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Preface

There is ever-increasing global demand for more affordable and effective clinical and
healthcare services. New techniques and equipment must therefore be developed to aid
in the diagnosis, monitoring, and treatment of abnormalities and diseases of the human
body. Biomedical signals (biosignals) in their manifold forms are rich information sources,
which when appropriately processed have the potential to facilitate such advancements.
In today’s technology, such processing is very likely to be digital, as confirmed by the
inclusion of digital signal processing concepts as core training in biomedical engineering
degrees. Recent advancements in digital signal processing are expected to underpin key
aspects of the future progress in biomedical research and technology, and it is the purpose
of this research monograph to highlight this trend for the processing of measurements of
brain activity, primarily electroencephalograms (EEGs).

Most of the concepts in multichannel EEG digital signal processing have their ori-
gin in distinct application areas such as communications engineering, seismics, speech
and music signal processing, together with the processing of other physiological signals,
such as electrocardiograms (ECGs). The particular topics in digital signal processing
first explained in this research monograph include definitions; illustrations; time-domain,
frequency-domain, and time-frequency domain processing; signal conditioning; signal
transforms; linear and nonlinear filtering; chaos definition, evaluation, and measurement;
certain classification algorithms; adaptive systems; independent component analysis; and
multivariate autoregressive modelling. In addition, motivated by research in the field over
the last two decades, techniques specifically related to EEG processing such as brain
source localization, detection and classification of event related potentials, sleep signal
analysis, seizure detection and prediction, together with brain–computer interfacing are
comprehensively explained and, with the help of suitable graphs and (topographic) images,
simulation results are provided to assess the efficacy of the methods.

Chapter 1 of this research monograph is a comprehensive biography of the history and
generation of EEG signals, together with a discussion of their significance and diagnostic
capability. Chapter 2 provides an in-depth introduction to the mathematical algorithms
and tools commonly used in the processing of EEG signals. Most of these algorithms
have only been recently developed by experts in the signal processing community and
then applied to the analysis of EEG signals for various purposes. In Chapter 3, event-
related potentials are explained and the schemes for their detection and classification are
explored. Many neurological and psychiatric brain disorders are diagnosed and monitored
using these techniques. Chapter 4 complements the previous chapter by specifically look-
ing at the behaviour of EEG signals in patients suffering from epilepsy. Some very recent
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methods in seizure prediction are demonstrated. This chapter concludes by opening up
a new methodology in joint, or bimodal, EEG–fMRI analysis of epileptic seizure sig-
nals. Localization of brain source signals is next covered in Chapter 5. Traditional dipole
methods are described and some very recent processing techniques such as blind source
separation are briefly reviewed. In Chapter 6, the concepts developed for the analysis and
description of EEG sleep recordings are summarized and the important parameters and ter-
minologies are explained. Finally, in Chapter 7, one of the most important applications of
the developed mathematical tools for processing of EEG signals, namely brain–computer
interfacing, is explored and recent advancements are briefly explained. Results of the
application of these algorithms are described.

In the treatment of various topics covered within this research monograph it is assumed
that the reader has a background in the fundamentals of digital signal processing and
wishes to focus on processing of EEGs. It is hoped that the concepts covered in each
chapter provide a foundation for future research and development in the field.

In conclusion, we do wish to stress that in this book there is no attempt to challenge
previous clinical or diagnostic knowledge. Instead, the tools and algorithms described in
this book can, we believe, potentially enhance the significant clinically related information
within EEG signals and thereby aid physicians and ultimately provide more cost-effective
and efficient diagnostic tools.

Both authors wish to thank most sincerely our previous and current PhD students who
have contributed so much to the material in this work and our understanding of the field.
Special thanks to Min Jing, Tracey Lee, Kianoush Nazarpour, Leor Shoker, Loukianous
Spyrou, and Wenwu Wang, who contributed to providing some of the illustrations. Finally,
this book became truly possible due to spiritual support and encouragement of Maryam
Zahabsaniei, Erfan Sanei, and Ideen Sanei.

Saeid Sanei
Jonathon Chambers

January 2007
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1
Introduction to EEG

The neural activity of the human brain starts between the 17th and 23rd week of prenatal
development. It is believed that from this early stage and throughout life electrical signals
generated by the brain represent not only the brain function but also the status of the
whole body. This assumption provides the motivation to apply advanced digital signal
processing methods to the electroencephalogram (EEG) signals measured from the brain
of a human subject, and thereby underpins the later chapters of the book.

Although nowhere in this book do the authors attempt to comment on the physiological
aspects of brain activities there are several issues related to the nature of the original
sources, their actual patterns, and the characteristics of the medium, that have to be
addressed. The medium defines the path from the neurons, as so-called signal sources,
to the electrodes, which are the sensors where some form of mixtures of the sources are
measured.

Understanding of neuronal functions and neurophysiological properties of the brain
together with the mechanisms underlying the generation of signals and their recordings is,
however, vital for those who deal with these signals for detection, diagnosis, and treatment
of brain disorders and the related diseases. A brief history of EEG measurements is first
provided.

1.1 History

Carlo Matteucci (1811–1868) and Emil Du Bois-Reymond (1818–1896) were the first
people to register the electrical signals emitted from muscle nerves using a galvanometer
and established the concept of neurophysiology [1,2]. However, the concept of action
current introduced by Hermann Von Helmholz [3] clarified and confirmed the negative
variations that occur during muscle contraction.

Richard Caton (1842–1926), a scientist from Liverpool, England, used a galvanometer
and placed two electrodes over the scalp of a human subject and thereby first recorded
brain activity in the form of electrical signals in 1875. Since then, the concepts of
electro-(referring to registration of brain electrical activities) encephalo- (referring to emit-
ting the signals from the head), and gram (or graphy), which means drawing or writing,
were combined so that the term EEG was henceforth used to denote electrical neural
activity of the brain.

EEG Signal Processing S. Sanei and J. Chambers
 2007 John Wiley & Sons, Ltd



2 EEG Signal Processing

Fritsch (1838–1927) and Hitzig (1838–1907) discovered that the human cerebral can
be electrically stimulated. Vasili Yakovlevich Danilevsky (1852–1939) followed Caton’s
work and finished his PhD thesis in the investigation of the physiology of the brain in 1877
[4]. In this work, he investigated the activity of the brain following electrical stimulation
as well as spontaneous electrical activity in the brain of animals.

The cerebral electrical activity observed over the visual cortex of different species of
animals was reported by Ernst Fleischl von Marxow (1845–1891). Napoleon Cybulski
(1854–1919) provided EEG evidence of an epileptic seizure in a dog caused by electrical
stimulation.

The idea of the association of epileptic attacks with abnormal electrical discharges was
expressed by Kaufman [5]. Pravidch-Neminsky (1879–1952), a Russian physiologist,
recorded the EEG from the brain, termed the dura, and the intact skull of a dog in
1912. He observed a 12–14 cycle/s rhythm under normal conditions, which slowed under
asphyxia and later called it the electrocerebrogram.

The discoverer of the existence of human EEG signals was Hans Berger (1873–1941).
He began his study of human EEGs in 1920 [6]. Berger is well known by almost all
electroencephalographers. He started working with a string galvanometer in 1910, then
migrated to a smaller Edelmann model, and after 1924, to a larger Edelmann model. In
1926, Berger started to use the more powerful Siemens double coil galvanometer (attaining
a sensitivity of 130 µV/cm) [7]. His first report of human EEG recordings of one to three
minutes duration on photographic paper was in 1929. In this recording he only used a
one-channel bipolar method with fronto-occipital leads. Recording of the EEG became
popular in 1924. The first report of 1929 by Berger included the alpha rhythm as the
major component of the EEG signals, as described later in this chapter, and the alpha
blocking response.

During the 1930s the first EEG recording of sleep spindles was undertaken by Berger.
He then reported the effect of hypoxia on the human brain, the nature of several diffuse
and localized brain disorders, and gave an inkling of epileptic discharges [8]. During this
time another group established in Berlin-Buch and led by Kornmüller, provided more
precise recording of the EEG [9]. Berger was also interested in cerebral localization and
particularly in the localization of brain tumours. He also found some correlation between
mental activities and the changes in the EEG signals.

Toennies (1902–1970) from the group in Berlin built the first biological amplifier for
the recording of brain potentials. A differential amplifier for recording EEGs was later
produced by the Rockefeller foundation in 1932.

The importance of multichannel recordings and using a large number of electrodes
to cover a wider brain region was recognized by Kornmüller [10]. The first EEG work
focusing on epileptic manifestation and the first demonstration of epileptic spikes were
presented by Fischer and Löwenbach [11–13].

In England, W. Gray Walter became the pioneer of clinical electroencephalography. He
discovered the foci of slow brain activity (delta waves), which initiated enormous clinical
interest in the diagnosis of brain abnormalities. In Brussels, Fredric Bremer (1892–1982)
discovered the influence of afferent signals on the state of vigilance [14].

Research activities related to EEGs started in North America in around 1934. In
this year, Hallowell Davis illustrated a good alpha rhythm for himself. A cathode ray
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oscilloscope was used around this date by the group in St Louis University in Wash-
ington, in the study of peripheral nerve potentials. The work on human EEGs started at
Harvard in Boston and the University of Iowa in the 1930s. The study of epileptic seizure
developed by Fredric Gibbs was the major work on EEGs during these years, as the realm
of epileptic seizure disorders was the domain of their greatest effectiveness. Epileptology
may be divided historically into two periods [15]: before and after the advent of EEG.
Gibbs and Lennox applied the idea of Fischer based on his studies about picrotoxin and
its effect on the cortical EEG in animals to human epileptology. Berger [16] showed a
few examples of paroxysmal EEG discharges in a case of presumed petit mal attacks and
during a focal motor seizure in a patient with general paresis.

As the other great pioneers of electroencephalography in North America, Hallowel and
Pauline Davis were the earliest investigators of the nature of EEG during human sleep.
A. L. Loomis, E. N. Harvey, and G. A. Hobart were the first who mathematically studied
the human sleep EEG patterns and the stages of sleep. At McGill University, H. Jasper
studied the related behavioural disorder before he found his niche in basic and clinical
epileptology [17].

The American EEG Society was founded in 1947 and the First International EEG
Congress was held in London, United Kingdom, around this time. While the EEG studies
in Germany were still limited to Berlin, Japan gained attention by the work of Motokawa,
a researcher of EEG rhythms [18]. During these years the neurophysiologists demonstrated
the thalamocortical relationship through anatomical methods. This led to the development
of the concept of centrencephalic epilepsy [19].

Throughout the 1950s the work on EEGs expanded in many different places. During
this time surgical operation for removing the epileptic foci became popular and the book
entitled Epilepsy and the Functional Anatomy of the Human Brain (Penfiled and Jasper)
was published. During this time microelectrodes were invented. They were made of met-
als such as tungsten or glass, filled with electrolytes such as potassium chloride, with
diameters of less than 3 µm.

Depth electroencephalography of a human was first obtained with implanted intrac-
erebral electrodes by Mayer and Hayne (1948). Invention of intracellular microelectrode
technology revolutionized this method and was used in the spinal cord by Brock et al. in
1952 and in the cortex by Phillips in 1961.

Analysis of EEG signals started during the early days of EEG measurement. Berger
assisted by Dietch (1932) applied Fourier analysis to EEG sequences, which was rapidly
developed during the 1950s. Analysis of sleep disorders with EEGs started its development
in the 1950s through the work of Kleitman at the University of Chicago.

In the 1960s analysis of the EEGs of full-term and premature newborns began its
development [20]. Investigation of evoked potentials (EPs), especially visual EPs, as
commonly used for monitoring mental illnesses, progressed during the 1970s.

The history of EEG, however, has been a continuous process, which started from
the early 1300s and has brought daily development of clinical, experimental, and com-
putational studies for discovery, recognition, diagnosis, and treatment of a vast num-
ber of neurological and physiological abnormalities of the brain and the rest of the
central nervous system (CNS) of human beings. Nowadays, EEGs are recorded inva-
sively and noninvasively using fully computerized systems. The EEG machines are
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equipped with many signal processing tools, delicate and accurate measurement electrodes,
and enough memory for very long-term recordings of several hours. EEG or MEG
(magnetoencephalogram) machines may be integrated with other neuroimaging systems
such as functional magnetic resonance imaging (fMRI). Very delicate needle-type elec-
trodes can also be used for recording the EEGs from over the cortex (electrocortiogram),
and thereby avoid the attenuation and nonlinearity effects induced by the skull. The nature
of neural activities within the human brain will be discribed next.

1.2 Neural Activities

The CNS generally consists of nerve cells and glia cells, which are located between
neurons. Each nerve cell consists of axons, dendrites, and cell bodies. Nerve cells respond
to stimuli and transmit information over long distances. A nerve cell body has a single
nucleus and contains most of the nerve cell metabolism, especially that related to protein
synthesis. The proteins created in the cell body are delivered to other parts of the nerve.
An axon is a long cylinder, which transmits an electrical impulse and can be several
metres long in vertebrates (giraffe axons go from the head to the tip of the spine). In
humans the length can be a percentage of a millimetre to more than a metre. An axonal
transport system for delivering proteins to the ends of the cell exists and the transport
system has ‘molecular motors’, which ride upon tubulin rails.

Dendrites are connected to either the axons or dendrites of other cells and receive
impulses from other nerves or relay the signals to other nerves. In the human brain
each nerve is connected to approximately 10,000 other nerves, mostly through dendritic
connections.

The activities in the CNS are mainly related to the synaptic currents transferred between
the junctions (called synapses) of axons and dendrites, or dendrites and dendrites of cells.
A potential of 60–70 mV with negative polarity may be recorded under the membrane
of the cell body. This potential changes with variations in synaptic activities. If an action
potential travels along the fibre, which ends in an excitatory synapse, an excitatory post-
synaptic potential (EPSP) occurs in the following neuron. If two action potentials travel
along the same fibre over a short distance, there will be a summation of EPSPs producing
an action potential on the postsynaptic neuron providing a certain threshold of membrane
potential is reached. If the fibre ends in an inhibitory synapse, then hyperpolarization will
occur, indicating an inhibitory postsynaptic potential (IPSP) [21,22]. Figure 1.1 shows the
above activities schematically.

Following the generation of an IPSP, there is an overflow of cations from the nerve cell
or an inflow of anions into the nerve cell. This flow ultimately causes a change in potential
along the nerve cell membrane. Primary transmembranous currents generate secondary
inonal currents along the cell membranes in the intra- and extracellular space. The portion
of these currents that flow through the extracellular space is directly responsible for
the generation of field potentials. These field potentials, usually with less than 100 Hz
frequency, are called EEGs when there are no changes in the signal average and DC if
there are slow drifts in the average signals, which may mask the actual EEG signals. A
combination of EEG and DC potentials is often observed for some abnormalities in the
brain such as seizure (induced by pentylenetetrazol), hypercapnia, and asphyxia [23]. The
focus will next be on the nature of active potentials.
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Figure 1.1 The neuron membrane potential changes and current flow during synaptic activation
recorded by means of intracellular microelectrodes. Action potentials in the excitatory and inhibitory
presynaptic fibre respectively lead to EPSP and IPSP in the postsynaptic neuron

1.3 Action Potentials

The information transmitted by a nerve is called an action potential (AP). APs are caused
by an exchange of ions across the neuron membrane and an AP is a temporary change in
the membrane potential that is transmitted along the axon. It is usually initiated in the cell
body and normally travels in one direction. The membrane potential depolarizes (becomes
more positive), producing a spike. After the peak of the spike the membrane repolarizes
(becomes more negative). The potential becomes more negative than the resting potential
and then returns to normal. The action potentials of most nerves last between 5 and 10
milliseconds. Figure 1.2 shows an example AP.

