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Typical interatomic distances in a solid are on the order of an angstrom (10~ * cm).
An electromagnetic probe of the microscopic structure of a solid must therefore have
a wavelength at least this short, corresponding to an energy of order

he he
ho = 7" = lo_s'an— ~ 123 x 103 eVv. (6-1)
Energies like this, on the order of several thousands of electron volts (kilovolts or
keV), are characteristic X-ray energies.

In this chapter we shall describe how the distribution of X rays scattered by a
rigid,! periodic? array of ions reveals the locations of the ions within that structure.
There are two equivalent ways to view the scattering of X rays by a perfect periodic
structure, due to Bragg and to von Laue. Both viewpoints are still widely used. The
von Laue approach, which exploits the reciprocal lattice, is closer to the spirit of
modern solid state physics, but the Bragg approach is still in wide use by X-ray crys-
tallographers. Both are described below, together with a proof of their equivalence.

BRAGG FORMULATION OF X-RAY DIFFRACTION BY A CRYSTAL

In 1913 W. H. and W. L. Bragg found that substances whose macroscopic forms
were crystalline gave remarkably characteristic patterns of reflected X-radiation,
quite unlike those produced by liquids. In crystalline materials, for certain sharply
defined wavelengths and incident directions, intense peaks of scattered radiation
(now known as Bragg peaks) were observed.

W. L. Bragg accounted for this by regarding a crystal as made out of parallel planes
of ions, spaced a distance d apart (i.e., the lattice planes described in Chapter 5). The
conditions for a sharp peak in the intensity of the scattered radiation were: (1) that
the X rays should be specularty reflected? by the ions in any one plane and (2) that the
reflected rays from successive planes should interfere constructively. Rays specularly
reflected from adjoining planes are shown in Figure 6.1. The path difference between
the two rays is just 2d sin 6, where 6 is the angle of incidence.* For the rays to interfere
constructively, this path difference must be an integral number of wavelengths, leading
to the celebrated Bragg condition:

nA = 2d sin 6. 6.2)

The integer n is known as the order of the corresponding reflection. For a beam
of X rays containing a range of different wavelengths (“white radiation”) many
different reflections are observed. Not only can one have higher-order reflections
from a given set of lattice planes, but in addition one must recognize that there are

1 Actually the jons vibrate about their ideal equilibrium sites (Chapters 21-26). This does not affect
the conclusions reached in this chapter {though in the early days of X-ray diffraction it was not clear why
such vibrations did not obliterate the pattern characteristic of a periodic structure). It turns oul that
the vibrations have two main consequences (see Appendix N): (a) the intensity in the characteristic peaks
that reveal the crystal structure is diminished, but not eliminated; and (b) a much weaker continuous
background of radiation (the “diffuse background™) is produced.

2 Amorphous solids and liquids have about the same density as crystalline solids, and are therefore
also susceptible to probing with X rays. However, the discrete, sharp peaks of scattered radiation charac-
teristic of crystals are not found.

3 In specular reflection the angle of incidence equals the angle of reflection.

4 The angle of incidence in X-ray crystallography is conventionally measure’ ~-om the plane of
reflection rather than from the normal to that plane (as in classical optics). Note t is just haif the
angle of deflection of the incident beam (Figure 6.2).
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Figure 6.1

A Bragg reflection from a particular
family of lattice planes, separated by a
distance d. Incident and reflected rays are
shown for the two neighboring planes.
The path difference is 2d sin 6.

Figure 6.2
The Bragg angle 8 is just half the total angle by which the incident
beam is deflected.

Figure 6.3

The same portion of Bravais lattice shown .
in Figure 6.1, with a different resolution

into lattice planes indicated. The incident

ray is the same as in Figure 6.1, but both

the direction (shown in the figure) and

wavelength (determined by the Bragg

condition (6.2) with 4 replaced by d”) of
the reflected ray are different from the
reflected ray in Figure 6.1. Reflections
are possible, in general, for any of the
infinitely many ways of resolving the
lattice into planes. b

many different ways of sectioning the crystal into planes, each of which will itself
produce further reflections (see, for example, Figure 5.3 or Figure 6.3).

