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Abstract

Characteristic changes in electrocorticographic power spectra of the human brain

Kai Joshua Miller

Chair of the Supervisory Committee:
Professor Marcel den Nijs

Physics

We quantified the character and underlying nature of spectral changes in human brain

electric potentials, while working with implanted cortical surface arrays in epileptic patients.

In our initial motor movement study, we identified a broadband in the power spectrum at

76-100 Hz, which increased in power in a focal brain region during activity, in stark contrast

to well known non-focal power decreases in the α/β rhythms at low frequencies 8-32 Hz.

We observed that these changes also happened, albeit not as strongly, during movement

imagery, but could be dramatically enhanced when we coupled imagery associated spectral

changes to cursor-based feedback (a brain computer interface). We hypothesized that this

broad band and the α/β rhythms represent different processes: the peaks originate from

synchronous processes over large areas of the brain, while the broadband reveals temporally

scale-free (asynchronous) changes associated with local neural computation. We were able

to map local function in the brain, in real-time, by capturing broadband power changes in

the 76-200 Hz “χ-band”. After careful hardware characterization, we discovered that the

cortical spectrum follows a power law of the form P ∼ f−χ, where χ = 4.0 ± 0.1 between

80-500 Hz. The exponent shifts to χL = 2.0 ± 0.4 over all 10≤ f ≤500 Hz, after dividing

out a Lorentzian crossover function (f0=70 Hz). In cortical areas associated with motor

movement, a principal component-type decomposition removed the α/β rhythms, and find

that only the amplitude of the power law, not the value of χL, changes with activity.





Project Summary

For the past 5 years, we have worked with epileptic patients undergoing placement of elec-

trocorticographic (ECoG) arrays on the brain surface for seizure focus localization. Our

research project began with the intent of identifying behaviorally-modified features in the

power spectrum of the potential measured from these arrays. As an initial inquiry, we looked

at changes in two frequency ranges during simple motor movement: a high-frequency band

(HFB: 76 -100 Hz) and a low frequency band (LFB: 8 -32 Hz) . We demonstrated that the

power in anatomically relevant electrodes consistently decreased in the LFB with movement,

whereas the power in the HFB consistently increased. In addition, the HFB changes were

spatially much more focal than the LFB changes. Based upon these findings, we postulated

that these changes reflected distinct physiologic phenomena, characteristically modulated

with behavior: one with characteristic correlations on the 30-100 ms timescale, producing

the α and β rhythms; and the other with no characteristic timescale, resulting in a power

law broadband shape in the power spectrum. We further postulated that local activity in

the brain could be captured by this power law, and that the power law, in turn, could be

quantified by high pass filtering the raw potential, at frequencies above the α/β rhythms,

and used this to create the first real-time functional electrical mapping device from these

signals (a stated goal of other groups for many years).

We also performed motor imagery studies based upon the same HFB/LFB spectral

changes, and examined how they changed during feedback. During this imagery, the HFB

change was roughly 25% compared to actual movement and the LFB change was of or-

der of 50%.When feedback was provided based on spectral change during motor imagery,

these changes increased dramatically and, in most cases, exceeded the strength of changes

associated with overt movement.

We succeeded in quantifying the nature of the power law broadband shape by increasing

the sampling rate beyond what anyone else in the field had used, by using a pair-wise re-



referencing scheme, by correcting for the amplifier frequency-dependent attenuation, and by

addressing the noise floor of the amplifiers. The power spectral density (PSD) follows the

power-law form P (f) ∼ Af−χ from 80 to 500Hz in fixation tasks. Moreover, this scaling

index χ = 4.0± 0.1 appears universal, across subjects, area in the cortex, and local neural

activity levels. We observed a knee in the spectra at 70 Hz, implying the existence of a

characteristic time scale τ = (2πf0)−1 ' 2− 4 ms. For f < f0, we find evidence for a lower

power-law with χL ' 2.0± 0.4.

A principal component type decomposition of the power law during finger movement

provided strong evidence that the behaviorally related increases in the power-law correspond

to shifts in the overall amplitude, not in the exponent χ. Moreover, this decomposition

demonstrated that the power law is marker of local activity. Time-frequency trade-off

estimates of the temporal trace of the power law specifically track local cortical function,

revealing a generic correlate of local brain activity.

The results of our investigations represent a marked shift away from the classic “frequency-

band” paradigm which has dominated the field for decades, in which distinct physiologic

phenomena are interpreted as superpositions of specific rhythms. Instead, changes in a

power law provide a succinct, aggregate, measure of cortical activity on the local neuronal

population scale, at the timescale of cognition. As an illustration, our results resolved the

first somatotopic representation of individual finger movement trajectories in motor cortex.
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Chapter 1

INTRODUCTION

The research in this thesis aims at building understanding of the human brain by study-

ing the potentials measured from its surface. The study is empirical, involving extensive

data collection from human subjects in a clinical setting. It requires the application and

development of data analysis tools, and it leads to direct application for the development

of computer-brain interfaces and novel brain mapping techniques. The insight gained from

the structure of power spectral changes in these potentials furthers the basic understanding

about how the human neocortex computes, stores and processes information.

At the coarsest level, electrical activity in the human cortex is easy to observe, and has

been so since the early 20th century through electroencephalography (EEG). Activity can

be recorded simply by placing two electrodes on the scalp, e.g., one above each ear and

recording the electric potential between them. The potential difference between two such

electrodes changes with time, and also demonstrates changes with behavior (by closing the

eyes or moving a limb). We measure the same type of potential differences, but directly

from the surface of the brain, and from a high density electrode array.

In this thesis, we quantify how distinguishable such potential changes are from one another,

and demonstrate that they can be associated with particular behavior. This knowledge

allows us to map the brain in a novel way, and allows subjects to use the changes in these

potentials to directly control devices in the context of a brain computer interface. In this in-

troduction, we first sketch the basic organization of the brain, and then introduce the series

of questions that encompass our research. Chapter 2 contains a methodological overview

of the measurement technique. Chapters 3-7 represent specific projects as they have been
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Figure 1.1:
A: Brain removed from skull. Note the folded sheet structure.
B: Cross-section of the brain, illustrating “white” and “grey” matter.
C: Cortical pyramidal neuron from cross-section of grey matter.
D: Many cortical pyramidal neurons, with parallel structure - note net orientation.
E: Stained cross-section of grey matter, showing distinct layers.
(A & B are from: http : //library.thinkquest.org; C is from the Blue Brain Project; D was produced by Ramon y Cajal; E is from
http : //webvision.med.utah.edu/imageswv/nissl2.jpg)

published.

1.1 Biology underlying field potentials

At its largest scale, the cerebral cortex of the brain is a folded laminar sheet (fig 1.1 A).

Unmagnified observation by eye suggests that evolution selected for an overall organization

that maximized the two-dimensional area of this tissue. That is, the structure along this

surface is mostly translationally invariant (one spot of the cortical surface appears similar

to another when viewed with the naked eye). The structure along an orthogonal cut reveals,

at the most coarse grained scale, a division into light and dark regions. Inspection of the

dark (“gray matter”) portion, at a higher resolution, with the aid of a magnifying glass and

ink stain, reveals clear layering within (fig 1.1 C, several lamina - 6 layers in all of cortex
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except for limbic lobe (where there are 3-4 layers)). At first glimpse, this suggests that evo-

lutionary selection optimized it to have a massively parallel organization, with some kind

of intrinsic hierarchy associated with the layering (fig 1.1 D). A more careful inspection of

the lighter, “white matter”, reveals that it is fibrous (and otherwise homogenous), and that

these fibers run transverse to the layering of the gray matter.

Further inspection, with the aid of a microscope, reveals that brains are made up of many

bag-like objects called cells (new figure 1.2 A). A subset of them, with extensive intercon-

nectedness and dynamic electrical properties (on millisecond timescale), are named neurons.

Muscle cells also have electrical properties, but they use the electrical change to trigger phys-

ical change (contraction)). Cells have insulating membranes (figure 1.2 B), which isolate an

internal conducting bath (ions in solution) from an outer conducting bath (ions in solution).

These conducting baths are primarily water and salts, but they also have many different

amine based structures (proteins) and hydrocarbon based structures (lipids/hormones).

These structures and ion species, have different concentrations inside each neuron, and in

the conducting bath that the cells are suspended in. Allowing a substance to selectively

cross the neuronal membrane in either direction can be a form of communication, and neu-

rons are optimized to change their global properties based upon either the binding of one

protein or lipid to another, or potential changes due to a small change in the concentration

of a particular ion.

The different concentration of each ion species inside and outside the neuron establishes

battery potentials, which can be exploited for computation and information transfer in the

brain. Selective inward and outward current can be turned on and off by opening and clos-

ing specialized “channels” which allow only a particular ion species to cross the neuronal

membrane. Charge can move passively with the potential gradient, and it can also move

against the potential gradient, driven by a chemical gradient of more influence. Some of

these selectively open/close when triggered by a specific chemical signal. Others selectively

open and close when they have a specific potential across them. The opening and closing

properties of these are highly non-linear and allow for soliton-like propagation of electric
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Figure 1.2:
A: Exposed cell, illustrating internal structures, and neuronal membrane.
B: Cross-section of the neuronal membrane - specialized channels allow only specific ion
species to cross.
(Picture in A from: Eukaryotic Cell cross section for Victory Technology)

pulses, which can carry signals to different regions of the neuron, and down tubular neuronal

processes.

These tubular processes connect neurons, and this interconnection subserves neural com-

putation. The large scale aggregate of the these connective processes are visible to the eye

as the white matter of the brain.

The ion pumps and ion channels create the voltages we measure at electrodes directly

outside the skull (EEG) and also in our electrocorticographic (ECoG) recordings, where

the electrodes are placed immediately on top of the cortex. Cross- and auto-correlations

between these electrode voltages reveal spatial and temporal correlations between neuronal

activity, and from them we can infer properties of neural computation at the population

scale.

As explained in more detail in chapter 2, the predominant current sources that generate

ECoG signals are those associated with the post-synaptic potentials at the “synapse”, which

is the the most common type of interface (the other is the gap junction) between neurons.

At each synapse, there is a chemical switch, produced by an input signal from another

neuron, where an impulse of net charge is allowed into the connection terminal, setting up
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a transient dipole current in the post-synaptic cell. Because of the way that a particular

class of neurons (cortical pyramidal neurons), and their processes, are organized, there is

a net orientation of current dipoles produced by them. The fields due to these current

dipoles, each representing the input from one cell to another, superimpose. By examining

the superimposed time signal from large ensembles of neurons, we can infer some general

properties of the network of correlated synaptic activity.

1.2 Experimental Setting

1.2.1 Subjects

Figure 1.3: Grid placement and representation on a brain template. The brain is exposed
(A) and electrodes placed in the subdural space (B) to identify seizure onset and map cortex
for clinical purposes prior to resection of epileptic focus. The electrodes are localized with
a lateral skull x-ray (C) and positions transformed to a standardized template (D). White
dots represent the center of the electrode location in the standardized Talairach coordinate
system.
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Over the past 4 years, we measured the potential generated by the activity inside the

cortex, using platinum electrode arrays on the brain surface. We were able to work with a

cohort of subjects who had undergone placement of intracranial electrode arrays to localize

seizure foci prior to surgical treatment of medically refractory epilepsy. The arrays were

typically placed for 5-7 days with the location of the electrodes and duration of implanta-

tion determined independently by clinical criteria alone. Patients underwent craniotomy for

electrode placement and were typically studied 4-6 days after electrode placement to allow

for recovery from the surgery, as shown in situ in figure B.1. These platinum electrode

arrays (Ad-Tech, Racine, WI) were typically configured as linear strips or 8x8 electrode

arrays, and we studied those on the lateral part of the brain (frontal, parietal, and temporal

cortex). The electrodes had 4mm diameter (2.3mm exposed), 1 cm inter-electrode distance,

and were embedded in silastic. The cortical volume directly beneath each electrode contains

roughly 5× 105 neurons, and each such neuron has up to 25,000 synapses.

The organization of the brain is not entirely distributed. Different regions of the brain are

specialized to perform specific function. For example, injury to a specific part of the brain

might cause a loss of function in language, without damaging memory. The experimental

arrays survey large areas of the brain surface, so that in given experiments, we could exam-

ine several of these different functions simultaneously (for example, movement of hand and

tongue, or individual fingers).

1.3 Evolving objectives of the research

My research in this area started during my second year of medical school, 5 years ago,under

supervision/collaboration with Jeffrey Ojemann (Neurosurgery) and Rajesh Rao (Computer

Science). When I returned to graduate school, I began work with Marcel den Nijs (Physics),

and the methodology rapidly evolved. In the past year, I have also worked with Larry

Sorensen (Physics) who has, in addition to added insight and new ideas, helped to make

both the experimental and data analysis aspects of the project more fundamentally sound.
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In the following, I sketch the fundamental questions and summarize the salient results

following the time-line ordering of the research. The subsequent chapters of this thesis are

ordered differently, according to significance of the results, from a more intuitive approach

to understand the underlying phenomena. Furthermore, the chapters of this thesis represent

only a subset of the published work and experimental development (a list of full publications

is attached at the end of this introduction). We set out to identify salient aspects of the

cortical spectrum for brain mapping and feedback. This evolved as a series of experimental

questions, whose answers, in turn, posed new questions. What is the nature of the cortical

power spectrum, and how does it change when a particular part of the brain is “used”?

That is, what changes in the cortical spectrum can we identify that tell us something about

cognition?

“What is the right frequency range in the cortical power spectrum to examine correlations

in brain activity?”

We performed a simple movement-based experiment in a large subject cohort which showed

that low frequencies (8-32 Hz, in the “classical EEG” range) showed a characteristic decrease

in power over a large area with movement. The high frequencies (76-100 Hz, in the so-

called “high-gamma” range) showed an increase in power in more focal areas. Both of these

findings validated observations from previous studies (Aoki 1999, Crone 1998), involving

smaller cohorts, except that a more clearly motor-cortex-specific picture was found across

the entire subject population. The increase in power spectral density at higher frequencies

appeared to extend to the highest frequencies we could resolve with our sampling rate (Miller

2007). This posed the central question of this thesis:

Is the “high-frequency” range actually indicative of a broad-band feature, rather

a characteristic specific frequency, like the famous α− β rhythms, but obscured

by peaked phenomena at lower frequencies? Furthermore, does this broad band

follow a power law form P ∼ f−χ, that we can establish quantitatively?
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Applications of simple spectral changes and this power law hypothesis

This hypothesis that the power spectrum is a combination of a distinct broad band and

specific narrow frequency band peaks, coupled with the knowledge of appropriate frequency

range choices to capture each, allowed us to ask further questions about brain activity

during movement, movement imagery, and cursor-based feedback (Miller 2008), such that

we could segregate the different processes and quantify them independently. It also allowed

us to create useful applications for ECoG measurement in both experimental and research

settings: a working brain-computer interface (Miller 2008, Schalk 2008, Leuthardt 2006),

and a real-time brain mapping technique (Miller 2008) (see chapters 3, 7 and 8).

“What happens to these motor movement associate changes when an individual just imagines

the motor activity?”

Motor imagery is associated with a similar spatial distribution, but the change is not as

robust as that for actual movement. This suggests that similar populations of neurons are

being recruiting during both activities (see chapter 6).

“What happens to these spectral changes when we couple them to feedback that the subject

can use to guide behavior?”

During a successful cursor-based feedback task the changes in the signal (both in the high

and low frequency bands) were augmented, in many cases beyond what was obtained dur-

ing actual movement. We hypothesized a potential mechanism for this: Higher brain areas

send “top-down” commands to supplemental and primary motor areas during the volitional

imagery process (Miller 2008). The populations in these areas have induced activity that

mimics task parameters in a “bottom-up” fashion. The intersection of these top-down and

bottom-up processes might provide a mechanism for the enhanced activity (and correspond-

ing power spectral change) during feedback-based learning in the task which we observe (see

chapter 6, and appendix).
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“Is there a power law? If so, over what frequency range does it extend, what is the exponent

in the power law, and does it vary with brain region and activity?”

We determined that the broadband in the power spectrum obeys a powerlaw form P (f) ∼

Af−χ, with χ = 4.0 ± 0.1, in the frequency interval 80Hz < f < 300Hz and it extends

up to f = 500 Hz. This was only possible after introduced amplifier frequency-dependent

amplifier attenuation and introduced noise floor were accounted for. This scaling index

appears universal in all experimental data thus far (and has now become a topic of further

study for the experimental group). Below a knee in the power spectrum at f0 ' 80Hz,

the broad band changes to a less steep power law. The broad band appears to obey the

following phenomenological crossover form

P (f) ∼ A
f−χL

1 +
(

f
f0

)χH

with χL + χH = 4. We found χL = 2.0± 0.4.

The low frequency spectrum part requires de-convolution of the broad band from the

sharp EEG rhythms. In this study, we simply identified electrode pair signals that lack

those rhythms. (See chapter 4 for content)

Does this exponent change when the area of cortex beneath it becomes active?

After decoupling the peaked phenomena from the power law, using a principal component

type decomposition, we found that the shape of the spectrum is preserved: the exponent

doesn’t change, but the amplitude does. Full decoupling of the α and β EEG rhythms from

the broad band will require the development/application of advanced analysis techniques

and empirical studies of more advanced correlations between the electric dipole sources.

The results indicate that the overall amplitudes, A, in the power law form increase with

local actitivy, while the exponent indices do not change. (See chapter 5 for a complete

discussion)
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What does this power law tell us about particular cortical function, and can we examine its

dynamics independently?

We were able to demonstrate that changes in amplitude of the power law could differentiate

individual fingers from each other. Furthermore, estimation of the changes in amplitude of

the power law, as a function of time, tracks the dynamics of behavior so closely, as to suggest

that these broadband changes are the correlate of network-level physiological mechanisms.

The interpretation of the values of the critical exponents χL + χH = 4.0 ± 0.1 χL =

2.0±0.5 is open to debate at this point. If it turns out these exponents are integers, it might

well be that the power spectra (auto correlation functions) do not reflect the computational

complexity, because such power law forms (integer exponents) can be explained by various

forms and combinations of uncorrelated or exponential fast decaying correlation functions

and with Lorentzian form factors and low pass filtering. Unraveling these types of issues

will be at the core of our future research.
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Chapter 2

WHAT WE MEASURE

Figure 2.1: All experiments are done in the clinical environment, where the signal is split
and amplified in parallel with the clinical amplification.

In this chapter, we discuss aspects of the brain potentials that we measure: “Hard-

ware considerations” (amplifiers and electrodes), “Wetware considerations” (the biological
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processes that create macroscale potentials), and “Software considerations” (spectral calcu-

lation and fitting techniques for this type of data.)

2.1 Electrodes

ECoG is available from frequently performed procedures in patients suffering from medically

intractable epilepsy (Figure 2.1). Such patients undergo elective placement of electrodes on

the surface of the brain when the seizure localization is not evident or sufficiently detailed

from non-invasive studies. These electrodes are also placed, in some situations, to localize

function such as movement or language prior to a neurosurgical resection. The same elec-

trodes can record ECoG and deliver currents which disrupt the function of the underlying

cortex. The implanted electrode arrays are typically only those which would be placed for

diagnostic clinical purposes. Most often (as in our case), these are ∼2.5mm in diameter with

a spacing of 1-cm from center-to-center. While this is somewhat coarse, it is fine enough to

resolve individual finger representation and may be sufficient to extract many independent

control signals simultaneously [96]. At some institutions, preliminary results are emerging

using smaller electrodes and denser arrays [9], and these finer resolution grids may prove to

resolve independent function and intention better than the current clinical standard.

The platinum electrode arrays (Ad-Tech, Racine, WI), which we use to measure the

potential at the brain surface, were typically configured as linear strips or 8x8 electrode ar-

rays (Figure 2.2). The electrodes had 4mm diameter (2.3mm exposed), 1 cm inter-electrode

distance, and were embedded in silastic. In the gray matter beneath the ∼ 5mm2 exposed

area of each platinum (σPt = 106nΩ at 20oC) electrode, there were roughly 5× 105 neurons

(Figure 2.1). As discussed below, each electrode measures the potential due to the super-

position of dipole producing post-synaptic events in the dendritic trees of each of these

neurons. The electrodes are placed directly on the cortical surface, and measure potentials

via ohmic contact (Figure 2.1). The change in potential at the interface is



17

Figure 2.2: Electrode schematic for the standard clinical array used for the experiments in
this thesis. From the Ad-Tech 2008 catalog, http://www.adtechmedical.com/catalog.htm

Φ(electrode) =
σ(electrode)

σ(brain)
Φ(brain)
⊥ (2.1)

With Φbrain
⊥ the electric potential of the cortex at the location of the electrode.

It is very helpful to know where each electrode lies in relation to the brain anatomy below

it. For example, in our quantitative power spectra studies, [95], electrodes that were above

vasculature (blood vessels) were directly rejected because the signal that they measure

is strongly attenuated. It can also be extremely useful to know what the relationship is

between each electrode and known anatomical landmarks (sulci, gyri, etc) on the brain.

Careful comparison of operative photographs taken before and after the array is placed

allow one to do this (Figure 2.1).

The electrode positions may also be compared across individuals, by calculating their
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Figure 2.3: Electrode transverse picture (A) The platinum electrodes are placed directly on
the brain surface, beneath the skull and scalp. (B) The electrodes are thought to measure
primarily potentials due current dipoles in the dendrites of the cortical pyramidal neurons
(here, one is shown in red) of the gray matter directly beneath.

positions in a normalized cortical coordinate space. There is a standard convention for three

orthogonal axes: The first is given by the left-right symmetry of the head, the second is

a line segment which passes through the anterior and posterior commisures, and the third

is orthogonal to these two (Figure 2.5). The origin is taken to be the anterior commisure.

This reference frame is known as the “Talairach” coordinate system [148].

2.2 Amplifiers

The ECoG recording is, by necessity, in the context of clinical amplification and recording,

so the experimental recording must also take place in the context of clinical amplification

with commercially available amplifiers (eg, XLTEK, Synamps, GugerTech, Grass). Most

clinically relevant EEG features are detected visually. Classically the clinical information
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Figure 2.4: (A) A photograph taken before placement of a subdural grid array is used to
identify brain sulcal landmarks. (B) The same sulci are identified after electrode placement.
(C) The lateral x-ray used to identify the positions of cortical electrodes using the LOC
package [91]. (D) The identified electrode positions with the exposed craniotomy unshaded,
and the sulci corresponding to those identified in A and B are shown. The cortical schematic
in D has been rotated so that its orientation is closer to that of A and B. The figure
illustrates how landmarks in the brain can be identified from operative photographs, and
both structurally useful landmarks (like gyri, etc), and potentially complicating factors (like
vasculature) can be identified and taken into account when assessing the result of analyses.

explored is between 3-40Hz, so the settings on the clinical amplifiers may be adequate for

those diagnostic purposes, but they are inadequate for research purposes. Recent advances

have suggested that higher frequencies may be clinically relevant so many newer amplifier

systems include higher sampling rates (at least 1kHz) as an option to allow for measure-

ment of signals of 200Hz or higher. This varies by institution, and the clinical recording
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Figure 2.5: Electrode localization in standardized coordinates using the x-ray: (A) The
anterior commisure - posterior commisure (AC-PC) line (2 to 3) defines the Talairach y
axis, shown in yellow on a patient MRI. The glabella-inion (GI) line (1 to 4) is parallel to
AC-PC line and the glabella (1,8) and inion (4,5) are therefore used to approximate the AC-
PC line. (B) X-ray image of the same patient. The y-axis (6 to 7, teal) is positioned parallel
and superior to the GI line (5 to 8, red), 21% along the length of the longest perpendicular
line segment joining the GI line to the skull’s inner table (perpendicular line - blue). The
distance between posterior and anterior inner tables of the skull (6 to 7) along the y axis
is scaled to template dimensions. (C) The y-z origin, the estimated position of the AC,
is defined 115 mm anterior of the midpoint (9) of the line segment between the two skull
tables. (D) A vertical line segment is drawn that perpendicularly bisects a user-defined
line segment joining two symmetric structures (10 and 12). The x,y,z origin is defined as
the intersection of this line segment with the y-z origin defined on the lateral projection.
The maximal biparietal distance measured on the AP x-ray (11) is scaled to the template
brain. (E) Points that do not fall on the cortex after identification using the AP and Lateral
x-rays (e.g. 13 and 15) may be projected to the surface of cortex by switching to spherical
coordinates, with the center of mass of the surface template (shown in light blue / white
in BW figure) as the origin (16). The point on the surface template (14) for this solid
angle (dark blue line / white line in BW figure) defines the replacement location, which
is converted to standard Talairach coordinates. The process of localizing electrode array
positions and plotting data to them is laid out in the supplement [91].

settings will vary even within institutions, depending upon the clinical and technical staff

managing the patient. Experimentalists must obtain either the clinically amplified signal,
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or split the signal and amplify it separately. Using the clinical signal has the advantage

that less hardware is involved, and that there are no potential complications because of

the dual-amplification process. Such complications include artifact/noise introduction from

one system to the other, or currents between separate grounds if the two do not share a

common ground. Splitting the signal has the advantage that the experimentalist can use

higher fidelity amplifiers and set the amplification parameters at will, rather than having

to use the clinical parameters, which typically sample at a lower frequency than one would

like, and often have built in filtering properties which limit the usable frequency range. The

ground chosen, which must be the same as the clinical ground to avoid complication, is

typically from the surface of the scalp. Most amplifiers have a built-in choice of reference

(fig 2.6), which each electrode in the array will be measured with respect to. These may

also be from the scalp, as they often are clinically, or they may be from an intra-cranial

electrode. Because we needed much higher sampling rates than the clinical recordings ob-

tained, we always split the signal. The institutional constraints of working with humans

in the clinical setting required that we use FDA approved, clinically designed, amplifiers.

We used Synamps2 amplifiers (Neuroscan, El Paso, TX) in parallel with clinical recording

(BMSI or xltek amplifiers for all others). These signals had a system-imposed band-pass

filter, but we could characterize and correct for the the higher frequency roll-off from this

built-in filter, after the power spectral density was calculated (see below).

2.2.1 Choice of reference.

The subdural electrode array will initially be referenced with respect to an internal (brain

surface) electrode, or an external, scalp, electrode by the clinical staff (fig 2.6A). An internal

reference electrode may be preferable because its signal and noise properties are more similar

to those of the array. We often found it useful to re-reference the electrode array in one of

several ways. Each electrode may be re-referenced with respect to a single electrode from

within the array, chosen because it is relatively “inactive,” each may be re-referenced to

a global linear combination of electrodes from the entire array, or each may be referenced
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Figure 2.6: Choice of amplifier reference, and re-referencing strategy: (A) Recording scheme,
with different initial reference sites: “Int” denotes internal reference, “Ext” denotes external
reference. (B) Pair-wise re-referencing scheme for an 8x4 array. Blue dots indicate the
original array, and yellow dots indicate pair-wise difference channels. (C) Demonstration of
noise rejection by re-referencing. V 0

i denotes the originally recorded signal. Vi denotes the
common-average referenced signal. Vα denotes the pair-wise re-referenced signal.

to one or more nearest neighbors. Re-referencing with respect to a single electrode is

useful when the one in the experimental/clinical montage is sub-optimal (noisy, varies with

task, etc), but it means that the experimenter has introduced an assumption about which

electrode is, in fact, appropriate. The simplest global referencing scheme is a common

average re-reference: the average of all electrodes is subtracted from each electrode. The

advantage of this is that it is generic (unbiased, not tied to an assumption), and it will get rid

of common-mode phenomena. One must be careful that there are not any electrodes that are

broken, or have extremely large contamination, or every electrode will be contaminated by

the re-referencing process. Local re-referencing may also be performed, such as subtracting

the average of nearest-neighbors (Laplacian), which ensures that the potential changes seen

in any electrode are spatially localized. One may also re-reference in a pair-wise fashion,

producing bipolar channels which are extremely local, but phenomena cannot be tied to a

specific electrode from the pair without examination of other, adjacent, pairs. We discuss the

3 basic re-referencing schema in further detail: Common average, pair-wise, and Laplacian.

Common average re-referencing (CAR) consists of subtracting out the average of the whole

array, from each channel, at each point in time. It is useful when there may be common
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external contamination to all of the array, but not to the initial reference (or vice-versa), and

serves as a generic, unbiased technique. The drawback is that uncorrelated noise is added

to every channel. Broken or artifactual channels may potentially contaminate every channel

during the re-referencing, and one must be careful to discard them before re-referencing.

Vi (t) = V 0
i (t)− 1

N

N∑
j=1

V 0
j (t) (2.2)

Where our scalp or brain surface referenced original signals are V 0
j (t) (j denotes the elec-

trode, and N is the total number of electrodes).

Pair-wise re-referencing is the technique of generating a new set of channels by taking

the pair-wise difference between all pairs of adjacent channels, at each point in time, as

illustrated in figure 2.6B.

Vα (t) = Vi (t)− Vk (t) (2.3)

where α labels the channel pair (i−k), and typically electrodes i and k are nearest neighbors.

This is the most “local” technique - anything surviving subtraction is, by necessity, different

on the scale of separation in the grid (in our case, 8mm). In the case of an 8x4 electrode ar-

ray, there are 52 pair-wise difference channels generated from the 32 electrodes. The results

obtained for each channel will be fundamentally ambiguous because there is no way of know-

ing which of the two electrodes a given phenomena arose from. One must compare different

channel pairs to identify which electrode the results came from. This method is the best

for eliminating common mode noise while adding the minimal amount of uncorrelated noise.

“Laplacian” re-referencing is a term used generically to mean that each electrode is re-

referenced with respect to the electrodes which immediately surround it. There are multiple

schema for doing so. The most simple, for a rectilinear array such as ours, is to subtract

the mean of the 4 nearest neighbors.

Vi (t) = V 0
i (t)− 1

4

4∑
j=1

V 0
j (t) (2.4)
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where j indexes nearest neighbors only (4 total in a rectangular array). This referencing

scheme is optimal for the case that the phenomena exists in only one electrode, and none of

its neighbors. These “Laplacian” schema are trade-offs between pair-wise approaches and

common averaging approaches. The channels are more directly attributable to a single,

center, electrode, but are more local than a complete common average reference.

There also are higher order referencing/weighing schema (ICA/PCA/CSP), which re-

quire assumptions (pre- or post- measurement) about correlations between different elec-

trode signals and array configurations [135, 51, 63, 53].

2.2.2 Sampling Frequency

Choosing a sampling frequency is important - there is often a trade-off between signal fidelity

and the practical issues of manageable data sizes and hardware limitations. Classic studies

sampled at low rates (< 150Hz) because the focus was on the α/β/γ rhythms below 40

Hz. We discovered features in the power spectrum all of the way to 300 Hz, and perhaps

beyond [95, 94, 96]. Therefore, to properly measure these features, one should be sure to

have high signal fidelity up to at least 300Hz (i.e. sampling rates should be above ∼ 750

Hz, and the sampling rate may have to be even higher if the amplifiers used have built-in

filtering properties.) At the very least, to capture the spatially focal high frequency change,

one must have large bandwidth above a behavioral split at 35-55 Hz [94]. We typically

sampled at 1000 Hz. In order to get a good estimate of power law activity, we must sample

with the largest feasible bandwidth, and so, in a set of experiments to characterize these

spectral phenomena, we sampled the potential at 10 kHz

2.2.3 Amplifier frequency-dependent attenuation

At the 10 kHz sampling rate, the built in amplifier roll-off was measured as a function

generator by repeatedly scanning through frequencies at fixed amplitude. This was done

for the 10 kHz sampling rate, scanning from 15-4000 Hz, and the 1 kHz sampling rate,

scanning from 10 Hz to 300 Hz. This is demonstrated in figure 4.8.
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Figure 2.7: Frequency-dependent amplifier amplitude attenuation: The frequency-
dependent amplifier attentuation could be calculated by using a function generator to scan
through frequencies at a constant amplitude. The range shown here is from 15Hz (green
arrows in A) to 4000Hz (blue arrows in A). The attenuation as a function of frequency (in
B) could be determined directly from the timeseries (in A).

2.2.4 Amplifier noise floor

A distribution of noise floor levels was estimated by recording across an arrangement of

resistors (Figure 4.9), chosen to have roughly the same resistance as the brain tissue, in

parallel with the clinical amplifiers. Since it is impossible to measure the exact noise in the

clinical recording (i.e. the active properties in the brain cannot be turned off in our setting),

the noise floor was also fit using a recursive, self-consistent, approach. This is discussed and

demonstrated in [95].

2.2.5 Potential sources of amplifier noise

There are intrinsic sources of amplifier noise in electric potential measurement [45]. We will

describe two that arise from the fact that current comes from quantized units (electrons).