The conduction velocity of action potentials lies between 1 and 100 m/s. APs are
initiated by many different types of stimuli; sensory nerves respond to many types of
stimuli, such as chemical, light, electricity, pressure, touch, and stretching. On the other
hand, the nerves within the CNS (brain and spinal cord) are mostly stimulated by chemical
activity at synapses.

A stimulus must be above a threshold level to set off an AP. Very weak stimuli cause
a small local electrical disturbance, but do not produce a transmitted AP. As soon as the
stimulus strength goes above the threshold, an action potential appears and travels down
the nerve.
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Figure 1.2 An example action potential
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Figure 1.3 Changing the membrane potential for a giant squid by closing the Na channels and
opening K channels (adopted from Ka Xiong Charand [24])

The spike of the AP is mainly caused by opening of Na (sodium) channels. The Na
pump produces gradients of both Na and K (potassium) ions. Both are used to produce the
action potential; Na is high outside the cell and low inside. Excitable cells have special
Na and K channels with gates that open and close in response to the membrane voltage
(voltage-gated channels). Opening the gates of Na channels allows Na to rush into the cell,
carrying positive charge. This makes the membrane potential positive (depolarization),
producing the spike. Figure 1.3 shows the stages of the process during evolution of an
action potential for a giant squid. For a human being the amplitude of the AP ranges
between approximately −60 mV and 10 mV. During this process [24]:
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I. When the dendrites of a nerve cell receive the stimulus the Na+ channels will open. If
the opening is sufficient to drive the interior potential from −70 mV up to −55 mV,
the process continues.

II. As soon as the action threshold is reached, additional Na+ channels (sometimes called
voltage-gated channels) open. The Na+ influx drives the interior of the cell membrane
up to approximately +30 mV. The process to this point is called depolarization.

III. Then Na+ channels close and the K+ channels open. Since the K+ channels are much
slower to open, the depolarization has time to be completed. Having both Na+ and
K+ channels open at the same time would drive the system towards neutrality and
prevent the creation of the action potential.

IV. Having the K+ channels open, the membrane begins to repolarize back towards its
rest potential.

V. The repolarization typically overshoots the rest potential to a level of approximately
−90 mV. This is called hyperpolarization and would seem to be counterproductive,
but it is actually important in the transmission of information. Hyperpolarization
prevents the neuron from receiving another stimulus during this time, or at least
raises the threshold for any new stimulus. Part of the importance of hyperpolarization
is in preventing any stimulus already sent up an axon from triggering another action
potential in the opposite direction. In other words, hyperpolarization ensures that the
signal is proceeding in one direction.

VI. After hyperpolarization, the Na+/K+ pumps eventually bring the membrane back to
its resting state of −70 mV.

The nerve requires approximately two milliseconds before another stimulus is pre-
sented. During this time no AP can be generated. This is called the refractory period. The
generation of EEG signals is next described.

1.4 EEG Generation

An EEG signal is a measurement of currents that flow during synaptic excitations of the
dendrites of many pyramidal neurons in the cerebral cortex. When brain cells (neurons) are
activated, the synaptic currents are produced within the dendrites. This current generates a
magnetic field measurable by electromyogram (EMG) machines and a secondary electrical
field over the scalp measurable by EEG systems.

Differences of electrical potentials are caused by summed postsynaptic graded poten-
tials from pyramidal cells that create electrical dipoles between the soma (body of a
neuron) and apical dendrites, which branch from neurons (Figure 1.4). The current in the
brain is generated mostly by pumping the positive ions of sodium, Na+, potassium, K+,
calcium, Ca++, and the negative ion of chlorine, Cl−, through the neuron membranes in
the direction governed by the membrane potential [25].

The human head consists of different layers including the scalp, skull, brain (Figure 1.5),
and many other thin layers in between. The skull attenuates the signals approximately one
hundred times more than the soft tissue. On the other hand, most of the noise is generated
either within the brain (internal noise) or over the scalp (system noise or external noise).
Therefore, only large populations of active neurons can generate enough potential to be
recordable using the scalp electrodes. These signals are later amplified greatly for display
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Figure 1.4 Structure of a neuron (adopted from Attwood and MacKay [25])

Scalp 2.22 Ωm
Skull 177 Ωm
Brain 2.22 Ωm

r1 = 8.0 cm
r2 = 8.5 cm

r3 = 9.2 cm

Figure 1.5 The three main layers of the brain including their approximate resistivities and thick-
nesses (� = ohm)

purposes. Approximately 1011 neurons are developed at birth when the central nervous
system (CNS) becomes complete and functional [26]. This makes an average of 104 neu-
rons per cubic mm. Neurons are interconnected into neural nets through synapses. Adults
have approximately 5 × 1014 synapses. The number of synapses per neuron increases
with age, whereas the number of neurons decreases with age. From an anatomical point
of view the brain may be divided into three parts: the cerebrum, cerebellum, and brain
stem (Figure 1.6). The cerebrum consists of both left and right lobes of the brain with
highly convoluted surface layers called the cerebral cortex.

The cerebrum includes the regions for movement initiation, conscious awareness of
sensation, complex analysis, and expression of emotions and behaviour. The cerebel-
lum coordinates voluntary movements of muscles and maintains balance. The brain stem
controls involuntary functions such as respiration, heart regulation, biorhythms, and neu-
rohormone and hormone sections [27].

Based on the above section it is clear that the study of EEGs paves the way for
diagnosis of many neurological disorders and other abnormalities in the human body.
The acquired EEG signals from a human (and also from animals) may, for example, be
used for investigation of the following clinical problems [27,28]:
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Figure 1.6 Diagrammatic representation of the major parts of the brain

(a) monitoring alertness, coma, and brain death;
(b) locating areas of damage following head injury, stroke, and tumour;
(c) testing afferent pathways (by evoked potentials);
(d) monitoring cognitive engagement (alpha rhythm);
(e) producing biofeedback situations;
(f) controlling anaesthesia depth (servo anaesthesia);
(g) investigating epilepsy and locating seizure origin;
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(h) testing epilepsy drug effects;
(i) assisting in experimental cortical excision of epileptic focus;
(j) monitoring the brain development;
(k) testing drugs for convulsive effects;
(l) investigating sleep disorders and physiology;
(m) investigating mental disorders;
(n) providing a hybrid data recording system together with other imaging modalities.

This list confirms the rich potential for EEG analysis and motivates the need for
advanced signal processing techniques to aid the clinician in their interpretation. The
brain rhythms will next be described, which are expected to be measured within EEG
signals.

1.5 Brain Rhythms

Many brain disorders are diagnosed by visual inspection of EEG signals. The clinical
experts in the field are familiar with manifestation of brain rhythms in the EEG signals.
In healthy adults, the amplitudes and frequencies of such signals change from one state
of a human to another, such as wakefulness and sleep. The characteristics of the waves
also change with age. There are five major brain waves distinguished by their different
frequency ranges. These frequency bands from low to high frequencies respectively are
called alpha (α), theta (θ ), beta (β), delta (δ), and gamma (γ ). The alpha and beta waves
were introduced by Berger in 1929. Jasper and Andrews (1938) used the term ‘gamma’
to refer to the waves of above 30 Hz. The delta rhythm was introduced by Walter (1936)
to designate all frequencies below the alpha range. He also introduced theta waves as
those having frequencies within the range of 4–7.5 Hz. The notion of a theta wave was
introduced by Wolter and Dovey in 1944 [29].

Delta waves lie within the range of 0.5–4 Hz. These waves are primarily associated
with deep sleep and may be present in the waking state. It is very easy to confuse artefact
signals caused by the large muscles of the neck and jaw with the genuine delta response.
This is because the muscles are near the surface of the skin and produce large signals,
whereas the signal that is of interest originates from deep within the brain and is severely
attenuated in passing through the skull. Nevertheless, by applying simple signal analysis
methods to the EEG, it is very easy to see when the response is caused by excessive
movement.

Theta waves lie within the range of 4–7.5 Hz. The term theta might be chosen to
allude to its presumed thalamic origin. Theta waves appear as consciousness slips towards
drowsiness. Theta waves have been associated with access to unconscious material,
creative inspiration and deep meditation. A theta wave is often accompanied by other
frequencies and seems to be related to the level of arousal. It is known that healers and
experienced mediators have an alpha wave that gradually lowers in frequency over long
periods of time. The theta wave plays an important role in infancy and childhood. Larger
contingents of theta wave activity in the waking adult are abnormal and are caused by
various pathological problems. The changes in the rhythm of theta waves are examined
for maturational and emotional studies [30].
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Alpha waves appear in the posterior half of the head and are usually found over the
occipital region of the brain. They can be detected in all parts of posterior lobes of the
brain. For alpha waves the frequency lies within the range of 8–13 Hz, and commonly
appears as a round or sinusoidal shaped signal. However, in rare cases it may manifest
itself as sharp waves. In such cases, the negative component appears to be sharp and
the positive component appears to be rounded, similar to the wave morphology of the
rolandic mu (µ) rhythm. Alpha waves have been thought to indicate both a relaxed
awareness without any attention or concentration. The alpha wave is the most prominent
rhythm in the whole realm of brain activity and possibly covers a greater range than
has been previously accepted. A peak can regularly be seen in the beta wave range in
frequencies even up to 20 Hz, which has the characteristics of an alpha wave state rather
than one for a beta wave. Again, very often a response is seen at 75 Hz, which appears
in an alpha setting. Most subjects produce some alpha waves with their eyes closed,
which is why it has been claimed that it is nothing but a waiting or scanning pattern
produced by the visual regions of the brain. It is reduced or eliminated by opening the
eyes, by hearing unfamiliar sounds, by anxiety, or mental concentration or attention.
Albert Einstein could solve complex mathematical problems while remaining in the alpha
state, although generally beta and theta waves are also present. An alpha wave has a
higher amplitude over the occipital areas and has an amplitude of normally less than
50 µV. The origin and physiological significance of an alpha wave is still unknown and
yet more research has to be undertaken to understand how this phenomenon originates
from cortical cells [31].

A beta wave is the electrical activity of the brain varying within the range of 14–26 Hz
(though in some literature no upper bound is given). A beta wave is the usual waking
rhythm of the brain associated with active thinking, active attention, focus on the outside
world, or solving concrete problems, and is found in normal adults. A high-level beta wave
may be acquired when a human is in a panic state. Rhythmical beta activity is encountered
chiefly over the frontal and central regions. Importantly, a central beta rhythm is related
to the rolandic mu rhythm and can be blocked by motor activity or tactile stimulation.
The amplitude of beta rhythm is normally under 30 µV. Similar to the mu rhythm, the
beta wave may also be enhanced because of a bone defect [29] and also around tumoural
regions.

The frequencies above 30 Hz (mainly up to 45 Hz) correspond to the gamma range
(sometimes called the fast beta wave). Although the amplitudes of these rhythms are very
low and their occurrence is rare, detection of these rhythms can be used for confirmation of
certain brain diseases. The regions of high EEG frequencies and highest levels of cerebral
blood flow (as well as oxygen and glucose uptake) are located in the frontocentral area.
The gamma wave band has also been proved to be a good indication of event-related
synchronization (ERS) of the brain and can be used to demonstrate the locus for right and
left index finger movement, right toes, and the rather broad and bilateral area for tongue
movement [32].

Waves in frequencies much higher than the normal activity range of EEG, mostly in
the range of 200–300 Hz, have been found in cerebellar structures of animals, but they
have not played any role in clinical neurophysiology [33,34].

Figure 1.7 shows the typical normal brain rhythms with their usual amplitude levels.
In general, the EEG signals are the projection of neural activities that are attenuated by
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Figure 1.7 Four typical dominant brain normal rhythms, from high to low frequencies. The delta
wave is observed in infants and sleeping adults, the theta wave in children and sleeping adults, the
alpha wave is detected in the occipital brain region when there is no attention, and the beta wave
appears frontally and parietally with low amplitude

leptomeninges, cerebrospinal fluid, dura matter, bone, galea, and the scalp. Cartographic
discharges show amplitudes of 0.5–1.5 mV and up to several millivolts for spikes. How-
ever, on the scalp the amplitudes commonly lie within 10–100 µV.

The above rhythms may last if the state of the subject does not change and therefore they
are approximately cyclic in nature. On the other hand, there are other brain waveforms,
which may:

(a) Have a wide frequency range or appear as spiky-type signals, such as K-complexes,
vertex waves (which happen during sleep), or a breach rhythm, which is an alpha-type
rhythm due to a cranial bone defect [35], which does not respond to movement, and
is found mainly over the midtemporal region (under electrodes T3 or T4), and some
seizure signals.

(b) Be a transient such as an event-related potential (ERP) and contain positive occipital
sharp transient (POST) signals (also called rho (ρ) waves).

(c) Originate from the defective regions of the brain such as tumoural brain lesions.
(d) Be spatially localized and considered as cyclic in nature, but can be easily blocked

by physical movement such as mu rhythm. Mu denotes motor and is strongly related
to the motor cortex. Rolandic (central) mu is related to posterior alpha in terms of
amplitude and frequency. However, the topography and physiological significance
are quite different. From the mu rhythm the cortical functioning and the changes in
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brain (mostly bilateral) activities subject to physical and imaginary movements can
be investigated. The mu rhythm has also been used in feedback training for several
purposes such as treatment of epileptic seizure disorder [29].

There are also other rhythms introduced by researchers such as:

(e) Phi (ϕ) rhythm (less than 4 Hz) occurring within two seconds of eye closure. The phi
rhythm was introduced by Daly [36].

(f) Kappa (κ) rhythm, which is an anterior temporal alpha-like rhythm. It is believed to
be the result of discrete lateral oscillations of the eyeballs and is considered to be an
artefact signal.

(g) The sleep spindles (also called the sigma (σ) activity) within the 11–15 Hz frequency
range.

(h) Tau (τ) rhythm, which represents the alpha activity in the temporal region.
(i) Eyelid flutter with closed eyes, which gives rise to frontal artefacts in the alpha band.
(j) Chi (χ) rhythm is a mu-like activity believed to be a specific rolandic pattern of

11–17 Hz. This wave has been observed during the course of Hatha Yoga exercises
[37].

(k) Lambda (λ) waves are most prominent in waking patients, but are not very common.
They are sharp transients occurring over the occipital region of the head of walking
subjects during visual exploration. They are positive and time-locked to saccadic eye
movement with varying amplitude, generally below 90 µV [38].

It is often difficult to understand and detect the brain rhythms from the scalp EEGs,
even with trained eyes. Application of advanced signal processing tools, however, should
enable separation and analysis of the desired waveforms from within the EEGs. Therefore,
a definition of foreground and background EEG is very subjective and entirely depends on
the abnormalities and applications. Next to consider is the development in the recording
and measurement of EEG signals.

1.6 EEG Recording and Measurement

Acquiring signals and images from the human body has become vital for early diagnosis
of a variety of diseases. Such data can be in the form of electrobiological signals such as
an electrocardiogram (ECG) from the heart, electromyogram (EMG) from muscles, elec-
troencephalogram (EEG) from the brain, magnetoencephalogram (MEG) from the brain,
electrogastrogram (EGG) from the stomach, and electroocclugram (or electrooptigram,
EOG) from eye nerves. Measurements can also have the form of one type of ultra-
sound or radiograph such as sonograph (or ultrasound image), computerized tomography
(CT), magnetic resonance imaging (MRI) or functional MRI (fMRI), positron emission
tomography (PET), and single photon emission tomography (SPET).

Functional and physiological changes within the brain may be registered by either EEG,
MEG, or fMRI. Application of fMRI is, however, very limited in comparison with EEG
or MEG for a number of important reasons:
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(a) The time resolution of fMRI image sequences is very low (for example approximately
two frames/s), whereas the complete EEG bandwidth can be viewed using EEG or
MEG signals.

(b) Many types of mental activities, brain disorders, and malfunctions of the brain cannot
be registered using fMRI since their effect on the level of oxygenated blood is low.