VON LAUE FORMULATION OF X-RAY DIFFRACTION
BY A CRYSTAL

The von Laue approach differs from the Bragg approach in that no particular sec-
tioning of the crystal into lattice planes is singled out, and no ad hoc assumption of
specular reflection is imposed.® Instead one regards the crystal as composed of

* The Bragg assumption of specular reflection is, however, equivalent to the assumption that rays
scatlered from individual = - within each lattice plane interfere constructively. Thus both the Bragg and
the von Lave approaches sased on the same physical assumptions, and their precise equivalence (see
page 99) is to be expected.
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Figure 6.4

lllustrating that the path difference for rays
scattered from two points separated by d is
given by Eq. (6.3) or (6.4).

decosf =-d.n'

identical microscopic objects (sets of ions or atoms) placed at the sites R of a Bravais
lattice, each of which can reradiate the incident radiation in all directions. Sharp
peaks will be observed only in directions and at wavelengths for which the rays
scattered from all lattice points interfere constructively.

To find the condition for constructive interference, consider first just two scatterers,
separated by a displacement vector d (Figure 6.4). Let an X ray be incident from
very far away, along a direction f, with wavelength 4, and wave vector k = 2=fi/A.
A scattered ray will be observed in a direction /i’ with wavelength® A and wave vector
k' = 2z0’/J, provided that the path differcnce between the rays scattered by each of
the two ions is an integral number of wavelengths. From Figure 6.4 it can be seen
that this path difference is just

dcos @ + dcosf’' = d- (i — ). (6.3)
The condition for constructive interference is thus )
d-(fi — Q') = mi, (6.4)

for integral m. Multiplying both sides of {6.4) by 2n/A yields a condition on the incident
and scattered wave vectors:
d-(k — k') = 2nm, (6.5)
for integral m.
Next, we consider not just two scatterers, but an array of scatterers, at the sites of
a Bravais lattice. Since the lattice sites are displaced from one another by the Bravais
lattice vectors R, the condition that all scattered rays interfere constructively is that
condition (6.5) hold simultaneously for all values of d that are Bravais lattice vectors:

for integral m and
R-(k — K') = 2am, all Bravais lattice (6.6)
vectors R.

This can be written in the equivalent form

™ ¥R — 1 for all Bravais lattice vectors R. 6.7)

6 Here (and in the Bragg picture) we assume that the incident and scattered radiation has the same
wavelength. In terms of photons this means that no energy has been lost in the scattering, i.e., that the
scattering is elastic. To a good approximation the bulk of the scattered radiation is elastically scattered,
though there is much to be learned from the study of that small component of the radiation that is in-
clastically scattered (Chapter 24 and Appendix N). |
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Comparing this condition with the definition (5.2) of the reciprocal lattice, we
arrive at the Laue condition that constructive interference will occur provided that
the change in wave vector, K = k' — K, is a vector of the reciprocal lattice.

It is sometimes convenient to have an alternative formulation of the Laue con-
dition, stated entirely i terms of the incident wave vector k. First note that because
the reciprocal lattice is a Bravais lattice, if k' — k is a reciprocal lattice vector, so is
k — K'. Calling the latter vector K, the condition that k and k" have the same magni-
tude is

k=|k —~K| (6.8)

Squaring both sides of (6.8) yields the condition
k-K = 1iK; (6.9)

1e., the component of the incident wave vector k along the reciprocal lattice vector
K must be half the length of K.

Thus an incident wave vector k will satisfy the Laue condition if and only if the
tip of the vector lies in a plane that is the perpendicular bisector of a line joining the
origin of k-space to a reciprocal lattice point K (Figure 6.5). Such k-space planes
are called Bragg planes.

Figure 6.5
The Laue condition. If the sum of k and —k’ /

is a vector K, and if k and k' have the same b

length, then the tip of the vector k is equi- © " 1k

distant from the origin O and the tip of the S

vector K, and therefore it lies in the plane \»} K
bisecting the line joining the origin to the tip k >\\i K

of K. \‘_/

It 1s a consequence of the equivalence of the Bragg and von Laue points of view,
demonstrated in the following section, that the k-space Bragg plane associated with
a particular diffraction peak in the Laue formulation is parallel to the family of direct
lattice planes responsible for the peak in the Bragg formulation.