The first of these, “Johnson Noise” (εJ) comes from electron movement due to thermal

kinetic energy in conducting media at finite temperature. The second, “Shot noise,” (εS)

comes from the fact that a current made up of discrete units will be subject to variation

from counting (Poisson) statistics. The last we will consider is “Flicker” (or 1/f) noise (εF ),
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Figure 2.8: Amplifier Noise Floor Estimation: The noise floor was estimated experi-
mentally by measuring the potential across an arrangement of resistors (A). The resistance
values were based upon electrode-reference impedances that were measured online. Ground
floor estimates were made with this configuration of resistors. R2 was set to 10kΩ, with
R1 set to 0.5 Ω (although noise values were robust against R1 changing up to 1kΩ). The
resistor ensemble was hooked up in parallel with the clinical amplifiers, and a set of noise
floors was estimated (B, “HU” denotes amplifier power units before conversion).

due to fabrication details of the electronic components, and have no easy description.

The amplifiers will have many different sources of each kind of noise, and our noise floor

measures will represent a superposition of these (e.g. Vnoise ∼ εJ + εS + εF ).

Johnson Noise

Randomized thermal movement of electrons in a conducting medium will produce what

is known as Johnson noise (The equivalent of Brownian motion in conductors). Since

electrons carry charge, transient currents will produce fluctuations in the potential across the

conducting medium. Because the thermally induced velocity is random, the mean current

and potential change will be zero, but the mean squared current and potential change

will not. Standard kinetic theory tells us that the mean kinetic energy of a point mass is
1
2kBT per degree of freedom (3

2kBT for 3 translational degrees of freedom, kB = 1.38 ×
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10−23 Joules/deg denotes Boltzmann’s constant). This provides us with the temperature

dependence of Johnson noise. Nyquist, in 1928, described the Johnson noise across a resistor

of resistance R as producing an EMF, denoted by RMS voltage εJ , of

εJ =
〈
ε2J ′

〉 1
2 =

(
4kBRT

∫
df
(
A2(f)

)) 1
2

(2.5)

where A(f) is the transfer function of the amplifiers. If the amplifiers are idealized on the

interval f1 to f2, and A2(f) → 1, then

εJ = (4kBRT (f2 − f1))
1
2 (2.6)

Shot Noise

“Shot noise” is noise that is present due to fluctuations in the counting statistics of cur-

rents. That is, current is made up of moving electrons, and as these electrons come into

contact with some surface, there will be fluctuations in the number of electrons per unit

time, deviating from the mean current according to Poisson statistics. The Poisson noise

distribution will have mean equal to N , the number of electrons producing the current,

I = Nqe

∆t , where N is the number of electrons making contact with the surface during time

∆t, and qe is the charge of the electron. The variance in electron number,
〈
σ2

n

〉
associated

with the measurement process will then also be N , with
〈
σ2

n
〉

= N = I∆t
qe

. The RMS

current associated with this shot noise process is

iS = qe

〈
σ2

n

〉 1
2

∆t
=
(
qeI

∆t

) 1
2

(2.7)

The ∆t corresponding to the measurement period of this frequency is half of a complete

cycle, or ∆t = 1
2fs

, if the measurement device has a maximum sampling frequency, fs. So,

iS = (2qeIfS)
1
2

εS = RiS = R (2qeIfS)
1
2 (2.8)

where R is the resistance across which the noise is measured. In our amplifiers, the signal

is often sampled at very high rates (30kHz+), and then digitized at a lower rate (averaging
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across samples) so the contribution of shot noise as a function of “sampling frequency”

(digitization rate) is not straightforward.

Flicker Noise

Flicker noise can emerge from a variety of sources, including, but not limited to, impurities

in the conducting media and generation and recombination noise in a transistor (due to base

current) [128]. It is always related to direct current passage through the electronic device.

It is also called 1/f noise, because it tends to have a 1/fα power spectrum. As such, the

“Flicker” EMF can be described by (if α = 1)

εF =

V 2
F

f2∫
f1

df
1
f


1
2

= VF

(
ln

(
f2

f1

)) 1
2

(2.9)

where VF is a proportionality constant.

Intrinsic noise, and the experimental noise floor The noise floors we encountered in the

clinical amplifiers were much higher than expected from these fundamental processes. This

must have to do with the internal make-up of the amplifiers (active feed back etc). Therefore

we measured the noise floors directly. The measured floors varied between the channels of

the multi-channeled amplifiers and seemed to vary in time (between subjects and sessions).

In the end, we had no other option than to treat the noise floor as a dynamic variable in the

power spectra (e.g., in fitting of the power law shape), and make sure that the distribution

of discovered noise floors were consistent with the offline-measured noise floor distribution

[94].

2.3 Neural Structures that give rise to potentials

2.3.1 The current dipole

The basic computational unit of the brain is a cell called the neuron [69, 144]. Neurons differ

from other cells in the body because they have the ability to use electric signalling changes

to rapidly process a set of inputs, integrate them over time, and send electrical signals over
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Figure 2.9: The synapse, where one neuron meets another. An action potential arriving
from a different neuron via the pre-synaptic axon terminal, triggers the releas of a chemical
signalling molecule (neurotransmitter), which rapidly diffuses across the space between the
pre-syaptic axon and the post-synaptic dendrite (“synaptic cleft”), binding to a receptor
on the dendrite side of the synapse. This receptor is coupled to a channel, which opens,
selectively allowing a particular species of charged ions to move in or out of the cell, creating
a transient current (characterized below). (figure partially modified from [105])

long distances, where they communicate with other neurons. Like neurons, muscle cells have

electric behavior, and they electrically conduct as well, but do not differentially process an

array of inputs.

At the coarsest level, the neuron may be described as a single central body, called the

soma (cell body), with tubular structures protruding from it (Figure 2.9). These tubular

structures are generally segregated by their function: dendrites, where input is recieved

and information is carried to the cell body, and axons, which carry information away from
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the cell body. The structural and electrical properties of these three types of structures

are different. Structurally, the soma is generally spheriodal in shape. The dendrites are a

tree-like ensemble of thin tubular structures. The axons are long cables which extend to

long distances to connect with other neurons.

The electrical properties of the lipid bilayer membranes of axons and dendrites are

different. Axons have high densities of ion-selective channels that open and close in response

to specific transmembrane potentials, capable of causing both inward and outward current,

against the potential gradient (because of overwhelming concentration gradients). Dendrites

have fewer active, potential sensitive membrane channels. Axons also have special wrapping

(myelin) that changes the resistance and capacitance between the inside of the neuron

(intracellular fluid) and the surrounding bath (extracellular fluid), and regulates the speed

of the transmitted signals.

Chemical events at the synapses, interfaces between axons and dendrites, resulting in

currents (“post-synaptic” current -PSC) on distal (far from the cell body) sites of the

dendrites. These currents flow towards the cell body.

In the axons, signal is propagated by a near charge neutral, soliton-like travelling po-

tential perturbation, called an action potential, which begins at the cell body and travels

until it reaches a synapse with another cell, where it triggers a PSC in another neuron.

2.3.2 Action potentials, Hodgkin-Huxley and the Squid Giant Axon

In order to understand how the soliton-like action potentials are maintained in the cylindrical

axonal structures, the physiologists Hodgkin and Huxley initially performed experiments in

the largest axon they could find in nature: the squid giant axon. By manipulating individual

ion concentrations and the potential across the neuronal membrane, they were able to

develop a concrete formalism to describe the dynamics of axonal membrane physiology.

Their mathematical formalization illustrates how rapid current influx and efflux produces

local currents that are opposite in sign, and create a travelling soliton. From the ECoG

perspective, their local electric fields cancel out (create only quadripole and higher order
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potentials at the electrode). Such fields decay rapidly with distance, and change orientation

(at the electrode), with the path of the axon. For these reasons, we expect the axonal action

potential currents to be invisible in the large scale electrocortical potential measurements,

drowned out by dendritic, post-synaptic, dipole currents. (The action potentials show up

in local field potential measurements with extracellular needle electrodes.).

Here, we will briefly follow Hodgkin and Huxley’s mathematical description of axonal

physiology in order to understand how such action potential phenomena are generated

[73, 33]. While axonal action potentials and associated currents are not expected to be

visible in ECoG, they serve well to illustrate the important role ionic channels play in

neuronal processes. Similar ionic channels at synapses, for example, create the electric

dipole curents that are the sources observed in ECoG. In synapses, post-synaptic channel

opening is triggered by chemical neurotransmitter signal, rather than characteristic trans-

membrane potentials. Hodgkin and Huxley modeled the squid giant axon to understand

properties of information conductance and ionic behavior in neurons, but the same principles

apply to axons in the human brain.

A Step-by-Step Walkthrough of the Hodgkin and Huxley Model

In the following, the model developed by Hodgkin and Huxley is detailed, step by step. All

potentials are measured in mV, with respect to resting potential. We will assume that the

dynamic range of the potential is bounded by -20 to 120 mV for our estimation of relevant

time scales. All of the parameters are for the squid giant axon. A discretized numerical

implementation is contained in [97].

Variables and Constants Relevant to the Squid Giant Axon

Cm = membrane capacitance (Cm = 1 µF
cm2 )

Rm = membrane resistance (Rm = 3333 Ω ∗ cm2)

Rl = longitudinal resistance (Rl = 29.7Ω ∗ cm)

[Na+]out=extracellular sodium concentration (491 mmol ≈ 2.95∗1020 1
cm3 ))
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Figure 2.10: An action potential in an axon. Ion specific channels open and close in response
to changes in membrane potential, allowing for selective inward or outward current. These
currents themselves change the potential, and the net result is the creation and propagation
of a soliton-like action potential down the axon. They are initiated in response to a jump
in the potential.

[Na+]in=intracellular sodium concentration (50 mmol ≈ 0.30∗1020 1
cm3 ))

[K+]out=extracellular potassium concentration (20 mmol ≈ 0.12∗1020 1
cm3 ))

[K+]in=intracellular potassium concentration (400 mmol ≈ 2.40∗1020 1
cm3 ))

r = axonal radius (r ≈ .05cm)

V = potential (mV )

Membrane current

Consider a local patch of membrane. It has a capacitance Cm. The potential difference

across this capacitor depends on the flow of charge. Currents flow along the axon channel,

Im, and across the membrane, Iion(x, t) in the form of leakage and by means of the highly

non-linear potassium and sodium pumps.
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Cm
dV

dt
= Im + Iion (2.10)

The active, voltage-dependent, gating elements of the sodium and potassium channels are

described by the subunit gating parameters, m, n, and h, which paramterize the overall

kinetics of each channel type. They reflect the fact that the ion channels themselves are

made up of different subunits (4 each for potassium and sodium). Each has an independent

probablity of being in it’s “open” configuration. The channel is open only when all of

it’s subunits are open. Each subunit ξ = h,m, n is characterized by a voltage dependent

charging rate αξ(V ) and decharging rate βξ(V ), and characterized by a voltage-dependent

charcteristic time scale

τξ (V ) ∼ 1
αξ + βξ

(2.11)

Sodium Current, Subunit parameters m and h

Sodium channels are composed of three subunits of type “m” and one subunit of type “h”.

At rest all three “m” are closed, and “h” is open. Their dynamics are modelled by Hodgkin

and Huxley using the following equations.

INa = GNam
3h (V − ENa) (2.12)

dm

dt
= αm (V ) (1−m)− βm (V )m (2.13)

αm (V ) =
25− V

10
(
e

25−V
10 − 1

) ; βm (V ) = 4e−
V
18 (2.14)

dh

dt
= αh (V ) (1− h)− βh (V )h (2.15)

αh (V ) = 0.07e−
V
20 ; βh (V ) =

1

10
(
e

30−V
10 + 1

) (2.16)

The net effect of these are that the “m” subunits open initially at a threshold potential,

opening the channel. At a higher characteristic potential, and later in time, the “h” subunit

closes, closing the channel. It is important to note that the potential values are all based

upon recentering the voltage to -65 mV (resting potential).
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Figure 2.11: Sodium channel subunit m, dictates opening probability, τm max is 0.50 ms;
τm at V−20 is 0.08 ms; τm at V120 is 0.10 ms

Figure 2.12: Sodium channel subunit h, dictates closing probability, τh max: is 8.58 ms; τh
at V−20 is 5.10 ms; τh at V120 is 1.00 ms

Potassium Current, subunit parameter n

In the case of potassium channels, each of 4 subunits, “n,” are identical, and open and close

according to voltage-sensitive rate constants αn(V ) and βn(V ), modeled by Hodgkin and

Huxley with the following equations.

IK = GKn
4 (V − EK) (2.17)
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dn

dt
= αn (V ) (1− n)− βn (V )n (2.18)

αn (V ) =
10− V

100
(
e

10−V
10 − 1

) ; βn (V ) = 0.125e−
V
80 (2.19)

The result of this is that the channel opens above a characteristic voltage, allowing sodium

to enter the axon, lowering the potential (Fig 2.13). Thus, after the sodium channels have

opened and raised the potential to the characteristic voltage of these “n” subunits, the

potassium channels open and return the potential to it’s resting level.

Figure 2.13: Potassium current: τn max: is 5.79 ms; τn at V−20 is 5.68 ms; τn at V120 is
0.89 ms

Leakage Current

The “leakage” current across the membrane is of the form:

IL = GL(EL − V ) (2.20)

With GL the passive membrane conductance ( 1
Rm

). The time constant associated with this

leakage term is the standard passive membrane time constant τm = RmCm = 3.33 ms.
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Diffusive Current

A region of membrane diffusively exchanges charge with spatially adjacent regions.(
dV

dt

)
diff

= D
d2V

dx2
(2.21)

With D = r
2RlCm

' 840 s
cm2 , the diffusion constant for the squid giant axon.

Longitudinal diffusion vs. membrane current

Combining the membrane current expressions with the diffusion expression, we obtain the

full expression for the dynamics of V (x, t):

dV

dt
= D

d2V

dx2
+

1
Cm

(
GKn

4 (V − EK) +GNam
3h (V − ENa)−GL (V − EL)

)
(2.22)

Intuition for the dynamics of the process is obtained by comparing how the first and second

terms relate to each other. What looks like a diffusion equation really is not, because the

driving terms for inward and outward injected currents have both explicit time dependence

and potential dependencies and introduce short term memory effects.

2.3.3 Leaky Cable Equation

In the absence of active channels, equations of type Eq. 2.29 are known as leaky cable

equations, first studied by Kelvin around 1900 in the context of engineering underwater

telegraph cables across the Atlantic.

dV (x, t)
dt

= D
d2V (x, t)
dx2

− 1
τm
V (x, t) (2.23)

Where the membrane time constant τm is:

τm = Rm ∗ Cm = 3.33 ∗ 10−3s (2.24)

and the diffusion constant D is:

D =
r

2Rl ∗ Cm
=

5 ∗ 10−2cm

2 ∗ (29.7Ω ∗ cm) ∗ (10−6 F
cm2 )

= 8.42 ∗ 102

(
cm2

s

)
(2.25)
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If the diffusion term dominates, then the solution will be of the form:

V (x, t) ≈ V0e
− x2

4∗D∗t (2.26)

The characteristic distance that the potential diffuses “xD” before it leaks across the axonal

membrane is:

xD =
√

4 ∗D ∗ τm (2.27)

If D
xD

2 is not of the same order of 1
τm

, then the signal leaks across the membrane before it

propagates.

V (x, t) ' V0e
− t

τm (2.28)

The characteristic distance for leakage of this is:

xd =
(
Dτm

2

) 1
2

=
(
rRm

4Rl

) 1
2

(2.29)

For the squid giant axon, xD and xd are of the same order (xD =
√

4 ∗D ∗ τm = 3.35cm

and xd ≈ 1 cm). Thus, “naively”, for a passive axon, a signal would only propagate over a

distance < 4cm.

2.3.4 The role of active channel dynamics:

Introducing active channel changes the dynamics of the process completely. Consider a

stretch of the axon. The leading edge of an action potential arrives at one end, raising

the local potential. This causes sodium channels to open, which amplifies the rise in po-

tential. Subsequently, two processes take place which counter this upswing in potential.

The sodium channels themselves close (at the characteristic potential of the “h” subunit),

and the potassium channels open, allowing potassium into the axon, and returning that

stretch of axon to return to the resting potential. The action potential propagates in only

one direction, because the membrane in it’s wake is still recovering (this is known as the

refractory period).

The ionic channels also affect the passive “leakage” properties of the axon. We can define
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an effective resistance:

Reff ≈
(

1
RL

+
1
RK

+
1

RNa

)−1

(2.30)

Note that this Reff is potential-dependent. At the resting potential:

Reff (0) ≈
(

1
RL

+GKn
4 (0) +GNam

3 (0)h (0)
)−1

= 1476 Ω · cm2 (2.31)

This corresponds to a timescale of τ0 = Reff(0)Cm =1.476 ms with associated modified

characteristic distance xd =0.70 cm, somewhat smaller than the original value 2.14.

Figure 2.14: Diffusion distance with potential sensitive channels: At the bottom of
our range, it is essentially the same as it would be without any active channels. At higher potentials,
it drops to an asymptote at about twice the radius. That is, as the potential increases, the effects
take place and can cascade to cause spiking behavior, and all of the associated biology we enjoy.

The timescale of the voltage upswing due to sodium channels (the “m” subunit timescale

(τm)), is much too short to allow current influx to diffuse away in the process of channel

opening (τm max is .5ms).

2.4 Synaptic dipole generation

The synaptic interface between two neurons, where an axon of one neurons meets the

dendrite of another, mediates communication between the two neurons, and produces a

transient current dipole in the downstream (“post-synaptic”) neuron. Beneath each one
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of our electrodes, there are of order ∼ 5 × 105 neurons, and each of these has ∼ 104 such

synapses. With our arrays, we measure the aggregate potentials of these ∼ 5× 109 induced

dipole moments at each electrode.

2.4.1 Synaptic transmission

At the synapse, an arriving action potential on the pre-synaptic (axonal) side causes a

chemical messenger (neurotransmitter) to be released at the junction. This neurotransmitter

binds to a specific site (receptor) on the post-synaptic (dendritic) side. The receptor causes

an ion specific channel to open, so that charged ions can enter into the dendrite and produce

a characteristic dipole current. The superposition and interaction of all of the synaptic input

to one neuron from all of the neurons that connect to it will produce a net change in the

potential at the cell body, and if this potential change is large enough, it will initiate an

action potential (as described above). The interaction of these inputs within single neurons,

as well as the overall network interaction of the 2× 1010 neurons in the human cortex [113]

form the basis for the computational power of thought.

2.4.2 The post-synaptic current

Following input at the synapse, and subequent opening of ion-specific channels in the den-

drite, the current influx has a particular strength at the synapse, I0. The strength of this

current source decreasees exponentially with distance from the synapse, I(x) = I0e
−x/λ (fol-

lowing the leaky cable equation of the previous section), with length constant λ =
(

rm
rs

)1/2

(rm is the membrane resistance times unit longitudinal length, and rs is the longitudinal

resistance of the intracellular fluid per unit longitudinal length). λ is typically of order

0.1-0.2mm [56].

The dipole moment generated by a single synaptic event is then approximately equal

to ~q = Ipscλd̂. The post-synaptic current, Ipsc(t), has explicit time dependence. Therefore,

each current dipole also varies in time. The unit vector, d̂, denotes the orientation of the

dendritic branch associated with the synapse. Cortical pyramidal neurons, the largest con-
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Figure 2.15: The cross section of gray matter of the cortex (A) reveals that the cortical
pyramidal neurons have net directionality orthogonal to the brain surface (B). The dendritic
dipole moment, ~Q, runs parallel to the principal (apical) dendrite (C).

tributor to electric potential, have a primary dendrite that lies roughly normal to the cortical

surface, so that the ensemble of synaptic current dipoles contributing to each electrode have

a common directionality (Figure 2.15). Hamalainen, et. al. [56], estimated the individual

transient dipole moments from each synapse to be of order |~q| ≈ 20 fA· m. Murakami and

Okada found that the net dipole moment produced by an entire cell, in response to various

kinds of more global input is of order
∣∣∣ ~Qglobal

∣∣∣ ≈1 pA· m, which is of the correct order to be

in agreement with the Hamalainen estimate, since only a subset of synapses are activated

during a more global input ([99], Figure 2.16).

2.5 Field properties of the superimposed dendritic dipoles

We briefly review here how the many superimposed dendritic dipoles create macroscopic

potentials, following the rationale outlined by Nunez [105] and Hamalainen [56]. Beginning

with Maxwell’s Equations:

~∇ · ~E =
ρ

ε0
(2.32)
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Figure 2.16: Figure and caption from from Murakami and Okada, 2006: [99]
Reconstructed shapes, firing patterns and intracellular current dipole moments of layer V
neocortical pyramidal cells Row 1: cellular geometry of the three layer V pyramidal cells
taken from Stuart & Spruston (1998). Row 2: intracellular potentials produced by current
injection (200 pA) into the soma. Row 3: current dipole moment Q for the layer V pyramidal
cells. Passive and active properties were taken from the 1996 Mainen model. Positive
polarity indicates currents directed from a deep layer to the surface.
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~∇× ~E = −∂
~B

∂t
(2.33)

~∇ · ~B = 0 (2.34)

~∇× ~B = µ0ε0
∂ ~E

∂t
+ µ0

~J (2.35)

with µ0ε0 = 1
c2

. Recall that the total current density , ~J0 is composed of the ohmic current

σ ~E, and polarization (“primary”) current ( ~Jp = (ε − ε0)∂ ~E
∂t ), and also the active current

sources (which we will leave out for the moment):

~J = σ ~E + (ε− ε0)
∂ ~E

∂t
(2.36)

Combining 2.35 and 2.36, we have:

~∇× ~B = µ0

(
σ ~E + ε

∂ ~E

∂t

)
(2.37)

Inductive effects will not play a role if
∣∣∣ε∂ ~E

∂t

∣∣∣ � ∣∣∣σ ~E∣∣∣. Represent ~E(~r, t) as superimposed,

decoupled, modes:

~E(~r, t) = ~E0(~r)eiωt (2.38)

Then this condition takes the form ω � σ
ε , imposing a characteristic frequency ωc = 1

τ =
σ
ε ∼ 3× 105Hz near and above which dielectric polarization would act as a low pass filter.

This is well above any relevant frequency range in our recording.

In order to examine whether electric fields are induced by changing magnetic fields, ∂ ~B
∂t ,

we determine:

~∇× ~∇× ~E = ~∇
(
~∇ · ~E

)
−∇2 ~E (2.39)

but, we also have

~∇× ~∇× ~E = − ∂

∂t

(
~∇× ~B

)
= −µ0

∂

∂t

(
σ ~E + ε

∂ ~E

∂t

)
= µ0

(
−iωσ + ω2ε

)
~E (2.40)
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noting that the surface term (~∇(~∇ · ~E)) vanishes, we have:

∇2 ~E = −µ0

(
−iωσ + ω2ε

)
~E (2.41)

Then a ∂ ~B
∂t induced ~E would have wavelength of scale λc ≥

∣∣µ0
(
−iωσ + ω2ε

)∣∣− 1
2 , so λc is

much larger than the size of the head for f < 500, and inductive effects of ∂ ~B
∂t don’t create

changes on a scale relevant for our recordings. We can therefore make the quasi-static

approximation that ~E = −~∇Φ.

2.5.1 From the current dipoles to macroscopic potential

Recall that the total current is both the primary and ohmic current

~J = σ ~E + ~Js (2.42)

We also have the continuity equation:

~∇ · ~J +
∂ρ

∂t
= 0 (2.43)

~∇ · ~E = ρ/ε (2.44)

Combining 2.43 with 2.42 and 2.32, we have

~∇ ·
(
σ ~E + ~Js

)
+
∂

∂t

(
ε~∇ · ~E

)
= 0 (2.45)

~∇ ·
(
σ ~E + ~Js + ε

∂ ~E

∂t

)
= 0 (2.46)

Using ~E = −~∇Φ, Eq. 2.46 becomes

∇2
(
σ + ε

∂

∂t

)
Φ = ~∇ · ~Js (2.47)

Examining the decoupled representation, (Eq. 2.38), εω � σ, the ε∇2 ∂Φ
∂t term is negligible

for the frequencies that are relevant (ω � ωc, see above), and the relation reduces to a

Poisson equation.
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∇2Φ =
1
σ
~∇ · ~Js (2.48)

defining the scalar field P (~r) = ~∇ · ~Js, then the electric potential Φ(~r) as a function of ~r is

equal to

Φ(~r, t) =
∫
d~r0

(
1

4πσ
P (~r0)
|~r0 − ~r|

)
(2.49)

where integration is over the location of the entire current distribution, ~J(~r0).

The synaptic current sources are all localized in space, local when compared with to

distance between the source and the electrode (r � λ). Such “charges” in P (~r) can be

grouped into dipoles (only the post-synaptic currents count), and the field as observed at

the electrode, Φ(~r, t), can be viewed as a superposition of specific electric current dipoles.

Beneath each one of our electrodes, there are of order ∼ 5 ∗ 105 neurons, and each of these

has ∼ 104 such synapses. With our arrays, we measure, at each electrode, the superimposed

potentials of these N ∼ 5 ∗ 109 electric dipole sources beneath each electrode. Therefore,

the measured ECoG potential reflects the underlying correlation in these synaptic currents,

in both space, and time.

At each interface, the voltage Φ0(~r, t) changes according to the continuity conditions:

Φ(1)
‖ = Φ(2)

‖ (2.50)

Φ(1)
⊥

σ(1)
=

Φ(2)
⊥

σ(2)
(2.51)

The cortex acts as a quenched random medium for these postsynaptic dipole fields, with

many point “defects” (glia, etc) , line defects (axons), and planar membranes (the most

dangerous ones, because field lines can not wrap around them). For example, in EEG, the

skull resistivity puts the electrode effectively ' 20cm further away from the cortex.

2.6 Evaluation of the power spectra

The electrocorticographic electrode array measures the cortical surface electric potential, as

function of time, at the 0.5-1cm spatial scale. We amplify this array of signals and choose a
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suitable re-referencing scheme (pair wise or common average, as discussed above). We are

now faced with the task of extracting relevant information from these somewhat noisy V (t)

(Fig. 2.17).

First, these data streams are cut into 1-2 second long epochs to allow for ensemble

averaging. We do this because we expect no relevant information to be found at frequencies

below 1 Hz. In the case of specific tasks, such as individual finger flexion, the behavior

changes on a timescale less than 1-2 seconds. These epochs must be both appropriately

aligned with each other or with specific behavioral parameters before ensemble averaging.

A large set of cross- and auto-correlations in the ensemble of V (t) can potentially be studied.

In this section we introduce briefly the one that appears throughout this thesis research.

2.6.1 Estimation of average spectra using the windowed Fourier Transform

The first and most common property studied is the power spectrum P (f). For the best

estimate of power spectral density, we calculated the power spectra in the following manner:

The data was re-referenced as neighboring differential pair channels (our 32 electrode arrays

have 52 differential pair channels each). For each of these channels, we obtain the power

spectral density using the following prescription:

• Begin with a single differential-pair channel timeseries V (t).

• Calculate windowed epochs (labelled bym) of the potential every 0.5 seconds, V ′(τ,m) =

V (t)H(t,m), where H(t,m) is a 1 second Hann window,

H(t,m) =
1
2

cos
(

2πδ (t, τ −mT/2)
T

)
−T/2≤τ≤T/2

(2.52)

• The power spectral density of each epoch is:

P0(f,m) =
1
T

(
T∑

τ=0

ei2π(f)(τ)/TV ′(τ,m)

)2

(2.53)
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Figure 2.17: An illustration of the power spectral density calculation. The raw timeseries
from two adjacent channels (shown in (A)) are subtracted from one another to create
a pairwise difference channel (shown in (B)). This pairwise difference timeseries is then
broken up into overlapping windows, and each of these has a Hann-window applied to it
(in (C)). The Fast-Fourier Transform (FFT) is calculated and element-wise squared to
obtain the power spectral density (PSD) for each epoch (in (D)). These PSD samples are
then averaged to obtain a mean spectrum, which is corrected for the frequency-dependent
amplifier attenuation (in (E), the amplifier attenuation is shown in 4.8).

• The overall power spectral density is:

P (f) =
1

M Ξ2 (f)

M∑
m=1

P0(f,m) (2.54)

where Ξ (f) is the amplitude roll-off function imposed by the amplifiers (figure 4.8).

2.6.2 The relationship between the Fourier Transform and the Autocorrelation

A specific functional form in the power spectrum tells us specifically about the autocorrela-

tional structure in the data, and is a convenient way of characterizing the data. The power
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spectrum is the Fourier Transform of the autocorrelation function:

F (G (t)) = F

 ∞∫
−∞

dτ (f(τ)f∗(τ + t))

 =
∞∫

−∞

dt
(
e−iωt

) ∞∫
−∞

dτ (f(τ)f∗(τ + t))

=
∞∫

−∞

dt

∞∫
−∞

dτ
(
f(τ)e−iωtf∗(τ + t)

)

=
∞∫

−∞

dτ
(
f(τ)eiωτ

) ∞∫
−∞

dt
(
e−iω(τ+t)f∗(τ + t)

)

=
∞∫

−∞

dτ
(
f(τ)eiωτ

) ∞−τ∫
−∞−τ

d (τ + t)
(
eiω(τ+t)f(τ + t)

)∗
= f̃(ω)f̃∗(ω) = P (ω) (2.55)

For example, purely uncorrelated data has a flat power spectrum, and a random walk has

a power spectrum of the form P (f) ∼ 1/f2. This relationship between the autocorrelation

of the timeseries and the power spectrum has important implications for our findings, as we

discuss extensively in chapter 4.
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Chapter 3

SPECTRAL CHANGES IN CORTICAL SURFACE POTENTIALS
DURING MOTOR MOVEMENT

In the first large study of its kind, we quantified changes in electrocorticographic (ECoG)

signals associated with motor movement across 22 subjects with subdural electrode arrays

placed for identification of seizure foci. Patients underwent a 5-7 day monitoring period with

array placement, prior to seizure focus resection, and during this time they participated in

the study. An interval-based motor repetition task produced consistent and quantifiable

spectral shifts that were mapped on a Talairach-standardized template cortex. Maps were

created independently for a high frequency band (HFB: 76-100 Hz) and a low frequency

band (LFB: 8-32 Hz), for several different movement modalities in each subject. The power

in relevant electrodes consistently decreased in the LFB with movement, while the power

in the HFB consistently increased. In addition, the HFB changes were more focal than the

LFB changes. Sites of power changes corresponded to stereotactic locations in sensorimotor

cortex and to the results of individual clinical electrical cortical mapping. Sensorimotor rep-

resentation was found to be somatotopic, localized in stereotactic space to Rolandic cortex,

and typically followed the classic homunculus with limited extra-rolandic representation.

Keywords: Electrocorticography (ECoG), Motor, Mapping, Somatotopy, Homunculus

3.1 Introduction

Behavior-related changes in specific cortical spectral bands were described in animals as

early as 1891, and similar task associated changes were demonstrated in humans brain po-

tential measurements from the surface of the scalp (EEG) by 1929 (Brazier 1961) (Berger

1929). Most subsequent studies of human cortical electrical behavior have focused on the

spectral characteristics of EEG, The EEG frequency band ranges that have classically been



49

associated with motor output are the 8-12 Hz (“alpha”), 18-26 Hz (“beta”), and every-

thing greater than 30 Hz (“gamma”) (Wolpaw, McFarland et al. 1991; Kostov and Polak

2000; Pfurtscheller 2000). The lower bands have been associated with thalamocortical cir-

cuits and typically decrease in amplitude in association with actual or imagined movements

(Levine, Huggins et al. 1999; Rohde, BeMent et al. 2002; Pfurtscheller, Graimann et al.

2003). Higher frequency changes, in contrast, have been found to increase in amplitude with

active or imagined motor movements (Crone, Miglioretti et al. 1998; Pfurtscheller 2001;

Leuthardt, Schalk et al. 2004), and may correlate with activity in local neuronal popula-

tions. The classic, though still debated (Nunez, Wingeier et al. 2001), interpretation of

changes in spectral amplitude, developed by Pfurtscheller(Pfurtscheller 1981; Pfurtscheller

2000; Pfurtscheller 2001; Pfurtscheller, Graimann et al. 2003; Pfurtscheller, Brunner et

al. 2006) and others, is that they reflect phase coherence of cortical circuits. With this

interpretation came the suggestive labels event-related synchronization (ERS) and event re-

lated desynchronization (ERD), and the postulate that spectral shifts in these potentials do

not necessarily reflect differences in overall cortical computational activity, but rather that

they reflect changes in population coherence. The present study aims to identify aspects of

functional organization in the brain, using spectral shifts in the ECoG array, when the state

of motor cortex is changed in a supervised, interval-based and repetitive manner. The high

fidelity of ECoG signals has made them a source of interest for functional brain mapping,

and this paper is not the first to use them in this capacity. Crone and colleagues (Crone,

Miglioretti et al. 1998; Crone, Miglioretti et al. 1998; Crone 2000) demonstrated soma-

totopy in several (5) individuals using a paradigm with tonic muscle contraction. Tonic

movement produced transient suppression at low frequencies, and transient potentiation

at high frequencies. These studies found high frequency changes to be more spatially focal

than low frequency changes, and their methods reported variable somatotopy, with much in-

volvement outside of classically described sensorimotor cortex. Pfurtscheller and Graimann

(2003), using self-paced movement, reaffirmed the finding of spatially broad mu and beta

ERD in ECoG, with more focused high gamma ERS (Pfurtscheller, Graimann et al. 2003).
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Loose somatotopy, unbound by by rigid homuncular representation, was also reported in

ECoG by Marsden(Marsden, Werhahn et al. 2000), Hoshida(Hoshida and Sakaki 2003),

and Branco(Branco, Coelho et al. 2003). Consistent with previous studies, we find that in

the low-frequency regime (¡32 Hz), distinct spectral peaks, which are present in resting in-

tervals, decohere during movement intervals. At higher frequencies we found broad spectral

increase with movement that might represent increased neuronal activity across the entire

neuronal ensemble measured by a single electrode, reflecting the summation en masse of

many superimposed Local Field Potentials (LFPs), each of which displays a shift in its own

power law type noise spectra (Beggs and Plenz 2003; Beggs and Plenz 2004). By studying

a large number of patients (twenty-two subjects) and using stereotactic normalization and

averaging techniques, our results help provide a generalizable, in-depth, and comprehen-

sive characterization of low and high frequency changes in and around sensorimotor cortex

during movement.