(c) The accessibility to fMRI (and currently to MEG) systems is limited and costly.
(d) The spatial resolution of EEG, however, is limited to the number of recording elec-

trodes (or number of coils for MEG).

The first electrical neural activities were registered using simple galvanometers. In
order to magnify very fine variations of the pointer a mirror was used to reflect the light
projected to the galvanometer on the wall. The d’Arsonval galvanometer later featured a
mirror mounted on a movable coil and the light focused on the mirror was reflected when
a current passed the coil. The capillary electrometer was introduced by Lippmann and
Marey [39]. The string galvanometer, as a very sensitive and more accurate measuring
instrument, was introduced by Einthoven in 1903. This became a standard instrument for
a few decades and enabled photographic recording.

More recent EEG systems consist of a number of delicate electrodes, a set of differential
amplifiers (one for each channel) followed by filters [27], and needle (pen)-type registers.
The multichannel EEGs could be plotted on plane paper or paper with a grid. Soon after
this system came to the market, researchers started looking for a computerized system,
which could digitize and store the signals. Therefore, to analyse EEG signals it was soon
understood that the signals must be in digital form. This required sampling, quantization,
and encoding of the signals. As the number of electrodes grows the data volume, in
terms of the number of bits, increases. The computerized systems allow variable settings,
stimulations, and sampling frequency, and some are equipped with simple or advanced
signal processing tools for processing the signals.

The conversion from analogue to digital EEG is performed by means of multichannel
analogue-to-digital converters (ADCs). Fortunately, the effective bandwidth for EEG sig-
nals is limited to approximately 100 Hz. For many applications this bandwidth may be
considered to be even half of this value. Therefore, a minimum frequency of 200 samples/s
(to satisfy the Nyquist criterion) is often enough for sampling the EEG signals. In some
applications where a higher resolution is required for representation of brain activities in
the frequency domain, sampling frequencies of up to 2000 sample/s may be used.

In order to maintain the diagnostic information the quantization of EEG signals is
normally very fine. Representation of each signal sample with up to 16 bits is very
popular for the EEG recording systems. This makes the necessary memory volume for
archiving the signals massive, especially for sleep EEG and epileptic seizure monitoring
records. However, in general, the memory size for archiving the radiological images is
often much larger than that used for archiving the EEG signals.

A simple calculation shows that for a one hour recording from 128-electrode EEG sig-
nals sampled at 500 samples/s a memory size of 128 × 60 × 60 × 500 × 16 ≈ 3.68 Gbits
≈0.45 Gbyte is required. Therefore, for longer recordings of a large number of patients
there should be enough storage facilities such as in today’s technology Zip disks, CDs,
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large removable hard drives, and optical disks. Although the format of reading the EEG
data may be different for different EEG machines, these formats are easily convertible to
spreadsheets readable by most signal processing software packages such as MATLAB.

The EEG recording electrodes and their proper function are crucial for acquiring high-
quality data. Different types of electrodes are often used in the EEG recording systems,
such as:

• disposable (gel-less, and pre-gelled types);
• reusable disc electrodes (gold, silver, stainless steel, or tin);
• headbands and electrode caps;
• saline-based electrodes;
• needle electrodes.

For multichannel recordings with a large number of electrodes, electrode caps are often
used. Commonly used scalp electrodes consist of Ag–AgCl disks, less than 3 mm in
diameter, with long flexible leads that can be plugged into an amplifier. Needle electrodes
are those that have to be implanted under the skull with minimal invasive operations.
High impedance between the cortex and the electrodes as well as the electrodes with
high impedances can lead to distortion, which can even mask the actual EEG signals.
Commercial EEG recording systems are often equipped with impedance monitors. To
enable a satisfactory recording the electrode impedances should read less than 5 k� and
be balanced to within 1 k� of each other. For more accurate measurement the impedances
are checked after each trial.

Due to the layered and spiral structure of the brain, however, distribution of the poten-
tials over the scalp (or cortex) is not uniform [40]. This may affect some of the results
of source localization using the EEG signals.

1.6.1 Conventional Electrode Positioning

The International Federation of Societies for Electroencephalography and Clinical Neuro-
physiology has recommended the conventional electrode setting (also called 10–20) for
21 electrodes (excluding the earlobe electrodes), as depicted in Figure 1.8 [17]. Often the
earlobe electrodes called A1 and A2, connected respectively to the left and right earlobes,
are used as the reference electrodes. The 10–20 system avoids both eyeball placement
and considers some constant distances by using specific anatomic landmarks from which
the measurement would be made and then uses 10 or 20 % of that specified distance as
the electrode interval. The odd electrodes are on the left and the even ones on the right.

For setting a larger number of electrodes using the above conventional system, the rest
of the electrodes are placed in between the above electrodes with equidistance between
them. For example, C1 is placed between C3 and Cz. Figure 1.9 represents a larger setting
for 75 electrodes including the reference electrodes based on the guidelines by the Amer-
ican EEG Society. Extra electrodes are sometimes used for the measurement of EOG,
ECG, and EMG of the eyelid and eye surrounding muscles. In some applications such as
ERP analysis and brain computer interfacing a single channel may be used. In such appli-
cations, however, the position of the corresponding electrode has to be well determined.
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Figure 1.8 Conventional 10–20 EEG electrode positions for the placement of 21 electrodes

For example, C3 and C4 can be used to record the right and left finger movement related
signals respectively for brain–computer interfacing (BCI) applications. Also F3, F4, P3,
and P4 can be used for recording the ERP P300 signals.

Two different modes of recordings, namely differential and referential, are used. In the
differential mode the two inputs to each differential amplifier are from two electrodes. In
the referential mode, on the other hand, one or two reference electrodes are used. Several
different reference electrode placements can be found in the literature. Physical references
can be used as vertex (Cz), linked-ears, linked-mastoids, ipsilateral ear, contralateral ear,
C7, bipolar references, and tip of the nose [28]. There are also reference-free recording
techniques, which actually use a common average reference. The choice of reference
may produce topographic distortion if the reference is not relatively neutral. In modern
instrumentation, however, the choice of a reference does not play an important role in the
measurement [41]. In such systems other references such as FPz, hand, or leg electrodes
may be used [42]. The overall setting includes the active electrodes and the references.

In another similar setting, called the Maudsley electrode positioning system, the con-
ventional 10–20 system has been modified to capture better the signals from epileptic foci
in epileptic seizure recordings. The only difference between this system and the 10–20
conventional system is that the outer electrodes are slightly lowered to enable better cap-
turing of the required signals. The advantage of this system over the conventional one
is that it provides a more extensive coverage of the lower part of the cerebral convex-
ity, increasing the sensitivity for the recording from basal subtemporal structures [43].
Other deviations from the international 10–20 system as used by researchers are found
in References [44] and [45].
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Figure 1.9 A diagrammatic representation of 10–20 electrode settings for 75 electrodes including
the reference electrodes: (a) and (b) represent the three-dimensional measures, and (c) indicates a
two-dimensional view of the electrode setup configuration

In many applications such as brain–computer interfacing (BCI) and study of mental
activity, often a small number of electrodes around the movement-related regions are
selected and used from the 10–20 setting system. Figure 1.10 illustrates a typical set of
EEG signals during approximately seven seconds of normal adult brain activity.
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Figure 1.10 A typical set of EEG signals during approximately seven seconds of normal adult
brain activity

1.6.2 Conditioning the Signals

The raw EEG signals have amplitudes of the order of µvolts and contain frequency
components of up to 300 Hz. To retain the effective information the signals have to be
amplified before the ADC and filtered, either before or after the ADC, to reduce the noise
and make the signals suitable for processing and visualization. The filters are designed in
such a way not to introduce any change or distortion to the signals. Highpass filters with
a cut-off frequency of usually less than 0.5 Hz are used to remove the disturbing very low
frequency components such as those of breathing. On the other hand, high-frequency noise
is mitigated by using lowpass filters with a cut-off frequency of approximately 50–70 Hz.
Notch filters with a null frequency of 50 Hz are often necessary to ensure perfect rejection
of the strong 50 Hz power supply. In this case the sampling frequency can be as low
as twice the bandwidth commonly used by most EEG systems. The commonly used
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sampling frequencies for EEG recordings are 100, 250, 500, 1000, and 2000 samples/s.
The main artefacts can be divided into patient-related (physiological) and system artefacts.
The patient-related or internal artefacts are body movement-related, EMG, ECG (and
pulsation), EOG, ballistocardiogram, and sweating. The system artefacts are 50/60 Hz
power supply interference, impedance fluctuation, cable defects, electrical noise from
the electronic components, and unbalanced impedances of the electrodes. Often in the
preprocessing stage these artefacts are highly mitigated and the informative information
is restored. Some methods for removing the EEG artefacts will be discussed in the related
chapters of this book. Figure 1.11 shows a set of normal EEG signals affected by the
eye-blinking artefact. Similarly, Figure 1.12 represents a multichannel EEG set with the
clear appearance of ECG signals over the electrodes in the occipital region.
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Figure 1.11 A set of normal EEG signals affected by the eye-blinking artefact
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Figure 1.12 A multichannel EEG set with the clear appearance of ECG signals over the electrodes
in the occipital region

The next section highlights the changes in EEG measurements that correlate with phys-
iological and mental abnormalities in the brain.

1.7 Abnormal EEG Patterns
Variations in the EEG patterns for certain states of the subject indicate abnormality.
This may be due to distortion and the disappearance of abnormal patterns, appearance
and increase of abnormal patterns, or disappearance of all patterns. Sharbrough [46]
divided the nonspecific abnormalities in the EEGs into three categories: (a) widespread
intermittent slow wave abnormalities, often in the delta wave range and associated with
brain dysfunction; (b) bilateral persistent EEG, usually associated with impaired conscious
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cerebral reactions; and (c) focal persistent EEG usually associated with focal cerebral
disturbance.

The first category is a burst-type signal, which is attenuated by alerting the individual
and eye opening, and accentuated with eye closure, hyperventilation, or drowsiness. The
peak amplitude in adults is usually localized in the frontal region and influenced by age.
In children, however, it appears over the occipital or posterior head region. Early findings
showed that this abnormal pattern frequently appears with an increased intracranial pres-
sure with tumour or aqueductal stenosis. Also, it correlates with grey matter disease, both
in cortical and subcortical locations. However, it can be seen in association with a wide
variety of pathological processes varying from systemic toxic or metabolic disturbances
to focal intracranial lesions.

Regarding the second category, i.e. bilateral persistent EEG, the phenomenon in differ-
ent stages of impaired, conscious, purposeful responsiveness are etiologically nonspecific
and the mechanisms responsible for their generation are only partially understood. How-
ever, the findings in connection with other information concerning etiology and chronicity
may be helpful in arriving more quickly at an accurate prognosis concerning the patient’s
chance of recovering previous conscious life.

As for the third category, i.e. focal persistent EEG, these abnormalities may be in
the form of distortion and disappearance of normal patterns, appearance and increase of
abnormal patterns, or disappearance of all patterns, but such changes are seldom seen at
the cerebral cortex. The focal distortion of normal rhythms may produce an asymmetry
of amplitude, frequency, or reactivity of the rhythm. The unilateral loss of reactivity of
a physiological rhythm, such as the loss of reactivity of the alpha rhythm to eye opening
[47] or to mental alerting [48], may reliably identify the focal side of abnormality. A
focal lesion may also distort or eliminate the normal activity of sleep-inducing spindles
and vertex waves.

Focal persistent nonrhythmic delta activity (PNRD) may be produced by focal abnor-
malities. This is one of the most reliable findings of a focal cerebral disturbance. The
more persistent, the less reactive, and the more nonrhythmic and polymorphic is such
focal slowing, the more reliable an indicator it becomes for the appearance of a focal
cerebral disturbance [49–51]. There are other cases such as focal inflammation, trauma,
vascular disease, brain tumour, or almost any other cause of focal cortical disturbance,
including an asymmetrical onset of CNS degenerative diseases that may result in similar
abnormalities in the brain signal patterns.

The scalp EEG amplitude from cerebral cortical generators underlying a skull defect is
also likely to increase unless acute or chronic injury has resulted in significant depression
of underlying generator activity. The distortions in cerebral activities are because focal
abnormalities may alter the interconnections, number, frequency, synchronicity, voltage
output, and access orientation of individual neuron generators, as well as the location and
amplitude of the source signal itself.

With regards to the three categories of abnormal EEGs, their identification and clas-
sification requires a dynamic tool for various neurological conditions and any other
available information. A precise characterization of the abnormal patterns leads to a clearer
insight into some specific pathophysiologic reactions, such as epilepsy, or specific disease
processes, such as subacute sclerosing panencephalitis (SSPE) or Creutzfeldt–Jakob dis-
ease (CJD) [46].
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Over and above the reasons mentioned above there are many other causes for abnormal
EEG patterns. The most common abnormalities are briefly described in the following
sections.

1.8 Ageing
The ageing process affects the normal cerebral activity in waking and sleep, and changes
the response of the brain to stimuli. The changes stem from reducing the number of
neurons and due to a general change in the brain pathology. This pathology indicates
that the frontal and temporal lobes of the brain are more affected than the parietal lobes,
resulting in shrinkage of large neurons and increasing the number of small neurons and
glia [52]. A diminished cortical volume indicates that there is age-related neuronal loss.
A general cause for ageing of the brain may be the decrease in cerebral blood flow [52].

A reduction of the alpha frequency is probably the most frequent abnormality in EEG.
This often introduces a greater anterior spread to frontal regions in the elderly and reduces
the alpha wave blocking response and reactivity. The diminished mental function is some-
how related to the degree of bilateral slowing in the theta and delta waves [52].

Although the changes in high-frequency brain rhythms have not been well established,
some researchers have reported an increase in beta wave activity. This change in beta
wave activity may be considered as an early indication of intellectual loss [52].

As for the sleep EEG pattern, older adults enter into drowsiness with a more gradual
decrease in EEG amplitude. Over the age of sixty, the frontocentral waves become slower,
the frequency of the temporal rhythms also decreases, frequency lowering with slow eye
movements become more prominent, and spindles appear in the wave pattern after the
dropout of the alpha rhythm. The amplitudes of both phasic and tonic nonrapid eye
movement (NREM) sleep EEG [52] reduce with age. There is also a significant change
in rapid eye movement (REM) sleep organization with age; the REM duration decreases
during the night and there is a significant increase in sleep disruption [52].

Dementia is the most frequent mental disorder that occurs predominantly in the elderly.
Therefore, the prevalence of dementia increases dramatically with ageing of the society.
Generally, EEGs are a valuable diagnostic tool in differentiation between organic brain
syndromes (OBSs) and functional psychiatric disorders [52], and together with evoked
potentials (EPs) play an important role in the assessment of normal and pathological
ageing. Ageing is expected to change most neurophysiological parameters. However, the
variability of these parameters must exceed the normal degree of spontaneous variability
to become a diagnostic factor in acute and chronic disease conditions. Automatic analysis
of the EEG during sleep and wakefulness may provide a better contrast in the data and
enable a robust diagnostic tool. Next particular and very common mental disorders are
described, whose early onset may be diagnosed with EEG measurements.

1.9 Mental Disorders
1.9.1 Dementia

Dementia is a syndrome that consists of a decline in intellectual and cognitive abilities.
This consequently affects the normal social activities, mode, and the relationship and
interaction with other people [53]. EEG is often used to study the effect of dementia. In
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most cases, such as in primary degenerative dementia, e.g. Alzheimer’s, and psychiatric
disorder, e.g. depression with cognitive impairment, the EEG can be used to detect the
abnormality [54].