EQUIVALENCE OF THE BRAGG AND VON LAUE FORMULATIONS

The equivalence of these two criteria for constructive interference of X rays by a
crystal follows from the relation between vectors of the reciprocal lattice and families
of direct lattice planes (see Chapter 5). Suppose the incident and scattered wave
vectors, k and k', satisfy the Laue condition that K = k' — k be a reciprocal lattice
vector. Because the incident and scattered waves have the same wavelength,® k’ and
k have the same magnitudes. It follows (sce Figure 6.6) that k’ and k make the same
angle 6 with the plane perpendicular to K. Therefore the scattering can be viewed
as a Bragg reflection, with Bragg angle 6, from the family of direct lattice planes
perpendic  r to the reciprocal lattice vector K.
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K=k'-k Figure 6.6

The plane of thc paper contains the incident wave

vector k, the reflected wave vector k', and their differ-
k) ence K satisfying the Laue condition. Since the scat-
tering is elastic (k" = k), the direction of K bisects the
angle between k and k'. The dashed line is the inter-
section of the plane perpendicular to K with the plane
of the paper.

hY

[ eN/6 Y

To demonstrate that this reflection satisfies the Bragg condition (6.2), note that
the vector K is an integral multiple” of the shortest reciprocal lattice vector K, parallel
to K. According to the theorem on page 90, the magnitude of K, is just 2n/d, where
d is the distance between successive planes in the family perpendicular to K, or to
K. Thus

27n
e 6.10
i (6.10)
On the other hand, it follows from Figure 6.6 that K = 2k sin 6, an.d thus
k sin 6 = ’%’. 6.11)

Since k = 2n/4, Eq. (6.11) implies that the wavelength satisfies the Bragg condition
6.2).

Thus a Laue diffraction peak corresponding to a change in wave vector given by the
reciprocal lattice vector K corresponds to a Bragg reflection from the family of direct
lattice planes perpendicular to K. The order, n, of the Bragg reflection is just the length
of K divided by the length of the shortest reciprocal lattice vector parallel to K.

Since the reciprocal lattice associated with a given Bravais lattice is far more easily
visualized than the set of all possible planes into which the Bravais lattice can be
resolved, the Laue condition for diffraction peaks is far more simple to work with
than the Bragg condition. In the rest of this chapter we shall apply the Laue condition
to a description of three of the most important ways in which X-ray crystallographic
analyses of real samples are performed, and to a discussion of how one can extract
information not only about the underlying Bravass lattice, but also about the arrange-
ment of ions within the primitive cell.

EXPERIMENTAL GEOMETRIES SUGGESTED BY THE
LAUE CONDITION

An incident wave vector k will lead to a diffraction peak (or “Bragg reflection™) if
and only if the tip of the wave vector lies on a k-space Bragg plane. Since the set of all

7 This is an elementary consequence of the fact that the reciprocal lattice is a Bravais lattice. See
Chapter 5, Problem 4.
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Bragg planes is a discrete family of planes, it cannot begin to fill up three-dimensional
k-space, and in general the tip of k will not lie on a Bragg plane. Thus for a fixed
incident wave vector—i.e., for a fixed X-ray wavelength and fixed incident direction
relative to the crystal axes—there will be in general no diffraction peaks at all.

If one wishes to search experimentally for Bragg peaks one must therefore relax
the constraint of fixed k, either varying the magnitude of k (i.e., varying the wavelength
of the incident beam) or varying its direction (in practice, varying the orientation of
the crystal with respect to the incident direction).

The Ewald Construction

A simple geometric construction due to Ewald is of great help in visualizing these
various methods and in deducing the crystal structure from the peaks so observed.
We draw in k-space a sphere centered on the tip of the incident wave vector k of radius
k (so that it passes through the origin). Evidently (see Figure 6.7) there will be some
wave vector k' satisfying the Laue condition if and only if some reciprocal lattice
point (in addition to the origin) lies on the surface of the sphere, in which case there
will be a Bragg reflection from the family of direct lattice planes perpendicular to
that reciprocal lattice vector.