3.2 Methods

3.2.1 Subjects

Simple motor tasks were studied in twenty-two patients (10 females, ages 18-48, Table 1)

who had undergone placement of intracranial electrode arrays to localize seizure foci prior

to surgical treatment of medically refractory epilepsy. The arrays were typically placed

for 5-7 days with the location of the electrodes and duration of implantation determined

independently by clinical criteria alone. Experiments were performed at two institutions,

University of Washington (UW) and Washington University in St. Louis (WashU). Patients

underwent craniotomy for electrode placement and were typically studied 4-6 days after

electrode placement to allow for recovery from the surgery. Only patients with some peri-

Rolandic coverage were included. Subjects gave informed consent for participation in a

manner approved independently by the respective Institutional Review Boards.
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Figure 3.1: Grid placement and representation on a brain template. The brain is exposed
(A) and electrodes placed in the subdural space (B) to identify seizure onset and map cortex
for clinical purposes prior to resection of epileptic focus. The electrodes are localized with a
lateral skull x-ray (Miller 2007) (C) and positions transformed to a standardized template
(D). White dots represent the center of the electrode location in the standardized Talairach
coordinate system (Talairach and Tournoux 1988).

3.2.2 Recordings

The platinum electrode arrays (Ad-Tech, Racine, WI) were typically configured as linear

strips or 8x8 electrode arrays. The electrodes had 4mm diameter (2.3mm exposed), 1

cm inter-electrode distance, and were embedded in silastic. The recording system differed

in technical features between the two centers. At UW, the ECoG signals were split into

two identical sets. One set was fed into the clinical EEG system and the other set was

recorded with Synamps2 (Neuroscan, El Paso, TX) biosignal amplifiers. At WashU, a

clinical telemetry system (XLTEK, Oakville, Ontario, Canada) was used and signal acquired

via the internal network. ECoG signals were then acquired from the Neuroscan or XLTEK

system using the general-purpose software BCI2000 (Schalk, McFarland et al. 2004). At
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UW, the sampling frequency was 1000 Hz. At WashU, the sampling rate was 300, 500,

or 600 Hz. The signals were bandpass filtered from 0.15 or 0.3 Hz to 200 Hz at both

institutions. In this way, the 8-100 Hz spectral regions examined in this study are outside

of any filtering ranges and below any relevant Nyquist frequency.

Figure 3.2: Demonstration of the analysis technique for a hand movement task in patient
5. The shaded areas in the spectral plot illustrate the bands used for analysis. The green
shaded region is from 8-32 Hz (low frequency band, or LFB), and the orange shaded region
is from 76-100 Hz (high frequency band, HFB). The upper cortical map shows the activation
distribution for the HFB (here, reflecting an increase in spectral power with movement).
The lower map, for the LFB demonstrated a decrease in spectral power with movement over
a broader set of electrodes. The color bar indicates the scale used for all spectral maps:
blues reflect spectral decrease, and red-yellow reflect spectral increase. Grey indicates no
change. All cortical maps are scaled to the maximum increase or decrease, so there is no
relevant absolute scale. Electrode locations are shown in white.

3.2.3 Tasks

Motor tasks were performed as part of a pre-screening task for closed loop brain-computer

interface feedback experiments(Leuthardt, Schalk et al. 2004; Eric C. Leuthardt 2006). Pa-
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tients performed simple, repetitive, motor tasks of hand (synchronous flexion and extension

of all fingers, i.e. clenching and releasing a fist at a self-paced rate of approximately 1 Hz)

or tongue (opening of mouth with protrusion and retraction of the tongue, i.e. sticking the

tongue in and out, also at 1 Hz). These movements were performed in an interval-based

fashion, alternating between movement and rest, and the side of movement was always con-

tralateral to the side of cortical grid placement. Additional movement types were flexion

and extension of a given finger, audible repetition of the word “move,” pursing and un-

pursing of the lips, and adduction and abduction at the hip, shoulder, and ankle. There

were between 30 and 75 cue presentations for each movement modality. Cues for motor

movement were delivered visually in a 10 cm by 10cm presentation window at a distance of

75 -100 cm from patient. Visual cues were presented using the BCI 2000 program(Schalk,

McFarland et al. 2004) in one of three ways - a colored box, a fixation point (‘x’) cuing a

specific motor movement, or a written word indicating the specific body part to be moved

(typically, multiple movement types were interleaved in each experimental run). Stimuli

were presented for 2 seconds (patients 1, 2, 3, 5, 8, 17) or 3 seconds (all other patients), fol-

lowed by rest intervals (indicated by a blank screen) of the same length. The patients were

instructed to perform repetitive, self-paced motor movement, alternating with rest intervals

of the same length (indicated by the absence of the cuing target). Repetitive motion, rather

than tonic contraction, was intended to accentuate the spectral shift during each interval,

as attenuation of alpha (6-12 Hz) and beta (18-26 Hz) decrease (Crone, Miglioretti et al.

1998) and gamma (¿30 Hz) increase (Crone, Miglioretti et al. 1998) has been reported

during tonic contraction. Multiple movement types were interleaved in each experimental

run.

3.2.4 Signal Analysis

All ECoG data sets were re-referenced with respect to the common average. The 0.5 to

2.0 second epoch was used for analysis within each interval of activity or rest, regardless of

sampling frequency or cue duration. The power spectral density of each epoch was calculated
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Figure 3.3: The power spectra for the motor task (red) and rest intervals (blue) illustrate
the rationale, and tentative hypothesis behind the choice of spectral bands (HFB and LFB)
for analysis. The first three plots (A-C) are elements of artificial schema and the 4th (D)
is actual data (the same as in Figure B.2) (A) Modeling the ERD: In the rest condition, it
is proposed that native timescales of 200 ms and 50 ms, generating spectral peaks based at
5 Hz and 20 Hz, arise from cortical regulation by thalamus and/ or other structures. With
motor activation, one or more of these timescales decohere (“desynchronize”). Note that the
rest period here does not necessarily reflect a baseline state, but the rest interval between
actions, and may therefore be more coherent (“synchronized”) than a true baseline state.
The schematic assumes 99% decoherence of the 20 Hz spectral peak with respect to the
resting state. The green band reflects the analysis band (LFB) used to capture this effect.
(B) Modeling the broad spectral increase: In this model, a power law spectral shift, from,
for example, 1/f2.3 in the rest state to 1/f2 in the motor state, is diagrammed. This broad
increase could also be a result of white noise addition to the data (a uniform shift upwards).
The orange band (HFB) is chosen to capture this shift since it is away from masking by
discrete, native, timescales at lower frequencies (as in (A)), and noise contamination at 60
Hz. (C) Superposition of the spectra in (A) and (B), with the addition of 60Hz noise (the
same amount to each state). The orange and green bands are as before. (D) Actual shift
seen. This spectrum is the same as in Figure B.2. Note the similarity to the modeled
spectrum (C).

every 1 Hz from 1 to 150 Hz using a Fast Fourier Transform (FFT) using 0.25 second

windows with an overlap of 0.1 second, and was averaged throughout each epoch. A Hann

window(Nuttall 1981) was imposed on each data window to attenuate edge effects. The
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number of rest epochs was randomly downsampled so that the number of rest epochs and

the number of active epochs of each type were the same, for balanced statistical comparisons.

The power at each frequency (in 1 Hz intervals) for each epoch was normalized with respect

to the mean power at that frequency across all epochs in the run from which it came. We

then calculated the sum of all normalized power values in two 25 Hz bands. Normalization

was deemed necessary since the “typical” ECoG spectrum resembles a power law (Figure

B.2), and so the changes at the lower end of either band would dominate the analysis

procedure without it. The approach of taking wide frequency ranges avoided chauvinism

toward any specific frequency, and accentuated the effect of broad spectral changes. (see

Figures B.2 and B.3):

8-32 Hz (Low Frequency Band, LFB): This band spans is the classic “mu-beta”

region of the spectra that typically exhibits amplitude decrease with motor movement. The

fact that a peak in this region dissolves has led to the term ”event related desynchronization”

(ERD). Since it is a peak which disappears, it suggests dissolution of native timescale(s).

These timescales may correspond to native thalamocortical timescales(Lopes da Silva 1991;

Neidermeyer 1999), or perhaps some other inhibitory circuit which is activated when the

brain region of interest is functionally engaged. This band is also picked to flank the classic

range which EEG studies have focused on.

76-100 Hz (High Frequency Band, HFB): This range is chosen to be representative

of the spectrally broad power increase that accompanies movement in relevant, focal, brain

areas. This particular interval was chosen because it lies within this broad increase, avoids

60 Hz contamination, and matches the 25 Hz width of the LFB. Although this interval was

chosen arbitrarily, and does not capture the entire broad-spectral change, supplemental fig-

ures ?? and ?? demonstrate how our results would be very much the same if we had picked

a different frequency band within this broad spectral increase for our HFB analysis.

For every electrode and movement type, we calculated a high and a low activation weight by

comparing the distributions of HFB and LFB values for each movement type with the cor-

responding rest distributions. Each such weight (A) was a signed squared cross-correlation
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Figure 3.4: Spectra superimposed on the brain over each electrode for patient 5 during a
hand movement task (red curves) and resting interval (blue curves). The frequency range
(see upper left inset) is 8-100 Hz. Note that 60 Hz noise varies across electrodes (the two
chosen frequency bands are away from this artifact). The lower cortical insets reflect the
generated cortical activation maps, with the HFB map on the left cortex and the LFB map
on the right. Note that, as expected by the lower insets, the most dramatic effects in the
individual spectra are seen in the upper, middle portions of the grid.



57

value, a measure of how much of the variance in power across both movement and rest

epochs was accounted for by the difference in the mean power between movement and rest

epochs, as detailed in equation 1. We calculated the p-values associated with power in

these normalized bands using a balanced, unpaired t-test with the normalized HFB and

LFB power for a given movement type compared with rest. For each subject, the calculated

p-value was Bonferroni corrected (Bonferroni 1936) for the number of channels.

3.2.5 Electrode Localization

As in other studies (Zacks, Gilliam et al. 2003; Zacks, Michelon et al. 2004), the electrode

placement were documented clinically by their relation to skull table and landmarks from

the saggital (lateral) and coronal (anterior-posterior) skull x-rays. We used these x-rays to

derive normalized Talairach coordinates for the each of the electrode arrays using the LOC

localization package(Miller submitted fall 2006), which is itself based in part on the manual

procedure described in (Fox, Perlmutter et al. 1985) (see Figure B.1). Skull landmarks were

used to determine brain dimension for standardization, and the position of the radio-opaque

electrodes with respect to these skull landmarks allowed for calculation of each electrode’s

position in standardized (Talairach(Talairach and Tournoux 1988)) coordinates. In areas of

low convexity with respect to the lateral x-ray (such as rolandic cortex) only an anterior-

posterior ordinate and a superior-inferior ordinate were needed because the third ordinate

could be uniquely determined by the convex surface of a template brain. Electrodes in

areas of high convexity with respect to the lateral x-ray required the use of the AP x-

ray to determine the third ordinate. Localizing electrodes based upon their relation to

venous or gyral anatomy(Modayur, Prothero et al. 1997) would be subject specific and

not generalizable, but interpretation of activations with respect to cortical gyri would be

straightforward. The method we used of plotting these standardized locations to the AFNI

- Montreal Neurological Institute (MNI) template brain(Collins 1995), in contrast, had the

advantage of straightforward generalizability across subjects. It did suffer from the drawback

that activation locations were calculated in this standardized space, without respect to gyri
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or other known cortical structures, and any relation of activations to cortical structures in

the template cortex must be interpreted with this in mind.

3.2.6 Template Brain Mapping

For template brain mapping, we included only electrodes with changes in power significant

at the 0.05 Bonferroni-corrected level. We created activation maps independently for the

HFB and LFB in each patient, for each movement type. We created these maps by linear

superposition of spherical Gaussian kernels (standard deviation of 5mm) centered at the

location of each electrode. The kernels were scaled by the activation weight (equation 3.1)

associated with the given electrode and modality (Figure B.4), and interpolated at each

point in a template brain. Maps for tongue and hand movement were averaged using linear

summation of activation brain maps across all subjects for each task. While this simple

linear superposition may cause areas with denser electrode coverage to artificially appear

to have increased activation compared with areas which have similar activation but less

coverage across which to summate, our present method did not suffer from the types of

spurious artifact that can accompany other methods. (For example, scaling of individual

maps prior to superposition will skew towards peripheral activation of subjects with poor

coverage but some significant activation, and point-by-point interpolation must account

for single patients with anomalous activation weights). For complete visualization of the

analysis technique, please see the supplementary figure 7.5.

Amr =
(m̄− r̄)3

|m̄− r̄|σ2
m∩r

NmNr

N2
m∩r

(3.1)

3.2.7 Cortical stimulation mapping

In seven patients, cortical stimulation mapping (Figure B.4) of motor cortex was performed

for clinical purposes. Each such stimulation patient underwent stimulation mapping to

identify motor and speech cortices as part of his/her clinical care. In this mapping, 5-10

mA square wave current pulses (.1ms in length) were passed through paired electrodes for
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up to 3s (less if a response is evoked) to induce sensation and/or evoke motor responses

(figure 3.8).

3.3 Results

Activation maps for hand and tongue movement are shown in figures A.5 and A.6 for all

individuals and for the group average from each hemisphere. Supplementary material char-

acterizes this for other movement types (Figures 7.6 and 7.7). A highly generalized response

was found for motor tasks across individual subjects. Somatotopically defined decreases in

low frequency band (LFB) and increases in high frequency band (HFB) were a consistent,

significant feature in most subjects. These changes typically extended across sensorimotor

cortex for the LFB and were somewhat more spatially specific for the HFB. Consistent with

prior literature, spectral decreases were narrowly focused in the traditional mu/beta bands,

but increases were distributed over the entire range of higher frequencies. Over sensorimotor

cortex, a typical ’mu’ peak was seen around 20-30 Hz that reliably decohered with activity.

Along with this ‘lower’ frequency change, a broad, very high frequency increase in power

is seen and, in our data, seems localized to sensorimotor cortex (Figure B.4 and supple-

mentary Figure 7.8). Typically, the rest and active spectra intersected between 40Hz-50Hz

in relevant electrodes (Figures B.4 and 7.8). These findings were highly consistent across

subjects. For example, we found statistically significant LFB decreases in 17 of 18 subjects

with hand tasks and 14 of 16 with tongue tasks, and HFB increases in 15 of the 18 subjects

with hand tasks and 14 of 16 with tongue tasks (Figures A.5 and A.6), and most of those

where significant changes were not found had less extensive rolandic coverage.

Taken both individually and on average (in collated, normalized, subject data), electrocor-

ticographic signal changes were consistent with known localization of sensorimotor cortex.

Figures A.5, A.6, and 3.7 demonstrate the individual and average activation maps for both

HFB and LFB. The average activation locations for the HFB and the LFB (hand: high (+/-

47,-15,50), low (+/-50,-15,50); tongue: high (+/-60,-6,31), low (+/-58,-6,39); in Talairach-

normalized coordinates) fall within stereotactically defined Brodmann area 4 for hand and
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tongue. The somatotopy of these two motor areas matched the established homuncular

distribution, and the distributions of spectral changes were anatomically distinct for hand

and tongue movement, as shown in Figure 3.7 (spatial separability was significant, with an

associated p-value of less than 0.001 for both HFB and LFB, using a Bonferroni corrected,

unpaired, t-test of all electrodes which showed a significant change for the movement of

concern, with locations from all individuals concatenated).

Analysis of many movement modalities in several of the individuals (Figure 3.9) showed

both loose somatotopy and peri-central localization. Supplementary motor activation was

seen in a single subject with medial coverage (figure 3.9 C). Areas of activation for different

modalities overlapped, and the overlap was more extensive in the LFB than the HFB.

In addition to the general changes across subjects, the localization of HFB and LFB changes

corresponded with cortical stimulation mappings of motor cortex in individual patients

(figure 3.8). Of the 20 electrode pairs that displayed responses to stimulation, at least one

of the electrodes in the stimulated pair had a significant change in either the LFB (19 of 20

pairs) or the HFB (17 of 20 pairs), and thus 16 of the 20 pairs had significant changes in

both the HFB and the LFB.

Finally, the spatial distribution for hand and tongue activations (Table 2) was broader for

the LFB than for the HFB (p¡0.01 for both hand and tongue, using a paired t-test across

patients). In other words, significantly larger areas of cortex exhibited changes in the LFB

than in the HFB.

3.4 Discussion

Picoampere currents through individual membranous channels generate small changes in

the local potential each time these channels open and close. Each neuron in cortex has

millions of these channels. The potential changes that we measure at each electrode of

an electrocorticographic (ECoG) array on the brain surface reflect innumerable numbers
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of these currents. Distinct spectral shifts that are measurable, at specific frequencies, on

this scale must correspond to large scale coherence at a specific timescale(Cassidy, Mazzone

et al. 2002; Paradiso, Cunic et al. 2004), and disorganized (non-synchronous) but global

increases in electrical activity across local neuronal populations will be reflected by broad

spectral increases(C. Surya 1999). This study captured both of these types of changes in

order to functionally map the cortex during a repetitive movement task.

To date, ECoG data has been analyzed on an individual subject by subject basis, par-

tially due to a lack of methods for standardizing and comparing data across subjects, and

partially due to small study sizes. The method described in this study facilitates collation

of results across subjects according to stereotactically defined anatomy. Using the present

method and data collected from 20 patients, this study provides an in-depth characteri-

zation of the spectral changes in the ECoG that accompany movement of the hand or the

tongue. We find, across numerous subjects, that the high frequency band power changes are

spatially focal with a broad frequency power increase with motor activation, while the low

frequency band is spatially broad with more narrow bands of frequency power decrement.

Like Crone et. al.(Crone, Miglioretti et al. 1998; Crone, Miglioretti et al. 1998; Crone 2000),

our study demonstrates variable somatotopy across individuals. Event related desynchro-

nization (ERD), or spectral power reduction, was found ubiquitously at low frequency in

specific peaks within the LFB, as described by Pfurtscheller, et al(Pfurtscheller 1999). As

both Crone and Pfurtscheller have described, the high frequency change with movement

was more focal than low frequency change, and characteristically fewer significant elec-

trodes were detected for HFB (Table 2). We found high frequency spectral increase to be a

much more focal phenomenon than low frequency ERD, and we found this high frequency

change to be particularly specific to Rolandic cortex, across a large number of individuals.

Additionally, the spectral power increase was much broader than that found in the lower

frequency bands (supplementary figure 7.8), and the results would have been very much the

same had we picked a higher 25Hz band within this broad spectral increase (supplementary

figure 7.11).
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While there was spatial variability in the distribution of spectral changes across individ-

uals and specific homuncular organization (more in the LFB than the HFB), there was not

as much variability as found by smaller studies. In particular, we did not find significant

temporal lobe involvement, in contrast with other studies (Crone, Miglioretti et al. 1998;

Crone, Miglioretti et al. 1998). Our findings do reaffirm that a rigid segmenting of motor

strip somatotopy is not reflected in all aspects of the somatotopy of the electrocorticographic

signal. As a particularly striking example, we found, as have Crone’s studies, that lateral

cortical change during a foot movement task (Figures 3.9 and supplementary figure 7.6),

well outside the inter-hemispheric somatotopic location of stimulation and lesion effects for

distal lower extremity motor cortex. Though sensorimotor activation was a consistent fea-

ture of the study across the entire cohort, the occasional single subject outlier (as in fig A.5,

subjects 8 and 10, and figure A.6, subject 6) might reflect task-related regional activation/

deactivation patterns(Neuper, Wortz et al. 2006) or higher order cognitive processes.

Our method of accumulating results for different subjects does have some limitations

that are worth noting. Variable electrode placement across individuals can confound inter-

pretation when activations are considered when comparing subjects with non-overlapping

or peripheral electrode array coverage. Conversely, since the activation on the template is

the average of activation (”A”)-weighted Gaussian kernels, the peaks of activation will be

somewhat blunted by similar sites with increased noise or reduced signal. Since the singular

electrode activations are smeared to a template this also could lead to the possibility that

two independent sites of activation are grouped together. This is especially worth consid-

ering when electrode spacing is 1cm apart. Despite these limitations, our present method

still allows for the development of normalized and summated electrocorticographic data

from which consistent, significant, and generalized statements of motor cortex activation

have been made similar to that of fMRI. Thus far, this has been elusive in ECoG related

literature.

The topographical activations for hand and tongue displayed significant concurrence to

known topography of hand and tongue motor cortices. Figures A.5 and A.6 illustrate the
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activations resulting from hand and tongue movement across 17 and 13 patients, respec-

tively. The locations, when averaged, line up with the expected peri-Rolandic sensorimotor

cortical sites. It is not surprising that the activations span the central sulcus, since the task

involves both motor movement and sensory feedback. Taken individually, the cortical acti-

vations approximate the homunculus, with some extra-rolandic involvement. It is important

to note that some of the activation maps in Figures A.5 and A.6 are limited by electrode

coverage, and that this limitation must be considered when scrutinizing the activation maps.

The most dramatic example of this is subject 17, in figures A.5 and A.6, where a single

strip passes through classic hand motor cortex. In figure A.5, hand activation appropriately

spans two electrodes in hand area; in figure A.6, however, tongue activation is present in

the HFB in one electrode, and without any other rolandic coverage it is not clear whether

a very small HFB increase is forced to the maximum or not. This forcing of small but

significant changes in peripheral areas where there is no coverage of the primary area might

help explain some of the strange findings with leg, foot, and shoulder movements (row A

in figure 3.9 and several findings in supplementary figure 7.6). Electrical stimulation of the

cortex to create transient lesions or to induce overt movements, extra or intra-operatively,

is the established gold-standard method to functionally localize motor cortex in the human

brain (Ojemann, Ojemann et al. 1989; Chitoku, Otsubo et al. 2001; Branco, Coelho et al.

2003). The present method contrasts with the classical stimulation method for functional

localization because the method detailed here measures natural cortical change in response

to functional behavioral change. Stimulation mapping, on the other hand, perturbs the nat-

ural state of the brain to non-selectively elicit functional behavioral change. Nevertheless,

after pooling the HFB and LFB, electrocorticographic changes were universally seen at sites

responsive to stimulation(Leuthardt 2006).

Our results support the notion that high and low frequency band changes arise from

different physiological phenomena. Low frequency changes are postulated to arise in broad

cortical areas, which are collectively regulated by central structures (e.g., the thalamus and

basal ganglia). In this view, this regulation is reflected by specific, phase coherent (“syn-
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chronized”), native timescales ranging from 30 to 120 ms, and seen as corresponding peaks

in the power spectrum at 8-32 Hz. In some subjects, this spectral ”peak” was found to

be exaggerated as a dynamic component associated with the task (see supplemental Figure

7.9), even though it is a feature localized to non-movement epochs of the task, supporting

the hypothesis that it is reflecting a regulatory process. That we found this is not sur-

prising, since a rebound in power in EEG beta following movement, beyond resting power,

has been well documented by Pfurtscheller and Neuper Electrical stimulation of the cor-

tex to create transient lesions or to induce overt movements, extra or intra-operatively, is

the established gold-standard method to functionally localize motor cortex in the human

brain (Ojemann, Ojemann et al. 1989; Chitoku, Otsubo et al. 2001; Branco, Coelho et al.

2003). The present method contrasts with the classical stimulation method for functional

localization because the method detailed here measures natural cortical change in response

to functional behavioral change. Stimulation mapping, on the other hand, perturbs the

natural state of the brain to non-selectively elicit functional behavioral change. Neverthe-

less, after pooling the HFB and LFB, electrocorticographic changes were universally seen

at sites responsive to stimulation(Neuper and Pfurtscheller 1996; Pfurtscheller, Zalaudek et

al. 1998). Also, monkey LFP experiments have shown load-based increases in this peak

during rest periods a gripping task with variable resistance, suggesting that it is dynam-

ically related to movement task properties (Jackson, Spinks et al. 2002). Recent studies

comparing this movement-associated beta rebound in subjects with and without ventrolat-

eral thalamotomy have demonstrated a role for the intact thalamus in the dynamic nature

of the beta rhythm(Van Der Werf, Sadikot et al. 2006). Other studies involving both mod-

eling(Destexhe, Contreras et al. 1998) and experiment indicated the importance of both

the thalamus(Paradiso, Cunic et al. 2004) and basal ganglial structures(Cassidy, Mazzone

et al. 2002; Foffani, Bianchi et al. 2005) in beta modulation in humans. Beginning at

40-50 Hz, a broad task-dependent increase in spectral power is measured reliably across

patients and movement modalities (as in Figures B.2, B.3, B.4, and supplementary figure

7.8). It has been suggested that this spectral power increase at these higher frequencies
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is correlated with increased BOLD signal in fMRI studies(Mukamel, Gelbard et al. 2005),

that (as we demonstrate here) high frequency changes are a specific correlate of local behav-

ior(Hoogenboom, Schoffelen et al. 2006; Womelsdorf, Fries et al. 2006), and we postulate

that they may directly reflect an increase in local cortical computation. Thus, it is possible

that the observed high-frequency effect is caused by the integrated activity of firing rates

of cells immediately underneath the electrodes. That is, a global shift in the power law

noise spectra(C. Surya 1999), accompanying an increase in local, cortico-cortical activity

(as observed in LFPs(Beggs and Plenz 2003)), would be also present at low frequencies.

However, observation of this shift at low frequencies could be masked by the influence of

thalamocortical and basal ganglial-cortical interactions reflected at discrete timescales in

the low frequency spectral region. This implies that the notions of synchronization and

desynchronization might not be applicable to these changes and that the effect of increase

in band power might actually extend across all frequencies including those in the mu/beta

range.

3.5 Conclusion

Electrocorticography can provide the basis for functional maps that reveal motor corti-

cal organization in an efficient and reproducible fashion. Using simple localization methods

and spectral analyses, we derived robust motor activations, consistent across individuals and

concurrent with parallel cortical stimulation maps. High frequency spectral power increased

with activity, was spectrally broad, and may reflect activity of local neuronal populations.

The increases in activity seem to conform to exponential or power law noise behavior with

shifts in the critical exponent that correlate with behavior, rather than demonstrating in-

creases at a specific frequencies. Low frequency spectral power decreased with activity, was

spectrally focused narrowly over traditional mu/beta frequency ranges, and thus may reflect

the dissolution of spectral peaks which may themselves reflect the regulatory timescales in-

volved with the interaction between central brain structures and the cortical surface (i.e.,

thalamocortical and basal ganglia-cortical). We quantified and mapped these effects across
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a large number of patients, showing the spatial distribution of the low frequency (regulatory)

band to be spatially broader than the high frequency (activity-based) band. The results

of the topographical mapping reveal somatotopic representation of these signals which typ-

ically follow the traditional homunculus model. In summary, our results provide, for the

first time, an in-depth characterization of spectral changes in ECoG signals during move-

ment across a reasonably large number of subjects; the techniques presented in this paper

provide a basis for electrocorticography-based, quantitative mapping of motor modalities in

the human brain.

3.6 Supplemental Figures

Figures with descriptions that should help to understand the main content of the text.
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This figure details the analysis procedure for a hand and tongue interleaved movement

epoch task. (A) Raw data, recorded during the cued interval based task, is segmented. The

raw data from a single channel is shown the trace, and durations with the cue for hand

movement are shown in blue; those for tongue movement are shown in red; and those for

rest are shown in black. The .5 to 2 second duration of each 3 second change is isolated, and

these durations are designated by solid bars beneath the trace. (B) Spectra are calculated

every 100ms for 250 ms windows throughout each duration indicated in A, and these spectra

are averaged for each movement or rest epoch are shown in the traces in B. These traces

reflect this averaged power from 0 to 100ms. (C) Each spectra shown in B is divided

by the mean spectra across the entire task run, and these are shown directly below their

appropriate traces from B. The green (8-32 Hz) and orange (76-100 Hz) bands are used to

characterize high and low frequency aspects of the signal. The total power in each of these

bands is calculated for each task-related interval. (D) The power of the high frequency band

for each hand movement and a matched number of rest epochs across an entire task run

are shown, with 30 individual hand movement epoch band-power samples shown in blue,

and 30 rest epoch band-power samples shown in black. (E) A activation weight associated

with the difference in the hand movement is calculated. m denotes the distribution of hand

movement interval band-power samples, r denotes the distribution of rest interval weights,

with mUr denoting the union of the two distributions. N is the number of elements in each

distribution, (sigma) is the standard deviation, and a bar denotes distribution mean. (F)

Activation weights from each electrode are plotted to a template brain. Spherical Gaussian

kernels of standard deviation 5mm are centered at the location of each electrode, scaled

by the activation calculated in E, and linearly superimposed to obtain a cortical map. If

the distributions shown in D are not separable with an associated p-value of less than .5,

after Bonferroni correction for the total number of channels, then the activation for that

electrode is scaled to zero, and doesn’t contribute to the cortical map.
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Figure 3.5: Cortical activation maps for hand and tongue movements. Electrode locations
are shown in white. The upper cortex of each pair is the HFB activation, and the lower is
the LFB activation. Outer brains: Individual patients are reflected by brain pairs around
the outside of the figure, with the number next to the brain indicating the patient number,
as detailed in Table 1. Central brains: The average activations for hand and tongue move-
ment for left and right cortices (right and left hand movement, depending on the patient’s
electrode locations).
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Figure 3.6: See caption for figure 5.
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Figure 3.7: Average representation with contralateral electrode locations mirrored to one
side (left brain). Each is scaled for the maximum increase or decrease. The somatotopic
distribution of the activations is evident comparing the hand (left panels) and tongue (right
panels). Additionally, there is qualitatively less spatial overlap between the HFB repre-
sentations (upper panels) than the LFB (lower panels). The qualitative properties of each
type of activation are detailed in Table 2. Please see the supplemental discussion for more
depth about types of interpolation across individuals and why this particular technique was
chosen.
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Figure 3.8: Four magnified brain maps to show stimulation resulting in motor movement
along with the activation for the same modality. Stimulation is done pair-wise, so elicited
motor movement may be due to cortex beneath only one of the electrode pair. Positive
electrode stimulation locations are shown with green triangles connected by jagged green
lines. The upper cortex of each pair is the high frequency representation, and the lower is
the low frequency representation. Hand movements with stimulation are shown for patients
16 (A) and 6 (B). Tongue movements are shown for patients 1 (C) and 3 (D). Please see
the supplemental discussion regarding the stimulation process.