In Reference [54] dementia is classified into cortical and subcortical forms. The most
important cortical dementia is Alzheimer’s disease (AD), which accounts for approx-
imately 50 % of the cases. Other known cortical abnormalities are Pick’s disease and
Creutzfeldt–Jakob diseases (CJD). They are characterized clinically by findings such
as aphasia, apraxia, and agnosia. CJD can often be diagnosed using the EEG signals.
Figure 1.13 shows a set of EEG signals from a CJD patient. On the other hand, the
most common subcortical diseases are Parkinson’s disease, Huntington’s disease, lacunar
state, normal pressure hydrocephalus, and progressive supranuclear palsy. These diseases
are characterized by forgetfulness, slowing of thought processes, apathy, and depression.
Generally, subcortical dementias introduce less abnormality to the EEG patterns than the
cortical ones.

In AD the EEG posterior rhythm (alpha rhythm) slows down and the delta and theta
wave activities increase. On the other hand, beta wave activity may decrease. In severe
cases epileptiform discharges and triphasic waves can appear. In such cases, cognitive
impairment often results. The spectral power also changes; the power increases in delta
and theta bands and decreases in beta and alpha bands and also in mean frequency.
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Figure 1.13 A set of multichannel EEG signals from a patient suffering from CJD
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The EEG wave morphology is almost the same for AD and Pick’s disease. Pick’s disease
involves the frontal and temporal lobes. An accurate analysis followed by an efficient
classification of the cases may discriminate these two diseases. CJD is a mixed cortical and
subcortical dementia. This causes slowing of the delta and theta wave activities and, after
approximately three months of the onset of the disease, periodic sharp wave complexes
are generated that occur almost every second, together with a decrease in the background
activity [54]. Parkinson’s disease is a subcortical dementia, which causes slowing down
of the background activity and an increase of the theta and delta wave activities. Some
works have been undertaken using spectral analysis to confirm the above changes [55].
Some other disorders such as depression have a lesser effect on the EEGs and more
accurate analysis of the EEGs has to be performed to detect the signal abnormalities for
these brain disorders.

Generally, EEG is usually used in the diagnosis and evaluation of many cortical and
subcortical dementias. Often it can help to differentiate between a degenerative disorder
such as AD and pseudodementia due to psychiatric illness [54]. The EEG may also show
whether the process is focal or diffuse (i.e. involves the background delta and theta wave
activities). The EEG may also reveal the early CJD-related abnormalities. However, more
advanced signal processing and quantitative techniques may be implemented to achieve
robust diagnostic and monitoring performance.

1.9.2 Epileptic Seizure and Nonepileptic Attacks

Often the onset of a clinical seizure is characterized by a sudden change of frequency
in the EEG measurement. It is normally within the alpha wave frequency band with a
slow decrease in frequency (but increase in amplitude) during the seizure period. It may
or may not be spiky in shape. Sudden desynchronization of electrical activity is found
in electrodecremental seizures. The transition from the preictal to the ictal state, for a
focal epileptic seizure, consists of a gradual change from chaotic to ordered waveforms.
The amplitude of the spikes does not necessarily represent the severity of the seizure.
Rolandic spikes in a child of 4–10 years, for example, are very prominent; however, the
seizure disorder is usually quite benign or there may not be clinical seizure [56].

In terms of spatial distribution, in childhood the occipital spikes are very common.
Rolandic central–midtemporal–parietal spikes are normally benign, whereas frontal spikes
or multifocal spikes are more epileptogenic. The morphology of the spikes varies signif-
icantly with age. However, the spikes may occur in any level of awareness including
wakefulness and deep sleep.

The distinction of seizure from common artefacts is not difficult. Seizure artefacts
within an EEG measurement have a prominent spiky but repetitive (rhythmical) nature,
whereas the majority of other artefacts are transients or noise-like in shape. For the case
of the ECG, the frequency of occurrence of the QRS waveforms (an element of the ECG)
is approximately 1 Hz. These waveforms have a certain shape which is very different
from that of seizure signals.

The morphology of an epileptic seizure signal slightly changes from one type to another.
The seizure may appear in different frequency ranges. For example, a petit mal discharge
often has a slow spike at around 3 Hz, lasting for approximately 70 ms, and normally has
its maximum amplitude around the frontal midline. On the other hand, higher frequency
spike wave complexes occur for patients over 15 years old. Complexes at 4 Hz and 6 Hz
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may appear in the frontal region of the brain of epileptic patients. As for the 6 Hz complex
(also called benign EEG variants and patterns), patients with anterior 6 Hz spike waves
are more likely to have epileptic seizures and those with posterior discharges tend to have
neuroautonomic disturbances [57]. The experiments do not always result in the same
conclusion [56]. It was also found that the occipital 6 Hz spikes can be seen and are
often drug related (due to hypoanalgetics or barbiturates) and due to withdrawal [58].

Among nonepileptics, the discharges may occur in patients with cerebrovascular disor-
der, syncopal attacks, and psychiatric problems [56]. Fast and needle-like spike discharges
may be seen over the occipital region in most congenitally blind children. These spikes
are unrelated to epilepsy and normally disappear in older age patients.

Bursts of 13–16 Hz or 5–7 Hz, as shown in Figure 1.14 (also called 14 and 6 Hz
waves), with amplitudes less than 75 µV and arch shapes may be seen over the posterior
temporal and the nearby regions of the head during sleep. These waves are positive with
respect to the background waves. The 6 and 14 Hz waves may appear independently and
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Figure 1.14 Bursts of 3–7 Hz seizure activity in a set of adult EEG signals
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be found respectively in younger and older children. These waves may be confined to
the regions lying beneath a skull defect. Despite the 6 Hz wave, there are rhythmical
theta bursts of wave activities relating to drowsiness around the midtemporal region, with
a morphology very similar to ictal patterns. In old age patients other similar patterns
may occur, such as subclinical rhythmic EEG discharges of adults (SREDA), over the
4–7 Hz frequency band around the centroparietal region, and a wide frequency range
(2–120 Hz) temporal minor sharp transient and wicket spikes over the anterior temporal
and midtemporal lobes of the brain. These waves are also nonepileptic but with a seizure-
type waveform [56].

The epileptic seizure patterns, called ictal wave patterns, appear during the onset of
epilepsy. Although Chapter 4 of this book focuses on an analysis of these waveforms
from a signal processing point of view, here a brief explanation of morphology of these
waveforms is given. Researchers in signal processing may exploit these concepts in the
development of their algorithms. Although these waveform patterns are often highly
obscured by muscle movements, they normally maintain certain key characteristics.

Tonic–clonic seizure (also called grand mal) is the most common type of epileptic
seizure. It appears in all electrodes but more towards the frontal electrodes (Figure 1.15).
It has a rhythmic but spiky pattern in the EEG and occurs within the frequency range
of 6–12 Hz. Petit mal is another interictal paroxysmal seizure pattern which occurs at
approximately 3 Hz with a generalized synchronous spike wave complex of prolonged
bursts. A temporal lobe seizure (also called a psychomotor seizure or complex partial
seizure) is presented by bursts of serrated slow waves with a relatively high amplitude
of above 60 µV and frequencies of 4–6 Hz. Cortical (focal) seizures have contralateral
distribution with rising amplitude and diminishing frequency during the ictal period. The
attack is usually initiated by local desynchronization, i.e. very fast and very low voltage
spiky activity, which gradually rises in amplitude with diminishing frequency. Myoclonic
seizures have concomitant polyspikes, seen clearly in the EEG signals. They can have
generalized or bilateral spatial distribution that is more dominant in the frontal region
[59]. Tonic seizures occur in patients with the Lennox–Gastaut syndrome [60] and have
spikes that repeat with a frequency of approximately 10 Hz. Atonic seizures may appear
in the form of a few seconds drop attack or be inhibitory, lasting for a few minutes.
They show a few polyspike waves or spike waves with generalized spatial distribution of
approximately 10 Hz followed by large slow waves of 1.5–2 Hz [61]. Akinetic seizures
are rare and characterized by arrest of all motion, which, however, is not caused by
sudden loss of tone as in atonic seizure and the patient is in an absent-like state. They
are rhythmic with a frequency of 1–2 Hz. Jackknife seizures, also called salaam attacks,
are common in children with hypsarrhythmia (infantile spasms, West syndrome) and are
either in the form of sudden generalized flattening desynchronization or have rapid spike
discharges [60].

There are generally several varieties of recurring or quasirecurring discharges, which
may or may not be related to epileptic seizure. These abnormalities may be due to psy-
chogenic changes, variation in body metabolism, or circulatory insufficiency (which often
appears as acute cerebral ischemia). Of these, the most important ones are: periodic or
quasiperiodic discharges related to severe CNS diseases; periodic complexes in subacute
sclerosing panencephalitis (SSPE); periodic complexes in herpes simplex encephalitis;
syncopal attacks; breath holding attacks; hypoglycemia and hyperventilation syndrome due
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Figure 1.15 Generalized tonic–clonic (grand mal) seizure. The seizure appears in almost all of
the electrodes

to sudden changes in blood chemistry [62]; and periodic discharges in Creutzfeldt–Jakob
(mad cow) disease [63,64]. The waveforms for this latter abnormality consist of a sharp
wave or a sharp triphasic transient signal of 100–300 ms duration, with a frequency of
0.5–2 Hz. The periodic activity usually shows a maximum over the anterior region except
for the Heidenhain form, which has a posterior maximum [56]. Other epileptic waveforms
include periodic literalized epileptiform discharges (PLED), periodic discharges in acute
cerebral anoxia, and periodic discharges of other etiologies.

Despite the above epileptiform signals there are spikes and other paroxysmal discharges
in healthy nonepileptic persons. These discharges may be found in healthy individuals
without any other symptoms of diseases. However, they are often signs of certain cerebral
dysfunctions that may or may not develop into an abnormality. They may appear during
periods of particular mental challenge on individuals, such as soldiers in the war front
line, pilots, and prisoners.
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A comprehensive overview of epileptic seizure disorders and nonepileptic attacks can be
found in many books and publications such as References [62] and [65]. In Chapter 5 some
recent attempts in application of advanced signal processing techniques to the automatic
detection and prediction of epileptic seizures are explained.

1.9.3 Psychiatric Disorders

Not only can functional and certain anatomical brain abnormalities be investigated using
EEG signals, pathophysiological brain disorders can also be studied by analysing such
signals. According to the Diagnostic and Statistical Manual (DSM) of Mental Disorders
of the American Psychiatric Association, changes in psychiatric education have evolved
considerably since the 1970s. These changes have mainly resulted from physical and
neurological laboratory studies based upon EEG signals [66].

There have been evidences from EEG coherence measures suggesting differential pat-
terns of maturation between normal and learning-disabled children [67]. This finding can
lead to the establishment of some methodology in monitoring learning disorders. Several
psychiatric disorders are diagnosed by analysis of evoked potentials (EPs) achieved by
simply averaging a number of consecutive trails having the same stimuli.

A number of pervasive mental disorders cause significant losses in multiple functioning
areas [66]. Examples of these are dyslexia, which is a developmental reading disorder;
autistic disorder, which is related to abnormal social interaction, communication, and
restricted interests and activities, and starts appearing from the age of three; Rett’s disor-
der, characterized by the development of multiple deficits following a period of normal
postnatal functioning; and Asperger’s disorder, which leads to severe and sustained impair-
ments in social interaction and restricted repetitive patterns of behaviour, interests, and
activities.

Attention-deficit hyperactivity disorder (ADHD) and attention-deficit disorder (ADD),
conduct disorder, oppositional defiant disorder, and disruptive behaviour disorder have
also been under investigation and considered within the DSM. Most of these abnormal-
ities appear during childhood and often prevent children from learning and socializing
well. The associated EEG features have been rarely analytically investigated, but the
EEG observations are often reported in the literature [68–72]. However, most of such
abnormalities tend to disappear with advancing age.

EEG has also been analysed recently for the study of delirium [73,74], dementia [75,76],
and many other cognitive disorders [77]. In EEGs, characteristics of delirium include
slowing or dropout of the posterior dominant rhythm, generalized theta or delta slow-
wave activity, poor organization of the background rhythm, and loss of reactivity of the
EEG to eye opening and closing. In parallel with that, the quantitative EEG (QEEG) shows
increased absolute and relative slow-wave (theta and delta) power, reduced ratio of fast-
to-slow band power, reduced mean frequency, and reduced occipital peak frequency [74].

Dementia includes a group of neurodegenerative diseases that cause acquired cognitive
and behavioural impairment of sufficient severity to interfere significantly with social and
occupational functioning. Alzheimer disease is the most common of the diseases that cause
dementia. At present, the disorder afflicts approximately 5 million people in the United
States and more than 30 million people worldwide. A larger number of individuals have
lesser levels of cognitive impairment, which frequently evolves into full-blown dementia.
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The prevalence of dementia is expected to nearly triple by 2050, since the disorder
preferentially affects the elderly, who constitute the fastest-growing age bracket in many
countries, especially in industrialized nations [76].

Among other psychiatric and mental disorders, amnestic disorder (or amnesia), mental
disorder due to a general medical condition, substance-related disorder, schizophrenia,
mood disorder, anxiety disorder, somatoform disorder, dissociative disorder, sexual and
gender identity disorder, eating disorders, sleep disorders, impulse-controlled disorder,
and personality disorders have often been addressed in the literature [66]. However, the
corresponding EEGs have seldom been analysed by means of advanced signal processing
tools.

1.9.4 External Effects

EEG signal patterns may significantly change when using drugs for the treatment and
suppression of various mental and CNS abnormalities. Variations in EEG patterns may
also arise by just looking at the TV screen or listening to music without any attention.
However, among the external effects the most significant ones are the pharmacological and
drug effects. Therefore, it is important to know the effects of these drugs on the changes
of EEG waveforms due to chronic overdosage, and the patterns of overt intoxication [78].

The effect of administration of drugs for anesthesia on EEGs is of interest to clinicians.
The related studies attempt to find the correlation between the EEG changes and the
stages of anesthesia. It has been shown that in the initial stage of anesthesia a fast frontal
activity appears. In deep anesthesia this activity becomes slower with higher amplitudes.
In the last stage, a burst-suppression pattern indicates the involvement of brainstem func-
tions, including respiration, and finally the EEG activity ceases [78]. In cases of acute
intoxication, the EEG patterns are similar to those of anesthesia [78].

Barbiturate is commonly used as an anticonvulsant and antiepileptic drug. With small
dosages of barbiturate the activities within the 25–35 Hz frequency band around the
frontal cortex increases. This changes to 15–25 Hz and spreads to the parietal and occip-
ital regions. Dependence and addiction to barbiturates are common. Therefore, after a
long-term ingestion of barbiturates, its abrupt withdrawal leads to paroxysmal abnormali-
ties. The major complications are myoclonic jerks, generalized tonic–clonic seizures, and
delirium [78].

Many other drugs are used in addition to barbiturates as sleeping pills, such as
melatonin and bromides. Very pronounced EEG slowing is found in chronic bromide
encephalopathies [78]. Antipsychotic drugs also influence the EEG patterns. For example,
neuroleptics increase the alpha wave activity but reduce the duration of beta wave bursts
and their average frequency. As another example, clozapine increases the delta, theta, and
above 21 Hz beta wave activities. As another antipsychotic drug, tricyclic antidepressants
such as imipramine, amitriptyline, doxepin, desipramine, notryptiline, and protriptyline
increase the amount of slow and fast activity along with instability of frequency and
voltage, and also slow down the alpha wave rhythm. After administration of tricyclic
antidepressants the seizure frequency in chronic epileptic patients may increase. With
high dosages, this may further lead to single or multiple seizures occurring in nonepileptic
patients [78].