Figure 6.7

The Ewald construction. Given the
incident wave vector k, a sphere of

radius & is drawn about the point k.
Diffraction peaks corresponding to re-
ciprocal lattice vectors K will be ob- .
served only if K gives a reciprocal lattice

point on the surface of the sphere. Such

a reciprocal lattice vector is indicated in .
the figure, together with the wave vector

k” of the Bragg reflected ray.

In general, a sphere in k-space with the origin on its surface will have no other
reciprocal lattice points on its surface, and therefore the Ewald construction con-
firms our observation that for a general incident wave vector there will be no Bragg
peaks. One can, however, ensure that some Bragg peaks will be produced by several
techniques:

1. The Lave Method One can continue to scatter from a single crystal of fixed
orientation from a fixed incident direction fi, but can search for Bragg peaks by
using not a monochromatic X-ray beam, but one containing wavelengths from
1, up to 4g. The Ewald sphere will then expand into the region contained between
the two spheres determined by k, = 2nfi/%, and k; = 2zfi/4,, and Bragg peaks
will be observed corresponding to any reciprocal lattice vectors lying within this
region (Figure 6.8). By making the spread in wavelengths sufficiently large, one
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Figure 6.8
The Ewald construction for
the Laue method. The crystal
. . . . . , . and incident X-ray direction
arc fixed, and a continuous
range of wavelengths, corre-
. sponding to wave vectors
between &, and &k, in magni-
tude, is present. The Ewald
spheres for all incident wave
vectors fill the shaded region
between the sphere centered
on the tip of the vector ko
and that centered on the tip
of k,. Bragg peaks will be
observed corresponding to
all reciprocal lattice points
lying within the shaded re-
gion. (For simplicity in illus-
tration, the incident direction
* * y * * * has been taken to lie in a
lattice plane, and only recip-
rocal lattice points lying in
that plane are shown.)
can be sure of finding some reciprocal lattice points within the region; whereas
by keeping it from getting too large, one can avoid too many Bragg reflections,
thereby keeping the picture fairly simple.
The Laue method is probably best suited for determining the orientation of
a single crystal specimen whose structure is known, since, for example, if the
incident direction lies along a symmetry axis of the crystal, the pattern of spots
produced by the Bragg reflected rays will have the same symmetry. Since solid
state physicists generally do study substances of known crystal structure, the
Laue method is probably the one of greatest practical interest.
The Rotating-Crystal Method This method uses monochromatic X rays, but
allows the angle of incidence to vary. In practice the direction of the X-ray beam
is kept fixed, and the orientation of the crystal varied instead. In the rotating
crystal method the crystal is rotated about some fixed axis, and all Bragg peaks
that occur during the rotation are recorded on a film. As the crystal rotates, the
reciprocal lattice it determines will rotate by the same amount about the same
axis. Thus the Ewald sphere (which is determined by the fixed incident wave
vector k) is fixed in k-space, while the entire reciprocal lattice rotates about the
axis of rotation of the crystal. During this rotation each reciprocal lattice point
traverses a circle about the rotation axis, and a Bragg reflection occurs whenever
this circle intersects the Ewald sphere. This is illustrated in Figure 6.9 for a
particularly simple geometry.
The Powder or Debye-Scherrer Method This is equivalent to a romating crystal
experiment in which, in addition, the axis of rotation is varied over all possible
orientations. In practice this isotropic averaging of the incident direction is




Experimental Geometries Suggested by the Laue Condition 103

Figure 6.9

The Ewald construction for the rotating-crystal method. For
simplicity a case is shown in which the incident wave vector lies
in a lattice plane, and the axis of rotation is perpendicular to that
planc. The concentric circles are the orbits swept out under the
rotation by the reciprocal lattice vectors lying in the plane per-
pendicular to the axis containing k. Each intersection of such a
circle with the Ewald sphere gives the wave vector of a Bragg
reflected ray. (Additional Bragg reflected wave vectors associated
with reciprocal lattice vectors in other planes are not shown.)

achieved by using a polycrystalline sample or a powder, grains of which are still
enormous on the atomic scale and therefore capable of diffracting X rays. Because
the crystal axes of the individual grains are randomly oriented, the diffraction
pattern produced by such a powder is what one would produce by combining
the diffraction patterns for all possible orientations of a smgle crystal.