72

Figure 3.9: Five different movement modalities within the same patient for three different
patients, with each relevant modality labeled. The upper brains are high frequency band
representation, and the lower are low frequency representation. White dots indicate elec-
trode positions, and the green triangles reflect the pairwise stimulation sites which elicited
movement of the concerned modality. Data for subjects 9 (A), 3 (B), and 16 (C) are shown.
The medial representations in (C) reflect activation as reflected by a 2x8 interhemispheric
strip, and the activations seen are likely supplementary motor areas rather than sensorimo-
tor cortex.
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Figure 3.10:
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Figure 3.11: These figures illustrate activation for repetition of the word ”move,” and
adduction and abduction at the hip (”Leg”), shoulder, or ankle (”Foot”) across several
individuals. The shoulder action was a ’chicken-wing’ motion. The number next to each
brain pair indicates the subject number, as detailed in Table 1. Electrode locations are
shown in white. The upper cortex of each pair is the HFB activation, and the lower is
the LFB activation. Note that the lateral representations of leg and foot diverge from the
classic description of the homunculus, but agree with Crone’s findings (Crone, Miglioretti
et al. 1998; Crone, Miglioretti et al. 1998).
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Figure 3.12: These are the cortical activation maps for individual finger movement in sub-
jects 13 (top row) and 19 (middle row), and 18 (bottom row) respectively. Pinkie movement
is on the far left, with thumb movement on the far right. Electrode locations are shown in
white. The upper cortex of each pair is the high frequency representation, and the lower is
the low frequency representation. The green triangles reflect the pairwise stimulation sites
which elicited non-specific hand movement. Note that, while there is overlap, each digit is
visually distinct from the others. The 2nd and 3rd digits appear to be closely correlated
with each other, as do the 4th and 5th.
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Figure 3.13: This figure shows the spectral shift with hand movement in the most significant
electrode (determined by the product of the activation weight of the HFB times the acti-
vation weight of the LFB) across several subjects. The number in each inset is the subject
number from Table 1. The axes labels and scales in the center (expanded) inset applies to
all of the insets.
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Figure 3.14: This figure demonstrates task-related change in the “resting-spectra.” That is,
it shows that the spectra during resting durations of the movement task are not the same as
the spectra during a simple fixation task in the low frequency regime. Epochs taken from a
fixation task and analyzed in the same way as task related epochs reveal this, and spectral
power during the fixation task in the LFB (8-32 Hz) for the subject shown here (subject
13) is significantly different from movement epochs and rest epochs during the movement
task (p¡.01 for both fixation vs. hand movement epochs, and fixation vs. rest epochs).
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Figure 3.15: Cortical activation maps during hand movement for twelve individuals (those
sampled at 1000 Hz.) Each column is a subject, and the rows within each column denote
activations for three 3 different frequency bands, 8-32 Hz (LFB - bottom row), 76-100 Hz
(HFB - middle row), and 126-150 Hz (top row). The subjects are designated by a number
at the bottom of each column, corresponding to subject numbers from table 3. The choice
of a higher frequency band had little effect on the homuncular map. The average activation
locations during hand movement for each of the three bands was calculated: for 126-150
Hz y= -15.6+/- 8.7 and z= 46.4 +/- 9.4; for 76-100 Hz, y= -14.6+/-10.7 and z= 46.7+/-
9.6; and for 8-32 Hz, y= -13.3+/-16.0, z= 45.4+/-15.0. As we could expect from the broad
nature of the high frequency increase in the spectral curves figures B.2 and 7.8, and as we
show here, if a higher frequency band had been chosen for our arbitrary HFB, the cortical
activation maps would be very much the same. Motor maps of more select motor behaviors
may prove to be sensitive to the specific choice of bandwidth.
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Figure 3.16: Cortical activation maps during tongue movement for ten individuals (those
sampled at 1000 Hz.) Each organized as in Figure 7.11. The average activation locations
during tongue movement was similarly invariant to the specific high frequency band selected:
for 126-150 Hz , y=-6.5+/-12.8 and z=34.6+/-15.7; for 76-100 Hz, y=-5.7+/-11.5 and
z=31.7+/-16.8; and for 8-32 Hz, y=-3.4+/-12.2 and z=37.9+/-16.1.



81

Chapter 4

ECOG OBSERVATIONS OF POWER-LAW SCALING IN THE
HUMAN CORTEX

We report the results of our search for power-law electrical signals in the human brain,

using subdural electrocorticographic recordings from the surface of the cortex. The power

spectral density (PSD) of these signals has the power-law form P (f) ∼ f−χ from 80 to

500 Hz. This scaling index χ = 4.0 ± 0.1 is universal, across subjects, area in the cortex,

and local neural activity levels. The shape of the PSD does not change with local cortex

activity, only its amplitude increases. We observe a knee in the spectra at f0 ' 70 Hz,

implying the existence of a characteristic time scale τ = (2πf0)−1 ' 2− 4 msec. For f < f0

we find evidence for a power-law with χL ' 2.0± 0.4.

The human brain is arguably the most complex structure known to mankind and on

the verge of starting to grasp its own inner workings. How do our brains compute? How

fast do they compute? How do they store information? How universal is all of the above?

Ever since the first electroencephalography (EEG) recordings in 1924, the study of the

electrical activity of the human brain has focused on its prominent low-frequency features,

in particular the excitatory and inhibitory rhythms at specific frequencies, like the α (10 Hz)

and β (20 Hz) rhythms [101]. Traditional EEG studies are limited to f < 100 Hz. The

fundamental processes at the individual neuron scale suggest a role of higher frequencies:

the time of flight of a spike along an axon, the synaptic neuro-transmittor diffusion time, the

integration time of the dendritic arbor. They are all near or sub 10 ms [145]. Synchronization

and correlations associated with them are expected to exist at least up to 1 kHz.

Electrocorticographic (ECoG) recordings from the subdural surface of the cortex have

recently made it possible to examine the electrical activity of the human neocortex with

finer spatial and temporal fidelity than EEG. An array of electrodes is placed directly on
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Figure 4.1: The electrode array locations are shown on a template brain for subject 1 (S1 -
purple, temporal) and subject 2 (S2 - green, fronto-parietal). Potentials of all 32 channels
are measured simultaneously with respect to a scalp reference and ground before pairwise
re-referencing.

the surface of the cortex, see Fig. 5.5. The absence of the skull and surrounding tissue

increases the electrode voltage while the close proximity to the cortex means that ECoG

records very local phenomena. For example, changes in the classical α&β rhythms appear

spatially uniform for a given set of tasks in EEG, but vary strongly spatially within the

ECoG array for the same tasks [28].

The cortical surface potentials from sub-dural arrays reported in this study were ob-

tained from 20 participants receiving clinical monitoring for the localization of seizure foci

prior to resection. Each was informed about, and consented to participate in, the Uni-

versity of Washington internal-review-board-approved experimental protocol. The voltage

was sampled at 10 kHz (2 subjects) or 1 kHz (18 subjects) using Synamps2 amplifiers

(Compumedics-Neuroscan, San Antonio, TX) in parallel with long term monitoring (Xl-

tek, Oakville, ON) from 32 platinum electrodes, encased in silastic, in an 8x4 configuration
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(4 mm in diameter, with 2.3 mm exposed, separated by 1 cm, center-to-center, Ad-Tech,

Racine, WI).

Our earlier studies [92] revealed the absence of distinct peaks in the power spectrum

beyond f ' 60 Hz. We hypothesized the existence of a power-law of the form P (f) ' Af−χ

at these higher frequencies, and named it the χ-band/index, but the 1 kHz sampling rate

truncated the signal at these high frequencies. The purpose of the study reported here was to

determine, as accurately as possible, whether there is indeed such a power-law in the human

cortical power spectrum, and how it might change with cortical activity (universality), by

using a higher, 10 kHz sampling rate.

Power-laws represent scale free behavior, the finding of which immediately evokes scale

free networks, complexity, avalanches, and self-organized criticality (SOC). Unfortunately,

many such networks and processes are not large enough or can not be monitored precisely

long enough to establish the scale invariance convincingly [23, 35]. The human brain is

arguably the most complex and largest network available and may provide the best oppor-

tunity to observe scale free behavior in a natural setting. Each ECoG electrode measures

the voltage power spectral density from a specific cortical surface area associated with a

specific set of functions. An electrode pair probes about 106 neurons, and each neuron has

up to 104 synapses [145]. This has not gone unnoticed, and the neuroscience literature is

awash with attempts to interpret experimental low-frequency data with scale free concepts

and models; with only limited success and leaving many questions [7]. In this paper we

firmly establish the existence of the power-law in the χ-band and the actual value of the

scaling index, χ. We obtain remarkable accuracy, particularly compared to many recent

studies of power-law phenomena in nature [23]. Our accuracy approaches that of what was

required and customary in equilibrium critical phenomena [35].

We characterized the power-law in the cortical spectrum during a simple fixation task.

The subjects fixated on an “×” on the hospital room wall 3 m away from the bed for 130 s

(subject S1) or 190 s (subject S2), with their eyes open. The time-dependent voltage between

each electrode and the reference electrode was measured at 10 kHz, digitized, and stored
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Figure 4.2: Illustration of the steps taken to remove the amplifier roll-off and noise floors
from the raw power spectra (green to dark blue to black) The amplifier built-in amplitude
attenuation was determined by scanning through 15-4000 Hz sine waves and fitting a smooth
function to the attenuation at each frequency (light blue). A characteristic distribution of
amplifier noise floors (current and potential noise) was generated by measuring the potential
across an equivalent conformation of resistors (grey). The sharp line noise spikes at 60 Hz
and its harmonics were excluded in our analysis.

for spectral analysis. To further reduce the common mode noise from the environment,

the digitized electrode voltages were converted digitally into a set of voltage differences

between each near-neighbor pair of electrodes. This significantly removed the high-frequency

common mode noise and make it possible to measure well above 100 Hz. For our 4 by 8

array, the 32 individual electrode voltages produce 52 near- neighbor voltages (Fig. 5.5).

All of the measurements reported in this Letter are for near-neighbor voltages.

We carefully characterized the amplifiers, their low pass filtering and their noise floor.

These external factors affect the power spectrum measurement dramatically. They mask

and obscure the underlying power-law from the brain signal. Demonstration of the power-

law would not have been feasible without these corrections. Fig. 4.2 shows these corrective

steps in the data reduction. First, the power spectral density is calculated from the Fourier

transform of the time-varying near-neighbor voltages in 1 s Hann-windowed epochs, over-
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lapping by 0.5 s. These are averaged into uncalibrated spectra (marked green in Fig. 4.2).

They suggest a power-law shape, but the roll-off, apparent above 1 kHz, masks it. This

roll-off does not represent a characteristic high-frequency in the brain. It originates in the

amplifiers. We measured the gain versus frequency of the amplifiers independently. Their

spectral bandwidth shape follows a classic low-pass filter (shown as blue in Fig. 4.2). Remov-

ing the amplifier response from each uncalibrated spectrum leads to spectra (dark blue) that

level-off at high frequencies, indicating that we hit a noise floor. This noise floor does not

reside in the cortex either. We measured the amplifier input noise for our amplifier-digitizer

system independently. It is of order ' 4 µV per root Hz for every amplifier. Subtracting

this from the spectrum leads to a power spectrum that remarkably tightly fits a straight

line in the log-log plot (the black line see Fig. 4.2) until at 500 Hz the signal disappears

into the fluctuations of the amplifier noise floor. Future experiments with lower noise floor

amplifiers will tell how high in frequency the power-law actually continues.

Small variations and uncertainties in the amplifier noise floor C significantly affect the

quantitative analysis of the power-law. For that reason we perform 3 parameter fits, P (f) =

Af−χ +C. All such estimates for C are within the uncertainty of our independent amplifier

noise floor measurements.

Fig. 4.3 shows the combined spectrum, averaged over electrode pairs, for each subject.

We exclude electrode pairs where one of the electrodes sits primarily on top of a vasculature,

resulting in a much lower power in the signal and increased sensitivity to noise (4 channels

for S1, 5 channels for S2). The inserts illustrate the quality of the power-law, the jitter

around the average curve is more than one decade down from the signal, for all f < 200 Hz,

beyond which the amplifier noise floor fluctuations start to kick-in. The exponent χ and the

parameters A and C are estimated via a set of log-log type least-squares linear fits of the

power spectral density between 80 and 400 Hz, excluding harmonics of 60 Hz. This leads

to χ = 4.03± 0.1 for S1 and χ = 3.96± 0.1 for S2. The error bars are based on robustness

against range shrinking as well as the deviations of the best fit with respect to the actual

data across the entire frequency range 80 < f < 400 Hz.
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Figure 4.3: (A)-(B): Averaged electrode-pair power spectra (black) for subjects S1 and S2.
The red lines, the best power-law fits (see text) with χ = 4.03 (S1) and χ=3.96 (S2), fit the
data very well from 80-500 Hz. The spectrum before noise floor subtraction is shown in gray.
The S1 spectrum has a knee at at f0 = 70 Hz and appears linear below f0. (C): histogram
of power-law fits from individual electrode-pair spectra, with mean values χ = 4.06 (S1;
green) and χ = 3.94 (S2 purple).

To test for universality, we also performed the exact same type of fits to each individual

electrode pair spectrum. The histograms for S1 and S2 in Fig. 4.3 overlap well and the
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variations within each can easily be attributed to stochastic external issues, such as varia-

tions in electrode-cortex distance and vasculature. A such, we reached the accuracy limit

imposed by the experimental set-up. Within this accuracy, χ is universal; it does not vary

with subject nor specific brain areas. The mean value of the histogram exponents for S1

is χ = 4.06 (STD=0.10, N=48), and for S2 χ = 3.94 (STD=0.13, N=47), consistent with

the above fitting analysis on the two averaged spectra. We conclude that χ = 4.0 ± 0.1

throughout the frequency range 80 < f < 400 Hz.

Previous estimates of a power-law in the cortical spectrum [5] focused on low frequencies.

The averaged power spectrum of S1, in Fig. 4.3 shows a knee at f0 ' 70 Hz, and suggests

a different power-law below f0. Both seem absent in S2. The α&β rhythms are strongly

pronounced in every channel pair of S2 (and are clearly visible in Fig. 4.3). They obscure

whatever power-law might be present underneath. Eight electrode pairs from S1 lack α&β

rhythms. They may be absent in these local cortical areas, or so tightly synchronized that

they cancel out in the electrode pair voltage difference. A simple minded P (f) ' Af−χL fit

through their average from 15-80 Hz, yields χL = 2.57 ± 0.15 (N=8). However, such local

fits are inherently dangerous. They are blind to the global properties of the spectrum. Our

high frequency analysis of χ is already a clear illustration of this. The amplifier roll-off and

noise floors truncate our data only beyond f ' 400 Hz, but they affect the spectrum already

at much lower frequencies (Fig. 4.2). Similarly, the high frequency χ = 4.0 power-law is

already in-play below f0. Indeed, the global two-powerlaws form

P (f) ∼ A 1

1+

(
f

fL

)χL
1

1+

(
f
f0

)χH

with constraint χL + χH = χ = 4, shifts χL down to χL = 1.99 (STD=0.21, N=8), with

cutoff fL � 15 Hz.

The 8 S1 channels form a dangerously small ensemble. We performed the same analysis

on 1 kHz data for the exact same 2 minute fixation task from 16 subjects, with electrode

arrays in the lateral frontal/temporal/parietal cortex. The spectra were determined and

corrected for amplifier-digitizer frequency dependent attenuation in the same way as the
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10 kHz data. We selected again only those channel pairs (N=116) that lacked the α&β

rhythms. Naive fits from 15-80 Hz (excluding 57-63 Hz line noise) of these corrected spectra

yield again χL = 2.5 (STD=0.4, N=116); while the same global two power-law form, shifts

this down again to χL = 2.0 (STD=0.4, N=116) when setting fL = 1 and f0 = 70.

Figure 4.4: The average shift in power spectral density in electrodes after the PCA decom-
position in the hand cortical area during finger movement, for subjects 3-8; 5 electrode-pair
channels each (30 total). (A) demonstrates that movement (red) increases the overall power
by a factor 1.8 while preserving the shape of the rest (blue) spectrum. f > f0 power-law
fits (grey) are consistent with χ = 4. (B) Electrode pair channel locations (interpolated)
across all subjects, projected to the left-hand side. (C) Remaining spectra after dividing
out a Lorentzian, 1/

(
1 + (f/70)2

)
to illustrate consistency with the two-powerlaws form

with χL ' 2.

The uncertainty in the value of xL remains quite large. Even the existence of this

low frequency power-law remains in question, until we collect more 10 kHz data. The

analysis also requires a reliable decomposition of the low frequency α&β rhythms from the

background. We demonstrated that principle component analysis (CPA) techniques can

achieve this [?, 92]. Fig. 4.4 illustrates this for 1 kHz data. Five subjects performed a finger

movement task. A visual cue indicated when to move a given finger (repeatedly flex/extend

one finger at a time; opposite side of body from grid placement), and the position of each

finger was recorded using a dataglove (5dt; Irvine, CA). Samples of movement spectra of
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each type were calculated from the FFT of 1 s Hann-windowed epochs centered at the

maximum displacement of the finger during each flexion. Rest spectra were calculated from

epochs in which there was no hand movement. The spectra were corrected for amplifier-

digitizer frequency dependent attenuation. Differences between variations in α&β versus

high frequency allows a PCA removal of the α&β peaks from all the power spectra. We

were able to identify electrode pair channels which demonstrated significant shifts in power

during specific activity (single finger movement type) versus rest. A subset of five such

channels was chosen naively (based upon significance rather than being hand picked) from

each subject, and the average spectrum for the specific movement type causing change (the

“active” state) was compared to the average rest spectrum (the “inactive” state), after the

α&β peaks had been decoupled and largely removed.

Fig. 4.4 addresses several issues: Earlier [92, 28], we observed changes in the χ-band

during behavior tasks and hypothesized how those can be used directly to quantify activity

in the brain in a variety of practical settings; e.g., the total power in the χ- band increases

with activity versus rest. Fig. 4.4 demonstrates that this increase in spectral power with

activity extends over all frequencies. Moreover it strongly suggests that the shape of the

spectrum is preserved (universality). The above χL−χH two-powerlaws form fits the shape

well; with f0 ' 70 Hz, χ ' 4, and χL ' 2, within 10%; a level of accuracy to be expected

within the limitations of the 1 kHz nature of this data. The active/inactive power ratio R

(between the amplitudes A) is unlikely a universal number. In this data set its geometric

mean is equal to R = 1.81 with a variation of order 0.34 (N=25).

What does all of this teach us about computations and correlations in the brain? EEG

and ECoG voltages represent the superposition of the electric current dipole fields gen-

erated by the very large collective of nearby neurons and their associated ionic channel

currents, propagated through the complex mass of ionic extracellular liquid and neuronal

and glial membranes. This is a quite complex phenomenon and not yet well understood

quantitatively. Moreover, the underling neuron computational issues remain in flux, e.g,

understanding the relative roles of computations at the level of dendritic trees versus those
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at larger length and time scales associated with the connectivity the network of neuron.

If the value of the high-frequency exponent χ = 4.0± 0.1 were distinct from an integer,

we could have reported safely to have observed SOC type complex scale free behavior in

the cortex. The uncertainty in χL = 2.0 ± 0.4 still leaves room for this. Perhaps SOC

behavior (if it exists) is only expressed in more subtle ways in ECoG. In the case χL = 2,

the spectrum is well described as a product of two 1/(1+(f/fc)2) Lorentzian shapes. These

can originate without any SOC complexity: such as white noise with two filters; as the

product of an exponential decaying correlation function and a temporal form factor; as two

processes with definite correlation times; etc.

Our results place definite constraints on future brain modeling. ECoG spectra definitely

scale as P ∼ f−χ across all 70 < f < 400 Hz. The value χ = 4.0 ± 0.1 is universal, across

subjects, areas in the cortex, and local neural activity levels. The knee in the spectra at

f0 ' 70 Hz, implies the existence of a characteristic time scale τ = (2πf0)−1 ' 2− 4 msec,

probably originating at the neuron length scale and surviving the coarse graining to the

2 mm electrode size length scale.
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4.1 Supplement

In this supplement we present details of the experimental set up, in particular the character-

ization of the amplifier roll-off and noise floor; and we discuss details of the data handing

and power law analysis steps.

Eighteen human subjects (ages 18-45, 8 females), see table in Fig.4.1, were implanted

with subdural electrode arrays for the localization of seizure foci prior to surgical treatment

of medically refractory epilepsy. The arrays were typically placed for 5-7 days with the

location of the electrodes and duration of implantation determined independently by clin-

ical criteria alone. Experiments were performed at Harborview hospital at the University

of Washington (UW). Subjects were typically studied 4-6 days after craniotomy and elec-

trode placement to allow for recovery from the surgery. Subjects gave informed consent for

participation in a manner approved by the Institutional Review Board of the University of

Washington.

All data were recorded at the bedside with Neuroscan Synamps2 amplifiers (Compumedics-

Neuroscan, San Antonio, TX), in parallel with a clinical recording system (xltek, city, state

or bmsi city, state), as shown schematically in Fig. 4.5. The signal was split outside of

the head, prior to amplification. The two amplifiers used common ground and reference
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(both from the scalp). The platinum electrodes (Ad-Tech, Racine, WI) were configured as

Figure 4.5: Recording Setup with amplifiers

8x{4,5,6,8} rectangular arrays. The electrodes were 4mm in diameter (2.3mm exposed),

at 1 cm inter-electrode distance, and embedded in silastic The arrays were placed on the

lateral frontal, temporal, and parietal cortex - shown for subjects 1 (S1 - black) and 2 (S2

- white) on a template brain in Fig. 4.5 and on the actual brains in fig.4.6

All experiments were performed at the bedside. In this fixation task, the subjects fixated

on a 10cm ”x”, on the wall 3m away, for 2 or 3 minutes (120/180s) at a time. They were

instructed to remain motionless and keep their eyes open, blinking if they needed to.

Fig.4.7 illustrates the steps taken to transform the raw voltage time series from each

electrode into power spectra. The data was re-referenced in terms of neighboring differential

pair channels, V (t) = Vi(t)−Vj(t) (our 32 electrode arrays have 52 differential pair channels

each). This significantly reduced the overall noise in the signal. This reduction is to be

expected, since it removes various non-local contributions to the signal, while the signal of

interest originates from the neurons (about 5× 105 of them) immediately underneath each

electrode. Next, the time series where broken-up into 1 second long intervals, overlapping

by 0.5 second (we have no interest in phenomena with frequencies below 1Hz). Each of



93

Figure 4.6: Electrode array placement on cortex for subjects S1 and S2.

these epochs was windowed

V ′(τ,m) = V (τ + 1
2
mT )H(τ) (4.1)

with a Hann-window H(τ) of the form

H(τ) = 1
2

[
1 + cos

(
2π
T
τ

)]
(4.2)

inside time interval−T/2 ≤ τ ≤ T/2 with T = 1 sec, and H(τ) = 0 at all other times. The

power spectral density (PSD) for each epoch follows from the Fourier transform

P (f,m) =
1
T

(
T∑

τ=1

V ′(τ,m) ei2πfτ

)2

(4.3)
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Figure 4.7: Power Spectral Density Calculation: (A) and (B) show voltage time series
of 2 nearby electrodes during rest. Their difference, shown in (C) (local pair electrode
referencing) is boken-up into 1 second long segments, and each is Hann windowed and
Fourier transformed to generate the power spectra, shown in (D). Each is very noisy, but
their average, shown as the green line in (D) is smooth.

Each of these individual spectra is quite noisy; examples of this are shown in Fig.4.7.D.

Taking the average PSD over all epochs

PR(f) =
1
M

M∑
m=1

P (f,m) (4.4)

quiets this down into a smooth PSD for each channel pair, as illustrated by the green line

in Fig.2 of the main text and again in Fig.4.7.E. (The same curve but shown with a linear

frequency scale instead of a logarithmic one.) Each PSD represents the Fourier transform

of the voltage auto-correlation function

G(τ) =
∫
dt V (t+ τ)V (t) (4.5)

averaged over the entire time interval of the experiment.

The properties of the amplifiers proved a major issue in the data analysis: their (sur-

prisingly high) noise floors and low pass filtering (roll-off). The Green curve in Fig.4.7.E
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follows a characteristic low pass filter type shape. Its onset changes with the sampling

rate setting of the amplifier (10kHz versus 1kHz). This strongly suggests that this low

pass filter resides within the amplifiers (FDA approved Neuroscan Synamps2 amplifiers;

Compumedics-Neuroscan, San Antonio, TX), and not inside the brain.

Figure 4.8: Frequency-dependent amplifier amplitude attenuation at 10KHz sampling rate

We determined the amplitude attenuation function R(f) (roll-off factor) independently

by means of an external function generator by repeatedly sweeping (at a rate of 10 seconds)

at fixed amplitude through all frequencies between 15Hz and 4000Hz at the 10KHz sampling

rate setting, and between 10 Hz and 300 Hz at the 1KHz sampling rate setting. This R(f)

followed a Lorentzian type shape as expected, see Fig.4.8. We divided our PSD’s by this

filter, P (f) = PR(f)/R(f). It completely removed the roll-off from the PSD’s, as illustrated

in Fig.2 of the main text and also in Fig.4.7.E. The green line was corrected to produce the

red line. A definite noise floor came into focus.

The magnitude of this noise floor is atypically large for experimental amplifiers; but we

established that they are the source. This type of noise may be standard in FDA-approved

clinical amplifiers. This noise does not reside inside the brain. The amplifier noise floor was

determined experimentally by measuring the potential across an equivalent conformation

of resistors electrode pairs, see Fig.4.9. This was done in situ in the sense that the parallel

clinical amplifiers remained attached. Following on-line measured impedance, R2 was set to

10kΩ and R1 to 0.5Ω (although noise values were robust against increasing R1 to 1k Ohm).
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The result is shown as the grey line in Fig.2 of the main text.

We do not present further details of our independent amplifier noise floor experiments,

because the cortex data suggests that the floors vary slightly between subjects and might

thus drift in time. Therefore we treat the noise floor as a free (to be fitted) parameter in

the data analysis, as discussed below. However, these independent noise floor experiments

demonstrated that the noise floor in the cortex data originates from the amplifiers, not inside

the cortex, and that this amplifier noise is almost white (near constant in frequency) over

all experimentally relevant frequencies. The blue line in Fig.2 of the main text transforms

into a remarkable straight (black) line after subtraction of the noise floor (grey line) in this

log-log plot, strongly suggesting a power law form P ' Af−χ at frequencies f > f0 ' 70

Hz.

Figure 4.9: Equivalent resistor network during amplifier noise floor estimation

We need to perform fits of the form P ' Af−χ + C. It is logical to try to separate

out the noise floor C by fitting it directly to the data at high frequencies, near say 1000

Hz, where C totally overpowers the cortical signal. From Fig. 4.10 for subject S1 we can

conclude that the noise floor has a value in the range C = 12500− 15500. Such a range is

consistent with the spread between individual channel pair data. These floors are slightly

higher than in the independent noise floor measurements discussed above. Those correlate

better with the ones in the S2 data. Indeed the independent noise floor measurements where

taken immediately after the S2 data sets.
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Figure 4.10: Pairwise referenced and averaged power spectrum of S1 at very high frequencies
after roll-off removal.

The very high frequency f > 1000Hz data is certainly not quiet and does not behave like

simple white noise floor. The origins of this remain unresolved. It might reflect sensitivity to

details of the amplifier roll-off function R(f) (amplified by the division). It might originate

from the internal electronics of the amplifiers. It could reflect an external high frequency

source that is not fully removed by the nearest neighbor pair referencing. In light of these

uncertainties, we felt that the only proper approach is a self-consistent fitting procedure

limited to the frequency range 80 Hz < f <500 Hz.

Figs.4.11 demonstrates that the power law with exponent χ ' 4 is stable and insensitive

to the exact value of the noise floor in the frequency range 80 < f < 200 Hz. Note that the

noise floor choice C = 15500 extends the power law fit all the way to 500 Hz. Before we

continue, we like to stress how well the PSD data follow that power law. Fig. 3 of the main

text and also Fig.4.12.A illustrate this. The curves follow straight lines exceptionally well.

Power law scaling extends over four decades in power and (because χ ' 4 is large) over one

decade in frequency. We encounter a quantitative level of power law scaling rarely seen in

experimental data, and obtain unusually high accuracy in the value of the exponent χ.

We fitted the PSD to the form P (f) ' Af−χ + C in the frequency interval 80 Hz



98

Figure 4.11: Power law fit of S1 in frequency range 80 < f < 200 for (top) noise floor
C = 15500 and (bottom) C = 12500, demonstrating that the exponent χ = 4 is insensitive
to the noise floor value at these frequencies and that (A) provides a better global fit.

< f <500 Hz. The simplest approach would be to plot log(P (f) − C) versus log(f) for

a range of guesses of the noise floor C, and choose the value of C for which the curve

straightens out best into a straight line; like in Figs.4.11. The slope of that line being the

value of the exponent χ.

An infamous mistake in this procedure is to apply global least square fits. Most weight

must be given to the middle frequencies 80 < f < 200 Hz. The PSD crosses over to

a different form at the low end, near f0 ' 70 Hz (as discussed below). The noise floor

becomes the important factor at the high end, f > 400 Hz. The conventional approach to
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Figure 4.12: Illustrations of the recursive range shrinking fitting protocol of the PSD to the
form form P (f) ' Af−χ + C over frequency range 80 Hz < f <500 Hz discussed in the
text.

this is to determine local slopes χ(f) by performing least square fits to the curve over only

narrow frequency intervals fL < f < fH along the curve, and plot these χ(f) estimates

for a range of choices of the noise floor C. The best fit for C is the χ(f) curve with the

widest flat plateau. The best value for χ is that plateau value. A potential problem in this

is that such local slopes become increasingly noisy for narrow fitting intervals fL < f < fH ,

and the plateaus can then drown in the noise. In light of this, and because of the need

to automatize the fitting procedure due to the large amount of data, we use the following

recursive protocol.

It starts with an initial guess for value of the exponent, χ. That value is used for an

initial estimate for the noise floor C by means of a straight line fit of the form P (f) = Ay+C

as function of y = f−χ, using the high end of our frequency range, 250 Hz≤ f ≤ 490 Hz.

Next, we use this estimate of C to improve on the estimate of χ by performing least square

fits to log(P (f)−C) versus log(f) between fL < f < fH with the fL < fH interval covering
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(expanding and shrinking over) the entire frequency range 80 Hz < f <500 Hz. We plotted

these estimates χ(fL, fH), as illustrated in Fig.4.12.B, with fH along the horizontal axis and

different lines representing different values of fL. (The onset of the lines mark the values

of fL, because fL is always smaller than fH .) The quality of each fit is reflected by the

presence of horizontal segments in the curves, by the width of those segments with fH , and

by collapse of those segments with the curves at nearby fL. For example, from Fig.4.12.B

we would conclude that χ = 3.95±0.1; and then use this estimate to start the next iteration

cycle by setting χ = 3.95 in y = f−χ for the next P (f) = Ay + C estimate of the noise

floor C; and so on. This iteration scheme always converged for our data. The quality of

the fit can be further judged by plotting A(f) = (P (f)−C)fχ, to check how well the final

amplitude A is frequency independent, see Fig.4.12.D.

The curves χ(fL, fH) in Fig.4.12.B have distinct minima for intermediate values of fL

and fH . This shows how easily the exponent χ can be underestimated. Choosing fL too

close to f0 ' 70 Hz, where the PSD crosses over to a less steep curve, systematically

underestimates the exponent. Under estimating the noise floor C has the same effect at the

high frequency side; and results in an up-swing in the χ(fL, fH) curves at high frequencies.

Overestimating the noise floor leads to negative values of P (f)−C at high frequencies and

a collapse to erratic behavior in the χ(fL, fH) curves at high frequencies. It is significant

therefore that the curves deepen during the iteration process in the interval where fL and

fH both take intermediate frequency values.

We performed this fitting protocol on the electrode pair averaged PSD of subjects S1

and S2, with as result χ = 4.0 ± 0.1. Note that the electrode arrays in those two subjects

are located at different parts of the motor cortex. We applied the same fits also to the more

noisy individual electrode pair PSD’s from both subjects, leading to a narrow distribution

of exponents χ centered at the same value χ = 4.0 and with a width consistent with the

above error estimate. This is shown in Fig.3 of the main text and addressed there.

A logical follow-up issue is to check for possible systematic effects in the individual

electrode pair signals. The total power in each electrode varies greatly, by about 10 percent,



101

Figure 4.13: Correlations between the fitted values of the exponent χ and the total power
in the signal between 80 Hz≤ f ≤ 500 Hz in the individual electrode pairs of subjects S1
and S2. Red dots indicate channel pairs rejected because of vasculature as discussed in the
text.

Figure 4.14: Correlations between the fitted values of the exponent χ and the fitted noise
floor C in individual electrode pairs of subjects S1 and S2.

as seen in Fig.4.13. This has various reasons. The most important one is probably the

proximity of blood vessels and/or variations in quality of electrode-pia-cortex contact. The

most anomalous (weakest) signals are cleanly correlated visually, in Fig.4.6, with electrodes

sitting on vasculature; we removed them therefore from our analysis: For subject 1, this

corresponded to channels: 38 (between electrodes 17 & 25), 39 (18 & 26), 46 (25 & 26), 47
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Figure 4.15: Correlations between the fitted noise floor C and the average power in the high
frequency range 500 Hz≤ f ≤ 1000 Hz, for individual electrode pairs of subjects S1 and S2.

Figure 4.16: Correlations between the average power in the high frequency range 500 Hz≤
f ≤ 1000 Hz and the total power between 80 Hz≤ f ≤ 500 Hz, for the individual electrode
pairs of subjects S1 and S2.

(26 & 27). For subject 2, this corresponded to channels: 46 (25 & 26), 47 (26 & 27), 39 (18

& 26), 38 (17 & 25), 31 (17 & 18).

Fig.4.13 tests for correlations between the value of the fitted exponent χ and the total

power in each channel pair. A weaker signal makes that the PSD drowns into the noise floor

at a lower frequency. That is likely to result in a poorer fit and to a systematically smaller
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value of χ. Fig.4.13 shows that this effect is weak.

Fig.4.14 tests for possible systematic correlations between the fitted values of χ and C.

It appears that such correlations are weak compared to the channel pair statistical noise.

The fitted values of the amplifier noise floors C in specific electrode pairs vary widely, by

roughly 20 %. This is not due to the fitting protocol, because in Fig.4.15 the fitted noise

floors correlate well to the average high frequency power (at 500 Hz ≤ f ≤ 1000 Hz).

Finally, Fig.4.16 shows that this average 500 Hz≤ f ≤ 1000 Hz high freq power is slightly

correlated to the total power between 80 Hz ≤ f ≤ 500 Hz. Possibly suggesting that the

amplifier noise floors vary with input power.