During acute intoxication, a widespread, poorly reactive, irregular 8–10 Hz activity
and paroxysmal abnormalities including spikes, as well as unspecific coma patterns, are
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observed in the EEGs [78]. Lithium is often used in the prophylactic treatment of bipolar
mood disorder. The related changes in the EEG pattern consist of slowing of the beta
rhythm and of paroxysmal generalized slowing, occasionally accompanied by spikes.
Focal slowing also occurs, which is not necessarily a sign of a focal brain lesion. There-
fore, the changes in the EEG are markedly abnormal with lithium administration [78].
The beta wave activity is highly activated by using benzodiazepines as an anxiolytic drug.
These activities persist in the EEG as long as two weeks after ingestion. Benzodiazepine
leads to a decrease in an alpha wave activity and its amplitude, and slightly increases
the 4–7 Hz frequency band activity. In acute intoxication the EEG shows prominent fast
activity with no response to stimuli [78]. The psychotogentic drugs such as lysergic acid
diethylamide and mescaline decrease the amplitude and possibly depress the slow waves
[78]. The CNS stimulants increase the alpha and beta wave activities and reduce the
amplitude and the amount of slow waves and background EEGs [78].

The effect of many other drugs, especially antiepileptic drugs, is investigated and new
achievements are published frequently. One of the significant changes of the EEG of
epileptic patients with valproic acid consists of reduction or even disappearance of gen-
eralized spikes along with seizure reduction. Lamotrigine is another antiepileptic agent
that blocks voltage-gated sodium channels, thereby preventing excitatory transmitter glu-
tamate release. With the intake of lamotrigine a widespread EEG attenuation occurs [78].
Penicillin if administered in high dosage may produce jerks, generalized seizures, or even
status epilepticus [78].

1.10 Summary and Conclusions

In this chapter the fundamental concepts in the generation of action potentials and con-
sequently the EEG signals have been briefly explained. The conventional measurement
setups for EEG recording and the brain rhythms present in normal or abnormal EEGs
have also been described. In addition, the effects of popular brain abnormalities such as
mental diseases, ageing, and epileptic and nonepileptic attacks have been pointed out.
Despite the known neurological, physiological, pathological, and mental abnormalities of
the brain mentioned in this chapter, there are many other brain disorders and dysfunctions
that may or may not manifest some kinds of abnormalities in the related EEG signals.
Degenerative disorders of the CNS [79], such as a variety of lysosomal disorders, sev-
eral peroxisomal disorders, a number of mitochondrial disorders, inborn disturbances of
the urea cycle, many aminoacidurias, and other metabolic and degenerative diseases, as
well as chromosomal aberrations, have to be evaluated and their symptoms correlated
with the changes in the EEG patterns. The similarities and differences within the EEGs
of these diseases have to be well understood. On the other hand, the developed math-
ematical algorithms need to take the clinical observations and findings into account in
order to enhance the outcome of such processing further. Although a number of tech-
nical methods have been well established for the processing of the EEGs with relation
to the above abnormalities, there is still a long way to go and many questions to be
answered.

The following chapters of this book introduce new digital signal processing techniques
employed mainly for analysis of EEG signals followed by a number of examples in the
applications of such methods.
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2
Fundamentals of EEG Signal
Processing

EEG signals are the signatures of neural activities. They are captured by multiple-electrode
EEG machines either from inside the brain, over the cortex under the skull, or certain
locations over the scalp, and can be recorded in different formats. The signals are normally
presented in the time domain, but many new EEG machines are capable of applying simple
signal processing tools such as the Fourier transform to perform frequency analysis and
equipped with some imaging tools to visualize EEG topographies (maps of the brain
activities in the spatial domain).

There have been many algorithms developed so far for processing EEG signals. The
operations include, but are not limited to, time-domain analysis, frequency-domain analy-
sis, spatial-domain analysis, and multiway processing. Also, several algorithms have been
developed to visualize the brain activity from images reconstructed from only the EEGs.
Separation of the desired sources from the multisensor EEGs has been another research
area. This can later lead to the detection of brain abnormalities such as epilepsy and
the sources related to various physical and mental activities. In Chapter 7 of this book
it can be seen that the recent works in brain–computer interfacing (BCI) [1] have been
focused upon the development of advanced signal processing tools and algorithms for
this purpose.

Modelling of neural activities is probably more difficult than modelling the function
of any other organ. However, some simple models for generating EEG signals have
been proposed. Some of these models have also been extended to include generation of
abnormal EEG signals.

Localization of brain signal sources is another very important field of research [2].
In order to provide a reliable algorithm for localization of the sources within the brain
sufficient knowledge about both propagation of electromagnetic waves and how the infor-
mation from the measured signals can be exploited in separation and localization of the
sources within the brain is required. The sources might be considered as magnetic dipoles
for which the well-known inverse problem has to be solved, or they can be considered
as distributed current sources.
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 2007 John Wiley & Sons, Ltd
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Patient monitoring and sleep monitoring require real-time processing of (up to a few
days) long EEG sequences. The EEG provides important and unique information about
the sleeping brain. Major brain activities during sleep can be captured using the developed
algorithms [3], such as the method of matching pursuits (MPs) discussed [4] later in this
chapter.

Epilepsy monitoring, detection, and prediction have also attracted many researchers.
Dynamical analysis of a time series together with the application of blind separation of
the signal sources has enabled prediction of focal epilepsies from the scalp EEGs. On the
other hand, application of time–frequency-domain analysis for detection of the seizure in
neonates has paved the way for further research in this area.

In the following sections most of the tools and algorithms for the above objectives are
explained and the mathematical foundations discussed. The application of these algorithms
to analysis of the normal and abnormal EEGs, however, will follow in later chapters of this
book. The reader should also be aware of the required concepts and definitions borrowed
from linear algebra, further details of which can be found in Reference [5]. Throughout
this chapter and the reminder of this book continuous time is denoted by t and discrete
time, with normalized sampling period T = 1, by n.

2.1 EEG Signal Modelling

Most probably the earliest physical model is based on the Hodgkin and Huxley’s Nobel
Prize winning model for the squid axon published in 1952 [6–8]. A nerve axon may be
stimulated and the activated sodium (Na+) and potassium (K+) channels produced in the
vicinity of the cell membrane may lead to the electrical excitation of the nerve axon.
The excitation arises from the effect of the membrane potential on the movement of ions,
and from interactions of the membrane potential with the opening and closing of voltage-
activated membrane channels. The membrane potential increases when the membrane is
polarized with a net negative charge lining the inner surface and an equal but opposite net
positive charge on the outer surface. This potential may be simply related to the amount
of electrical charge Q, using

E = Q/Cm (2.1)

where Q is in terms of coulombs/cm2, Cm is the measure of the capacity of the membrane
in units of farads/cm2, and E is in units of volts. In practice, in order to model the action
potentials (APs) the amount of charge Q+ on the inner surface (and Q− on the outer
surface) of the cell membrane has to be mathematically related to the stimulating current
Istim flowing into the cell through the stimulating electrodes. The electrical potential (often
called the electrical force) E is then calculated using Equation (2.1). The Hodgkin and
Huxley model is illustrated in Figure 2.1. In this figure Imemb is the result of positive
charges flowing out of the cell. This current consists of three currents, namely Na, K, and
leak currents. The leak current is due to the fact that the inner and outer Na and K ions
are not exactly equal.

Hodgkin and Huxley estimated the activation and inactivation functions for the Na
and K currents and derived a mathematical model to describe an AP similar to that of a
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Figure 2.1 The Hodgkin–Huxley excitation model

giant squid. The model is a neuron model that uses voltage-gated channels. The space-
clamped version of the Hodgkin–Huxley model may be well described using four ordinary
differential equations [9]. This model describes the change in the membrane potential (E)
with respect to time and is described in Reference [10]. The overall membrane current is
the sum of capacity current and ionic current, i.e.

Imemb = Cm
dE

dt
+ Ii (2.2)

where Ii is the ionic current and, as indicated in Figure 2.1, can be considered as the sum
of three individual components: Na, K, and leak currents:

Ii = INa + IK + Ileak (2.3)

INa can be related to the maximal conductance gNa, activation variable aNa, inactivation
variable hNa, and a driving force (E − ENa) through

INa = gNaa
3
NahNa(E − ENa) (2.4)

Similarly, IK can be related to the maximal conductance gK, activation variable aNa,
inactivation variable aK, and a driving force (E − EK) as

IK = gKaK(E − EK) (2.5)

and Ileak is related to the maximal conductance gl and a driving force (E − El) as

Il = gl(E − El) (2.6)
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The changes in the variables aNa, aK, and hNa vary from 0 to 1 according to the following
equations:

daNa

dt
= λt [αNa(E)(1 − aNa) − βNa(E)aNa] (2.7)

dhNa

dt
= λt [αh(E)(1 − hNa) − βh(E)hNa] (2.8)

daK

dt
= λt [αK(E)(1 − aK) − βK(E)aK] (2.9)

where α(E) and β(E) are respectively forward and backward rate functions and λt is a
temperature-dependent factor. The forward and backward parameters depend on voltage
and were empirically estimated by Hodgkin and Huxley as

αNa(E) = 3.5 + 0.1E

1 − e−(3.5+0.1E)
(2.10)

βNa(E) = 4e−(E+60)/18 (2.11)

αh(E) = 0.07e−(E+60)/20 (2.12)

βh(E) = 1

1 + e−(3+0.1E)
(2.13)

αK(E) = 0.5 + 0.01E

1 − e−(5+0.1E)
(2.14)

βK(E) = 0.125e−(E+60)/80 (2.15)

As stated in the Simulator for Neural Networks and Action Potentials (SNNAP) literature
[9], the α(E) and β(E) parameters have been converted from the original Hodgkin–Huxley
version to agree with the present physiological practice, where depolarization of the mem-
brane is taken to be positive. In addition, the resting potential has been shifted to −60 mV
(from the original 0 mV). These equations are used in the model described in the SNNAP.
In Figure 2.2 an AP has been simulated. For this model the parameters are set to Cm =
1.1 uF/cm2, gNa = 100 ms/cm2, gK = 35 ms/cm2, gl = 0.35 ms/cm2, and ENa = 60 mV.

The simulation can run to generate a series of action potentials, as happens in practice
in the case of ERP signals. If the maximal ionic conductance of the potassium current,
gK, is reduced the model will show a higher resting potential. Also, for gK = 16 ms/cm2,
the model will begin to exhibit oscillatory behaviour. Figure 2.3 shows the result of a
Hodgkin–Huxley oscillatory model with reduced maximal potassium conductance.

The SNNAP can also model bursting neurons and central pattern generators. This
stems from the fact that many neurons show cyclic spiky activities followed by a period
of inactivity. Several invertebrate as well as mammalian neurons are bursting cells and
exhibit alternating periods of high-frequency spiking behaviour followed by a period of
no spiking activity.

A simpler model than that due to Hodgkin–Huxley for simulating spiking neurons is
the Morris–Lecar model [11]. This model is a minimal biophysical model, which gener-
ally exhibits single action potential. This model considers that the oscillation of a slow
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Figure 2.2 A single AP in response to a transient stimulation based on the Hodgkin–Huxley
model. The initiated time is at t = 0.4 ms and the injected current is 80 µA/cm2 for a duration
of 0.1 ms. The selected parameters are Cm = 1.2 uF/cm2, gNa = 100 mS/cm2, gK = 35 ms/cm2,
gl = 0.35 ms/cm2, and ENa = 60 mV
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calcium wave that depolarizes the membrane leads to a bursting state. The Morris–Lecar
model was initially developed to describe the behaviour of barnacle muscle cells. The
governing equations relating the membrane potential (E) and potassium activation wK to
the activation parameters are given as

C
dE

dt
= Ii − gCaaCa(E)(E − ECa) − gKwK(E − EK) − gl(E − El) (2.16)

dwK

dt
= λt

(
w∞(E) − wK

τK(E)

)
(2.17)

where Ii is the combination of three ionic currents, calcium (Ca), potassium (K), and leak
(l), and, similar to the Hodgkin–Huxley model, are products of a maximal conductance
g, activation components (in such as aCa, wK), and the driving force E. The changes in
the potassium activation variable wK is proportional to a steady-state activation function
wK(E) (a sigmoid curve) and a time-constant function τK(E) (a bell-shaped curve). These
functions are respectively defined as

w∞(E) = 1

1 + e−(E−hw)/Sw
(2.18)

τK(E) = 1

e(E−hw)/(2Sw) + e−(E−hw)/(2Sw)
(2.19)

The steady-state activation function aCa(E), involved in calculation of the calcium current,
is defined as

aCa(E) = 1

1 + e−(E−hCa)/sm
(2.20)

Similar to the sodium current in the Hodgkin–Huxley model, the calcium current is an
inward current. Since the calcium activation current is a fast process in comparison with
the potassium current, it is modelled as an instantaneous function. This means that for
each voltage E, the steady-state function aCa(E) is calculated. The calcium current does
not incorporate any inactivation process. The activation variable wK here is similar to aK

in the Hodgkin–Huxley model, and finally the leak currents for both models are the same
[9]. A simulation of the Morris–Lecar model is presented in Figure 2.4.

Calcium-dependent potassium channels are activated by intracellular calcium; the higher
the calcium concentration the higher the channel activation [9]. For the Morris–Lecar
model to exhibit bursting behaviour, the two parameters of maximal time constant and
the input current have to be changed [9]. Figure 2.5 shows the bursting behaviour of the
Morris–Lecar model. The basic characteristics of a bursting neuron are the duration of
the spiky activity, the frequency of the action potentials during a burst, and the duration
of the quiescence period. The period of an entire bursting event is the sum of both active
and quiescence duration [9].

Neurons communicate with each other across synapses through axon–dendrites or
dendrites–dendrites connections, which can be excitatory, inhibitory, or electric [9]. By
combining a number of the above models a neuronal network can be constructed. The net-
work exhibits oscillatory behaviour due to the synaptic connection between the neurons.
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Figure 2.4 Simulation of an AP within the Morris–Lecar model. The model parameters are:
Cm = 22 uF/cm2, gCa = 3.8 ms/cm2, gK = 8.0 ms/cm2, gl = 1.6 ms/cm2, ECa = 125 mV, EK =
−80 mV, El = −60 mV, λt = 0.06, hCa = −1.2, and Sm = 8.8
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Figure 2.5 An illustration of the bursting behaviour that can be generated by the Morris–Lecar
model
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A synaptic current is produced as soon as a neuron fires an AP. This current stimulates
the connected neuron and may be modelled by an alpha function multiplied by a maximal
conductance and a driving force as

Isyn = gsyn gsyn(t)[E(t) − Esyn] (2.21)

where

gsyn(t) = t e(−t/u) (2.22)

and t is the latency or time since the trigger of the synaptic current, u is the time to reach
to the peak amplitude, Esyn is the synaptic reversal potential, and gsyn is the maximal
synaptic conductance. The parameter u alters the duration of the current while gsyn changes
the strength of the current. This concludes the treatment of the modelling of APs.

As the nature of the EEG sources cannot be determined from the electrode signals
directly, many researchers have tried to model these processes on the basis of information
extracted using signal processing techniques. The method of linear prediction described
in the later sections of this chapter is frequently used to extract a parametric description.

2.1.1 Linear Models

2.1.1.1 Prediction Method

The main objective of using prediction methods is to find a set of model parameters that
best describe the signal generation system. Such models generally require a noise-type
input. In autoregressive (AR) modelling of signals each sample of a single-channel EEG
measurement is defined to be linearly related with respect to a number of its previous
samples, i.e.

y(n) = −
p∑

k=1

aky(n − k) + x(n) (2.23)

where ak, k = 1, 2, . . . , p, are the linear parameters, n denotes the discrete sample time
normalized to unity, and x(n) is the noise input. In an autoregressive moving aver-
age (ARMA) linear predictive model each sample is obtained based on a number of its
previous input and output sample values, i.e.

y(n) = −
p∑

k=1

aky(n − k) +
q∑

k=0

bkx(n − k) (2.24)

where bk, k = 1, 2, . . . , q, are the additional linear parameters. The parameters p and q

are the model orders. The Akaike criterion can be used to determine the order of the
appropriate model of a measurement signal by minimizing the following equation [12]
with respect to the model order:

AIC(i, j) = N ln(σ 2
ij ) + 2(i + j) (2.25)
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where i and j represent the assumed AR and MA (moving average) model prediction
orders respectively, N is the number of signal samples, and σ 2

ij is the noise power of the
ARMA model at the ith and j th stage. Later in this chapter it will be shown how the
model parameters are estimated either directly or by employing some iterative optimization
techniques.