The Bragg reflections are now determined by fixing the incident k vector, and
with it the Ewald sphere, and allowing the reciprocal lattice to rotate through all
possible angles about the origin, so that each reciprocal lattice vector K generates
a sphere of radius K about the origin. Such a sphere will intersect the Ewald
sphere in a circle (Figure 6.10a) provided that K is less than 2k. The vector
joining any point on such a circle with the tip of the incident vector k is a wave
vector k', for which scattered radiation will be observed. Thus each reciprocal
lattice vector of length less than 2k generates a cone of scattered radiation at an
angle ¢ to the forward direction, where (Figure 6.10b)

K = 2k sin 3¢. (6.12)
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%

(b)

Figure 6.10

The Ewald construction for the powder mcthod. (a) The Ewald sphere is the smaller sphere.
1t is centered on the tip of the incident wave vector k with radius k, so that the origin O is on its
surface. The larger sphere is centered on the origin and has a radius K. The two spheres intersect
in a circle (foreshortened to an ellipse). Bragg reflections will occur for any wave vector K’ con-
necting any point on the circle of intersection to the tip of the vector k. The scattered rays
thercfore lie on the conc that opens in the direction opposite to k. (b) A planc section of (a),
containing the incident wave vector. The triangle is isosccles, and thus X = 2k sin $¢.

By measuring the angles ¢ at which Bragg reflections are observed, one therefore
learns the lengths of all reciprocal lattice vectors shorter than 2k. Armed with this
information, some facts about the macroscopic crystal symmetry, and the fact that
the reciprocal lattice is a Bravais lattice, one can usually construct the reciprocal
lattice itself (see, for example, Problem 1).

DIFFRACTION BY A MONATOMIC LATTICE WITH A BASIS;
THE GEOMETRICAL STRUCTURE FACTOR

The preceding discussion was based on the condition (6.7) that rays scattered from
each primitive cell should interfere constructively. If the crystal structure is that of
a monatomic lattice with an n-atom basis (for example, carbon in the diamond
structure or hexagonal close-packed beryllium, both of which have n = 2), then the
contents of each primitive cell can be further analyzed into a set of identical scatterers
at positions dy, ..., d, within the cell. The intensity of radiation in a given Bragg peak
will depend on the extent to which the rays scattered from these basis sites interfere
with one another, being greatest when there is complete constructive interference and
vanishing altogether should there happen to be complete destructive interference.

If the Bragg peak is associated with a change in wave vector k' — k = K, then the
phase difference (Figure 6.4) between the rays scattered at d; and d; willbe K - (d; —
d) and the amplitudes of the two rays will differ by a factor ¢K@=% Thus the
amplitudes of the rays scattered at d,, ..., d, are in the ratios ¢Kd oK The net
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ray scattered by the entire primitive cell is the sum of the individual rays, and will
therefore have an amplitude containing the factor
Sx=Y %9, (6.13)
=1
The quantity Sy, known as the geometrical structure factor, expresses the extent
to which interference of the waves scattered from identical ions within the basis can
diminish the intensity of the Bragg peak associated with the reciprocal lattice vector
K. The intensity in the Bragg peak, being proportional to the square of the absolute
value of the amplitude, will contain a factor |Sy|?. It is important to note that this
is not the only source of K dependence to the intensity. Further dependence on the
change in wave vector comes both from the ordinary angular dependence of any
electromagnetic scattering, together with the influence on the scattering of the detailed
internal structure of each individual ion in the basis. Therefore the structure factor
alone cannot be used to predict the absolute intensity in a Bragg peak.® It can,
however, lead to a characteristic dependence on K that is easily discerned even though
other less distinctive K dependences have been superimposed upon it. The one case,
in which the structure factor can be used with assurance is when it vanishes. This
occurs when the clements of the basis are so arranged that there is complete destructive
interference for the K in question; in that case no features of the rays scattered by
the individual basis elements can prevent the net ray from vanishing,
We illustrate the importance of a vanishing structure factor in two cases®:

1. Body-Centered Cubic Considered as Simple Cubic with a Basis Since the body-
centered cubic lattice is a Bravais lattice, we know that Bragg reflections will occur
when the change in wave vector K is a vector of the reciprocal lattice, which is face-
centered cubic. Sometimes, however, it is convenient to regard the bec lattice as a
simple cubic lattice generated by primitive vectors ag, a¥, and a2, with a two-point
basts consisting of d;, = 0 and d; = (a/2)(% + ¥ + 2). From this point of view the
reciprocal lattice is also simple cubic, with a cubic cell of side 2n/a. However, there
will now be a structure factor S associated with each Bragg reflection. In the present
case, (6.13) gives

Sx=1+exp[iK-zaX + ¥ + 2)]. (6.14)

A general vector in the simple cubic reciprocal lattice has the form
2
K = —;—‘(nlx + na¥ + nsf). (6.15)

Substituting this into (6.14), we find a structure factor
Ss =1+ grinytnatng) g 4 (=11 taztes

_J2, ny + ny + ny even, (6.16)
10, ny + ny + 1y odd.

B A brief but thorough discussion of the scattering of electromagnetic radiation by crystals, including
the derivation of detailed intensity formulas for the various experimental geometries described above, is
given by Landau and Lifshitz, Electrodynamics of Continuous Media, Chapter 15, Addison-Wesley,
Reading, Mass., 1966.

¢  Further example -= given in Problems 2 and 3.
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Thus those points in the simple cubic reciprocal lattice, the sum of whese coor-
dinates with respect to the cubic primitive vectors are odd, will actually have no
Bragg reflection associated with them. This converts the simple cubic reciprocal lattice
into the face-centered cubic structure that we would have had if we had treated the
body-centered cubic direct lattice as a Bravais lattice rather than as a lattice with
a basis (sec Figure 6.11).

Figure 6.11

Points in the simple cubic reciprocal lattice of side 2n/q,
for which the structure factor {6.16) vanishes, are those
(white circles) that can be reached from the origin by
moving along an odd number of nearest-neighbor bonds.
When such sites are climinated, the remaining sites
(black circles) constitute a face-centered cubic lattice
with cubic cell of side 4n/a.

Thus if, either inadvertently or for reasons of greater symmetry in description, one
chooses to describe a Bravais lattice as a lattice with a basis, one still recovers the
correct description of X-ray diffraction, provided that the vanishing of the structure
factor is taken into account.

2. Monatomic Diamond Lattice The monatomic diamond lattice {carbon, silicon,
germanium, or grey tin) is not a Bravais lattice and must be described as a lattice
with a basis. The underlying Bravais lattice is face-centered cubic, and the basis can
betakentobed; = 0, d; = (¢/4}(R + ¢ + 2), where &, 9, and 2, are along the cubic
axes and a is the side of the conventional cubic cell. The reciprocal lattice is body-
centered cubic with conventional cubic cell of side 4n/a. If we take as primitive
vectors

2 2 2
by =.a_”(y+z—x), b2=—a’3(2+ﬁ—y), b3=?”(x+§’—2), (6.17)

then the structure factor (6.13) for K = Znb; is

Sk =1 + exp [§in(n, + ny + n3)]

2, ny + n» + na twice an even number, 6.18)
=41 + f, ny + Nz + Ny Odd, ‘
0, ny + n2 + n3 twice an odd number.

To interpret these conditions on Zn; geometrically, note that if we substitute (6.17)
into K = Inb;, we can write the general reciprocal lattice vector in the form

4
K = %‘(le + Va8 + v32), (6.19)
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where

3
v; = dng + ny + n3) — n, }; vj = 2(n1 + nz + n3). (6.20)

We know (see Chapter 5) that the reciprocal to the fcc lattice with cubic cell of side
a is a bee lattice with cubic cell of side 47/a. Let us regard this as composed of two
simple cubic lattices of side 4n/a. The first, containing the origin (K = 0), must
have all v, integers (according to (6.19)) and must therefore be given by K with
n, + n, + ns even (according to (6.20)). The second, containing the “body-centered
point” (4n/a)5(X + § + 2), must have all v, integers + % (according to (6.19)) and
must therefore be given by K with n; + n, + n; odd (according to (6.20)).