In conclusion, Figs.4.13-4.16 suggest some systematic effects, but they are rather weak

compared to statistical variations between the electrode pairs. It does not seem proper to

pursue them further at this point.

The PSD changes its slope below f0 ' 70 Hz. This knee at f0 is more pronounced in

S1 than in S2, which correlates with the near absence of the low frequency, narrow-band

(classic EEG) rhythms, the α−β type peaks, in S1. Those rhythms obscure the underlying

broad band features. There are two possible approaches to this:

(1) We can try to decouple/remove the rhythms from the broad band features. We

achieved this already qualitatively using a principle component type analysis (reference de-

coupling paper); and we obtained qualitative consistency with the results discussed below.

Qualitatively the exponents do not seem to vary with the types of tasks, like finger move-

ment versus rest. A quantitatively reliable and consistent improvement on this needs to be

developed.

(2) ECoG, being a more local probe than classic EEG has the advantage of being able

to observe spatial variations in the strengths of the EEG rhythms. In certain local regions

of the cortex, the EEG rhythms are invisible in electrode pair PSD’s. 8 channel pairs of

S1 data qualify for this (at 10 kHz sampling rate). Moreover, we selected (in an unbiased

manner) 116 electrode pair data involving the same fixation task from 25 subjects sampled

at 1KHz rate. The latter data have as disadvantage that the high frequency power χ ' 4
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can not be verified independently (not to the same level of accuracy presented above). For

these reasons, the following results for the low frequency broad band features are not as

accurate as for χ above.

Figure 4.17: Power law fits for the averaged 8 channel pair PSD’s from subject S1 lacking
the low frequency EEG rhythms, sampled at 10 kHz . The naive fit to the sub knee
f0 ' 70 Hz curve yields the (erroneous) exponent χL = 2.5± 0.4 (shown in blue). The PSD
straightens out to a single power law form after multiplying with the factor 1 +

(
1
70

)χH
,

with χL = 4− χH = 2.0± 0.4 (shown in red).

We propose the following phenomenological global fitting form

P (f) ' A f−χL

1 +
(

f
f0

)χH
(4.6)

applied over the frequency range 10 Hz ≤ f ≤ 500 Hz for the 10KHz sampling rate data,
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and over 10 Hz ≤ f ≤200 Hz for the 1KHz sampling data. We impose the condition that

the two exponents add-up to the value χ = χL + χH = 4.0± 0.1 as established above.

We average the PSD’s from the 8 channel pairs of S1 that lack EEG rhythms. This

average follows a seemingly nice looking straight line in the log-log plot shown in Fig.4.17;

but a somewhat noisy one because it only involves 8 channel pairs. A naive fit to its slope,

over 10 Hz ≤ f ≤ 70 Hz, yields an (effective but erroneous) exponent χL = 2.5± 0.4. Next,

we multiply the PSD with the factor 1 +
(

1
70

)χH
and find that the knee at f0 ' 70 Hz

vanishes and the PSD follows a straight line globally. This leads to χL = 4−χH = 2.0±0.4,

see Fig.4.17.

Figure 4.18: Naive low frequency power law fits to the 116 channel pair PSD’s from 25
subjects sampled at 1 kHz , over frequency range 10 Hz ≤ f ≤ 80 Hz, leading to the
erroneous value χL = 2.5± 0.4

We selected channel pairs from 16 subjects all sampled at 1KHz, and only kept all 116

of them that lacked the low frequency EEG rhythms. Note that these data corresponded to

a wide variety of (motor) cortex areas. This yielded a much less noisy averaged PSD than

the 8 channels of S1, see Fig.4.18. The naive power law fit to this averaged PSD over 15
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Figure 4.19: Low frequency fits to the 112 channel pair PSD’s from 25 subjects, sampled
at 1 kHz over frequency range 10 Hz ≤ f ≤ 120 Hz, after multiplying the PSD’s with

1 +
(

1
70

)2
), as suggested by the fitting form Eq.4.6

Hz ≤ f ≤ 80 Hz yielded the same (effective but erroneous) value χL = 2.5 ± 0.4; and the

histogram of individual power law fits to all 116 channel pairs in Fig.4.18 is quite narrow.

This 1kHz data did not extend in frequency far enough to obtain a reliable estimate of

the high frequency power law with χ ' 4 in clear view, but the 70 Hz knee was clearly

visible. It was therefore not possible to perform a reliable test of the global fitting form

Eq.(4.6). However, multiplying the PSD’s with the factor 1 +
(

1
70

)2
, yielded consistency

with the 10KHz data from S1, i.e., the exponent shifts again to χL = 2.0± 0.4.
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Chapter 5

DECOUPLING THE CORTICAL POWER SPECTRUM REVEALS
INDIVIDUAL FINGER REPRESENTATION IN HUMANS

High fidelity spatiotemporal resolution in neural recordings from the brain is important

for investigating brain mechanisms and controlling brain-machine interfaces. The highest

spatiotemporal resolution is obtained by recording activity of individual or multiple neurons

through microelectrodes implanted inside the brain. A clinically more accessible measure

is electrocorticography (ECoG), recorded from the surface of the brain, which reflects the

summed activity of neural populations. We here report a new method of extracting and

removing the low frequency α and β rhythms to reveal a behaviorally modulated broadband

signal in the ECoG power spectrum that provides significantly improved spatial resolution

of localized cortical populations, with high (¡20ms) temporal resolution. This technique has

provided the first resolution of real-time signals correlated with individual finger movements

in adjacent sites of human motor cortex.

5.1 Introduction

How can we measure population-scale neural dynamics in the brain, at timescales relevant

to behavior? A common approach focuses on one or a few neurons at a time, but does not

provide an aggregate measurement. A measurement that samples the activity of entire pop-

ulations of neurons at once is the field potential. Field potential recordings from the brain

surface (electrocorticography, ECoG) have been used to study the relationship between

functional cognitive change and the power spectral density of these cortical electric poten-

tials in specific frequency ranges. ECoG changes with voluntary movement were reported as

early as 1949 (Jasper and Penfield 1949; Gastaut 1952). Early studies of the ECoG power

spectrum found a decrease in power in the α (8-12Hz) and β (18-25Hz) rhythms over large
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areas of sensorimotor cortex with movement (Arroyo, Lesser et al. 1993; Crone, Miglioretti

et al. 1998; Aoki, Fetz et al. 1999). These classic band rhythms (α, β, θ, δ) are in the low

frequency range (¡50Hz), and have not produced a measurement technique that can reliably

resolve local ( 1cm) cortical activity on the timescale of behavior (¡200ms). However, later

studies that examined the higher frequencies in the spectrum (¿75Hz) showed task-related

increases in power with more focal cortical distribution (Crone, Miglioretti et al. 1998; Aoki,

Fetz et al. 1999; Miller, Leuthardt et al. 2007), with a spatial extent in closer agreement

with stimulation mapping (Miller, denNijs et al. 2007) and functional magnetic imaging

studies (Logothetis, Pauls et al. 2001; Mukamel, Gelbard et al. 2005).

We previously demonstrated that cortical regions showing high-frequency increase were

spatially more focused than the areas of low-frequency decrease with motor tasks(Miller,

Leuthardt et al. 2007). The high-frequency increase is broad-band and appears to reflect an

activity-dependent shift in amplitude with a power law relating power spectral density and

frequency (viz., Power of PSD∼ Af−χ). This relationship is obscured by narrow-band os-

cillations (α, β, θ, δ) at lower frequencies. We hypothesized (Miller, Leuthardt et al. 2007),

and later demonstrated(Miller, Sorensen et al. 2008), that the high-frequency phenomenon

was, in fact, a frequency-independent power law increase, revealed at frequencies above the

classic rhythms. In order to maximize the spatiotemporal fidelity of spectral changes with

ECoG, the modulation of a power law in the frequency spectrum of these potentials must

be isolated from the modulated alpha and beta rhythms that peak at specific frequencies

in the spectrum. To decouple these two types of phenomena, we investigated a set of tasks

that would engage cortical areas that were sufficiently close enough for the low-frequency

phenomena to overlap between the different tasks, yet spatially distant enough to avoid

overlap of any unique high-frequency phenomenon between tasks. The separate covariance

in the spectral density across tasks of these two processes would allow decomposition by

principal-component analysis. If individual fingers are represented distinctly on the cortex,

then a simple isolated finger movement task would meet these criteria. If, on the other

hand, finger representation is primarily overlapping (as has been suggested (Schieber and
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Figure 5.1: Representative spectral changes See text for complete explanation

Hibbard 1993; Schieber 2001)), a specific measure of local activity might not accurately

discriminate between digits on the 1cm scale of clinical ECoG.

Here, we isolate a band-independent, power-law, change from α and β rhythms, and

demonstrate individual finger somatotopy at the 0.5-1 cm scale. The amplitude of this
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measure as a function of time, “χ”, reflects the cortical activity associated with movement

of different fingers on different electrodes, resolved to a timescale of 10-15ms.

5.2 Method Summary

Subdural, 1-cm spaced, platinum electrode ECoG rectangular grid arrays were chronically

implanted in 10 individuals with intractable epilepsy to determine seizure onset. Subjects

gave informed consent for participation in a 10-minute task, in which each finger, contralat-

eral to the hemisphere of the ECoG array, was flexed repetitively in response to 2s visual

cues ( 100-150 total flexions per finger), with 2s of rest between each cue. There were 30

cues per finger, randomly interleaved. Analysis of the ECoG potential recordings during the

task reveal that just prior to the initiation of finger movement, there is the characteristic

decrease in power at lower frequencies (α/β range), and a spectrally broad, but spatially

focal, increase in power at higher frequencies (above 40Hz) (figures B.1E and B.2D). This

is not due to an event-related potential (figure 7.9) and is a phenomenon well established for

coarser movements (Crone, Miglioretti et al. 1998; Aoki, Fetz et al. 1999; Miller, denNijs

et al. 2007; Miller, Leuthardt et al. 2007).

We then sought to decouple the spatially focal, broad spectral increase in power and the

spatially wider, low frequency decrease in power. Power spectral density (PSD) samples

were computed from 1s windows flanking the time of maximum flexion for each finger

movement, and from random times during rest. Principal component analysis on these

PSD samples separated these two phenomena based on the differing effect of tasks on the co-

variance in the power across frequency bands. The extracted principal spectral components

(PSCs) represent the power spectral change between task and resting states. These PSC

components capture archetypes, or motifs, for the spectral change with activity and reveal

how the power at different frequencies contributes to each motif. The original PSD curves

may be reconstituted without one or more of these motifs (see lower panels of figure B.1).
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Figure 5.2: Capturing local cortical activity - Individual digit representation in
adjacent electrodes in subject 1
See text for complete explanation

5.3 Results and Discussion

We found that the first, most significant (largest eigenvalue), PSC consistently shows the

same pattern of non-zero, roughly equal, after normalization, contribution across all fre-
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quencies (figures B.1A&I, Figure B.2C-E). This suggests that the reported ”high γ” changes

(Brovelli, Lachaux et al. 2005; Canolty, Edwards et al. 2006) may, in fact, be a reflection

of this broad spectral phenomenon. The location of the increase in this projection weight

reveal separable individual finger somatotopy in all subjects (figures B.2,B.3, 7.8). The

most common organization showed thumb, index, middle, and little fingers located in ven-

tral to dorsal sites, in agreement with Penfield’s (Penfield and Boldrey 1937), and later

Woolsey’s (Woolsey, Settlage et al. 1952), stimulation findings. We found mostly distinct

representation of different fingers, and, furthermore, much of the apparent overlap in cortical

representation in digits coexisted with the well-known correlation in the movement of the

fingers (figure ??, (Schieber 1995)). Finger movements evoked by electrocortical stimulation

universally agreed with the identified motor somatotopy of the first PSC (figure 7.15).

We have previously found empirically that the integrated signal is described by a power

law, P ∼ Af−χ, which shifts amplitude, but not form, with activity (Miller, Sorensen et al.

2008), as captured by the 1st PSC. Such a power law distribution is consistent with, but

not limited to, a coarse-grained measurement of local, Poisson-distributed, synaptic inputs

to the ∼ 5× 105 neurons in the grey matter beneath each electrode, without evidence for a

favored timescale, and specifically without an activity-induced ’peak’ in the ”high-γ” range

(Brovelli, Lachaux et al. 2005; Canolty, Edwards et al. 2006).

The second PSC is peaked in the α/β range, reflecting a process in a narrow range of

frequencies, beginning near zero and rising to a central frequency of peak importance (figures

B.1A&I). For projection to the 2nd PSC, all finger movement types were different from rest,

and corresponded to decreases in power in the α/β range. This finding is consistent with the

phenomenon of ”event-related desynchronization” (ERD, (Pfurtscheller 1999)), and likely

reflects distant synchronous input to large cortical populations that suppresses function,

and broadly decreases when a subset of that population is activated.

Finger position and the χ measurement from individual electrodes were highly correlated

in individual digits, with average correlation r=0.37, and as high as r=0.62, over 10 minutes

of continuous recording (Figures B.2 and B.4). The mean latency of approximately 100 ms
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Figure 5.3: Projection magnitudes, sorted by class
(A) Mean of projection magnitudes in three electrodes of samples for each finger movement
class, after subtraction of the mean of the rest time samples, for subject 2 (as in the right
hand column of insets C-E in Figure B.2). The color of the dots flanking axes indicate corre-
sponding electrode on the cortical schematic. Redundancy in color between electrode color
and movement type is meant to provide intuition, but also indicates electrode-movement
type pairings used for averaging in figure B.1. (B-D) Same as (A), but for subjects 3-5
(B-subject 3; C-subject 4; D-subject 5).

(Figure B.4) is consistent with the delay between cortical signals in movement initiation

(Evarts 1973; Cheney and Fetz 1984). This high correlation, specific for movement of a

single finger, demonstrates that activation of local neural populations can be measured at

the 10-15 ms timescale, at a spatial resolution of at least the 0.5-1cm spacing of the clinical

ECoG array.

Extended Explanation of Figure 1

Figure 1 illustrates the Principal component decomposition of the cortical spectrum during

single finger movements.

Panels (A-H) are for an electrode in Subject 6, in Talairach location -41, 4, 51, Motor Cor-
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Figure 5.4: Correlation between 1st PSC (χ) and finger position.
(A) A single trial showing χ in an associated electrode and thumb movement, demonstrating
delay from the cortex to movement onset, from subject 10. (B) Correlation in the electrode-
movement pair from (A) as a function of latency between the two, over the full 10 minute
period. (C) The correlation between χ and paired finger movement was 0.37 (SD=0.1430,
N=24) across 8 of the subjects, 3 electrodes each (subjects 2 and 8 excluded, because their
cortices were not “tuned,” as shown in the supplement). (D) The mean latency between χ
and finger movement was 98 ms (SD=53 ms, N=24).

tex. The subject repeatedly flexed and extended different fingers of his contralateral hand

. Samples of the normalized power spectral density (PSD) of the potential timeseries were

calculated from 1s windows centered at times of maximum flexion and also during rest. (A)

Normalized PSD samples were decomposed using principal components to identify covaria-

tion in power at different frequencies. The elements of the first principal spectral component

(1st PSC, pink) are non-zero across all frequencies, consistent with change in a power-law

in the cortical power spectral density. The 2nd PSC (gold) is peaked between 15-25Hz (β

rhythm range). The 3rd PSC (yellow) is a 0-10 Hz (θ, α) peak. (The 4th - 179th PSCs are

not shown). (B) The projection magnitudes of each spectral sample to the first (top) and

second (bottom) PSCs, sorted by movement type (color coded as in (R)), Black indicates
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rest. Note that the 1st PSC has specific increase from rest for index finger movements,

and, to a lesser degree, for middle finger. The second PSC shows decrease from rest for all

finger types. This generalizes across subjects and electrodes (J). (C) Mean PSD of index

finger movement samples (dark green) and rest samples (black). (D) Average time-varying

PSD (scaled as percentage of mean power at each frequency) with respect to first index fin-

ger movement from each movement cue (N=30). (E) Mean of reconstructed PSD samples,

and (F) average reconstructed time-varying PSD, with 2nd and 3rd PSC omitted. This is

consistent with the increase in the amplitude of a power law with local cortical activity.

(G) Mean of reconstructed PSD samples, and (H) average reconstructed time-varying PSD,

using only 2nd and 3rd PSCs. This is consistent with a change in the α and β rhythms.

Note that C=E+G and D=F+H.

Panels (I-P) are from 30 electrodes, (10 subjects, 3 electrodes each), where one movement

type (thumb, index, little) was paired with each electrode (indicated by color code in fig-

ures B.2, B.3 and 7.8-7.15). (I) All 1st (pink) and 2nd (gold) PSCs, normalized by area,

demonstrating same structure for all subjects and electrodes. Note the expected residual

variance between the two phenomena reflected by the small negative residual weight in

the 2nd PSC above 50Hz. (J) All projection magnitudes of the PSCs from (A) for the

paired-movement type (orange, indicating thumb, index, or little finger movement samples,

corresponding to the specificity of each electrode) and rest (black), flanked by the appro-

priate probability density functions. The plots are in units of standard deviation from the

mean of the projection weight of rest samples. (K) Normalized mean PSD, averaged across

subjects and electrodes (Power in normalized units (by mean power above 55Hz): “N.U.”),

of paired-movement samples (orange) and rest samples (black). (L) Averaged time-varying

PSD (geometric mean, scaled as % of mean power at each frequency) with respect to first

paired-movement from the associated cue (N=29-33, per electrode). (M) Mean of recon-

structed PSD samples, omitting the 2nd and 3rd PSCs. Power goes up with movement at

all frequencies, consistent with the increase of the pre-factor, A, in a power law P ∼ Af−χ.
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(N) Average reconstructed time-varying PSD, with 2nd and 3rd PSCs omitted. (O) Mean

of reconstructed PSD samples, using only 2nd and 3rd PSCs. The decrease in power with

movement is confined to peaks in the classic α/β rhythm range. (P) Average reconstructed

time-varying PSD, from only 2nd and 3rd PSCs.

Extended Explanation of Figure 2

(A) The position of each finger was measured using a transducing glove during cued flexion-

extension. The color coding of each digit is same for all figures. (B) The histogram plots, for

each grid electrode, the maximum squared cross-correlation (r2) between sample projection

weights to the 1st PSC, between any single movement type and rest, illustrating that cortical

representation is sparse (also see figures 7.8-7.11). The corresponding locations of the top

three electrodes are shown in the inset x-ray and (C-E). Each of these shows specificity for

a different type of finger movement, and the color code redundancy between the electrodes

in (B-K) and digit movement type in (A) reflects this. (C) Left: 1st (pink) and 2nd (gold)

PSCs generated from finger movements and rest, for the electrode shown in dark blue in

the x-ray inset in (B). Middle: projection weights of the PSD samples to the 1st (top) and

2nd (bottom) PSCs, sorted by movement type and colored as in (A) (black: rest period

samples). Projections to the 1st PSC specifically increase during thumb movement, but not

during any other finger movement or rest, but projections to the 2nd PSC non-specifically

decrease for every movement type with respect to rest. Right: mean projection magnitudes

for each finger type, with mean of projected rest samples subtracted. Error bars indicate

+/- 3 times the standard error (3σ) of the mean (The right most, rest, ”bar” is always zero,

since its mean is subtracted, although the error bar is shown). The upper bars represent

the first PSC, and the lower are for the second. (D&E) As in (C), but for the dark green (D

- specific for index finger) and light blue (E - specific for little finger) electrodes. (F, H, J)

Traces of thumb, index, and little finger position for a 25s period. (G, I, K) Projections of

the time-frequency representation to the 1st PSC, “χ”, for each of the three electrodes for

same 25s. The darker pink indicates that the projection is greater than 1 standard deviation
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(light grey line) from the mean (dark grey line) of rest periods. Each electrode is specifically

and strongly correlated with one movement type (r=0.49 χ from dark blue electrode-thumb

movement; r=0.60 green electrode-index finger movement; r=0.31 light blue electrode-little

finger movement; cross-combinations had a mean correlation of 0.07, indicating a tendency

of this subject to lightly hyperextend the other fingers while flexing the appropriate finger),

over 10 minutes of continuous data (3.6× 106 samples). Note: digit 4 is not shown because

its movements were highly correlated with movements of the middle or little finger in every

subject.

5.4 Discussion

Single unit recordings have found that M1 finger representation at that level is distributed,

and perhaps overlaps extensively (Schieber and Hibbard 1993; Schieber 2001). Axon tracing

studies have found both widespread projections of single descending M1 axons to multiple

motor neuronal pools across different joints (Shinoda, Zarzecki et al. 1979). Physiological

studies show convergence of axons from widespread territories in M1 onto a single hand

muscle motor neuron pools (Phillips and Porter 1977) and divergence of effects from single

M1 cells to multiple muscles (Cheney and Fetz 1984). In the context of our findings, this

suggests that an overlapping representation can be overwhelmed by integrating across the

neuronal population. This finding of a separable, continuous, measure for different finger

movements in adjacent cortical areas supports further use of digit-based paradigms to study

human motor cortex, and for use in applications such as clinical mapping and brain-machine

interface.

The isolation of this broad-band, power-law phenomenon in the cortical spectrum promises

to be applicable to assessing local cortical function in a wide variety of contexts. This ap-

proach represents a powerful new method of accessing activity of neural populations resolved

at behavioral timescales.
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5.5 Supplemental Methods

There is a methods section, followed by supplemental figures which reinforce the primary

text, and provide a deeper illustration for the more involved reader.

5.5.1 Experimental Protocol

All 10 subjects in the study were epileptic patients at Harborview Hospital in Seattle, WA

(18-45 years old, 6 female). Sub-dural grids were placed for extended clinical monitoring and

localization of seizure foci. Each subject gave informed consent to participate in an internal-

review-board (IRB) approved experimental protocol. All patient data was anonymized

according to IRB protocol, in accordance with HIPAA mandate. Stimulation mapping was

performed clinically, and anonymized findings reported to researchers.

Recordings

Experiments were performed at the bedside, using Synamps2 amplifiers (Neuroscan, El Paso,

TX) in parallel with clinical recording (BMSI amplifiers for subjects 2, 4, 7, and xltek for

all others). Stimuli were presented with a monitor at the bedside using the general purpose

BCI2000 stimulus and acquisition program (interacting with the proprietary Neuroscan

software), which also recorded and recorded the behavioral parameters and cortical data.

Sub-dural platinum electrode arrays (Ad-Tech, Racine, WI), 32-64 in number, and were

arranged in 8x[4-8] arrays. The electrodes had 4mm diameter (2.3mm exposed), 1 cm inter-

electrode distance, and were embedded in silastic. The potentials were sampled at 1000

Hz, with respect to a scalp reference and ground (Fig. 5.5). These signals had a software-

imposed filter from 0.15 to 200 Hz, but the higher frequency roll-off from this was corrected

for attenuation after the power spectral density was calculated (see below).
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Figure 5.5: Potentials V 0
n (t) were measured with respect to a scalp reference and ground

before re-referencing with respect to the common average.

Cortical stimulation mapping

In five of the patients, cortical stimulation mapping 1 of motor cortex was performed for

clinical purposes. Each such stimulation patient underwent stimulation mapping to identify

motor and speech cortices to obtain a surgical margin as part of his/her clinical care. In

this mapping, 510 mA square wave current pulses (1 ms in length) were passed through

paired electrodes for up to 3 s (less if positive finding) to induce sensation and/or evoke

motor responses (see supplemental figure 5.14).

Finger Movement task

The subjects were cued visually with a word on a monitor at the bedside to move individual

fingers during 2-second stimulus trials, as shown in Figure 5.6. They typically moved each

1Ojemann, 1982; Ojemann et al., 1989; Chitoku et al., 2001
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Figure 5.6: Capturing Individual finger movement times: Individual fingers were moved
several times in response to each visual cue, and position was recorded using a dataglove.
The peak displacement of each finger movement was marked with an event marker, τq (e.g.
black arrow). The beginning and end times of each movement were also marked. Event
markers, to characterize non-movement spectra for the “rest state” were chosen at random
times at least one-half second from any movement event, and one-quarter second from each
other. The onset of first movement of type in response to the visual cue d0. The ring
(4th) finger was not assessed after the PCA process because it’s movements were always
correlated with middle (3rd or little (5th finger movement.

finger 3-5 times during each trial, but some subjects and trials had many more movements

(as in Figure 1 J and K of the main text). A 2-second rest trial (blank screen) followed

each stimulus trial. There were 30 movement stimulus cues for each finger (except subjects

4 and 7, whose trials were aborted at roughly 20 and movement cues per digit each), and

trials were interleaved randomly. Finger position was recorded using a 5 degree-of-freedom

dataglove (Racine, WI). Event markers were calculated marking initiation, peak (denoted

τq), and termination of each movement. There were typically 100-150 movement events

for each finger type. Random “rest” events (included in τq) were defined during periods

at least 500 ms from any movement initiation or termination, and each rest event was at

least 250 ms from any other rest event. There were typically 150-250 rest events for each

subject. The lag between the dataglove position measurement recording and the amplifier

measurement is 37ms (± 3ms, SEM), this was accounted for when calculating the latency

between brain activity and finger movement.
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5.5.2 Spectral Decoupling

Calculation of samples of power spectral density

Electrocorticographic (ECoG) sub-dural potentials, V 0
n (t), were measured with respect to a

reference and ground from the scalp, as in Fig.5.5. These potentials were then re-referenced

with respect to the common average reference across all N electrodes:

Vn (t) = V 0
n (t)− 1

N

N∑
m=1

V 0
m (t) (5.1)

A set of epochs surrounding events of maximum finger flexion, τq, were extracted from each

timeseries Vn(t), each epoch was of duration T , τq − 1
2
T < t < τq + 1

2
T (see Fig. 5.7 A).

The epochs were sorted according to movement type q, and labeled by their event mark-

ers τq. The power spectral density (PSD) of each epoch was calculated as

Pn (f, q) =

∣∣∣∣∣∣∣
1√
T

+ 1
2
T∑

t=− 1
2
T

S(f, t)Vn (τq + t)H(t)

∣∣∣∣∣∣∣
2

(5.2)

with Hann window 2 H(t) = 1
2

(
1 + cos

(
2πt
T

))
, and sinusoid S(f, t) = exp

(
i2π

T (f − 1) t
)

as illustrated in Fig.5.7 B-C.

Principal Component Decoupling of Power Spectral Density Samples

The samples of the PSD, Pn (f, τq), were normalized in two steps prior to decomposition.

First, each sample was normalized with respect to the average spectrum. This was necessary

because the power law form of the PSD means that most of the variance, before normaliza-

tion, is accounted for by the lower frequencies. Second, the log was taken. This places the

ratios between 0 and 1 (-infinity to 0 after log) on equal footing with ratios between 1 and

infinity (0 to infinity after log), see Fig. 5.7 D.

P̃ (f, τq) = ln
(
P (f, τq)

)
− ln

( 1
Nq

Nq∑
p=1

P (f, τp)
)

(5.3)

2in “Particular Pairs of Windows.” published in “The Measurement of Power Spectra, From the Point of
View of Communications Engineering”, New York: Dover, 1959, pp. 98-99.
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Figure 5.7: Signal Processing Steps: (A) The common averaged referenced signal, Vn(t), is
shown with event markers. The colors of the event markers distinguish between fingers, as
in Fig. 5.6. A 1 sec Hann widow H(t)centered at each event marker, is imposed on the data
to select the epoch corresponding to that specific event marker. (B) Samples of the power
spectral density (PSD, Pn (f, τq)) associated with each event marker are obtained for each
epoch by Fourier transformation. (C) Each individual epoch power spectrum is normalized
as described in the text, and the Principal Component method is applied to the logarithm
of these normalized spectra. (D) Principal Spectral Components (PSCs, ⇀

ek) are calculated
across these across these sets of epoch power spectra log(P̃n(f, τq)) (Left panel). The first is
primarily flat across all frequencies (pink, ⇀

e1), and the second is peaked in the classic α/β
range (brown, ⇀

e2). This structure is highly conserved, as shown in figure 2A of the main
text. The panel on the left shows back projections of the first PSC (upper - pink, W (1, τq))
and second PSC (lower - brown, W (2, τq)) to the power spectral density samples, sorted
by class. Note that the first PSC is specific for forefinger, and the second shows significant
decrease for all movement classes with respect to rest (consistent with ERD).

(We drop the channel label, n, for brevity.)

The time ordering of the Nq epochs is explicitly ignored. In that case, the epochs

represent an ensemble of Nq independent measurements of the underling power spectrum

P̃ (f) during the different types of finger movement. That power spectrum might include

several distinct features that fluctuate with different movement phenomena; in our case,

the α&β rhythms versus the underlying broad band power law shape. The PCA method
3 attempts to identify the robust common features in such ensembles and decompose them

by diagonalizing the second moment tensor of the corresponding distribution function, i.e.,

3Principal Component Analysis, IT Joliffe - 1986 - Springer-Verlag
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it determines the eigenvalues λk and eigenvectors ~ek of the matrix

C(f, f̃) =
∑
τq ,τ̃q

P̃ (f, τq)P̃ (f̃ , τ̃q) (5.4)

We intentionally center the covariance measure with respect to the log of the mean spectrum,

rather than to the mean of log spectra. These eigenvectors, Ĉ ~ek = λk ~ek, the “Principal

Spectral Components” (PSCs), reveal which frequencies vary together. They are orthogonal

vectors, because Ĉ is a symmetric, Nf ×Nf dimensional matrix. We normalize them, and

order them according to the eigenvalues as λ1 > λ2 > · · · > λNf
. The PSC’s with largest

λ’s are the most significant ones. (Note that the variances are not normalized; a large λ

reflects a large contribution to the total signal, and less likely to be a weak component with

large within-movement-type fluctuations).

The PSCs represent a new orthogonal basis in frequency space. If we define the rotation

matrix A(f, k) =
(
~e1, ~e2, · · · , ~eNf

)
, then the projection, W (k, τq), of each individual original

spectrum in the ensemble onto the new basis vector k is

W (k, τq) =
∑
f

A(k, f)P̃ (f, τq) (5.5)

as illustrated in Fig.5.7D. The inverse rotation matrix Â−1, Â−1∗Â = Î, allows us to compare

and visualize specific PSC components with the original full spectrum in frequency space

(for each member of the ensemble),

P̃k(f, τq) =
∑
f

A−1(f, k)W (k, τq) (5.6)

It turns out that the classic peaked rhythms are typically accounted for by the 2nd and

3rd PSCs. Therefore we define the “µ-rhythm” back-projection as

P̃µ(f, τq) =
∑

k=2,3

∑
f

A−1(f, k)W (k, τq) (5.7)

and we associate the complement with the power-law like broad band

P̃pl(f, τq) =
∑

k 6=2,3

∑
f

A−1(f, k)W (k, τq) (5.8)

The 1st PSC on its own, P̃1(f, τq), typically reconstructs most of the power law shape.
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5.5.3 Time-Frequency approximation (Dynamic Spectrum)

Time-Frequency approximations (dynamic spectra) were made using a wavelet approach.

In this way, a time-varying Fourier component Ṽ (t, f) (channel label dropped) is obtained

at each Hz, with fixed uncertainty between the estimate of the instantaneous amplitude and

phase vs. the temporal resolution. The projection of each principal spectrum can then be

estimated at each point in time.

Wavelet

A wavelet 4 of the form: ψ(t, τ) = exp i2πt
τ exp −t2

2τ2 is convolved with the timeseries to get a

time-frequency estimate for every f = 1/τ :

Ṽ
(
t, 1/τ

)
=

5τ/2∑
t′=−5τ/2

V (t+ t′)ψ(t′, τ) (5.9)

A total of 5 cycles is used to estimate the amplitude and phase of the signal at each frequency

for every point in time.

Movement-triggered average of time-frequency power estimate

This time-frequency approximation can be used to calculate mean power in relation to the

onset of each type of digit movement:

P
d (f, t) =

1
Nd0

∑
τd0


∣∣∣Ṽ (t+ τd0, f)

∣∣∣2
1
T

T∑
t′=1

∣∣∣Ṽ (t′, f)
∣∣∣2
 (5.10)

Where d0 is the first movement of type d in response to the visual cue (5.6). These nor-

malized maps of power as a function of time and frequency provide important information

about characteristic spectral changes with local cortical function, as shown in figure 1 of

the main text and figures 5.11, 5.15, and 5.17 of this supplement.

4P. Goupillaud, A. Grossman, and J. Morlet. Cycle-Octave and Related Transforms in Seismic Signal
Analysis. Geoexploration, 23:85–102, 1984
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Wavelet projection to the 1st PSC

the time evolution of each PSC, W c(k, t) can be estimated from the. wavelet type time

varying estimate of the power spectral density (using the same normalization as in equation

5.3),

P (n)(f, t) = ln


∣∣∣Ṽ (t, f)

∣∣∣2
1
T

T∑
t=1

∣∣∣Ṽ (t, f)
∣∣∣2
 (5.11)

by projecting

W c (k, t) =
∑
f

A (k, f)P (n)(f, t) (5.12)

We apply this to the first PSC. Recall that the 1st PSC captures a broad change across

the entire frequency range. Our previous attempts to capture this phenomenon dubbed it

the so-called χ-band or χ-index feature, so here we will call attempts to capture it in real-

time, χ, which, as before, is connected to the exponent in changes of a power law process in

the cortical spectrum, P ∼ Afχ. The α−β-rhythms are projected into lower-ranked PSC’s;

into the 2nd and 3rd in particular. The wavelet dynamics of the 1st PSC, smoothed with

a gaussian (SD=15ms), χ, with finger movement is shown, and discussed, in the main text

(see Figs. 2 and 4). Because of the high correlation between behavioral parameters and χ

in specific electrodes (Fig. 2), we propose that χ can be used generically as a correlate of

local cortical function.