In a multivariate AR (MVAR) approach a multichannel scheme is considered. Therefore,
each signal sample is defined versus both its previous samples and the previous samples
of the other channels, i.e. for channel i,

yi(n) = −
p∑

k=1

aikyi(n − k) −
m∑

j=1
j �=i

p∑
k=1

ajkyj (n − k) + xi(n) (2.26)

where m represents the number of channels and xi(n) represents the noise input to channel
i. Similarly, the model parameters can be calculated iteratively in order to minimize the
error between the actual and predicted values [13].

These linear models will be described further later in this chapter and some of their
applications are discussed in other chapters. Different algorithms have been developed
to find the model coefficients efficiently. In the maximum likelihood estimation (MLE)
method [14–16] the likelihood function is maximized over the system parameters for-
mulated from the assumed real, Gaussian distributed, and sufficiently long input signals
of approximately 10–20 seconds (consider a sampling frequency of fs = 250 samples/s
as often used for EEG recordings). Using Akaike’s method, the gradient of the squared
error is minimized using the Newton–Raphson approach applied to the resultant nonlin-
ear equations [16,17]. This is considered as an approximation to the MLE approach. In
the Durbin method [18] the Yule–Walker equations, which relate the model coefficients
to the autocorrelation of the signals, are iteratively solved. The approach and the results
are equivalent to those using a least-squares-based scheme [19]. The MVAR coefficients
are often calculated using the Levinson–Wiggins–Robinson (LWR) algorithm [20]. The
MVAR model and its application in representation of what is called a direct transfer
function (DTF), and its use in the quantification of signal propagation within the brain,
will come in the following section. After the parameters are estimated the synthesis fil-
ter can be excited with wide-sense stationary noise to generate the EEG signal samples.
Figure 2.6 illustrates the simplified system.

2.1.1.2 Prony’s Method

Prony’s method has been previously used to model evoked potentials (EPs) [21,22]. Based
on this model an EP, which is obtained by applying a short audio or visual stimulation
to the brain, can be considered as the impulse response (IR) of a linear infinite impulse

Wide Sense
Stationary
(WSS) Noise

Synthesized
EEG Signal

AR or ARMA Filter

Figure 2.6 A linear model for the generation of EEG signals
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response (IIR) system. The original attempt in this area was to fit an exponentially damped
sinusoidal model to the data [23]. This method was later modified to model sinusoidal
signals [24]. Prony’s method is used to calculate the linear prediction (LP) parameters.
The angles of the poles in the z plane of the constructed LP filter are then referred to
the frequencies of the damped sinusoids of the exponential terms used for modelling the
data. Consequently, both the amplitude of the exponentials and the initial phase can be
obtained following the methods used for an AR model, as follows.

Based on the original method the output of an AR system with zero excitation can be
considered to be related to its IR as

y(n) =
p∑

k=1

aky(n − k) =
p∑

j=1

wj

p∑
k=1

akr
n−k−1
j (2.27)

where y(n) represents the exponential data samples, p is the prediction order,wj = Aj ejθj ,
rk = exp[(αk + j2πfk)Ts], Ts is the sampling period normalized to 1, Ak is the amplitude
of the exponential, αk is the damping factor, fk is the discrete-time sinusoidal frequency
in samples/s, and θj is the initial phase in radians. Therefore, the model coefficients
are first calculated using one of the methods previously mentioned in this section, i.e.
a = −Y−1y̆, where

a =




a0

a1
...

ap


 , Y =




y(p) . . . y(1)

y(p − 1) . . . y(2)
...

y(2p − 1) · · · y(p)


 , and y̆ =




y(p + 1)

y(p + 2)
...

y(2p)


 (2.28)

where a0 = 1. The prediction filter output, i.e. on the basis of Equation (2.27), y(n) is
calculated as the weighted sum of p past values of y(n), and the parameters fk and rk

are estimated. Hence, the damping factors are obtained as

αk = ln |rk| (2.29)

and the resonance frequencies as

fk = 1

2π
tan−1

[
Im(rk)

Re(rk)

]
(2.30)

where Re(.) and Im(.) denote the real and imaginary parts of a complex quantity respec-
tively. The wk parameters are calculated using the fact that y(n) = ∑p

k=1 wkr
n−1
k or




r0
1 r0

2 . . . r0
p

r1
1 r1

2 . . . r1
p

...
...

...

r
p−1
1 r

p−1
2 . . . r

p−1
p






w1

w2
...

wp


 =




y(1)

y(2)
...

y(p)


 (2.31)
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In vector form this can be illustrated as Rw = y, where [R]k,l = rk
l , k = 0, 1, . . . , p −

1, l = 1, . . . , p, denoting the elements of the matrix in the above equation. Therefore,
w = R−1y, assuming R is a full-rank matrix, i.e. there are no repeated poles. Often,
this is simply carried out by implementing the Cholesky decomposition algorithm [25].
Finally, using wk , the amplitude and initial phases of the exponential terms are calculated
as follows:

Ak = |wk| (2.32)

and

θk = tan−1
[

Im(wk)

Re(wk)

]
(2.33)

In the above solution it was considered that the number of data samples N is equal to
N = 2p, where p is the prediction order. For cases where N > 2p, a least-squares (LS)
solution for w can be obtained as

w = (RHR)−1RHy (2.34)

where (.)H denotes the conjugate transpose. This equation can also be solved using the
Cholesky decomposition method. For real data such as EEG signals this equation changes
to w = (RTR)−1RTy, where (.)T represents the transpose operation. A similar result can
be achieved using principal component analysis (PCA) [15].

In the cases where the data are contaminated with white noise the performance of
Prony’s method is reasonable. However, for nonwhite noise the noise information is not
easily separable from the data and therefore the method may not be sufficiently successful.

In a later chapter of this book it will be seen that, Prony’s algorithm has been used in
modelling and analysis of audio and visual evoked potentials (AEP and VEP) [26,27].

2.1.2 Nonlinear Modelling

An approach similar to AR or MVAR modelling in which the output samples are nonlin-
early related to the previous samples may be followed based on the methods developed
for forecasting financial growth in economical studies. In the generalized autoregressive
conditional heteroskedasticity (GARCH) method [28] each sample relates to its previous
samples through a nonlinear (or sum of nonlinear) function(s). This model was origi-
nally introduced for time-varying volatility (honoured with the Nobel Prize in Economic
Sciences in 2003). Nonlinearities in the time series are declared with the aid of the
McLeod–Li [29] and BDS (Brock, Dechert, and Scheinkman) tests [30]. However, both
tests lack the ability to reveal the actual kind of nonlinear dependency.

Generally, it is not possible to discern whether the nonlinearity is deterministic or
stochastic in nature, and nor can a distinction be made between multiplicative and additive
dependencies. The type of stochastic nonlinearity can be determined on the basis of the
Hseih test [31]. Both additive and multiplicative dependencies can be discriminated by
using this test. However, the test itself is not used to obtain the model parameters.
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Considering the input to a nonlinear system to be u(n) and the generated signal as the
output of such a system to be x(n), a restricted class of nonlinear models suitable for the
analysis of such a process is given by

x(n) = g(u(n − 1), u(n − 2), . . .) + un h(u(n − 1), u(n − 2), . . .) (2.35)

Multiplicative dependence means nonlinearity in the variance, which requires the function
h(.) to be nonlinear; additive dependence, on the other hand, means nonlinearity in the
mean, which holds if the function g(.) is nonlinear. The conditional statistical mean and
variance are respectively defined as

E[x(n)|χn−1] = g(u(n − 1), u(n − 2), . . .) (2.36)

and

Var[x(n)|χn−1] = h2(u(n − 1), u(n − 2), . . .) (2.37)

where χn−1 contains all the past information up to time n − 1. The original GARCH(p, q)

model, where p and q are the prediction orders, considers a zero mean case, i.e. g(.) = 0.
If e(n) represents the residual (error) signal using the above nonlinear prediction system,
then

Var[e(n)|χn−1] = σ 2(n) = α0 +
q∑

j=1

αj e2(n − j) +
p∑

j=1

βjσ
2(n − 1) (2.38)

where αj and βj are the nonlinear model coefficients. The second term (first sum) in the
right-hand side corresponds to a qth-order moving average (MA) dynamical noise term
and the third term (second sum) corresponds to an autoregressive (AR) model of order p.
It is seen that the current conditional variance of the residual at time sample n depends
on both its previous sample values and previous variances.

Although in many practical applications such as forecasting of stock prices the orders p

and q are set to small fixed values such as (p, q) = (1, 1), for a more accurate modelling
of natural signals such as EEGs the orders have to be determined mathematically. The
prediction coefficients for various GARCH models or even the nonlinear functions g and
h are estimated recursively as for the linear ARMA models [28,29].

Clearly, such simple GARCH models are only suitable for multiplicative nonlinear
dependence. In addition, additive dependencies can be captured by extending the mod-
elling approach to the class of GARCH-M (GARCH-in-mean) models [32].

Another limitation of the above simple GARCH model is failing to accommodate
sign asymmetries. This is because the squared residual is used in the update equations.
Moreover, the model cannot cope with rapid transitions such as spikes. Considering
these shortcomings, numerous extensions to the GARCH model have been proposed.
For example, the model has been extended and refined to include the asymmetric effects
of positive and negative jumps such as the exponential GARCH (EGARCH) model [33],
the Glosten, Jagannathan, and Runkle GARCH (GJR-GARCH) model [34], the threshold
GARCH (TGARCH) model [35], the asymmetric power GARCH (APGARCH) model
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[36], and the quadratic GARCH (QGARCH) model [37]. In the EGARCH model, for
example, the above equation changes to

log[σ 2(n)] = log(α0) +
q∑

j=1

αj log[e2(n − j)] +
p∑

j=1

βj log[σ 2(n − j)] (2.39)

where log[·] denotes natural logarithm. This logarithmic expression has the advantage of
preventing the variance from becoming negative.

In these models different functions for g(.) and h(.) are defined. For example, in the
EGARCH model proposed by Glosten et al. [34] h(n) is iteratively computed as

h(n) = b + α1u
2(n − 1)(1 − η(n−1)) + α2u

2(n − 1)η(n−1) + κh(n−1) (2.40)

where b, α1, α2, and κ are constants and η(n) is an indicator function that is zero when
u(n) is negative and one otherwise.

Despite modelling the signals, the GARCH approach has many other applications. In
some recent works [38] the concept of GARCH modelling of covariance is combined
with Kalman filtering to provide a more flexible model with respect to space and time
for solving the inverse problem. There are several alternatives for solution to the inverse
problem. Many approaches fall into the category of constrained least-squares methods
employing Tikhonov regularization [39]. Localization of the sources within the brain using
the EEG information is as an example. This approach has become known as low-resolution
electromagnetic tomography (LORETA) [40]. Among numerous possible choices for the
GARCH dynamics, the EGARCH [33] has been used to estimate the variance parameter
of the Kalman filter sequentially.

The above methods are used to model the existing data, but to generate the EEG signals
accurately a very complex model that exploits the physiological dynamics and various
mental activities of the brain has to be constructed. Such a model should also incorporate
the changes in the brain signals due to abnormalities and the onset of diseases. The next
section considers the interaction among various brain components to establish a more
realistic model for generation of the EEG signals.

2.1.3 Generating EEG Signals Based on Modelling the Neuronal Activities

The objective in this section is to introduce some established models for generating
normal and some abnormal EEGs. These models are generally nonlinear, some have been
proposed [41] for modelling a normal EEG signal and some others for the abnormal
EEGs.

A simple distributed model consisting of a set of simulated neurons, thalamocortical
relay cells, and interneurons was proposed [42,43] that incorporates the limited physio-
logical and histological data available at that time. The basic assumptions were sufficient
to explain the generation of the alpha rhythm, i.e. the EEGs within the frequency range
of 8–13 Hz.

A general nonlinear lumped model may take the form shown in Figure 2.7. Although
the model is analogue in nature, all the blocks are implemented in a discrete form. This
model can take into account the major characteristics of a distributed model and it is easy
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Figure 2.7 A nonlinear lumped model for generating the rhythmic activity of the EEG signals;
he(t) and hi(t) are the excitatory and inhibitory postsynaptic potentials, f (v) is normally a sim-
plified nonlinear function, and the Cis are respectively the interaction parameters representing the
interneurons and thalamocortical neurons

to investigate the result of changing the range of excitatory and inhibitory influences of
thalamocortical relay cells and interneurons.

In this model [42] there is a feedback loop including the inhibitory postsynaptic poten-
tials, the nonlinear function, and the interaction parameters C3 and C4. The other feedback
includes mainly the excitatory potentials, nonlinear function, and the interaction param-
eters C1 and C2. The role of the excitatory neurons is to excite one or two inhibitory
neurons. The latter, in turn, serve to inhibit a collection of excitatory neurons. Thus, the
neural circuit forms a feedback system. The input p(t) is considered as a white noise
signal. This is a general model; more assumptions are often needed to enable generation
of the EEGs for the abnormal cases. Therefore, the function f (v) may change to generate
the EEG signals for different brain abnormalities. Accordingly, the Ci coefficients can be
varied. In addition, the output is subject to environment and measurement noise. In some
models, such as the local EEG model (LEM) [42] the noise has been considered as an
additive component in the output.

Figure 2.8 shows the LEM model. This model uses the formulation by Wilson and
Cowan [44] who provided a set of equations to describe the overall activity (not specif-
ically the EGG) in a cartel of excitatory and inhibitory neurons having a large number
of interconnections [45]. Similarly, in the LEM the EEG rhythms are assumed to be
generated by distinct neuronal populations, which possess frequency selective properties.
These populations are formed by the interconnection of the individual neurons and are
assumed to be driven by a random input. The model characteristics, such as the neural
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Figure 2.8 The local EEG model (LEM). The thalamocortical relay neurons are represented
by two linear systems having impulse responses he(t), on the upper branch, and the inhibitory
postsynaptic potential represented by hi(t). The nonlinearity of this system is denoted by fe(v),
representing the spike-generating process. The interneuron activity is represented by another linear
filter he(t) in the lower branch, which generally can be different from the first linear system, and
a nonlinearity function fi(v). Ce and Ci represent respectively the number of interneuron cells and
the thalamocortical neurons

interconnectivity, synapse pulse response, and threshold of excitation, are presented by
the LEM parameters. The changes in these parameters produce the relevant EEG rhythms.

In Figure 2.8, as in Figure 2.7, the notation ‘e’ and ‘i’ refer to excitatory and inhibitory
respectively. The input p(t) is assumed to result from the summation of a randomly
distributed series of random potentials which drive the excitatory cells of the circuit,
producing the ongoing background EEG signal. Such signals originate from other deeper
brain sources within the thalamus and brain stem and constitute part of the ongoing or
spontaneous firing of the central nervous system (CNS). In the model, the average number
of inputs to an inhibitory neuron from the excitatory neurons is designated by Ce and
the corresponding average number from inhibitory neurons to each individual excitatory
neuron is Ci. The difference between two decaying exponentials is used for modelling
each postsynaptic potential he or hi:

he(t) = A[exp(−a1t) − exp(−a2t)] (2.41)

hi(t) = B[exp(−b1t) − exp(−b2t)] (2.42)

where A,B, ak , and bk are constant parameters, which control the shape of the pulse
waveforms. The membrane potentials are related to the axonal pulse densities via the
static threshold functions fe and fi. These functions are generally nonlinear, but to ease
the manipulations they are considered linear for each short time interval. Using this model,
the normal brain rhythms, such as the alpha wave, are considered as filtered noise.