Comparing this with (6.18), we find that the points with structure factor 1 + i
are those in the simple cubic sublattice of “body-centered” points. Those whose
structure factor S is 2 or 0 are in the simple cubic sublattice containing the origin,
where Ly, is even when § = 2 and odd when S = 0. Thus the points with zero struc-
ture factor are again removed by applying the construction illustrated in Figure 6.11
to the simple cubic sublattice containing the origin, converting it to a face-centered
cubic structure (Figure 6.12).

Figure 6.12

The body-centered cubic lattice with cubic cell side
4n/a that is reciprocal to a face-centered cubic lattice
with cubic cell side a. When the fcc lattice is that under-
lying the diamond structure, then the whitc circles
indicate sites with zero structure factor. (The black
circles are sites with structure factor 2, and the gray oncs
are sites with structure factor 1 + i)

DIFFRACTION BY A POLYATOMIC CRYSTAL;
THE ATOMIC FORM FACTOR

If the ions in the basis are not identical, the structure factor (6.13) assumes the form
Su =Y fiKe™Y, (6.21)
j=1

where f;, known as the atomic form factor, is entirely determined by the internal
structure of the ion that occupies position @; in the basis. Identical ions have identical
form factors (regardless of where they are placed), so (6.21) reduces back to (6.13),
multiplied by the common value of the form factors, in the monatomic case.

In elementary treatments the atomic form factor associated with a Bragg reflection
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given by the reciprocal lattice vector K is taken to be proportional to the Fourier
transform of the electronic charge distribution of the corresponding ion'®:

1 .
fi(K)= — = J. dr e™" p;(r). (6.22)

Thus the atomic form factor f; depends on K and on the detailed features of the
charge distribution of the ion that occupies position d; n the basis. As a result, one
would not expect the structure factor to vanish for any K unless there is some for-
tuitous relation between form factors of different types. By making reasonable
assumptions about the K dependence of the different form factors, one can often
distinguish quite conclusively between various possible crystal structures on the basis
of the variation with K of the Bragg peak intensities (see, for example, Problem 5).

This concludes our discussion of the Bragg reflection of X rays. Our analysis has
exploited no properties of the X rays other than their wave nature.!! Consequently
we shall find many of the concepts and results of this chapter reappearing in sub-
sequent discussions of other wave phenomena in solids, such as electrons (Chapter 9)
and neutrons (Chapter 24).!12

PROBLEMS

1. Powder specimens of three different monatomic cubic crystals are analyzed with a Debye-
Scherrer camera. It is known that one sample is face-centered cubic, onc is body-centered cubic,
and onc has the diamond structure. The approximate positions of the first four diffiraction rings
in each case arc (see Figure 6.13):

VALUES OF ¢ FOR SAMPLES

A B C
42.2° 28.8° 42.8°
49.2 41.0 732
720 50.8 89.0
87.3 59.6 115.0

(a} Identify the crystal structures of 4, B, and C.

(b) If the wavelength of the incident X-ray beam is 1.5 A, what is the length of the side of the
conventional cubic cell in cach casc?

(0 If the diamond structure were replaced by a zincblende structure with a cubic unit cell
of the same side, at what angles would the first four rings now occur?

' The electronic charge density pAr) is that of an ion of type j placed at r = 0; thus the contribution
of the ion at R + d; to the electronic charge density of the crystat is p,(r — [R + d,]). (The electronic
charge is usually lactored out of the atomic form factor to make it dimensionless.)

1" As a result we have been unable to make precise statements about the absolute intensity of the
Bragg peaks, or about the diffuse background of radiation in directions not allowed by the Bragg condition.

12 Considered quantum mechanically, a particle of momentum p can be viewed as a wave of wave-
length 2 = h/p.