Back-projection from PSC to time-frequency power

The constrained back-projection matrices, Â−1
pl and Â−1

µ (defined in equations 5.8 and 5.7),

were applied to W c (k, t) to obtain time-frequency estimates, Ppl(f, t) and Pµ(f, t) of the

power change:

P̂pl = exp
(
Â−1

pl ∗W
c
)

(5.13)
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P̂µ = exp
(
Â−1

µ ∗W c
)

(5.14)

Event-averaged (in the same way as equation 5.10), constrained, back-projections are demon-

strated in figure 1 of the main text and figures 5.12 and 5.15 of this supplement.

Movement-onset to phase relationship

Figure 5.17 shows the relations between the phase θ(t, f) and magnitude of the complex sig-

nal, Ṽ (f, t) = |Ṽ (f, t)|eiθ(f,t) in terms of polar plots, i.e., by plotting the real and imaginary

parts of Ṽ (f, t) along the x respectively y-axis.

The relationship of the phase of the complex signal Ṽ (t, f) to the onset of finger move-

ment can be examined by examining the average phase vector at each frequency, with respect

to the first movement of each cue of each type, for each point in time, with respect to each

cue.

If the complex form of Ṽ (t, f) is expressed as Ṽ (t, f) = x(f, t) + i y(f, t), then the unit

magnitude phase vector at a given time and frequency is:

~φ(f, t) =
x(f, t) x̂+ y(f, t) ŷ√
(x(f, t))2 + (y(f, t))2

(5.15)

The average phase vector, with respect to the first movement of type d, denoted d0 from

each cue.

~φd (f, t) =
1
Nd0

∑
τd0

~φ(f, t+ τd0) (5.16)
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Supplemental Figures

Figure 5.8:

Supplemental figure S1

Somatotopy for all individuals: The mean projection magnitudes to samples of

different finger movements for the first (left) and second (right) PSCs in subjects 1-10, with

respect to the mean of rest samples. The colored dots flanking each axis correspond to

the electrode that they reflect the activity of. The axis indicates the mean of rest period

samples. The colors on the bars indicate the appropriate finger (from left to right: thumb,

index, middle, little), and the 3σ error bars indicate +/- 3 times the standard error of the

mean. The 3σ error bars on the right most portion of the axis are +/- 3 times the standard

error of the mean of the rest period samples. The element weights of the first PSC are

non-zero and roughly equal across all frequencies consistent with a power-law like change,
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where power at all frequencies fluctuates together, and this structure is highly conserved, as

shown in figure 1A of the main text. The elements of the second PSC (gold) are peaked in

the α / β / µ range, reflecting a process where just these frequencies vary together around a

central frequency of peak importance (conserved as also shown in figure 1A). The difference

in the distribution in the two components is evident: (1) The first PSC is specific for a single

movement type, and the projection magnitude increases with respect to rest (therefore the

power in the original power spectral samples). (2) The second PSC is non-specific, there

is a decrease in projection magnitude for samples of each movement type with respect to

rest samples. These two observations illustrate how it was possible to pull these apart

because the classic, low-frequency, peaked phenomena decrease in power with local activity,

and do so over a large spatial area. Since the representations of different fingers are close

to each other, but distinct, the peaked phenomena and the power law phenomena vary in

a separable way, and can therefore be decoupled using the principal component analysis

method.

Observations about individual subjects: (Subject 2) The lower set of bars for the

first PSC (light blue electrode) shows signifcant change vs. rest for both thumb and little

finger samples. (Subject 3) 1st PSC - Note partial representation of middle finger along

with both little and index fingers. 2nd PSC - In the dark blue electrode, only thumb

samples are different from rest. (Subject 4) 1st PSC - Index and middle fingers are

strongly represented in the dark green and light blue electrodes, but the little finger is only

represented in the light blue electrodes. The correlation in the representation of the index

and middle fingers may be due in part to the fact that the movements themselves were

correlated, as shown in figure 5.16. (Subject 5) 2nd PSC - Conjugate observation: Little

finger is not represented in the dark blue electrode, and thumb electrode is not represented

in the light blue electrode. The correlation between index and middle finger may be due

in part to movement correlation (figure 5.16). (Subject 7) The dark blue electrode was

selected based upon statistics, but it is clearly not in motor area, and clearly different from

any other in the study. It is likely in a pre-motor or supplementary area. In the 1st PSC,
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index, middle, and little finger movements samples are all decreased from rest samples,

while thumb is increased. In the 2nd PSC, there is no significant change from rest, except

for thumb movement. (Subject 8) The grid lies inferior to most of hand area, and the

significant electrodes were all significant for thumb movement. The green electrode was

significant for all types of finger movement samples.
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Figure 5.9:

Supplemental figure

Quantifying difference in sparse distribution of finger representation for the 1st

and 2nd PSCs. In order to demonstrate that the 2nd PSC is less sparse than the 1st,

overall, an ANOVA was calculate for the distribution of different finger movements, for

spectral sample projections to the 1st PSC, and the 2nd PSC, independently, as shown

in (A). Every electrode was significant at p¡.05 for one or more finger movement types

being different from the others. However, the more different one class is from the rest in

an ANOVA, the larger the associated Fano will be, so the relative magnitudes of the Fano

factors for the 1st PSC and the 2nd PSC in a single electrode will tell us about their relative

sparsity . As shown in the histogram of ratios F1/F2 in (B), every such ratio F1/F2 was

greater than 1, demonstrating that the representation of the 1st PSC is more sparse than

the 2nd PSC in every single case (N=30, 3 electrodes in 10 subjects).
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Figure 5.10:

Supplemental figure

Somatotopic cortical tuning for different fingers. (A) Cortical tuning plot schematic:

The correlation, r of χ (projection of 1st PSC to the dynamic spectrum) with the finger
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position is projected on polar axes. The correlation with thumb position is shown at 0

deg, index finger at 90 deg, middle finger at 180 deg, and little finger at 270 deg. The

vector sum of these is shown as a pink line with a color-coded dot at the end, denoting the

appropriate electrode on the inset brain. The inner circle denotes a correlation of r=0.25,

and the outer circle denotes a correlation of r=0.50. (B) Each of the three paired electrodes

is shown on the same polar plot, for each subject. (C) For each subject (numbered 1-10),

the appropriate cortical tuning plot is shown. All subjects except 2 and 8 were strongly

tuned (for this reason, subjects 2 and 8 were excluded from the grand average shown in

figure 4 of the main text).
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Figure 5.11:

Supplemental figure

Time Frequency Plots for 3 adjacent electrodes and 3 different finger movements in subject

4. (A) Average time-varying PSD (scaled as % of mean power at each frequency) with

respect to first index finger movement from each index finger movement cue (N=27), for

each electrode, shown in the approximate position of the electrode that it corresponds to.

The axes are scaled as detailed in the lower right of (B). Note that the decrease in lower

frequencies prior to movement onset is predominant over a large area, but pronounced in-

crease in power at high frequencies is limited to 2 electrodes. (B) The temporal development
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of the PSD is shown averaged over each of the three for each the three movement types

most ”relevant” for each of three electrodes (position shown in right of (A)). Note that all

electrodes have characteristic decrease in power with movement onset in the low frequency

range, and increase in power at higher frequencies is specific. These are fully decoupled

with the principal component method, as shown in supplemental figure 5.12.
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Figure 5.12:

Supplemental figure

Several movements and several electrodes, decoupled: Decoupled time frequency plots from

supplemental figure 5.11 . The lower set clearly shows the event-related desynchronization

at lower frequencies. The upper set shows the more specific power law.
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Figure 5.13:

Supplemental figure

Locations of electrodes on intra-operative surgical photograph. (A) The interpo-

lated locations of the three paired electrodes for subject 10. B & C In subject 10, a surgical

photograph was taken, pre- and post- grid implantation. The sites of the 3 paired electrodes
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(D-F, as in supplemental figure 5.8.10) could be identified on the cortical surface. They all

lie in the classic pre-central hand area. Yellow line denotes the central (Rolandic) sulcus,

and the orange dotted line denotes the transverse (Sylvian) sulcus, left is rostral, right is

caudal, up is dorsal, and down is ventral.
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Figure 5.14:

Supplemental figure

Relation to clinical stimulation findings: Clinical stimulation mapping was performed

on a subset of the subjects. In each of the subjects, the clinical goal was to obtain an

acceptable surgical margin, so not all of the electrodes were surveyed. Stimulation was

performed pairwise. In two of the cases (subject 2 in (C) and subject 9 in (F)), the clinicians

reported specific digit movement. In both of these cases, the specific movements reported

were the same as the specific digit identified by the 1st PSC. (A) Clinical schematic showing

hand area in subject 5, note that there were both motor and sensory findings, and both

hand and foot motor areas were identified. In all cases, electrodes connected by a red bar

indicate a report of non-specific hand/finger movement. Because stimulation was pairwise,

the assumption is that the area of cortex which produced the given motor phenomena was

under one or both of the electrodes, or the cortex bridged by the pair, or a combination of

all 3. (B) Subject 5: Yellow bars indicate ring and little finger movement with stimulation;

orange bar indicates little and middle finger movement with stimulation. Stimulation was

not performed inferior (ventral) to these sites. (C) Subject 2. (D) Subject 6. (E) Subject

4. (F) Subject 9: Orange bar indicates thumb movement with stimulation.
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Figure 5.15:

Supplemental figure

Hypothetical input - spectral change relation: (A) The power law changes we found,

with exponent 2 (after correction, see Power Law manuscript), are consistent with many

superimposed Poission distributed input spikes, filtered by the shape of the post-synaptic

potential. With an increase in local activity, the rates of these processes increase, and

the corresponding power spectral changes, shown in (B & C) correspond to an increase

in the coefficient, A, of a power law of form P ∼ Af−χ. (D) The peaked changes we

found are consistent with a set of synchronized input spikes with synchronous frequency

in the β range. With activity, the synchronous activity dissipates, or perhaps remains

constant but loses synchronous timing, which would be in contrast to the schematic here.

The corresponding spectral changes for this type of process were found in our 2nd and 3rd

Principal Spectral components, projected in (E & F). Panels B, C, E, and F were taken

from the single-electrode example in figure 1 of the main text.
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Figure 5.16:

Supplemental figure

Correlation between different digit movements: Finger movement traces were corre-

lated to varying degree on a subject by subject status. This meant that individual spectral

samples labled as one type of finger movement may actually have had movement for more

than one type, and brain activity during these samples is really for both fingers together.

Index often correlated with middle, and little often correlated with middle. The movement

of the ring finger was highly correlated in every case with either little or middle fingers

(depending on subject) - it was excluded from examination altogether after the PCA step

was performed.
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Figure 5.17:

Supplemental figure

Event-Related Potential: Illustration that the characteristic changes in the power spec-

tral density changes with activity are not due to an reproducible event related potential

shift (ERP). Two adjacent electrodes in subject 6. One has an ERP, and one does not,

but both have the characteristic peri-movement spectral changes. (A) Individual (grey)
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and averaged thumb movement (dark blue), locked to the first movement from each thumb

movement cue. (B) The normalized power spectral density (”PSD”) as a function of time.

It demonstrates the classic spectral changes just prior to movement onset. (C) Individual

and averaged traces around each of the first movements from appropriate thumb movement

epochs. There is no significant stimulus event-related potential (ERP) effect. Note that the

decrease in power at lower frequencies (α / β / µ range), and the increase in power at higher

frequencies (above 40Hz) both begin before movement onset. (D) Real part of mean phase

vector at each point in time/frequency, locked to movement onset. The envelope of this

is what would classically be called the ”inter-trial coherence”. It is not significant for this

task/electrode. (E) Same as (A), but for averaged index finger movement (dark green). (F)

Same as (B), demonstrating the standard spectral changes. (G) Individual and averaged

traces around each of the first movements from appropriate index finger movement epochs,

as in (C). Here there is an significant stimulus event-related potential (ERP) effect. (H)

Real part of mean phase vector at each point in time/frequency, locked to movement onset.

This demonstrates evidence of “phase locking to stimulus” classically associated with the

ERP.
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Chapter 6

REAL-TIME FUNCTIONAL BRAIN MAPPING USING
ELECTROCORTICOGRAPHY

We demonstrate the feasibility of real-time cortical mapping from arrays of subdural

electrodes using the electrocorticographic signal power in the higher spectral frequencies

(76-200Hz, or “χ-index”). Hand area was mapped offline in eight individuals using brief

baseline and hand-movement measurements. In one patient, hand sensorimotor cortex was

identified online during a handshake. We propose that this high frequency component of

the electrocorticogram provides a generic, reliable, clinically useful correlate of local cortical

function.

6.1 Introduction

The gold-standard method of determining cortical functional organization in the context

of neurosurgical intervention is electro-cortical stimulation (ECS) which acts by disruption

of normal cortical function to evoke movement or create transient functional disruption

(Haglund, 1994; Keles, 2004). In contrast, methods that read endogenous signals, such

as somatosensory evoked potentials or fMRI, reflect normal cortical function. Electrocor-

ticography (ECoG) has been suggested as another such method of mapping endogenous

cortical function (Crone, 1998; Leuthardt, 2007; Miller, 2007; Pfurtscheller, 2003; Crone,

2006). Previous reports (Miller, 2007) suggested that broad spectral increases of the ECoG

signal provide a correlate of local cortical activity, but that they are masked by changes in

band-specific peaks at low frequencies (classically named event-related desynchronization,

or ERD; Pfurtscheller, 1999). In motor tasks, these conjugate processes cause behavioral

splits at 48+/-9 Hz (+/-SD, hand) and 40+/-8 Hz (tongue) (Miller, 2007). We aim to

isolate this broad spectral increase, which we denote the “χ-index,” by focusing well above
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these behavioral splits and well above 60 Hz line noise, choosing specifically from 76-200Hz

(our amplifiers have a built in low-pass at 200 Hz), to assess local cortical function (Figure

B.1). We illustrate that changes in power in the “χ-index” during repeated hand move-

ment rapidly localize cortical hand area. These changes are characterized with only several

seconds of data collection, giving a rapid, specific, and straightforward method for locating

functional areas in cortex with the ECoG signal.

6.2 Methods

Electrocorticographic recordings in eight patients (mean age 35yo (18-48yo), 3 Female)

with peri-Rolandic (4 left sided) subdural platinum electrodes (4mm diameter, 1cm inter-

electrode spacing, Ad-Tech, Racine, WI) were recorded using SynAmps2 (Neuroscan, El

Paso, TX) amplifiers, set to sample at 1kHz and band-pass filter from .15 to 200 Hz. Data

was collected and processed online at the bedside using the BCI2000 (Schalk, 2004) software

on a laptop computer. Patients gave informed consent through a protocol approved by the

University of Washington Institutional Review Board. Each patient performed repeated

opening and closing of the contralateral hand for 3s blocks, alternating with equal periods

of rest. Each block was visually cued, for both movement and rest periods. The hand

movement was repeated 30 times, but only the first 5 blocks (15 sec) of movement were

used for this analysis. Ten seconds of baseline data was collected prior to movement blocks.

All data was band-passed for the ?-index with a notch filter at 120Hz to remove ambient

noise. Log power in 80ms windows of data (overlapping by 40ms) was calculated throughout

the task. The mean and standard deviation of the log power was determined for the baseline

period, and, for the activity period, the baseline mean was subtracted from each windowed

measurement, and scaled by the baseline standard deviation. A running sum of all data

above 2 (in units of baseline standard deviation) was calculated for each channel. These

sums are shown in bar plots, and interpolated on a standardized brain (Figures B.1 and B.2).

Weights were calculated for each channel by subtracting the mean across channels from each

channel, thresholding at zero, and dividing by the maximum. Gaussian kernels centered at
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Figure 6.1: Electrocorticographic motor mapping
A. Map of hand movement compared to rest (patient G). Fifteen seconds of movement
compared to a 10s baseline (see methods) contributed to the interpolated map, scaled to
the maximum response. Electrode locations are shown in white.
B. The spectrogram (mean log power vs. frequency) from a single, peri-central electrode,
for hand movement (15s) and resting baseline (10s). An increase in power occurs over
a broad spectral range. This difference (shaded blue) is evident in even brief epochs of
activity.
C. The difference in log power between movement and baseline, averaged across the
most responsive electrode in each of 8 subjects, is shown along with spectral bands. The
increase with movement is seen midway through the gamma band and extends to 200Hz.
The ‘χ-index’ is designed to capture the broad spectral power increase where separation
between task and rest is most clearly observed. Note the classic decrease in α and β, and
the broad increase in the χ-index (76-200Hz).
D. Mean, superimposed, activation across all 8 patients, re-scaled to the maximum. A
highly focal response is seen indicating the consistency of the change across subjects.

each electrode location were scaled by this amount and linearly superimposed to generate an

interpolated cortical activation map, on the Talairach-standardized AFNI template cortex,

for each patient. Electrode locations, in standardized Talairach coordinates, were calculated
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from post-implantation skull x-rays, using the LOC package (Miller, 2007). As significant

changes were demonstrated within 2-3s, we applied this prescription online for real-time

brain mapping (a handshake - Figure B.3) in one patient (patient C from figure B.2).

Figure 6.2: Offline hand motor area mapping
Activation during hand movement as detailed in method section. The bar plots indicate
the sum of suprathreshold activity for each electrode with corresponding interpolated brain
plots for each patient. Electrode locations are in white. Note that the activation localizes to
hand area in each individual, and that this activation in subjects A-E and H is very sparse.
The first 15s of motor activity was used except for pt F whose data is from 30-45s into the
task (see text).

6.3 Results

In each patient, localized activity was demonstrated for the first 15s of movement (Figure

B.2). In patient F, the initial activity map demonstrated weak motor but strong pre-motor

activity. As she may have been developing familiarity with the task, a later 15s block

of movement was analyzed (beginning 30s into the task) demonstrating stronger primary

motor activation, with some remaining frontal activity. Based upon electrode locations
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in Talairach coordinates (Miller, 2007), the strongest activation in each cortical map was

consistently stereotactically localized to Brodmann Area 4, demonstrating efficacy in hand

motor cortex identification (Figure B.2). In three patients, clinical stimulation mapping was

performed and identified the same electrodes as this procedure (see supplement). Real-time

mapping (Figure B.3) demonstrated supra-threshold activity immediately upon initiation

of the handshake, and showed clear delineation of hand sensorimotor cortex throughout the

handshake.

Figure 6.3: Real-time identification of sensorimotor cortex
Four frames from a real-time video (with times at lower left) demonstrate evolution of the
mapping during a three-stage handshake (in patient C from figure B.2), following a 10s
baseline period. The inset brains demonstrate the cortical map throughout the, scaled to
the final weight. The three stages of are shown in insets B, C, and D. The full video is
contained in the supplementary material of the manuscript, online.
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6.4 Discussion

Change with activity in the electrocorticographic power in the χ-index (chosen here to

be 76-200Hz) was found consistently, for all 8 subjects, in a focal portion of cortex in

classic hand areas. Unlike the power at lower frequencies, which, due to rhythms at specific

frequency bands, may show little change or spatially broad decrease with motor function

(eg., mu rhythm) a reliable increase with function was found over the entire 76-200Hz

interval (Figure B.1). Previous studies looking up to 100Hz have shown higher frequency

power (named “high gamma” by some) increases with motor function that are more focal

(Crone, 1998; Leuthardt, 2007; Miller, 2007; Pfurtscheller, 2003) than the power decreases

at lower frequencies. High frequency changes correlate with changes in the BOLD signal

(Mukamel, 2005), and localized cortical dynamics have been specifically attributed to the

80-200Hz band (Grenier, 2001). This real-time mapping technique should be robust across

paradigms and brain areas, as focal high frequency changes have been demonstrated in

motor (Crone, 1998; Leuthardt, 2007; Miller, 2007; Ohara, 2000), somatosensory (Bauer,

2006; Szurhaj, 2005), vision (Hoogenboom, 2006; Lachaux, 2005), auditory (Crone, 2001;

Edwards, 2005; Kaiser, 2005), memory (Sederberg, 2003), and language (Crone, 2001; Sinai,

2005) paradigms. Previous reports of motor related ECoG changes (Crone, 1998; Leuthardt,

2007; Miller, 2007; Pfurtscheller, 2003; Crone, 2006) have required more elaborate post-

acquisition analyses and long acquisition times (at least several minutes) to characterize

cortical motor changes, and none have yet been implemented in real-time. Using only the

power in the “χ-index”, rapid and reliable maps of cortical function can be obtained which

agree with stimulation result. The results can be assessed immediately, in real time, and

repeated if ambiguous. As the “χ-index” power appears to be a reliable marker of local

cortical function, we propose that this method can be applied generically to clinical and

research mapping of human cortex.
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Figure 6.4: Electrode positions for study subjects
Electrode positions, labeled for subjects A-H.
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Figure 6.5: Supplemental Figure 2
Stimulation results, for subjects C, F, and E from figure 2. Electrodes pairs where clinical
stimulation produced motor movement in the hand are shown in blue on the brain schemat-
ics. The bar plots are the integrated power, and the red dots indicate electrodes in each
positive stimulation pair. Electrical stimulation of the cortex to create transient lesions or
induce overt movements, extra or intra-operatively, is the established method to clinically
localize function in the brain (Ojemann, Ojemann et al. 1989; Chitoku, Otsubo et al. 2001;
Branco, Coelho et al. 2003). This process of stimulation is critical to minimize risk in neu-
rological surgeries which involve resection of seizure focus, tumor, or vascular malformation
(Berger, Kincaid et al. 1989; Burchiel, Clarke et al. 1989; Haglund, Berger et al. 1994), and
predicts functional outcome (Haglund, Berger et al. 1994; Keles, Lundin et al. 2004). The
pair-wise stimulation mapping process in the context of subdural electrode arrays is often
incomplete either because it is prematurely aborted by an induced seizure, or stopped once
an acceptable surgical margin is obtained, so the only meaningful question in the context
of the mapping method described here is whether the method captures one electrode site
from each positive pair. Five of the activation maps in this study are devoid of stimulation
locations and the remaining three (shown here) contain incomplete stimulation information.
In this sense, there are only positive stimulation results, without negative control. For ex-
ample, the middle patient (subject F) had two pair-wise stimulation positive results, but
the cortex near only 1 electrode (at the vertex in the figure) was the only meaningful one of
the three, and the procedure stopped, with an adequate margin, before reaching the poste-
rior portion of the grid, where the center of cortical hand representation was. Stimulation
which induces sensation is not shown, which, in contrast to the mapping technique, which
almost certainly will reflect some sensory feedback component. For a more in depth study
of the relation between high frequency ECoG changes and cortical stimulation, please see
(Leuthardt, E.C., Miller, K.J., Anderson, N., Schalk, G., Dowling, J., Moran, D., Ojemann,
J.G., 2007 Electrocorticographic Frequency Alteration Mapping (EFAM), A Novel Clinical
Technique for Mapping Motor Cortex. Neurosurgery, in press, 2007).
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Chapter 7

AUGMENTATION OF CORTICAL ACTIVITY BY MOTOR
IMAGERY-BASED LEARNING

Motor imagery plays an important role in learning complex new motor skills, from

learning to serve in tennis to perfecting a pirouette in ballet. What are the neural substrates

that underlie motor imagery-based learning? We measured cortical potentials from the

surface of the human brain in eight human subjects during both overt motor movement

and imagery of the same movement. We found that the spatial distribution of cortical

spectral changes during motor imagery mimicked that of actual motor movement, including

activation of primary motor cortex, though imagery typically elicited smaller magnitude

changes than actual movement. However, as subjects learned to use motor imagery to

control a cursor using visual feedback, significant augmentation of cortical spectral activity

occurred. In some cases, imagery-related activity after learning exceeded that observed

during overt movement. Our findings suggest that the motor cortex adapts not only to

sensory feedback from overt movements but also to feedback resulting from motor imagery.

7.1 Introduction

Motor imagery has been shown to be crucial for motor skill learning in a variety of situa-

tions, ranging from learning new skills in sports (Murphy 1994) to overcoming the effects of

neurological conditions (Dijkerman, Ietswaart et al. 2004; Page, Levine et al. 2007). Many

recent efforts to build ”brain-computer interfaces” for paralyzed patients have also relied

on motor imagery (Hochberg, Serruya et al. 2006; Schalk, Miller et al. 2008). Demonstra-

tion of cortical activity during imagery in motor areas in paraplegic individuals (Alkadhi,

Brugger et al. 2005) and stroke victims (Sharma, Pomeroy et al. 2006) implies that motor

imagery has a significant role to play in rehabilitation and prosthesis, rather than just a
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convenient control signal in intact individuals. Human brain imaging studies have shown

that motor imagery activates many of the same neocortical areas as those involved in plan-

ning and execution of motor movements (e.g., medial supplemental motor area, premotor

cortex , dorso-lateral prefrontal cortex, and posterior parietal cortex)(Jeannerod and Frak

1999), but whether primary motor cortex is also activated in motor imagery has remained

unclear due to conflicting evidence (Porro, Francescato et al. 1996; Roth, Decety et al. 1996;

Schnitzler, Salenius et al. 1997). It is also unclear how these imagery-related responses in

the motor system change during imagery-based learning. To address these questions, we

recorded, in eight human subjects, electrical signals from the surface of the cerebral cor-

tex using electrocorticography (ECoG). Subjects had undergone placement of intracranial

ECoG electrode arrays to localize seizure foci prior to surgical treatment of epilepsy [Supp.

Methods and Table S1].

7.2 Brief Methods

In an initial set of experiments, the subjects performed an interval-based task in which they

alternated between several seconds of movement and several seconds of rest. The subjects

then repeated the task, except that rather than actually moving, they were instructed to

imagine the cued movement during a fixed period (overt movement excluded by movement

sensors or EMG, Fig. 7.11). We examined changes in the power spectrum of the ECoG

signal from all electrodes before and during the cue period. As in previous reports (Miller,

Leuthardt et al. 2007), we found a decrease in power in a low frequency band (8-32 Hz)

and a spatially more focal increase in power in a broad high frequency band (76-100 Hz)

during movement compared to rest in motor-related areas (Figs. B.1, B.2, 7.5). A similar

phenomenon was observed when actual movement was replaced by motor imagery, but the

spectral changes were of smaller magnitude. We found that the magnitude of the active-rest

shift in the high-frequency band during imagery was 25% of the change seen during actual

movement, while for the low frequency range, this shift was 50% (figs B.1B, 7.5, 7.9, and

table S2).
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Figure 7.1: Spectral Changes in Cortical Surface Potentials during Actual and
Imagined Hand Movements.
(A) Characteristic shift in the cortical power spectrum between movement and rest (Sub 5,
electrode in Brodmann area 4). In accordance with previous findings ((Crone, Miglioretti
et al. 1998; Crone, Miglioretti et al. 1998; Aoki, Fetz et al. 1999; Miller, Leuthardt et al.
2007)), there is a characteristic decrease in power at low frequencies (”LFB” = 8-32 Hz), and
a characteristic increase in power at high frequencies (”HFB” = 76-100 Hz). (B) Comparison
of ECoG activation between motor imagery and motor movement. The plot shows the ratio
of mean shift in active-rest power between imagery and actual movement (Fig. 7.9, Table
S2) for electrodes in which the action vs. rest significance was p¡.05 (t-test, Bonferroni
corrected for the number of electrodes in that subject) for both the LFB and HFB. Each
white dot indicates the ratio at an individual electrode. In this paired comparison (38
total electrodes, 21 for tongue, 17 for hand), the geometric mean of the ratio for the LFB,
0.49, was significantly larger (p=.005 by resampling bootstrap, 105 iterations) than the
geometric mean ratio of the HFB change, 0.26. (C) ECoG-based brain activation maps
for actual and imagined hand movement for 5 subjects (denoted by S#). ECoG activation
was computed between movement and rest (NOTE 1; Fig 7.6). The activation (HFB: top
two rows, LFB: bottom two rows) is scaled to the maximum absolute activation (number
indicated in the upper left corner of the map), and plotted to a template cortex, for each
subject independently, with the colorscale indicated by the colorbar. Note that all subjects
show the characteristic focal high frequency increase and broad low frequency decrease.

We computed ECoG activation between movement/imagery and rest in each electrode
1. As seen in Figure B.1C for hand movement and Figure B.2 for tongue movement, the

1The ”activation” is the signed cross-correlation Amr = (m̄−r̄)3

|m̄−r̄|σ2
m∪r

NmNr
Nm∪r

, comparing distribution of

the normalized power in the HFB or LFB for the movement/imagery cues or active targets (m denotes
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Figure 7.2: Actual and imagined tongue movement activations for 8 subjects, as
in fig B.1C
Note that subject 2 had an increase with activity in the LFB for both imagined and actual
tongue movement. The reason for this is compelling - there was no prominent α/β rhythm
to desynchronize with activity, and the underlying shift in the power-law like activity is
revealed at low frequencies (Fig. 7.7). Subject 4 showed a robust decrease in HFB actual
that was not present in HFB imagined. Interestingly, this is not because of a decrease in
activity during tongue movement periods, but a selective increase in activity during rest
epochs following tongue movement epochs (figure 7.12).

ECoG activation for motor imagery had a spatial distribution similar to that elicited by

actual movement, although the magnitude of activation was consistently less. These brain

activation maps show that primary motor cortex (identified by both ECoG spectral changes

and Electrocortical Stimulation mapping (Miller, denNijs et al. 2007)) is indeed involved in

motor imagery, complementing other evidence from non-invasive techniques such as fMRI

(Porro, Francescato et al. 1996) and EEG (Cochin, Barthelemy et al. 1999).

In a second set of experiments, we examined how imagery-based learning affects the

cortical representation of motor imagery. Four of the subjects participated in a motor

imagery-based cursor control task. Based on the cortical changes seen in the simple imagery,

electrode-and-frequency band power combinations were chosen as ”features” for controlling

distribution, with mean m̄) and for rest/idling cues or passive targets (r). The joint distribution is denoted
m ∪ r, and Nx denotes the number of samples in distribution x. See Fig. 7.8 for a detailed illustration.
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a cursor on a computer screen (Figure B.3A). The subject was instructed to imagine (via

kinesthetic and not visual imagery (Neuper, Scherer et al. 2005)) the movement correspond-

ing to the selected feature in order to move a visually-displayed cursor toward one target

(”active” direction) and to rest (or ”idle”) in order to move the cursor to the other target

(”passive” direction) , as in Fig. B.3A.

Figure 7.3: Changes in cortical activity during imagery-based learning (shown
here for subject 5).
See text for complete explanation
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7.3 Results

Subjects rapidly (in 5-7 minutes) learned to control the power in the associated electrode-

frequency band using motor imagery (Table S3). While the spatial distribution of high-

frequency ECoG activity was conserved, the strength of the imagery-associated change was

significantly augmented by learning (Figs B.3, B.4, 7.14, and 7.15). In 4 of the 5 cases, the

imagery-associated spectral change exceeded that seen during actual movement (in the fifth

case, the change was almost equal to that during movement). After several runs, subjects

reported abstraction away from linked imagery to just thinking about cursor moving up or

down (fig B.3).

Extended Explanation of Figure 3

A: Specific channel-frequency combination features were identified from the initial motor

imagery task and the power in each of these features was coupled to the velocity of a cur-

sor. The instantaneous power P(t) in a selected electrode-frequency band combination was

calculated every 40ms based upon the previous 280ms and mapped to the cursor trajectory

using a simple linear relation as shown. The instantaneous power was compared with a

”reference” power P0 between movement and rest, and scaled by a gain g to determine the

cursor trajectory (Schalk, McFarland et al. 2004). The subject was instructed to imagine

(via kinesthetic imagery) the particular movement associated with the selected feature in

order to move the cursor toward one target (the ”active” direction) and to rest (or ”idle”)

to move the cursor to the other target (the ”passive” direction). The order of active and

passive targets was random, and the number of each was approximately equal. Individual

target trials were terminated when the cursor hit any target or at a designated timeout

duration (7200ms). A 1s reward duration (yellowed target for correct hit) was given at trial

termination, and there was a 1s rest between the reward duration and beginning of the next

target trial. B: The power in the electrode-frequency band features is shown during the 4

experimental runs of the cursor task based upon word repetition imagery (imagining saying
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the word ”move”). Red dots indicate the mean power during active (upper) target trials,

and blue dots indicate mean power during passive (lower) target trials. The black line

indicates a ”discriminative index” between the targets (the smoothed difference between

the mean power during the past 3 active target trials and the past 3 passive target trials).