The main problem with such a model is due to the fact that only a single-channel EEG
is generated and there is no modelling of interchannel relationships. Therefore, a more
accurate model has to be defined to enable simulation of a multichannel EEG generation
system. This is still an open question and remains an area of research.
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2.2 Nonlinearity of the Medium

The head as a mixing medium combines EEG signals which are locally generated within
the brain at the sensor positions. As a system, the head may be more or less susceptible
to such sources in different situations. Generally, an EEG signal can be considered as the
output of a nonlinear system, which may be characterized deterministically.

The changes in brain metabolism as a result of biological and physiological phenomena
in the human body can change the mixing process. Some of these changes are influenced
by the activity of the brain itself. These effects make the system nonlinear. Analysis of
such a system is very complicated and up to now nobody has fully modelled the system
to aid in the analysis of brain signals.

On the other hand, some measures borrowed from chaos theory and analysis of the
dynamics of time series such as dissimilarity, attractor dimension, and largest Lyapunov
exponents (LLE) can characterize the nonlinear behaviour of EEG signals. These concepts
are discussed in Section 2.7 and some of their applications are given in Chapter 5.

2.3 Nonstationarity

Nonstationarity of the signals can be quantified by measuring some statistics of the signals
at different time lags. The signals can be deemed stationary if there is no considerable
variation in these statistics.

Although generally the multichannel EEG distribution is considered as multivariate
Gaussian, the mean and covariance properties generally change from segment to segment.
Therefore EEGs are considered stationary only within short intervals, i.e. quasistationarity.
This Gaussian assumption holds during a normal brain condition, but during mental and
physical activities this assumption is not valid. Some examples of nonstationarity of the
EEG signals can be observed during the change in alertness and wakefulness (where
there are stronger alpha oscillations), during eye blinking, during the transitions between
various ictal states, and in the event-related potential (ERP) and evoked potential (EP)
signals.

The change in the distribution of the signal segments can be measured in terms of
both the parameters of a Gaussian process and the deviation of the distribution from
Gaussian. The non-Gaussianity of the signals can be checked by measuring or estimating
some higher-order moments such as skewness, kurtosis, negentropy, and Kulback–Laibler
(KL) distance.

Skewness is a measure of symmetry or, more precisely, the lack of symmetry of the
distribution. A distribution, or data set, is symmetric if it looks the same to the left and
right of the centre point. The skewness is defined for a real signal as

Skewness = E[(x(n) − µ)3]

σ 3
(2.43)

where µ and σ are the mean and standard deviation respectively, and E denotes statistical
expectation. If the distribution is more to the right of the mean point the skewness is
negative, and vice versa. For a symmetric distribution such as Gaussian, the skewness is
zero.
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Kurtosis is a measure of whether the data are peaked or flat relative to a normal
distribution; i.e. data sets with high kurtosis tend to have a distinct peak near the mean,
decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat
top near the mean rather than a sharp peak. A uniform distribution would be the extreme
case. The kurtosis for a real signal x(n) is defined as

kurt = m4[x(n)]

m2
2[x(n)]

(2.44)

where mi[x(n)] is the ith central moment of the signal x(n), i.e. mi[x(n)] = E[(x(n) −
µ)i]. The kurtosis for signals with normal distributions is three. Therefore, an excess or
normalized kurtosis is often used and defined as

Ex kurt = m4[x(n)]

m2
2[x(n)]

− 3 (2.45)

which is zero for Gaussian distributed signals. Often the signals are considered ergodic;
hence the statistical averages can be assumed identical to time averages and so can be
estimated with time averages.

The negentropy of a signal x(n) [46] is defined as

Jneg[x(n)] = H [xGauss(n)] − H [x(n)] (2.46)

where, xGauss(n) is a Gaussian random signal with the same covariance as x(n) and H(.)

is the differential entropy [47], defined as

H [x(n)] =
∫ ∞

−∞
p[x(n)] log

1

p[x(n)]
dx(n) (2.47)

and p[x(n)] is the signal distribution. Negentropy is always nonnegative.
The KL distance between two distributions p1 and p2 is defined as

KL =
∫ ∞

−∞
p1(x1(n)) log

p1(x1(n))

p2(x2(n))
dz (2.48)

It is clear that the KL distance is generally asymmetric, therefore by changing the position
of p1 and p2 in this equation the KL distance changes. The minimum of the KL distance
occurs when p1(x1(n)) = p2(x2(n)).

2.4 Signal Segmentation

Often it is necessary to label the EEG signals by segments of similar characteristics
that are particularly meaningful to clinicians and for assessment by neurophysiologists.
Within each segment, the signals are considered statistically stationary, usually with sim-
ilar time and frequency statistics. As an example, an EEG recorded from an epileptic
patient may be divided into three segments of preictal, ictal, and postictal segments. Each
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Figure 2.9 An EEG set of tonic–clonic seizure signals including three segments of preictal, ictal,
and postictal behaviour

may have a different duration. Figure 2.9 represents an EEG sequence including all the
above segments.

In segmentation of an EEG the time or frequency properties of the signals may be
exploited. This eventually leads to a dissimilarity measurement denoted as d(m) between
the adjacent EEG frames, where m is an integer value indexing the frame and the differ-
ence is calculated between the m and (m − 1)th (consecutive) signal frames. The boundary
of the two different segments is then defined as the boundary between the m and (m − 1)th
frames provided d(m) > ηT, and ηT is an empirical threshold level. An efficient segmen-
tation is possible by highlighting and effectively exploiting the diagnostic information
within the signals with the help of expert clinicians. However, access to such experts is
not always possible and therefore algorithmic methods are required.

A number of different dissimilarity measures may be defined based on the fundamentals
of digital signal processing. One criterion is based on the autocorrelations for segment m,
defined as

rx(k, m) = E[x(n,m)x(n + k, m)] (2.49)

The autocorrelation function of the mth length N frame for an assumed time interval
n, n + 1, . . . , n + (N − 1) can be approximated as

r̂x(k, m) =




1

N

N−1−k∑
l=0

x(l + m + k)x(l + m), k = 0, . . . , N − 1

0, k = N, N + 1, . . .

(2.50)



Fundamentals of EEG Signal Processing 53

Then the criterion is set to

d1(m) =
∑∞

k=−∞ [r̂x(k, m) − r̂x(k, m − 1)]2

r̂x(0, m)r̂x(0, m − 1)
(2.51)

A second criterion can be based on higher-order statistics. The signals with more uniform
distributions such as normal brain rhythms have a low kurtosis, whereas seizure signals or
event related potentials (ERP signals) often have high kurtosis values. Kurtosis is defined
as the fourth-order cumulant at zero time lags and is related to the second- and fourth-
order moments as given in Equations (2.43) to (2.45). A second level discriminant d2(m)

is then defined as

d2(m) = kurtx(m) − kurtx(m − 1) (2.52)

where m refers to the mth frame of the EEG signal x(n). A third criterion is defined from
the spectral error measure of the periodogram. A periodogram of the mth frame is obtained
by discrete time Fourier transforming of the correlation function of the EEG signal

Sx(ω, m) =
∞∑

k=−∞
r̂x(k, m)e−jωk, ω ∈ [−π,π] (2.53)

where r̂x(., m) is the autocorrelation function for the mth frame as defined above. The
criterion is then defined based on the normalized periodogram as

d3(m) =
∫ π

−π
[Sx(ω, m) − Sx(ω, m − 1)]2 dω∫ π

−π
Sx(ω, m)dω

∫ π

−π
Sx(ω, m − 1) dω

(2.54)

The test window sample autocorrelation for the measurement of both d1(m) and d3(m)

can be updated through the following recursive equation over the test windows of size N :

r̂x(k, m) = r̂x(k,m − 1) + 1

N

[x(m − 1 + N)x(m − 1 + N − k) − x(m − 1 + k)x(m − 1)] (2.55)

and thereby computational complexity can be reduced in practice. A fourth criterion
corresponds to the error energy in autoregressive (AR)-based modelling of the signals.
The prediction error in the AR model of the mth frame is simply defined as

e(n, m) = x(n, m) −
p∑

k=1

ak(m)x(n − k,m) (2.56)

where p is the prediction order and ak(m), k = 1, 2, . . . , p, are the prediction coefficients.
For certain p the coefficients can be found directly (e.g. Durbin’s method) in such a way
as to minimize the error (residual) signal energy. In this approach it is assumed that the
frames of length N are overlapped by one sample. The prediction coefficients estimated
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for the (m − 1)th frame are then used to predict the first sample in the mth frame, which
is denoted as ê(1, m). If this error is small, it is likely that the statistics of the mth frame
are similar to those of the (m − 1)th frame. On the other hand, a large value is likely to
indicate a change. An indicator for the fourth criterion can then be the differencing of
this prediction signal, which gives a peak at the segment boundary, i.e.

d4(m) = max[∇mê(1, m)] (2.57)

where ∇m(.) denotes the gradient with respect to m, approximated by a first-order dif-
ference operation. Figure 2.10 shows the residual and the gradient defined in Equation
(2.57)

Finally, a fifth criterion d5(m) may be defined by using the AR-based spectrum of the
signals in the same way as the short-term frequency transform (STFT) for d3(m). The
above AR model is a univariate model, i.e. it models a single-channel EEG. A similar
criterion may be defined when multichannel EEGs are considered [20]. In such cases a
multivariate AR (MVAR) model is analysed. The MVAR can also be used for character-
ization and quantification of the signal propagation within the brain and is discussed in
the next section.

Although the above criteria can be effectively used for segmentation of EEG signals,
better systems may be defined for the detection of certain abnormalities. In order to do
that, the features that best describe the behaviour of the signals have to be identified and
used. Therefore the segmentation problem becomes a classification problem for which
different classifiers can be used.
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Figure 2.10 (a) An EEG seizure signal including preictal ictal and postictal segments, (b) the
error signal, and (c) the approximate gradient of the signal, which exhibits a peak at the boundary
between the segments. The number of prediction coefficients p = 12
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2.5 Signal Transforms and Joint Time–Frequency Analysis

If the signals are statistically stationary it is straightforward to characterize them in either
the time or frequency domains. The frequency-domain representation of a finite-length
signal can be found by using linear transforms such as the (discrete) Fourier transform
(DFT), (discrete) cosine transform (DCT), or other semi-optimal transform, which have
kernels independent of the signal. However, the results of these transforms can be degraded
by spectral smearing due to the short-term time-domain windowing of the signals and fixed
transform kernels. An optimal transform such as the Karhunen–Loéve transform (KLT)
requires complete statistical information, which may not be available in practice.

Parametric spectrum estimation methods such as those based on AR or ARMA mod-
elling can outperform the DFT in accurately representing the frequency-domain charac-
teristics of a signal, but they may suffer from poor estimation of the model parameters
mainly due to the limited length of the measured signals. For example, in order to model
the EEGs using an AR model, accurate values for the prediction order and coefficients are
necessary. A high prediction order may result in splitting the true peaks in the frequency
spectrum and a low prediction order results in combining peaks in close proximity in the
frequency domain.

For an AR model of the signal x(n) the error or driving signal is considered to be zero
mean white noise. Therefore, by applying a z-transform to Equation (2.56), dropping the
block index m, and replacing z by ejω gives

Xp(ω)

E(ω)
= 1

1 −∑p

k=1 ake−jkω
(2.58)

where, E(ω) = Kω (constant) is the power spectrum of the white noise and Xp(ω) is
used to denote the signal power spectrum. Hence,

Xp(ω) = Kω

1 −∑p

k=1 ake−jkω
(2.59)

and the parameters Kω, ak, k = 1, . . . , p, are the exact values. In practical AR modelling
these would be estimated from the finite length measurement, thereby degrading the
estimate of the spectrum. Figure 2.11 provides a comparison of the spectrum of an EEG
segment of approximately 1550 samples of a single-channel EEG using both DFT analysis
and AR modelling.

The fluctuations in the DFT result as shown in Figure 2.11(b) are a consequence of
the statistical inconsistency of periodogram-like power spectral estimation techniques. The
result from the AR technique (Figure 2.11(c)) overcomes this problem provided the model
fits the actual data. EEG signals are often statistically nonstationary, particularly where
there is an abnormal event captured within the signals. In these cases the frequency-
domain components are integrated over the observation interval and do not show the
characteristics of the signals accurately. A time–frequency (TF) approach is the solution
to the problem.

In the case of multichannel EEGs, where the geometrical positions of the electrodes
reflect the spatial dimension, a space–time–frequency (STF) analysis through multiway
processing methods has also become popular [48]. The main concepts in this area, together
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Figure 2.11 Single-channel EEG spectrum: (a) a segment of the EEG signal with a dominant
alpha rhythm, (b) the spectrum of the signal in (a) using the DFT, and (c) the spectrum of the
signal in (a) using a 12-order AR model

with the parallel factor analysis (PARAFAC) algorithm, will be reviewed in Chapter 7
where its major applications will be discussed.

The short-time Fourier transform (STFT) is defined as the discrete-time Fourier trans-
form evaluated over a sliding window. The STFT can be performed as

X(n, ω) =
∞∑

τ=−∞
x(τ)w(n − τ)e−jωτ (2.60)

where the discrete-time index n refers to the position of the window w(n). Analogous
with the periodogram, a spectrogram is defined as

Sx(n, ω) = |X(n, ω)|2 (2.61)

Based on the uncertainity principle, i.e. σ 2
t σ 2

ω ≥ 1
4 , where σ 2

t and σ 2
ω are respectively the

time- and frequency-domain variances, perfect resolution cannot be achieved in both time
and frequency domains. Windows are typically chosen to eliminate discontinuities at block
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edges and to retain positivity in the power spectrum estimate. The choice also impacts
upon the spectral resolution of the resulting technique, which, put simply, corresponds
to the minimum frequency separation required to resolve two equal amplitude frequency
components [49].

Figure 2.12 shows the TF representation of an EEG segment during the evolution from
preictal to ictal and to postictal stages. In this figure the effect of time resolution has been
illustrated using a Hanning window of different durations of 1 and 2 seconds. Importantly,
in this figure the drift in frequency during the ictal period is observed clearly.
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Figure 2.12 TF representation of an epileptic waveform (a) for different time resolutions using a
Hanning window of (b) 1 ms and (c) 2 ms duration
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2.5.1 Wavelet Transform

The wavelet transform (WT) is another alternative for a time–frequency analysis. There
is already a well-established literature detailing the WT, such as References [50] and [51].
Unlike the STFT, the time–frequency kernel for the WT-based method can better localize
the signal components in time–frequency space. This efficiently exploits the dependency
between time and frequency components. Therefore, the main objective of introducing
the WT by Morlet [50] was likely to have a coherence time proportional to the sampling
period. To proceed, consider the context of a continuous time signal.

2.5.1.1 Continuous Wavelet Transform

The Morlet–Grossmann definition of the continuous wavelet transform for a one-dimen-
sional signal f (t) is

W(a, b) = 1√
a

∫ ∞

−∞
f (t)ψ∗

(
t − b

a

)
dt (2.62)

where (.)∗ denotes the complex conjugate, ψ(t) is the analysing wavelet, a(> 0) is the
scale parameter (inversely proportional to frequency), and b is the position parameter.
The transform is linear and is invariant under translations and dilations, i.e.

