctuations12 which would thus place a minimum 
width that we can detect on our NMR signal. 
Given this fact, it would appear that the true 
relaxation times of our samples are beyond the 
resolution available from our equipment.

DISCUSSION

Our results for the gyromagnetic ratio and 
g-factor (along their proximity to other published 
values) are a good indication that the experiment 
had a very low susceptibility to random errors. In 
fact, the main source of error for this experiment 
appears to be purely systematic in that generally 
our measurements of gyromagnetic ratios tended 
to be larger than the CRC Handbook's values.

While our estimates of the relaxation times 
of the nuclei were most likely incorrect, it was not 
at the fault of the methodology, but merely an 
unaccounted for source of systematic error which 
limited our resolution. Our measurements of T2 

are still useful in one respect: they place a 
maximum value on the full width at half max of 
the NMR signals. Further measurements of this 
effect should expect to see a width less than what 
we have observed.

 This obstacle could easily be overcome 
through the use of an electromagnet with a more 
stable power supply. In addition, our apparatus 
was located near a second electromagnet which, 
while not powered, likely still exhibits a magnetic 

12 Recall that the x-axis of the absorption curve is the 
magnetic field.
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Nucleus Measured T2 (seconds)
1H 0.005
19F 0.010
7Li 0.015
11B 0.015
31P 0.013

Table 4:  Table of approximate T2 relaxation times as 
indicated by our data. No errors are given as the numerical 
error in calculation is obviously overshadowed by a more 
prevalent systematic error. This systematic error is indicated 
by the proximity of the relaxation times to each other.



field which could affect our experiment. In fact, 
with our electromagnet powered off, the Gauss 
meter registered approximately 80 Gauss in the 
region of our sample implying an external field 
may have been having a slight affect on our 
measurements. This could easily the remedied 
through the use of shielding, or a more accurate 
measurement of the background magnetic field's 
strength.

Other factors affecting our measurements 
include random errors associated with the 
placement of the sample in the magnetic field 
which could be reduced through the use of a 
restraint to hold the oscillator coil in the same 
place as the samples are changed.

Perhaps our largest source of error stems 
from a low signal-to-noise ratio for most of the 
NMR signals observed. While the averages 
calculated for the relaxation times can be trusted 
(aside from the field inhomogeneity) the low 
signal-to-noise ratio often made it difficult to pin 
down the exact magnetic field strength of the 
resonance. This can be improved through the use 
of the DAQ to average the signals over many 
waveforms, however this comes at the cost of a 
dramatic increase in the time required for the 
experiment.

In addition, we were using two different 
probes to take the measurements. One probe was 
sensitive to radio frequencies less that ~11 MHz 
and the other probe was sensitive frequencies 
greater than ~11 MHz. This is an obvious source 
of error as it is unlikely that these different probes 
have the same degree of accuracy. Also, whenever 
we changed the probes, we were required to 
remove the sample from the magnet, thus 
changing it's position when we re-inserted it to to 
field to continue taking measurements. This 
change in the data is perhaps most apparent in 
measurement of fluorine in figure 7. Much of the 
data below ~10 MHz is below the fit line while 
much of the data above ~12 MHz is above the fit 
line. This effect is an unknown source of error and 
could be accounted for by taking data with the two 

probes separately, fitting the data separately, and 
seeing how the two values differ.

As a higher degree of accuracy is attained, 
and the number of different samples tested is 
increased, these measurements will further aid in 
the detection of elements in chemical samples for 
other scientific experiments as well as help with 
the diagnosis of medical maladies through the use 
of magnetic resonance imaging (MRI) scans.

All factors considered, this experiment can 
be deemed a success. The gyromagnetic ratios and 
g-factors of the various nuclei are in close 
agreement with the accepted values in the 
scientific community and indicate that this 
apparatus has a high degree of accuracy and 
precision for this sort of measurement. Overall, 
the results confirm that we are in fact observing 
nuclear magnetic resonance which conforms to the 
accepted theory closely.

CONCLUSION

The purpose of this experiment was to 
accurately measure the gyromagnetic ratio and g-
factor of the Hydrogen, Fluorine, Lithium, Boron, 
and Phosphorus nuclei. The final values attained 
are shown below.