It demonstrates that optimal target accuracy is obtained when the subject finds a middle

dynamic range, not the maximum amplitude changes in power (which were obtained in the

2nd run, with mediocre success). C: Distribution of HFB and LFB activations during each

experimental run. The maps here are scaled to the same global maximum. Note that the

final activations are accentuated in precisely the electrode-frequency band features which

were being used for cursor control (table S3).

7.4 Discussion

Our results are consistent with the emerging view of motor imagery as subliminal activation

of the motor system (Jeannerod and Frak 1999). The fact that primary motor cortex was

activated in our subjects during motor imagery provides independent support for earlier

results obtained using fMRI implicating this area in motor imagery (Porro, Francescato et

al. 1996; Roth, Decety et al. 1996). Feedback paradigms engage attentional mechanisms

in a way that simple imagery does not, and this could explain why spectral change during

feedback imagery exceeds simple imagery. But by what mechanism is spectral change during

imagery-based feedback able to exceed that of overt motor movement? Augmentation in our

imagery-based learning finding may share mechanistic similarity with recent results in the

primate motor system (Tkach, Reimer et al. 2007) where ”mirror-neuron” like activation

was seen in primary motor cortex during visual observation of cursor movement after the

monkey had learned to control the cursor with a manipulandum. In fMRI studies, primary

motor cortex activation during imagery was reported to be∼30% of the level observed during

execution, a result consistent with our HFB findings of reduced (∼30%) ECoG spectral

change during imagery. However, our results additionally demonstrate that this activation

can be significantly augmented over a surprisingly short period of time as the subject learns
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Figure 7.4: Augmentation of cortical activity after learning in HFB and LFB.
Feedback sites are shown with black dots. Subject numbers, movement/imagery modality,
and frequency range are shown across the center of the figure. Brain activation maps are
individually scaled, as in figs B.1 and B.2. The specific electrodes, frequency ranges, and
target accuracy during the cursor control task are shown in supplemental table S3. The
activation (NOTE 1) during the cursor task is calculated by comparing active and passive
targets, rather than action and rest epochs (the entire data stream during target presentation
is used, rather than a sub interval).

to control a cursor through motor imagery and visual feedback. It has long been known

that neurons in the motor system can adapt to correct errors in body movement (e.g., hand

movement) based on visual feedback (Fetz 1969; Georgopoulos, Kalaska et al. 1983). Our

findings reveal that motor cortical neurons can additionally significantly alter their firing
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patterns, on the population level, to optimize movements linked to motor imagery.

7.5 Supplemental Methods

7.5.1 Subjects

Simple motor tasks were studied in 8 patients (2 Females, ages 12-48, Table S1) who had

undergone placement of intracranial electrode arrays to localize seizure foci prior to surgical

treatment of medically refractory epilepsy. The arrays were typically placed for 5-7 days

with the location of the electrodes and duration of implantation determined independently

by clinical criteria alone. Experiments were performed at Children’s Hospital (subject 2)

and Harborview Hospital (all others) at the University of Washington (UW), Seattle, USA.

Patients underwent craniotomy for electrode placement and were typically studied 3-5 days

after electrode placement, to allow for recovery from the surgery. Only patients with some

peri-Rolandic coverage were included. Subjects gave informed consent for participation, in

a manner approved by the University of Washington Institutional Review Board.

7.5.2 Recordings

The platinum electrode arrays (Ad-Tech, Racine, WI) were typically configured as linear

strips, and 8 x 4-8 electrode grids. The electrodes had 4mm diameter (2.3mm exposed), 1

cm inter-electrode distance, and were embedded in silastic. ECoG signals were split into two

identical sets. One set was fed into the clinical EEG system (XLTEK, Oakville, Ontario,

Canada) and the other set was recorded with Synamps2 (Neuroscan, El Paso, TX) biosignal

amplifiers (Harborview) or Guger (Gugertech, Graz, Austria) amplifiers (Children’s). ECoG

signals were then acquired from the Neuroscan or Gugertech system using the general-

purpose software BCI2000 (Schalk, McFarland et al. 2004). At Harborview (Children’s),

the sampling frequency was 1000 Hz (1200 Hz). The signals were bandpass filtered from

0.3 Hz to 200 Hz at Harborview. In this way, the 8-100 Hz spectral regions examined in

this study are well outside of any filtering ranges and below any relevant Nyquist frequency.

Surface EMG were placed for clinical purposes only and thus were available only in a subset
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of patients. Finger position was recorded using a sensor dataglove (5dt, Irvine, CA) to

verify that subjects were not moving their hands (see fig 7.11).

7.5.3 Tasks

A series of three experiments were performed: interval-based active motor movement,

interval-based motor imagery, and a cursor-to-target task to provide feedback to motor

imagery. First, subjects performed simple, repetitive, motor movement (Miller, Leuthardt

et al. 2007) of the hand (synchronous flexion and extension of all fingers, i.e., clenching

and releasing a fist at a self-paced rate of approximately 1 Hz), tongue (opening of mouth

with protrusion and retraction of the tongue, i.e. sticking the tongue in and out, also at 1

Hz), shrug (shoulder raise at 1Hz), or simple word vocalization (saying the word ”move”).

These movements were performed in an interval-based fashion, alternating between 3 second

movement blocks and rest. The side of actual or imagined movement was always contralat-

eral to the side of cortical grid placement. There were 30 text cues (”Hand”, ”Tongue”,

”Shrug”, ”Move”) for each movement modality, delivered visually as 2.5 cm high text at a

distance of 75 -100 cm from the subject, using the BCI2000 program (Schalk, McFarland

et al. 2004). Cues of different type were interleaved randomly so no particular movement

type could be anticipated.

Following the overt movement experiment, each subject performed an identical task,

but with movement imagery rather than actual movement. The imagery was kinesthetic

(Neuper, Scherer et al. 2005) (”Imagine yourself performing the actions like you just did”,

i.e., don’t imagine what it looked like, but imagine making the motions).

Half of the subjects (1, 3, 4, 5) went on to participate in an imagery-based feedback

learning task. In this task, a specific electrode-and-frequency range combination feature

was chosen from the simple imagery task (features shown in table 1), and the power in

this feature was coupled to the trajectory of a cursor. Targets were presented in random

order, on one of two sides of the presentation screen. The subject was instructed to imagine

(again, via kinesthetic imagery) a particular movement in order to move a cursor toward
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one target (the ”active” direction), and to rest (or ”idle”) to move the cursor to the other

target (the ”passive” direction). Targets were presented continuously for 2 minute runs,

and there were typically 3-5 such runs in the experiment (If the target was present for more

than 7 seconds, or the target was hit, a new target was presented.)

7.5.4 Signal Analysis

A high frequency band (HFB) and a low frequency band (LFB) were chosen for analysis, as

in previous papers(Miller, Leuthardt et al. 2007), to capture the event-related desynchro-

nization in the LFB, and the power law change in the HFB. For the cursor-to-target task,

the offline analysis was the same as for movement and imagery, except rather than a sub-

window from each offline movement cue period, normalized mean-spectra were calculated

throughout the entire time of cursor presentation for each target presentation. The online

analysis is articulated in further detail by Leuthardt et al (Leuthardt, Miller et al. 2006)

and Schalk et al (Schalk, Miller et al. 2008).

7.5.5 Electrode Localization and Template Brain Mapping

Electrode locations were estimated based upon their relation to skull table and landmarks

from the saggital (lateral) and coronal (anterior-posterior) skull x-rays using the LOC pack-

age (Miller, Makeig et al. 2007). We also used this package to plot electrode locations with

respect to the AFNI - Montreal Neurological Institute (MNI) template brain. Activation

maps were created for the HFB and LFB independently in each patient, for each movement

type. We created these maps by linear superposition of activation (Equation 1) weighted

by spherical Gaussian kernels (standard deviation of 5mm) centered at the location of each

electrode, and interpolated the superposition at each point in a template brain.

Amr =
(m̄− r̄)3

|m̄− r̄|σ2
m∪r

NmNr

Nm∪r

Equation 1: Activation, quantified using the square of the cross-correlation (r2), signed

to reflect whether the significance represents an increase or a decrease in the band-limited



162

PSD for movement with respect to rest (or, in the case of a target task, whether one target

represents an increase or decrease in power with respect to the other target). What this

metric tells us is how much of the variation in the joint data set σ2
m∪r can be accounted for

by the fact sub-distributions m and r might have different means, m̄ and r̄ (Nm, Nr, and

are the number of samples of type m, r, respectively, and Nm∪r = Nm +Nr) see fig 7.6 for

illustration.
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7.6 Supplemental Figures and Tables
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Table S1
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Figure 7.5:

Supplemental figure 1

Changes in the cortical spectrum: A: Characteristic shift in the cortical power spec-

trum between movement and rest (Subject 5, electrode in Brodmann area 4). In accordance

with previous findings (Crone, Miglioretti et al. 1998; Crone, Miglioretti et al. 1998; Aoki,

Fetz et al. 1999; Miller, Leuthardt et al. 2007), there is a consistent decrease in power at

low frequencies, and a characteristic increase in power at high frequencies. B: The changes

in the cortical spectrum may be decoupled into distinct phenomena (Miller, Zanos et al.
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2008). At low frequencies, there is a band limited spectral peak which decreases with activ-

ity, consistent with event-related desynchronization (ERD). At high frequencies, a broad,

power-law like increase in power (which happens across the entire spectrum), may be ob-

served. This functional change has been denoted the “χ-band” or “χ-index” when explicitly

targeting this broad spectral feature (Miller, denNijs et al. 2007; Miller, Zanos et al. 2008),

and ”high- ” when seen as a band-specific increase in power at high frequencies (Crone,

Miglioretti et al. 1998; Brovelli, Lachaux et al. 2005; Canolty, Edwards et al. 2006). As in

previous papers (Miller, Leuthardt et al. 2007), a low frequency band (LFB, 8-32 Hz, red) is

chosen to capture ERD changes (α/β) in the classic EEG range, and a high frequency band

(HFB, 76-100 Hz, green) is chosen to capture the power-law like broad spectral changes

most easily seen at high frequencies. C: We propose that the feature captured by the HFB

corresponds to local cortical activity (green). The LFB changes, which represent peaked

features in the power spectrum (and thus have special timescales) have been proposed to

be due to feedback between cortical and sub-cortical structures, such as a thalamocortical

feedback loop (Feige, Scheffler et al. 2005). D: The ratios of the action-rest shift between

motor imagery tasks and motor movement tasks. This ratio (m̄− r̄ for imagery vs. m̄− r̄ for

movement, figure B.4D), is for electrodes in which the action vs. rest significance was p¡.05

(t-test, Bonferroni corrected for the number of electrodes in that subject), for both the HFB

and LFB. The values for ratios at individual electrodes are shown with white dots. In this

paired comparison (38 total electrodes, 21 for tongue, 17 for hand), the geometric mean of

the ratio for the LFB, 0.49, was significantly larger (p=.005 by resampling bootstrap, 105

iterations) than the geometric mean ratio of the HFB change, 0.26. The geometric standard

deviation of the HFB was significantly larger than the LFB (p=.016 by resampling boot-

strap, 105 iterations). Similar comparisons for unpaired distributions are found in figure 7.9

and table S2.
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Figure 7.6:

Supplemental figure 2

Paired comparison of active and rest epochs from an electrode (#35, cortical plot - table

S2, row 5, column 2) in subject 5 during a hand movement (A) task and a hand movement

imagery (B) task. The central line indicates the mean log power across all epochs of each

type, and the shaded outer region is the 95
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Figure 7.7:

Supplemental figure 3

As shown in (A), subject 2 did not have the characteristic decrease in power in the LFB with

tongue motor movement or imagery. Further inspection, illustrated here for the electrode

shown with a red circle in (B), revealed that subject 2 lacked the classic low frequency (α/β)

rhythm. This can be seen in (C). Accordingly, the underlying broad spectral increase with

movement or imagery normally evident only in the HFB is now unmasked in the maps of

the LFB in (A) and the spectra in (C).
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Figure 7.8:

Supplemental figure 4

Method for calculating and displaying “activation” (Amr-equation 1) between action and

imagery. A-B: A subject performed an interval-based motor movement or kinesthetic im-

agery (Neuper, Scherer et al. 2005) task. The raw signal (re-referenced with respect to

the common average) from each electrode is broken up into 3 second epochs based upon

the stimulus to move (or imagine moving) the hand or tongue, and resting. A subset of
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each epoch, the time corresponding to .5-2 seconds into that epoch (shown in the horizontal

lines below the raw data), is selected for analysis. This is done because of behavioral lag

with respect to the changing stimulus. C: The power spectral density of each epoch was

calculated every 1 Hz from 1 to 150 Hz using a Fast Fourier Transform (FFT) using 0.25

second Hann windowed segments, stepping with an overlap of 0.1 second (Welch’s averaged

periodogram method). Each power spectrum is then normalized by dividing the power at

each frequency bin by the average power at that frequency bin, taken across all epochs. D:

The total power in a low frequency band (LFB, 8-32 Hz) and a high frequency band (HFB,

76-100 Hz) is calculated for each epoch of each type. E: The activation, Amr (equation 1), is

calculated for each movement or imagery modality. In the case of a mixed modality experi-

mental run, the distribution of samples of power for each modality are only compared with

the samples of power for rest epochs that followed epochs of that kind (i.e. hand movement

epochs are compared with rest epochs which followed hand movement, and not those which

followed tongue movement). The activation obtained for each electrode is used to scale a

spherical gaussian kernel (σ = 5mm) centered at the Talairach location obtained for that

electrode using the LOC package (Miller, Makeig et al. 2007), and all kernels are linearly

superimposed to obtain a cortical map. The activation is scaled to the maximum absolute

activation (indicated to the upper left of the map), with the colorscale shown (dark red ∼

maximum increase in activation, dark blue ∼ maximum decrease in activation, grey ∼ no

activation). These maps are generated for each subject, each band (HFB or LFB), and each

movement or imagery modality.



171

Table S2

For Both Bands, 21 were hand-task specific, and 17 were tongue-task specific. Imagined to

real ratios for the shift in the low frequency band (LFB, 8-32Hz) and the high frequency

band (HFB, 76-100Hz). p-values were calculated using a resampling bootstrap, 105 itera-

tions.

The geometric mean, sgeo (GeoMean), of sample distribution si is: sgeo =
(∏

i
si

) 1
i

The geometric standard deviation, σgeo (s), of sample distribution is: σgeo (s) = exp


√∑

i

(ln(si)−ln(sgeo))2

N−1

,

Where N is the number of samples in sample distribution si. See the caption of fig 7.11 for

further explanation of Significance Constraint.
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Figure 7.9:

Supplemental figure 5

Imagined to Real ratios for the shift in the low frequency band (LFB, 8-32Hz) and the high

frequency band (HFB, 76-100Hz), as in figure B.1B. The average ratios flanking the indi-

vidual electrode ratios (shown with white dots) are geometric means. Imagery to Movement

ratios were considered for electrodes which had an associated action to rest p-value of p<.05

after Bonferroni correction (Bonferroni 1936) for the number of electrodes in that subject’s

array. HFB and LFB were considered independently.

“All” ∼ Significant changes for hand or tongue were lumped together.

“Top 5” ∼ For a given subject, modality (hand or tongue), and band (HFB or LFB), only

the top 5 most significant electrodes are considered (so that the average isn’t dominate by

one or a few subjects); tongue and hand are lumped together.

“Tongue only” and “Hand only” ∼ the ratios from “All”, but with tongue and hand modal-

ities separated.
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Figure 7.10:

Table S3

Electrode - frequency band combinations for feedback, and associated target task perfor-

mance. The electrode locations are in Talairach coordinates. Spatial activations associated
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with this feedback are shown in figure B.4.
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Figure 7.11:

Supplemental figure 6
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Validation of imagery.

Upper 2 panels: Subject 5 wore a dataglove (5dt, city, state) which recorded index finger

position during the interval-based finger movement task. During the motor movement task,

the squared correlation of index finger position with the cue (movement vs. rest) was

significant (r2=.84, p¡.001). There was no significant correlation of finger position with cue

during the hand motor imagery task.

Lower 3 panels: Subject 4 had a sublingual differential EMG pair in place during a tongue

motor task, a tongue motor imagery task, and an imagery based feedback task. The EMG

signal was band-stop filtered from 57-63Hz, 117-123Hz, and 177-183Hz to reject line noise

(3rd order Butterworth digital filter, forward and backward to eliminate phase distortion).

It was then high-pass filtered at 20Hz noise (3rd order Butterworth digital filter, forward

and backward), and squared to obtain the ”filtered EMG power”. The power in the EMG

was significantly correlated with the tongue motor movement task (cross correlation r2=.93,

p¡.001), but was not correlated with either the tongue imagery or imagery-based feedback

task.
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Figure 7.12:

Supplemental figure 7

This illustrates that the robust “decrease” in the HFB for movement w.r.t rest epochs

(absent in imagery w.r.t. rest epochs) is in fact due to amplification of HFB power in

the rest epochs (purple) following tongue movement, and is not seen in tongue movement

epochs (light blue) or hand movement/rest epochs (white). The anatomical location of the

electrode in question is shown below (figure 7.13).
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Figure 7.13:

Supplemental figure 8

The anatomical location of the HFB amplification for rest following tongue movement (Fig-

ure 7.12), shown as a black circle in insets C and D.

A: Electrode positions interpolated from x-ray (on the AFNI template) estimated with the

LOC package.

B: Electrode positions shown from an intra-operative picture.

C: The aperture in (B) projected onto (C), with the relevant electrode from figure 7.9 shown

with a black circle.

D: The location of the electrode on the exposed brain (intraoperative picture). ”SF” denotes

the Sylvian Fissure, and ”CS” denotes the Central Sulcus.
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Figure 7.14:

Supplemental figure 9

Figure S9: As in Figure B.3, but for subject 4 and tongue movement. Three consecutive

runs with feedback are shown. The subject reported being disinterested in the last run.
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Figure 7.15:

Supplemental figure 10

Spectral changes in ECoG with feedback for subject S1, shrug modality (feedback from

13-21Hz) on a medial electrode (see table S3).
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Appendix A

A SIMPLE, SPECTRAL-CHANGE BASED,
ELECTROCORTICOGRAPHIC BRAIN-COMPUTER INTERFACE

Brain-computer interface (BCI) requires a strong, reliable signal for effective implemen-

tation. A wide range of real-time electrical signals have been used for BCI, ranging from

scalp recorded electroencephalography (EEG) (see, for example, (Wolpaw, Birbaumer et

al. 2002; Wolpaw and McFarland 2004)) to single neuron recordings (see, for example,

(Kennedy and Bakay 1998; Hochberg, Serruya et al. 2006)). Electrocorticography (ECoG)

is an intermediate measure, and refers to the recordings obtained directly from the surface

of the brain(Ojemann, Leuthardt et al. 2007). Like EEG, ECoG represents a population

measure, the electrical potential that results from the sum of the local field potentials result-

ing from 100,000s of neurons under a given electrode. However, ECoG is a stronger signal

and is not susceptible to the artifacts from skin and muscle activity that can plague EEG

recordings. ECoG and EEG also differ in that the phenomena they measure encompass

fundamentally different scales. Because ECoG electrodes lie on the cortical surface, and

because the dipole fields(Nunez and Cutillo 1995) which produce the cortical potentials fall

off rapidly , the ECoG fundamentally reflects more local processes.

Currently, ECoG takes place in the context of clinical recording for the treatment of

epilepsy. After implantation, patients recover in the hospital while they wait to have a

seizure. Often, that requires a week or longer of observation, during which time patients

may chose to participate in experiments relevant to using ECoG to drive BCI. Recently,

researchers have used the spectral changes on the cortical surface of these patients to provide

feedback, creating robust brain-computer interfaces, allowing individuals to control a cursor

on a computer screen in a matter of minutes (Leuthardt, Schalk et al. 2004; Leuthardt,

Miller et al. 2006; Wilson, Felton et al. 2006; Felton, Wilson et al. 2007; Schalk, Miller et
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al. 2008). This chapter discusses the important elements in the construction of these ECoG

based BCIs: signal acquisition, feature selection, feedback, and learning.

A.1 Signal acquisition

ECoG is available from frequently performed procedures in patients suffering from medically

intractable epilepsy (Figure 1). Such patients undergo elective placement of electrodes on

the surface of the brain when the seizure localization is not evident from non-invasive studies.

These electrodes are also placed, in some situations, to localize function such as movement

or language prior to a neurosurgical resection. The same electrodes can record ECoG and

stimulate to evoke disruption in the function of the underlying cortex. The implanted elec-

trode arrays are typically only those which would be placed for diagnostic clinical purposes.

Most often, these are 2.5mm in diameter have a spacing of 1-cm from center-to-center

(Figure 2). While this is somewhat coarse, it is fine enough to resolve individual finger

representation and may be sufficient to extract many independent control signals simulta-

neously(Miller, Zanos et al. 2008). At some institutions, preliminary results are coming

out using smaller electrodes and higher resolution arrays(Blakeley, Miller et al. 2008), and

it may become apparent that finer resolution grids produce resolve independent function

and intention better than the current clinical standard. Intra-operative photographs, show-

ing the arrays in-situ can be useful for identifying which electrodes are on gyri, sulci, and

vasculature, and also which are near known cortical landmarks. . The ECoG recording

is, by necessity, in the context of clinical amplification and recording, so the experimental

recording must take place in the context of clinical amplification with commercially avail-

able amplifiers (eg, XLTEK, Synamps, GugerTech, Grass). Most clinically relevant EEG

findings are detected visually and classically the information explored is between 3-40Hz, so

the settings on the clinical amplifiers may be adequate to obtain clinical information, but

not for research purposes. Recent advances have suggested that faster frequencies may be

clinically relevant so many newer systems include higher sampling rate (at least 1kHz) as an

option to allow for measurement of signals of 200Hz or higher, but this varies by institution,
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and the clinical recording settings will vary even within institutions, depending upon the

clinical and technical staff managing the patient. Experimentalists must obtain either the

clinically amplified signal, or split the signal and amplify it separately. Using the clinical

signal has the advantage that less hardware is involved, and that there are no potential

complications because of the dual-amplification process. Such complications include arti-

fact/noise introduction from one system to the other, currents between separate grounds if

the two do not share a common ground. Splitting the signal has the advantage that the

experimentalist can use higher fidelity amplifiers and set the amplification parameters at

will, rather than having to use the clinical parameters, which typically sample at a lower

frequency than one would like, and often have built in filtering properties which limit the

usable frequency range. The ground chosen, which must be the same as the clinical ground

to avoid complication, will typically be from the surface of the scalp. Most amplifiers will

have a built in choice of reference, which each electrode in the array will be measured with

respect to. These may also be from the scalp, as they often are clinically, or they may be

from an intra-cranial electrode.

The experimenter will often find it useful to re-reference the electrode array in one of

several ways. Each electrode may be re-referenced with respect to a single electrode from

within the array, chosen because it is relatively “dormant,” each may be re-referenced to

a global linear combination of electrodes from the entire array, or each may be referenced

to one or more nearest neighbors. Re-referencing with respect to a single electrode is

useful when the one in the experimental/clinical montage is sub-optimal (noisy, varies with

task, etc), but it means that the experimenter has introduced an assumption about which

electrode is, in fact, appropriate. The simplest global referencing is a common average re-

reference: the average of all electrodes is subtracted from each electrode. The advantage

of this is that it is generic (unbiased, not tied to an assumption), and it will get rid of

common-mode phenomena. One must be careful that there are not any electrodes that are

broken, or have extremely large contamination, or every electrode will be contaminated by

the re-referencing process. Local re-referencing may also be performed, such as subtracting
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the average of nearest-neighbors (Laplacian), which ensures that the potential changes seen

in any electrode are spatially localized. One may also re-reference in a pair-wise fashion,

producing bipolar channels which are extremely local, but phenomena cannot be tied to a

specific electrode from the pair.

Choosing a sampling frequency is important - there is often a trade-off between signal

fidelity and the practical issues of manageable data sizes and hardware limitations. What-

ever sampling rate is chosen, one should be sure to have high signal fidelity up to at least

150Hz (ie. Sampling rate should be above 300 Hz. The sampling rate may have to be higher

if the amplifiers used have built in filtering properties.) The reason for this is that there

is a behavioral split in the power spectrum which can be as high as 60 Hz (Miller, Shenoy

et al. 2008). In order to capture the spatially focal high frequency change, one must have

large bandwidth above this behavioral split.

A.2 Feature Selection

In order to implement a BCI paradigm, a specific signal feature must be chosen. This will

need to be a feature that can be determined in a computationally rapid fashion. Second,

the feature must be translated into a specific output. The choice of signal feature should

be an empiric one. There are two complementary approaches to choosing a BCI feature.

One approach is to start with a strictly defined task, such as hand movement, and look for

a particular feature at the signal change associated with this task. Then, the most reliable

signal is identified and used to run a BCI. Another approach is to choose a signal that is less

well characterized behaviorally and then, over time, to allow the subject to learn to control

the feature by exploiting feedback, and then control the BCI. In a dramatic example of the

latter, it was found that the spike rate from an arbitrary neuron that grew into a glass cone

could be trained to run BCI(Kennedy and Bakay 1998), with no a priori knowledge about

the preferred behavioral tuning of the given neuron.

The most straightforward approach is a motor imagery-based, strictly defined, task-

related change for feature control. In order to identify appropriate simple features to couple
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to device control, a set of screening tasks is performed. In these screening tasks, the subject

is cued to move or imagine (kinesthetically) moving a given body part for several seconds and

then cued to rest for several seconds(Miller, Leuthardt et al. 2007). Repetitive movement

has been found to be useful in generating robust change because cortical activity during

tonic contraction is quickly attenuated(Crone, Miglioretti et al. 1998; Crone, Miglioretti et

al. 1998). Different movement types should be interleaved, so that the subject does not

anticipate the onset of each movement cue. Of course, there are multiple forms of motor

imagery. One can imagine what the movement looks like, one can imagine what the move-

ment feels like, and one can imagine the action of making the muscular contractions which

produce the movement (kinesthetic)(Neuper, Scherer et al. 2005). It was demonstrated

by Neuper, et. al.(Neuper, Scherer et al. 2005) that kinesthetic imagery produces the

most robust cortical spectral change, and, accordingly, we and others have used kinesthetic

motor imagery as the paired modality for device control. In order to establish that the

control signal is truly imagery, experimenters should exclude, by surface EMG and other

methods, subtle motor movement as the underlying source of the spectral change. In the

screening task, thirty to forty such movement/imagery cues for each movement/imagery

type should be recorded in order to obtain robust statistics. The power spectral density

during each of these cue and rest periods can be calculated for each electrode. ”Feature

maps” of statistically significant changes at each frequency, in each electrode, can be calcu-

lated by comparing rest and movement cues (see Figure 3). Figure 4 demonstrates how the

cortical spectral changes in motor cortex show characteristic changes during movement of

the opposite (contralateral) hand when compared to rest.

As with EEG, one feature-driven approach is to look across channels and frequency

bands to obtain complex features for feedback(Leuthardt, Schalk et al. 2004; Wolpaw and

McFarland 2004; Leuthardt, Miller et al. 2006; Schalk, Miller et al. 2008). This can be

done manually, selecting spectral features from intuitive cortical areas, such as senorimotor

cortex. It can also be done using nave, blind-source deconvolution and machine learning

techniques(Graimann, Huggins et al. 2002; Pfurtscheller, Graimann et al. 2003; Scherer,
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Graimann et al. 2003; Lemm, Blankertz et al. 2005; Blankertz, Dornhege et al. 2007;

Muller, Tangermann et al. 2008; Shenoy, Miller et al. 2008). Sophisticated recombination

techniques, optimized for an offline screening task, face the potential confound that the

resulting mapping is not intuitive for subject control, particularly if the distribution of

cortical spectral change is different for screening than it is for feedback studies (which it

can be). Simple features, in contrast, may be employing only a fraction of the potential

signal for the feedback task, and also may suffer because the simple feature chosen is not

the best out of a family of potential simple features. Our approach, which we describe in

detail here, has been to keep feature selection as simple and straightforward as possible,

and then examine how brain dynamics change, with feedback, over time. Future strategies

will have to take both approaches into account.

Adaptive feature techniques, which dynamically change the parameterization between

brain signal and feedback, represent another approach, where the machine interatively

’learns’ the signals that the subject is attempting to use during the BCI task. The potential

advantage of such adaptive techniques is that they might be robust against non-stationarity

in the distribution of cortical spectral change and compensate for shifts in the signal. The

disadvantage is that a subject may be trying to adapt the signal at least as fast as the ma-

chine algorithm, and we have at times found a negative feedback between these processes.

If the brain dynamics are trying to converge on given parameterization, and the adaptive

algorithm is continuously changing the parameterization, there is the potential that no sta-

ble interface can be converged upon. Recent ECoG studies, however, have demonstrated

that, for a simple ECoG BCI, stable control can be maintained for many consecutive days

without any change in the feedback feature parameters(Blakeley, Miller et al. 2008).

A.3 Feedback

The power in this identified feature, , is then linked to the velocity, , of a cursor on the

computer screen, using the simple translation algorithm , where is a power level somewhere

between movement imagery and rest, and is a velocity parameter. This difference is then
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coupled to the movement of a cursor, with speed determined by the parameter , which can

be adjusted in the beginning of the task to be comfortable to the subject.. The subject is

instructed to adjust the position of the cursor so that it hits a target (figure 5). Modification

of the imagery behavior is allowed, even encouraged, to maximize target accuracy.

Interestingly, even with the most robust signal features, once the behavior is linked to

a different task (i.e., the subject is now aiming for a target not just performing the given

movement) the electrocorticographic signal may change. We have used the concept of ’re-

screening’ to make use of the fact that a given signal at a given electrode may be subtly or

even dramatically different when the task condition is changed to include a BCI component

(Figure 6).

For applications in patients with certain neurologic impairments, overt motor activity

will, of course, not be accessible for a BCI device. Therefore, attempting to drive BCI

with other features is of particular interest. The methods discussed here employ imagined

movement and imagined speech to generate screening features. The areas of cortex engaged

by, for example, imagined hand movement are remarkably similar to those involved in

overt hand movement, though of much weaker strength (Figure 7A). Because of the weaker

signal, initial control can be more difficult with an imagined task, however, the presence of

cursor feedback reliably produces an enhancement of the ECoG signal resulting in improved

performance. This remarkable ability to enhance the signal has been reported in different

imagined motor tasks and silent speech(Miller, Ojemann et al. 2008).

In most circumstances, accuracy increases over time, usually within a few trials (Figure

7B, see (Leuthardt, Miller et al. 2006; Schalk, Miller et al. 2008)). BCI2000 allows for

a recursive tuning of the weights of a given feature so that the program learns, based on

the signal of correct and incorrect trials, what the ideal translation between feature and

cursor position should be. However, subjects show a robust learning on their own - the

brain is able to learn, as with any new motor task (riding a bike, etc) to subconsciously

modify activity based on feedback. Taken to an extreme, this concept has allowed BCI

to occur even when the behavior of the cortex underlying the chosen electrode is less well
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defined(Wilson, Felton et al. 2006).

Though originally the cursor control is explicitly linked to the behavior, the subject is

free to explore mental states that achieve better cursor control. Anecdotally, successful

control often is associated with a wide range of experiential strategies. Some control evolves

to being achieved with a throat sensation or, in the most striking example of behavioral

plasticity, the subject simply imagines the cursor to move in the preferred direction, no

longer using the originally prescribed behavior as an intermediate, as happened with the

subject described in the case study at the end of this chapter.

A.4 Learning

In this particular paradigm, stability of signal is hard to determine given the primary

purpose of the implants is clinical and the implant is removed once the seizure focus is

determined. However, we have had occasion to assess the stability over multiple days in a

5 day, repeated testing region. Since the recording devices are on the brain, not fixed to

it, one could imagine day-to-day variations in the signal. In fact, the use of ECoG appears

to rely upon a population signal that is not overly sensitive to daily fluctuations(Blakeley,

Miller et al. 2008) and the same features can be reused with minimal re-training required

to achieve accurate cursor control.

In one dimensional experiment, the learning process is rapid (3-24mins, see (Leuthardt,

Miller et al. 2006)). Though not always highly focal, we have observed cortical activity

that increases with improved performance (Figure 7B). Anecdotally, this is associated with

a psychological ’de-linking’ of the screening behavior (e.g., hand movement imagery) and

the cursor control, where the cursor gains some kind of abstract, tool-like, representation

with the subject. Recent results (an example is illustrated in Figure 7C) have demonstrated

efficacy using ECoG for two-dimensional control(Schalk, Miller et al. 2008). This requires

two independent signals to drive the two degrees (typically up-down and left-right cursor

position, as shown in figure 7C). The motor system allows for some intuitive, separable

features, using, for example, hand and mouth, which are distinct when high-frequency
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ECoG features are used(Miller, Leuthardt et al. 2007; Miller, Ojemann et al. 2008; Miller,

Shenoy et al. 2008; Schalk, Miller et al. 2008). Despite success, simultaneous 2D control has

been less robust than for one dimension. One reason for this is that it requires a good deal

more mental coordination by the subject. For example, in this simple form of a 2D target

task BCI, there is fundamental uncertainty in the null condition. When increased power in

one channel drives the cursor up and a lack of power down, with increased power in another

channel driving the cursor to the left, then weak power in both channels could be ambiguous

when targeting a down or right sided target. It takes practice learning to coordinate the

two null directions. Even if the signals are not overlapping during the screening for the two

different tasks, when combined to achieve two-dimensional cursor control they may have

some initial independence. Through feedback, however, these can be segregated by some

individuals (Miller, Blakeley et al. 2008; Schalk, Miller et al. 2008).

A.5 Summary

ECoG provides robust signals that can be used in a BCI system. Using different kinds of

motor imagery, subjects can volitionally control the cortical spectrum in multiple brain areas

simultaneously. The experimenter can identify salient brain areas and spectral ranges using

a cue based screening task. These different kinds of imagery can be coupled to the movement

of a cursor on a screen in a feedback process. By coupling them first separately, and later

in concert, the subject can learn to control multiple degrees of freedom simultaneously in a

cursor based task.
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Figure A.1: The necessary components of the electrocorticographic BCI experimental set-
ting.

(A) The experimenter. While this element may seem trivial or an afterthought, the

individual who interacts with the subject, in the clinical setting, must have an agreeable

disposition. There are several reasons for this. The first is that the subjects are patients in

an extremely tenuous position, and it is important to encourage and reinforce them with

genuine compassion. Not only is this a kind thing to do, but it is the difference between 10

minutes and 10 hours of experimental recording and participation. The second is that the

hospital environment requires constant interaction with physicians, nurses, and technicians,

and all of these individuals have responsibilities that take priority over the experimental

process at any time. It is important to cultivate and maintain a sympathetic relationship

with these individuals. The last reason is that the hospital room is not a controlled environ-

ment. There is non-stationary contamination, a clinical recording system to be managed in

parallel, and constant interruption from a myriad of sources. The researcher must be able

to maintain an even disposition and be able to constantly troubleshoot. (B) A central

computer. This computer will be responsible for recording and processing the streaming
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amplified potentials from the electrode array, translating the processed signal into a control

signal, and displaying the control signal using an interface program. The computer must

have a large amount of memory, to buffer the incoming data stream, a fast processor to

perform signal processing in real-time and adequate hardware to present interface stimuli

with precision. Therefore, it is important to have as powerful a system as possible, while

remaining compact enough to be part of a portable system that can easily be brought in and

out of the hospital room. An important element not shown in the picture is the software

which reads the incoming datastream, computes the power spectral density changes, and

uses these changes to dynamically change the visual display of an interface paradigm. We

use the BCI2000 program(Schalk, McFarland et al. 2004) to do all of these things simulta-

neously. (C) A second monitor. It is a good idea to have a second monitor for stimulus

presentation. It should be compact with good resolution. (D) The subject. It is impor-

tant to make sure that the subject is in a comfortable, relaxed position. Not just because

it’s nice, but also because an uncomfortable subject will have extraneous sensorimotor phe-

nomena in the cortex and also will not be able to focus on the task. (E) Signal splitters.

If a second set of amplifiers (experimental or clinical) is being used in parallel with the

clinical ones used for video monitoring, the signal will be split after leaving the scalp, and

before the clinical amplifier jack-box. The ground must be split as well, and be common

between both amplifiers, or else there is the potential for current to be passed between the

two grounds. Several clinical systems have splitters built in to the clinical wire ribbons,

and these should be used whenever possible. (F) Amplifiers. These will vary widely

by institution, and, also depending on the institution, will have to have FDA approval (the

process of obtaining FDA approval is associated with both higher cost and lower quality

amplifiers). Many amplifier systems will have constrained samplerates (A/D rates), built in

filtering properties, and large noise floors which obscure the signal at high frequencies. Re-

gardless of which system is used, it is important to characterize the amplifiers independently

using a function generator.
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Figure A.2: Co-registration of electrodes and plotting of data on template cortices.

(A) Clinical schematic. A clinical schematic will typically be obtained from the

surgeon. The position of each electrode may then be correlated with potential recordings

from each amplifier channel. (B) Diagnostic imaging. Different diagnostic imaging may

be obtained from the course of the clinical care, or through specially obtained high-fidelity

experimental imaging. The level and quality of this may be highly variable across time

and institutions, from x-ray only, to high-fidelity pre-operative magnetic resonance imaging

(MRI) and post-operative fine-cut computed tomography (CT). (C) Cortical electrode

position reconstruction. The clinical schemata and diagnostic imaging may be used in

concert to estimate electrode positions, recreate cortical locations, and plot activity and

analyses. The most simple method for doing this, using x-rays, is the freely-available LOC

package(Miller, Makeig et al. 2007), although there is the promise of more sophisticated

methodology for doing this, when higher fidelity diagnostic imaging is obtained.



207

Figure A.3: Identifying areas of activity during simple tasks using cross-correlation

(A) Each electrode is treated independently, although generally it is a good idea

to re-reference each electrode by subtracting the average timeseries from the time series of

each electrode (common average re-referencing)(Miller, Leuthardt et al. 2007). (B) The

potential is measured during a sequence of cues. Here, the cues are for hand and

tongue movement in a screening task, with rest interleaved, but the process can also be used

for online data, comparing periods where different targets were on the screen. (C) The

normalized power spectral density (PSD) can be calculated for each cue (or target)

period. This is done by calculating the raw power spectral density for each period, and
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then dividing each by the average. A sample of the PSD of a specific range for each cue is

used to compare cues of different types (one is shown here as the shaded bar in the back

of each). (D) Samples of band-limited PSDs for cues of different type illustrate the

difference in the distribution of hand movement samples and rest samples, in this example.

(E) Activation, quantified using the square of the cross-correlation (r2), signed to reflect

whether the significance represents an increase or a decrease in the band-limited PSD for

movement with respect to rest (or, in the case of a target task, whether one target represents

an increase or decrease in power with respect to the other target). What this metric tells

us is how much of the variation in the joint data set σ2
m∪r can be accounted for by the

fact sub-distributions m and r might have different means, m and r (Nm, and Nr, are

the number of samples of type m, r, respectively, and Nm∪r = Nm + Nr). (F) ”Feature

maps” can tell us about which electrode-frequency combinations discriminate

between cues. We can calculate Amr for each electrode, frequency band combination, to

create feature maps of discriminative potential. When performed on a screening task with

overt or covert movement cues, we can identify specific electrode-frequency power features

as candidates for feedback.
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Figure A.4: Characteristic changes in the power spectrum with activity.

(A) Example of a characteristic spectrum that demonstrates the spectral shift be-

tween hand movement and rest for a task-specific electrode. There is a decrease in the power

at lower frequencies with activity, and an increase in the power at higher frequencies(Crone,

Miglioretti et al. 1998; Crone, Miglioretti et al. 1998; Aoki, Fetz et al. 1999; Miller,

Leuthardt et al. 2007). The intersection in the spectrum dubbed the ”primary junction”

(J0). In a recent study(Miller, Shenoy et al. 2008), involving hand and tongue movement,

it was found that, for hand movement, J0 = 48± 9 Hz (mean ± SD) (range 32-57Hz), and,

for tongue movement, J0 = 40 ± 8 Hz (range 26-48Hz). Rather than this indicating two

phenomena, a “desynchronization” at low frequencies, and a “synchronization” at high fre-

quencies, as some have proposed(Crone, Miglioretti et al. 1998; Pfurtscheller, Graimann et

al. 2003), this might instead reflect the superposition of the phenomena(Miller, Leuthardt et

al. 2007), described in (C) and (D), that produce an intersection (J0) in the power spectrum

in the classic gamma range (shown shaded). Choices for feedback features should explicitly
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avoid J0. The left shaded region is from 8 to 32Hz (LFB), and the right shaded region is

from 76 to 100 Hz (HFB). (B) Demonstration different spatial extent of changes

in these high and low frequency ranges on the cortical surface. The top cortical

map shows the activation distribution for the HFB (here, reflecting an increase in spectral

power with movement). The bottom map, for the LFB, shows a decrease in spectral power

with movement over a broader set of electrodes. (C) Decoherence of discrete peaks in

the power spectrum with movement (ERD). This is consistent with the classic event-

related desynchronization at lower frequencies(Crone, Miglioretti et al. 1998; Pfurtscheller

1999; Miller, Leuthardt et al. 2007). (D) Power-law like power spectrum that shifts

upward with movement. It is most easily observed at high frequencies because it is

masked by peaked ERD at low frequencies. Recent findings have hypothesized and demon-

strated that this power-law like process and the ERD may be decoupled from each other

and that the power-law like process(Miller, Leuthardt et al. 2007; Miller, Sorensen et al.

2008; Miller, Zanos et al. 2008) may be used as an extremely good correlate of local activity,

with extremely high (10-15ms) temporal precision(Miller, Zanos et al. 2008).
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Figure A.5: Schematic representation of the closed-loop brain-computer interface that we
use.

An individual performs movement imagery. The potential, V (t), is measured from each

electrode with respect to a ground, and amplified. The ground may come from the scalp,

or from an internal ECoG electrode, but is dictated by the primary clinical system because

of the necessity for a common ground between the two amplifiers. These potentials are

then converted to an estimate of the power, in a specific range, at each point in time

P (t) = f (V (t)). The function f(t) will first use a window in time to calculate a power

spectrum - a longer window will produce a better estimate of the spectrum, a shorter

window will allow for a higher effective bitrate of the BCI, and the optimal window size will

represent a tradeoff between the two (we typically use a quarter-second window). The power

P (t) will be chosen from a confined frequency range from the spectrum. It is important that

the window length be significantly longer than the (lowest frequency used)−1, so that the

lowest frequency used may be estimated with some accuracy. Papers that are submitted,

and forget to do this, are rejected (really). The spectral estimation method used may be

a Fourier Transform technique, or may be a parameterized estimation technique, like the

autoregressive model method. Parameterized techniques have the potential advantage of

better spectral estimation using shorter time windows, but the drawback that it can be

hard to know how many parameters to use (model order), and that different model orders
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can produce widely different results. We couple the power, P (t), to the movement of a

cursor in a given direction, according to the simple linear relation ẏ = g (P (t)− P0), where

P0, is a power level somewhere between movement imagery and rest, determined from a

screening task (as in Figure 3). This difference is then coupled to the movement of a cursor,

with speed determined by the parameter g, which can be adjusted in the beginning of the

task to be comfortable to the subject. The subject views changes in the cursor trajectory,

and the subject then modifies the nature of the imagery to cause the cursor to move toward

their target choice. After 8-10 minutes, in the 1-D task, subjects will abstract away from the

imagery and are able to imagine the movement of the cursor itself and produce appropriate

spectral changes.

Figure A.6: Feature reassessment after feedback during a speech imagery task.

(A) Two different feedback sites. An initial feedback site was chosen at site ”1”,

and, upon reassessment, a secondary feedback site was chosen at site ”2”. (B) The
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feature map from a speech imagery screen identified a frontal site for control (labeled

”1” in (A)), which was coupled to a cursor control task. The subject was not able to

accurately control the cursor in the task, obtaining only 45 (C) A feature map from this

unsuccessful feedback run demonstrated that, while there was no significant difference

at the feedback site, there was a different site (labeled ”2” in (A)). (D) The feature

map following feature reassessment. The subject was able to rapidly attain 100%

target accuracy with the new feature, and the most significant change was in the reassessed

electrode.
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A.6 A step-by-step walkthrough of the BCI process

We conclude this chapter with a step-by-step example of successful implementation of elec-

trocorticographic BCI.

A.6.1 Background:

The patient is an 18 year old right handed woman with intractable seizures related to a

left frontal lesion. Electrodes were placed to map seizures and localize speech function

prior to resective surgery, and the array covered speech areas and primary, peri-central,

sensorimotor cortex. This excellent coverage of motor cortex made her an ideal candidate

for multiple degree of freedom cursor control. Signals were split outside of the patient, with

a common ground and reference to the clinical system. The experiments were conducted in

three stages spanning two sessions in the same day. The subject was positioned comfortably

in her hospital bed throughout the experimental process, and the experimental setting is

illustrated in figure 5. The electrode localization and cortical plotting were performed using

the LOC package(Miller, Makeig et al. 2007).

The three steps that the experiment was constructed upon were cue-based screening for

feature identification, independent one-dimensional cursor-to-target feedback, and combined

two-dimensional cursor-to-target feedback.

A.6.2 Screening for feature identification.

In response to 3 second cues, she repetitively moved either her hand or her tongue in

repetition, resting for 3 seconds in between each cue. There were 30 cues each for hand and

tongue, and they were interleaved in random order to reduce the influence of anticipation.

Following the six minutes of overt movement, an identical task was performed, except

that rather than actually move the hand and tongue, she imagined moving her hand and

tongue. She was explicitly instructed to imagine the kinetics of the movement, not just the

sensation (this was found to produce the most robust signal change in a study by Neuper
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et. al.(Neuper, Scherer et al. 2005)). A comparison of movement and rest periods (as

shown in figure 3) produced feature maps for movement and imagery, shown in the top

row of (A). These reveal that changes during imagery mimic those of overt movement, but

are less intense (note that the color bar scales are different for movement than imagery).

Cortical projections of the imagined and real changes for both high (76-100Hz) and low (8-

32Hz) frequency changes reveal that the spatial distributions are similar, but the imagery

associated change is more focal(Miller, Ojemann et al. 2008). The number to the top right

of each cortical projection indicates the maximum absolute value of the activation, since

each brain is scaled to the maximum. Electrodes weights with statistically insignificant

change were not projected. These types of projections can be a very useful sanity check to

verify that the locations of features identified on a feature map make sense anatomically. A

similar screening for repetition of the word ”move” was performed, to select a feature for

the imagery-based feedback shown in part (B).

A.6.3 One-dimensional cursor feedback

In the second stage, we provided the subject with feedback based upon movement and

speech imagery. The imagery was coupled to cursor movement, as detailed in figure 5.

Figure inset (B) demonstrates the feature chosen, an 80-95Hz frequency range from an

electrode in primary mouth motor area. The mean power, P0, lied between the mean power

during speech imagery and rest. If the mean power, during the task, was above this level

(obtained by speech imagery) then the cursor would move up, and if it was below, the cursor

would move down, according to the relation ẏ = g (P (t)− P0). The speed parameter, g,

was determined online prior to the first experimental run, such that it was “reasonable” i.e.

the cursor velocity changes on roughly the same timescale as the electrode-frequency range

feature. In theory, this could be estimated offline prior to the first run by examining the

variation in the power of the feature during the screening task, but in practice, the rapid

adjustment parameter built into the BCI2000 program(Schalk, McFarland et al. 2004) is

a much easier way to get a comfortable speed parameter. The right-most portion of (B)
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demonstrates the activation during the 4 (∼2 minute) trials of imagery based feedback.

Each cortical projection represents the activation between upper targets (speech imagery)

and lower targets (rest); because the feature chosen was at a high frequency, above the

intersection in the power spectrum (shown in figure 4), the power in the feature increases

with activity. She rapidly learned to control the cursor, with the signal becoming both more

pronounced and more focused in the feedback area. After the third run, she reported having

gone from the coupled imagery (imagined speech) to just thinking about the cursor moving

up and down. Again, only significant changes were plotted to the template cortex. The

activity in the most ventral posterior electrode (bottom right) hints at activity in Wernicke’s

area, and persists throughout (it appears to be less, but only because the primary areas are

becoming more pronounced, and the overall scale (to the top right) is increasing). Similar

one dimensional tasks were performed for tongue and hand. The hand movement was

coupled to left-right cursor movement, in preparation for the combination of the two into a

two dimensional task.

A.6.4 Two-Dimensional Cursor Feedback

In the last stage of the experiment, two one dimensional control signals are combined into

a single cursor to target task. If the two signals are independent, as is the case here, then

the transition between robust control in two one-dimensional tasks and robust control in

one two-dimensional task is straightforward. The combination of hand and tongue linked

features is good (as in (C)), because they are well demarcated on the pre-central gyrus,

but the pair chosen in any particular instance will be dependent on the coverage of the

electrode array. The example shown in (C), with the frequency range 80-90Hz demonstrates

how robust, screened, features (left) can be used for robust control in one-dimensional tasks

(center). The electrode for up-down control in both the one- and two-dimensional tasks was

from the classic tongue area. The electrode for left-right control in both the one- and two-

dimensional tasks was from the classic hand area. The one- and two-dimensional control

tasks were successful (100% Left/Right 1D, 97% Up/Down 1D, and 84% 2D).
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Figure A.7: A single case demonstration of the entire BCI process.
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Appendix B

CORTICAL ELECTRODE LOCALIZATION FROM X-RAYS AND
SIMPLE MAPPING FOR ELECTROCORTICOGRAPHIC

RESEARCH: THE “LOCATION ON CORTEX” (LOC) PACKAGE
FOR MATLAB

Medically refractory epilepsy accounts for more than 30% of the epilepsy population. Scalp EEG

electrodes have limited ability to localize seizure onset from deep structures and implantation of

subdural electrodes with long term monitoring provides additional information. Apart from clinical

application, this patient population provides a unique opportunity for acquiring electrocorticography

data in research paradigms. We present a method for rapid localization of electrodes using lateral

and anterior-posterior x-rays. Skull landmarks and proportions are used for co-registration with

the standardized Talairach coordinate system. This MATLAB-based “Location On Cortex” (LOC)

package facilitates rapid visualization of clinical and experimental data in a user-friendly manner.

B.1 Introduction

Medically refractory epilepsy affects more than 30% of the epilepsy population (Kwan and Brodie,

2000). One significant clinical challenge is the accurate localization of seizure onset. Scalp EEG elec-

trodes are limited in their ability to localize seizure onset from deep structures, and implantation of

subdural electrodes with long term monitoring provides additional seizure localization information

(Lesser, Gordon et al., 1991). In addition to the clinical application of subdural electrodes, long

term electrocorticographic monitoring provides a unique opportunity for acquiring data in research

paradigms. In order to accurately interpret the seizure onset and to interpret electrocorticography

data for research paradigms, the three-dimensional location of the electrodes must be known. Al-

though intra-operative photographs of subdural grids provide locations for electrodes on exposed

cortex (see supplemental figure), they do not provide information for electrodes passed beyond the

limits of the cranial exposure. These electrodes may be located with post-operative CT or MRI

(Wellmer, von Oertzen et al., 2002; Kovalev, Spreer et al., 2005), but this process requires so-

phisticated image acquisition preoperatively and postoperatively and these image studies are often
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unavailable. Post-operative x-rays, however, are ubiquitous and readily accessible. The method and

the associated package presented here address the need for a fast, reliable co-localization technique

to locate and standardize radio-opaque electrodes from anterior-posterior (AP, also called ‘coronal’)

and lateral x-rays.

This MATLAB (The MathWorks, Inc.) based “Location On Cortex” (LOC) package uses skull

landmarks and proportions for co-registration with the standardized Talairach coordinate system.

The Talairach coordinate system defines the origin as the anterior commisure (AC) and the anterior-

posterior (y) axis as the line connecting the anterior and posterior commisures (AC/PC line).

The x axis is perpendicular to the y axis in the axial plane, and the z axis is normal to the x-y

plane(Talairach and Tournoux, 1988).

Skull landmarks visible on the lateral x-ray may be used to approximate the Talairach axes.

The line segment drawn from the glabella to the inion (GI line) is parallel to the AC/PC line (Fox,

Perlmutter et al., 1985; Friston, Passingham et al., 1989). The y axis is defined as the AC/PC line.

The x axis is the direction of left-right symmetry and the z axis is perpendicular to the GI line, and

thus normal to the x-y plane. The origin is defined in the x direction as the center of the skull on AP

x-rays. In the z direction, it is defined as 21% along the perpendicular line segment corresponding to

the maximum distance between the GI line and the inner table of the superior surface of the skull.

In the y direction, the distance from the posterior inner table of the skull to the anterior inner table

along the y axis is normalized to 173mm, and the origin is taken at 115mm anterior to the midpoint

of this line. The y axis is positive anterior to the origin, the x axis is positive on the patient’s right,

and the z axis is positive superior to the origin.

To interpret the location of subdural electrodes for clinical analysis and inter-patient comparison,

the patient’s brain is normalized to standard dimensions. By making the assumption that the inner

table of the skull matches the brain surface, the maximum x, y, and z coordinates of the inner table

of the skull can be normalized to a template brain volume. Furthermore, the position of any radio-

opaque objects within this volume can also be normalized to the template brain. The AFNI template

brain is routinely used in imaging research and is available in Talairach coordinates (Collins, Neelin

et al., 1994; Brett, Johnsrude et al., 2002; Holmes, Hoge et al., 1998; http : //afni.nimh.nih.gov).

Its maximum x, y, and z dimensions are 138 mm, 173 mm, and 116 mm, respectively. Normalization

to this template brain allows clinicians and researchers to interpret electrocorticographic data with

reference to this standardized brain atlas.
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B.2 Methods

This technique was implemented on patients enrolled in an electrocortigraphic research study at the

University of Washington Regional Epilepsy Center. As part of standard clinical practice, subdural

platinum electrode arrays with 1 cm center-to-center separation were implanted for seizure local-

ization (AdTech, Racine, WI). Digital skull x-rays were obtained for clinical purposes to localize

the subdural electrodes. These x-rays were stored and analyzed as part of a pre-approved research

protocol supervised by the University of Washington Institutional Review Board.

The x-ray images were converted to JPEG or BMP format and used with the Location on

Cortex (LOC) package for MATLAB, freely downloadable from the EEGLAB site (Swartz Center

for Computational Neuroscience, 2006, see http : //sccn.ucsd.edu/eeglab/plugins.html).

The orthogonal axes in Talairach space were calculated using skull landmarks. The user identifies

the glabella and inion, and the inner table of the skull. Complementary bilateral structures on the

AP x-ray (for example, the mandibular condyles) are used to define the x origin.

Using the inner table of the skull to approximate the dimensions of the surface of the brain, the

axes are linearly scaled to match the MNI template brain in Talairach coordinates. This is done by

resizing the width of the brain to 138 mm, the anterior-posterior length of the brain to 173 mm and

the positive z axis to a length of 75 mm.

Radio-opaque electrodes present on the patient’s skull x-rays are co-registered to the template

brain surface. Interpolation to a cortical shell template may be used to simplify this process (Lan-

caster, Fox et al., 1999), facilitating the localization of positions off of the cortical surface by tele-

scoping. A convex shell template is generated from the model brain by radially smearing each point,

both in the polar direction and the azimuthal direction (see Figure 1E where the shell is shown in

cross section). Cortical surface locations in regions of low curvature from the lateral perspective

require localization only the lateral x-ray, since a given y and z coordinate uniquely determine an

x coordinate on the surface of the template shell (Fox, Perlmutter, and Raichle, 1985). In regions

of high curvature (e.g. orbitofrontal, occipital, and subtemporal locations), small changes in y and

z position produce large changes in the estimated x coordinate. In these cases, the user must also

define each electrode location on the AP x-ray to calculate the set of x-coordinates.

By our assumption that the inner table of the skull matches the brain surface, the coordinate

triplets may not be precisely on the surface of the template brain. By representing these locations

using polar coordinates, they may be radially telescoped to the surface of the convex hemispheric
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template with the same solid angle. This is illustrated in cross-section in Figure 1, inset (E).

The LOC package includes graphical rendering functions to present the electrode locations on the

surface of the AFNI template brain. Unrestricted three dimensional rotation is possible to visualize

the electrode locations.

An interleaved face and house picture presentation paradigm was used in conjunction with the

LOC package to identify subtemporal face processing areas (figure 2). An interleaved movement

and rest task where subjects performed 3 second blocks of hand or tongue movement followed by 3

seconds of rest was used with the LOC package to identify hand and tongue rolandic cortex. Maps

of the cross-correlation strength of power changes (between movement and rest) at each electrode in

a cortical ensemble are shown in figure 3.

To assess the precision of resulting locations and inter-user reproducibility of this method, two

of the authors independently calculated the subdural electrode positions using the LOC package.

B.3 Results

This technique was used on 17 patients enrolled in an electrocortigraphic research study at the

University of Washington Regional Epilepsy Center. We present the results for 4 patients as a

demonstration of the technique. Figures 1, 2, and 3 demonstrate how the LOC program may be

used to localize electrodes and visualize electrocorticographic data.

To examine how reproducible the calculation of electrode positions was with this method, two of

the authors independently calculated positions in 4 subjects. For two subjects, the lateral x-ray was

used to calculate the location of a 64-electrode grid array. The mean distance between calculated

positions was 1.3 mm (SD: 2.1 mm) for the first subject and 1.2 mm (SD: 0.7 mm) for the second

subject. Two other subjects had a total of 36 electrodes each in frontal, sub-temporal, and occipital

sites. Electrode locations were calculated from a combination of the lateral and AP x-rays. The

mean distance between calculated positions was 3.5 mm for the third subject (SD: 2.5 mm) and 3.6

mm (SD: 2.4 mm) for the fourth subject. The diameter of each electrode was 4 mm. These results

suggest that the method is highly reproducible, with a standard error smaller than the width of each

electrode.

The plotting functions of the LOC package may be used to present electrode locations and

render electrocorticographic data onto the template brain surface. For example, electrodes found

to be significant for some effect may be highlighted, as shown in Figure 2 where face-specific and

visually responsive electrode locations are identified. Simple enumeration of electrode number for
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identification of relevant areas may be used to compare electrode locations with known functional

areas in standardized coordinates. Alternatively, superposition of weighted kernels at each electrode

locus presents continuous spatial distributions of electrocorticographic change with a particular task.

When the changes in cortical potential with movement are examined both in a single case and in

a large cohort, spatial normalization tightly localizes these changes to coordinates in sensorimotor

cortex (Figure 3). Discussion This Location on Cortex (LOC) package facilitates the rapid localiza-

tion of subdural electrode arrays onto a standardized template brain volume. Once familiar with

the procedure, the average time to localize a 64-contact grid using lateral x-ray only, or a 20 contact

subtemporal strip array using AP and lateral x-ray is 5 to 10 minutes. Co-registration of electrode

locations by individual calculation takes an hour or more for a 64-contact grid using a lateral x-ray.

Calculation of Talaraich axes using both AP and lateral x-rays may take considerably longer, and

3-D telescopic interpolation is not feasible by hand.

The major limitations of this technique are the quality of the skull x-rays and the assumptions

made based on these x-rays. Differences in x-ray technique may affect the differential magnification

of electrodes and skull landmarks. Also, the electrode location calculations assumes the x-rays are

directly lateral and AP (i.e., without rotation). Deviations from this assumption may be corrected by

rotating all measurements appropriately if the axis and magnitude of rotation is known. Furthermore,

the angle of the AP x-ray may affect the amount of superposition of subtemporal electrodes, creating

challenges for identifying individual electrodes.

Scaling of the patient’s x-ray to match the template brain is limited to the three cardinal di-

rections without oblique correction. This linear transformation limits the accuracy of electrode

localization, but the functional results in our patients agree well with known cortical organization,

as demonstrated in Figures 1 and 2.

Cross-subject variability and postoperative brain shift also limit the accuracy of this technique.

The inner table of the skull is used as a surrogate for the cortical surface in calculations; this does not

take into account the possible shift in brain shape after implantation of subdural electrode arrays that

may result in the electrode locations being mapped to subcortical locations on the template brain.

Telescopic projection onto the surface of the template brain is required to reduce this error. Co-

registration onto a template may ultimately be limited by cross-subject cortical variability, such as

regional differences in cortical cytoarchitecture (Rajkowska and Goldman-Rakic, 1995), or functional

variability in, for example, the location of language cortex (Ojemann, Ojemann et al., 1989).

If specialized pre-operative MRI imaging sequences are available, the patient’s own brain can be



226

used for the volumetric template using brain extraction algorithms (Dale, Fischl et al., 1999; Kovalev,

Spreer, Honegger, Zentner, Schulze-Bonhage, and Huppertz, 2005). This requires normalization

of the brain volume to Talairach dimensions. A custom shell can be generated from this, and

cortical locations calculated accordingly. These cortical locations plotted on this particular brain

will be displayed as biologically precise cortical phenomena, with associated Talairach coordinates

to compare with known functional areas.

B.4 Conclusion

The Location on Cortex (LOC) package implements a rapid and reliable method of estimating the

coordinates of radio-opaque markers such as subdural electrocorticography electrodes. The open

source LOC package can also be used to visualize clinical and experimental data in a quantitative

fashion with reference to a standardized brain template. This tool can be readily implemented in

clinical research settings in which invasive electrophysiology is recorded during the treatment of

patients with medically refractory seizures or other brain pathologies.
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Figure B.1:

(A) The anterior commisure - posterior commisure (AC-PC) line (2 to 3) defines the Talairach

y axis, shown in yellow on a patient MRI. The glabella-inion (GI) line (1 to 4) is parallel to AC-PC

line and the glabella (1,8) and inion (4,5) are therefore used to approximate the AC-PC line. (B)

X-ray image of the same patient. The y-axis (6 to 7, teal) is positioned parallel and superior to the

GI line (5 to 8, red), 21% along the length of the longest perpendicular line segment joining the

GI line to the skull’s inner table (perpendicular line - blue). The distance between posterior and

anterior inner tables of the skull (6 to 7) along the y axis is scaled to template dimensions. (C) The

y-z origin, the estimated position of the AC, is defined 115mm anterior of the midpoint (9) of the

line segment between the two skull tables. (D) A vertical line segment is drawn that perpendicularly

bisects a user-defined line segment joining two symmetric structures (10 and 12). The x,y,z origin is

defined as the intersection of this line segment with the y-z origin defined on the lateral projection.

The maximal biparietal distance measured on the AP x-ray (11) is scaled to the template brain. (E)

Points that do not fall on the cortex after identification using the AP and Lateral x-rays (e.g. 13

and 15) may be projected to the surface of cortex by switching to spherical coordinates, with the

center of mass of the surface template (shown in light blue / white in BW figure) as the origin (16).

The point on the surface template (14) for this solid angle (dark blue line / white line in BW figure)

defines the replacement location, which is converted to standard Talairach coordinates.
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Figure B.2:

(A-D) Localization of strip electrodes calculated from lateral (E) and AP (F) x-rays. (A) The

functional localization of fusiform gyrus face recognition area in a patient with bitemporal electrode

strips. The patient was shown pictures of faces or houses, and areas showing a selective N170

response for face stimuli were identified. Bilateral changes were observed in the electrodes shown

with black dots (located at (-41, -27, -22) (-37, -35, -23) (-30, -43, -17) on the left and (28, -48, -16),

(38, -47, -21), (47, -44, -24) on the right). These locations correspond with previously published

data for the fusiform face area (Kanwisher, McDermott et al., 1997).
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Figure B.3:

Gaussian interpolated maps for hand (A, C) and tongue (B, D) changes associated with a move-

ment task in a single patient (A, B) and cohort average (C, D). Yellow and red surface colors indicate

power increases in the 76-100Hz frequency band during this task. Blue dots indicate electrode lo-

cations and white dots highlight electrodes with a statistically significant response after Bonferroni

correction (p¡¡0.01). All highlighted motor electrodes are located within the primary motor area,

Brodmann area 4 (Fox and Uecker, 2005). (A) The highlighted electrode coordinates for the hand

movement task are (-47, -25, 57), (-44, -14, 56), and (-42, -3, 55). (B) The highlighted electrode

coordinates for the tongue movement task are (-60, -3, 30), (-57, -13, 40), (-53, 8, 38). Published

coordinates of the activation area center-of-mass based on fMRI data are (-36+/- 3, -22+/-4, 58+/-

3) for hand and (-52+/-3, -5+/-3 29+/-6) for tongue (Alkadhi, Crelier et al., 2002). Thus, the

observed activation areas in these patients flank the center-of-mass area reported from fMRI data.

Insets C and D illustrate the results of hand and tongue area mapping averaged across a large cohort

(C, hand, n=17 and D, tongue, n=14) and projected to the left hemisphere for all patients. The

mean electrode positions were y=-15 +/- 11mm, z=52 +/- 11mm for hand movement, and y=-9

+/- 11mm, z=31 +/- 18mm for tongue movement. The white cross represents the mean position

and variance along each axis.
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Figure B.4: Supplemental figure - We performed a comparison of the LOC method with
intra-operative figures to show correspondence.

(A) A photograph taken before placement of a subdural grid array is used to identify brain sulcal

landmarks. (B) The same sulci are identified after electrode placement. (C) The lateral x-ray used

to identify the positions of cortical electrodes using the LOC package. (D) The identified electrode

positions with the exposed craniotomy unshaded, and the sulci corresponding to those identified in A

and B are shown. The cortical schematic in D has been rotated so that its orientation is closer to that

of A and B. Comparison of B with D reveals agreement between intra-operative findings and the LOC

localization results. Particularly, the central sulcus (shown in light blue) is flanked anteriorly and

posteriorly by the same electrodes in both B and D. This type of correspondence between identified

electrodes locations on the AFNI template brain and subject specific cortical structures is clear in this

example, but this may not be a generalized phenomenon. Any interpretation of cortical location in a

standardized coordinate space must take into account that there is considerable variation in cortical

structure across individuals (Van Essen, 2005; NeuroImage; 28(3):635-62), and a single template or

normalized coordinate system will not reflect this.
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