We were able to attain a high level of accuracy 
with measurements that conform quite closely to 
published values in the CRC handbook. Our 
estimations of the T2 relaxation times of these 
nuclei suffered from a limitation by systematic 
error, however the estimates still provide a 
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Nucleus Measured 
gyromagnetic ratio 

(MHz/T)

Measured g-factor 

1H 43.00 ± 0.01 5.637 ± 0.001
19F 41.42 ± 0.01 5.4297 ± 0.0001
7Li 16.1 ± 0.2 2.11 ± 0.02
11B 13.66 ± 0.01 1.791 ± 0.001
31P 17.30 ± 0.01 2.268 ± 0.001



maximum value for the width of a resonant signal 
and can thus be used to check the results of further 
experimentation.
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Figure 5: A plot of radio frequencies vs. magnetic field values of Proton resonance from a tap water sample. The data is 
fitted with a least squares linear fit where the slope is the gyromagnetic ratio. The measurement of  here is 0.004368 ± 
0.000006 MHz per Gauss.

Figure 6: A plot of radio frequencies vs. magnetic field values of Proton resonance from a CnH2n+2  sample. The data is fitted 
with a least squares linear fit where the slope is the gyromagnetic ratio. The measurement of  here is 0.004232 ± 
0.000002 MHz per Gauss.
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Figure 7: A plot of radio frequencies vs. magnetic field values of Fluorine resonance from a C6H5CF3 sample. The data is 
fitted with a least squares linear fit where the slope is the gyromagnetic ratio. The measurement of  here is 0.00428 ± 
0.00002 MHz per Gauss.

Figure 8: A plot of radio frequencies vs. magnetic field values of Fluorine resonance from a CnF2n+2 sample. The data is fitted 
with a least squares linear fit where the slope is the gyromagnetic ratio. The measurement of  here is 0.004003± 
0.000004 MHz per Gauss.
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Figure 9: A plot of radio frequencies vs. magnetic field values of Phosphorus resonance from a H3PO4 sample. The data is 
fitted with a least squares linear fit where the slope is the gyromagnetic ratio. The measurement of  here is 0.001710 ± 
0.000004 MHz per Gauss.

Figure 10: A plot of radio frequencies vs. magnetic field values of Phosphorus resonance from a K2HPO4 sample. The data is 
fitted with a least squares linear fit where the slope is the gyromagnetic ratio. The measurement of  here is 0.0017495 
MHz per Gauss. There is no reduced 2 value as this slope is achieved from a line drawn between the only two data points 
we could achieve due to an extremely poor signal to noise ratio.
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Figure 11: A plot of radio frequencies vs. magnetic field values of Boron resonance from a HBF4 sample. The data is fitted 
with a least squares linear fit where the slope is the gyromagnetic ratio. The measurement of  here is 0.001366 ± 
0.000006 MHz per Gauss.

Figure 12: A plot of radio frequencies vs. magnetic field values of Lithium resonance from a C2H3LiO2 sample. The data is 
fitted with a least squares linear fit where the slope is the gyromagnetic ratio. The measurement of  here is 0.00161 ± 
0.00002 MHz per Gauss.
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Figure 13: A plot of the NMR signal against the magnetic field fluctuations for the proton resonance. The full width at half 
max of the main dip (approx 0.45 Gauss) is used in the calculation of the spin-spin relaxation time. 

Figure 14: A plot of the NMR signal against the magnetic field fluctuations for the Fluorine nuclear resonance. The full 
width at half max of the main dip (approx 0.25 Gauss) is used in the calculation of the spin-spin relaxation time.
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Figure 15: A plot of the NMR signal against the magnetic field fluctuations for the Lithium nuclear resonance. The full width 
at half max of the main dip (approx 0.4gauss) is used in the calculation of the spin-spin relaxation time.

Figure 16: A plot of the NMR signal against the magnetic field fluctuations for the Boron nuclear resonance. The full width 
at half max of the main dip (approx 0.5 Gauss) is used in the calculation of the spin-spin relaxation time.



Constants used:

N=
e ℏ

2mc
=5.05078234×10-31 J

G
e=1.60217646×10-19 C

ℏ=1.05457148×10-34 m2 kg
s

m p=1.67262158×10- 27 kg
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Figure 17: A plot of the NMR signal against the magnetic field fluctuations for the Phosphorus nuclear resonance. The full 
width at half max of the main dip (approx 0.45 Gauss) is used in the calculation of the spin-spin relaxation time.