If f (t) → W(a, b) then f (t − τ) → W(a, b − τ) (2.63)

and

f (σ t) → 1√
σ

W(σa, σb) (2.64)

The last property makes the wavelet transform very suitable for analysing hierarchical
structures. It is similar to a mathematical microscope with properties that do not depend
on the magnification. Consider a function W(a, b) which is the wavelet transform of a
given function f (t). It has been shown [52,53] that f (t) can be recovered according to

f (t) = 1

Cϕ

∫ ∞

0

∫ ∞

−∞

1√
a
W(a, b)ϕ

(
t − b

a

)
dadb

a2
(2.65)

where

Cϕ =
∫ ∞

0

ψ̂∗(v)ϕ̂(v)

v
dv =

∫ 0

−∞

ψ̂∗(v)ϕ̂(v)

v
dv (2.66)

Although often it is considered that ψ(t) = ϕ(t), other alternatives for ϕ(t) may enhance
certain features for some specific applications [54]. The reconstruction of f (t) is subject
to having Cϕ defined (admissibility condition). The case ψ(t) = ϕ(t) implies ψ̂(0) = 0;
i.e. the mean of the wavelet function is zero.
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2.5.1.2 Examples of Continuous Wavelets

Different waveforms/wavelets/kernels have been defined for the continuous wavelet trans-
forms. The most popular ones are given below.

Morlet’s wavelet is a complex waveform defined as

ψ(t) = 1√
2π

e−t2/2+j2πb0t (2.67)

This wavelet may be decomposed into its constituent real and imaginary parts as

ψr(t) = 1√
2π

e−t2/2 cos(2πb0t) (2.68)

ψi(t) = 1√
2π

e−t2/2 sin(2πb0t) (2.69)

where b0 is a constant, and it is considered that b0 > 0 to satisfy the admissibility condi-
tion. Figure 2.13 shows respectively the real and imaginary parts.

The Mexican hat defined by Murenzi et al. [51] is

ψ(t) = (1 − t2)e−0.5t2
(2.70)

which is the second derivative of a Gaussian waveform (see Figure 2.14).

2.5.1.3 Discrete-Time Wavelet Transform

In order to process digital signals a discrete approximation of the wavelet coefficients is
required. The discrete wavelet transform (DWT) can be derived in accordance with the
sampling theorem if a frequency band-limited signal is processed.

The continuous form of the WT may be discretized with some simple considerations on
the modification of the wavelet pattern by dilation. Since generally the wavelet function
ψ(t) is not band-limited, it is necessary to suppress the values of the frequency com-
ponents above half the sampling frequency to avoid aliasing (overlapping in frequency)
effects.
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Figure 2.13 Morlet’s wavelet: (a) real and (b) imaginary parts
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Figure 2.14 Mexican hat wavelet

A Fourier space may be used to compute the transform scale-by-scale. The number
of elements for a scale can be reduced if the frequency bandwidth is also reduced. This
requires a band-limited wavelet. The decomposition proposed by Littlewood and Paley
[55] provides a very informative illustration of the reduction of elements scale-by-scale.
This decomposition is based on an stagewise dichotomy of the frequency band. The
associated wavelet is well localized in Fourier space, where it allows a reasonable analysis
to be made, although not in the original space. The search for a discrete transform that is
well localized in both spaces leads to a multiresolution analysis.

2.5.1.4 Multiresolution Analysis

Multiresolution analysis results from the embedded subsets generated by the interpolations
(or down-sampling and filtering) of the signal at different scales. A function f (t) is
projected at each step j on to the subset Vj . This projection is defined by the scalar
product cj (k) of f (t) with the scaling function φ(t), which is dilated and translated as

Cj(k) = 〈f (t), 2−jφ(2−j t − k)〉 (2.71)

where 〈·, ·〉 denotes an inner product and φ(t) has the property

1

2
φ

(
t

2

)
=

∞∑
n=−∞

h(n)φ(t − n) (2.72)

where the right-hand side is convolution of h and φ. By taking the Fourier transform of
both sides,

�(2ω) = H(ω)�(ω) (2.73)
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where H(ω) and �(ω) are the Fourier transforms of h(t) and φ(t) respectively. For a
discrete frequency space (i.e. using the DFT) the above equation permits the computation
of the wavelet coefficient Cj+1(k) from Cj(k) directly. If a start is made from C0(k)

and all Cj(k), with j > 0, are computed without directly computing any other scalar
product, then

Cj+1(k) =
N−1∑
n=0

Cj (n)h(n − 2k) (2.74)

where k is the discrete frequency index and N is the signal length.
At each step, the number of scalar products is divided by two and consequently the

signal is smoothed. Using this procedure the first part of a filter bank is built up. In order
to restore the original data, Mallat uses the properties of orthogonal wavelets, but the
theory has been generalized to a large class of filters by introducing two other filters h̃

and g̃, also called conjugate filters. The restoration is performed with

Cj (k) = 2

N
2 − 1∑
l=0

[Cj+1(l)h̃(k + 2l) + wj+1(l)g̃(k + 2l)] (2.75)

where wj+1(.) are the wavelet coefficients at the scale j + 1 defined later in this section.
For an exact restoration, two conditions have to be satisfied for the conjugate filters:

Anti-aliasing condition:

H
(
ω + 1

2

)
H̃ (ω) + G

(
ω + 1

2

)
G̃(ω) = 0 ∀ω (2.76)

Exact restoration:

H(ω)H̃ (ω) + G(ω)G̃(ω) = 1 ∀ω (2.77)

In the decomposition, the input is successively convolved with the time domain forms
of the two filters H (low frequencies) and G (high frequencies). Each resulting function
is decimated by suppression of one sample out of two. The high-frequency signal is left
untouched, and the decomposition continues with the low-frequency signal (left-hand side
of Figure 2.15). In the reconstruction, the sampling is restored by inserting a zero between
each sample; then the conjugate filters H̃ and G̃ are applied, the resulting outputs are added
and the result is multiplied by 2. Reconstruction continues to the smallest scale (right-hand
side of Figure 2.15). Orthogonal wavelets correspond to the restricted case where

G(ω) = e−2πωH ∗ (ω + 1
2

)
(2.78)

H̃ (ω) = H ∗(ω) (2.79)

G̃(ω) = G∗(ω) (2.80)

and

|H(ω)|2 + ∣∣H (
ω + 1

2

)∣∣2 = 1 ∀ω (2.81)
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Figure 2.15 The filter bank associated with the multiresolution analysis

It can easily be seen that this set satisfies the two basic relations (2.72) and (2.73). Among
various wavelets, Daubechie’s wavelets are the only compact solutions to satisfy the above
conditions. For biorthogonal wavelets, then

G(ω) = e−2πωH̃ ∗ (ω + 1
2

)
(2.82)

G̃(ω) = e2πωH ∗ (ω + 1
2

)
(2.83)

and

H(ω)H̃ (ω) + H ∗ (ω + 1
2

)
H̃ ∗ (ω + 1

2

) = 1 ∀ω (2.84)

The relations (2.76) and (2.77) have also to be satisfied. A large class of compact wavelet
functions can be used. Many sets of filters have been proposed, especially for coding [56].
It has been shown that the choice of these filters must be guided by the regularity of the
scaling and the wavelet functions. The complexity is proportional to N . The algorithm
provides a pyramid of N elements.

2.5.1.5 The Wavelet Transform using the Fourier Transform

Consider the scalar products c0(k) = 〈f (t) φ(t − k)〉 for continuous wavelets. If φ(t) is
band-limited to half of the sampling frequency, the data can be correctly sampled. The
data at the resolution j = 1 are

c1(k) = 〈
f (t) 1

2φ
(

t
2 − k

)〉
(2.85)

and the set c1(k) can be computed from c0(k) with a discrete-time filter with the frequency
response H(ω):

H(ω) =



�(2ω)

�(ω)
if |ω| < ωc

0 if ωc ≤ |ω| < 1
2

(2.86)
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and for ∀ω and ∀ integer m

H(ω + m) = H(ω) (2.87)

Therefore, the coefficients at the next scale can be found from

Cj+1(ω) = Cj(ω)H(2j ω) (2.88)

The cut-off frequency is reduced by a factor 2 at each step, allowing a reduction of the
number of samples by this factor. The wavelet coefficients at the scale j + 1 are

wj+1 = 〈f (t), 2−(j+1)ψ(2−(j+1)t − k)〉 (2.89)

and can be computed directly from Cj by

Wj+1(ω) = Cj (ω)G(2jω) (2.90)

where G is the following discrete-time filter:

G(ω) =



�(2ω)

�(ω)
if |ω| < ωc

0 if ωc ≤ |ω| < 1
2

(2.91)

and for ∀ω and ∀ integer m

G(ω + m) = G(ω) (2.92)

The frequency band is also reduced by a factor of two at each step. These relationships
are also valid for DWT, following Section 2.5.1.4.

2.5.1.6 Reconstruction

The reconstruction of the data from its wavelet coefficients can be performed step-by-step,
starting from the lowest resolution. At each scale,

Cj+1 = H(2jω)Cj (ω) (2.93)

Wj+1 = G(2jω)Cj (ω) (2.94)

when a search is made for Cj knowing Cj+1, Wj+1, h, and g. Then Cj(ω) is restored by
minimizing

Ph(2
jω)|Cj+1(ω) − H(2jω)Cj (ω)|2 + Pg(2

jω)|Wj+1(ω) − G(2jω)Cj (ω)|2 (2.95)

using a least squares estimator. Ph(ω) and Pg(ω) are weight functions that permit a
general solution to the restoration of Cj(ω). The relationship of Cj(ω) is in the form of

Cj (ω) = Cj+1(ω)H̃ (2jω) + Wj+1(ω)G̃(2jω) (2.96)
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where the conjugate filters have the expressions

H̃ (ω) = Ph(ω)H ∗(ω)

Ph(ω)|H(ω)|2 + Pg(ω)|G(ω)|2 (2.97)

H̃ (ω) = Pg(ω)G∗(ω)

Ph(ω)|H(ω)|2 + Pg(ω)|G(ω)|2 (2.98)

It is straightforward to see that these filters satisfy the exact reconstruction condition
given in Equation (2.77). In fact, Equations (2.97) and (2.98) give the general solutions
to this equation. In this analysis, the Shannon sampling condition is always respected. No
aliasing exists, so that the antialiasing condition (2.76) is not necessary. The denominator
is simplified if

G(ω) =
√

1 − |H(ω)|2 (2.99)

This corresponds to the case where the wavelet is the difference between the squares of
two resolutions:

|�(2ω)|2 = |�(ω)|2 − |�(2ω)|2 (2.100)

The reconstruction algorithm then carries out the following steps:

1. Compute the fast Fourier transform (FFT) of the signal at the low resolution.
2. Set j to np and perform the following iteration steps.
3. Compute the FFT of the wavelet coefficients at the scale j .
4. Multiply the wavelet coefficients Wj by G̃.
5. Multiply the signal coefficients at the lower resolution Cj by H̃ .
6. The inverse Fourier transform of WjG̃ + Cj H̃ gives the coefficients Cj−1.
7. Then j = j − 1 and return to step 3.

The use of a band-limited scaling function allows a reduction of sampling at each scale
and limits the computation complexity.

The wavelet transform has been widely used in EEG signal analysis. Its application
to seizure detection, especially for neonates, modelling of the neuron potentials, and the
detection of evoked potentials (EP) and event-related potentials (ERP) will be discussed
in the corresponding chapters of this book.

2.5.2 Ambiguity Function and the Wigner–Ville Distribution

The ambiguity function for a continuous time signal is defined as

Ax(τ, ν) =
∫ ∞

−∞
x∗
(
t − τ

2

)
x
(
t + τ

2

)
ejυt dt (2.101)
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This function has its maximum value at the origin as

Ax(0, 0) =
∫ ∞

−∞
|x(t)|2 dt (2.102)

As an example, if a continuous time signal is considered to consist of two modulated
signals with different carrier frequencies such as

x(t) = x1(t) + x2(t)

= s1(t)e
jω1t + s2(t)e

jω2t (2.103)

The ambiguity function Ax(τ, ν) will be in the form of

Ax(τ, ν) = Ax1(τ, ν) + Ax2(τ, ν) + cross terms (2.104)

This concept is very important in the separation of signals using the TF domain. This
will be addressed in the context of blind source separation (BSS) later in this chapter.
Figure 2.16 demonstrates this concept.

The Wigner–Ville frequency distribution of a signal x(t) is then defined as the two-
dimensional Fourier transform of the ambiguity function

XWV(t, ω) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
Ax(τ, ν)e−jυte−jωt dν dτ

= 1

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
x∗
(
β − τ

2

)
x
(
β + τ

2

)
e−jυ(t−β)

e−jωτ dβ dν dτ (2.105)

which changes to the dual form of the ambiguity function as

XWV(t, ω) =
∫ ∞

−∞
x∗
(
t − τ

2

)
x
(
t + τ

2

)
e−jωτ dτ (2.106)

A quadratic form for the TF representation with the Wigner–Ville distribution can also
be obtained using the signal in the frequency domain as

XWV(t, ω) =
∫ ∞

−∞
X∗

(
ω − ν

2

)
X
(
ω + ν

2

)
e−jνt dν (2.107)

The Wigner–Ville distribution is real and has very good resolution in both the time and
frequency domains. Also it has time and frequency support properties; i.e. if x(t) = 0 for
|t | > t0, then XWV(t, ω) = 0 for |t | > t0, and if X(ω) = 0 for |ω| > ω0, then XWV(t, ω) =
0 for |ω| > ω0. It has also both time-marginal and frequency-marginal conditions of the
form

1

2π

∫ ∞

−∞
XWV(t, ω) dω = |X(t)|2 (2.108)
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Figure 2.16 (a) A segment of a signal consisting of two modulated components, (b) an ambiguity
function for x1(t) only, and (c) the ambiguity function for x(t) = x1(t) + x2(t)

and ∫ ∞

−∞
XWV(t, ω) dt = |X(ω)|2 (2.109)

If x(t) is the sum of two signals x1(t) and x2(t), i.e. x(t) = x1(t) + x2(t), the Wigner–Ville
distribution of x(t) with respect to the distributions of x1(t) and x2(t) will be

XWV(t, ω) = X1WV(t, ω) + X2WV(t, ω) + 2Re[X12WV(t, ω)] (2.110)
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where Re[·] denotes the real part of a complex value and

X12WV(t, ω) =
∫ ∞

−∞
x∗

1

(
t − τ

2

)
x2

(
t + τ

2

)
e−jωτ dτ (2.111)

It is seen that the distribution is related to the spectra of both auto- and cross-correlations.
A pseudo Wigner–Ville distribution (PWVD) is defined by applying a window function,
w(τ), centred at τ = 0 to the time-based correlations, i.e.

X̆WV(t, ω) =
∫ ∞

−∞
x∗
(
t − τ

2

)
x
(
t + τ

2

)
w(τ)e−jωτ dτ (2.112)

In order to suppress the undesired cross-terms the two-dimensional WV distribution may
be convolved with a TF-domain window. The window is a two-dimensional lowpass filter,
which satisfies the time and frequency marginal (uncertainty) conditions, as described
earlier. This can be performed as

Cx(t, ω) = 1

2π

∞∫
−∞

∞∫
−∞

XWV(t ′, ω′)�(t − t ′, ω − ω′) dt ′ dω′ (2.113)

where

�(t, ω) = 1

2π

∞∫
−∞

∞∫
−∞

φ(τ, ν)e−jνte−jωτ dν dτ (2.114)

and φ(. , .) is often selected from a set of well-known signals, the so-called Cohen’s
class. The most popular member of Cohen’s class of functions is the bell-shaped function
defined as

φ(τ, ν) = e−ν2τ2/(4π2σ), σ > 0 (2.115)

A graphical illustration of such a function can be seen in Figure 2.17. In this case the
distribution is referred to as a Choi–Williams distribution.

The application of a discrete time form of the Wigner–Ville distribution to BSS will
be discussed later in this chapter and its application to seizure detection will be briefly
explained in Chapter 4. To improve the distribution a signal-dependent kernel may also
be used [57].

2.6 Coherency, Multivariate Autoregressive (MVAR) Modelling, and
Directed Transfer Function (DTF)

In some applications such as in detection and classification of finger movement, it is
very useful to establish how the associated movement signals propagate within the neural
network of the brain. As will be shown in Chapter 7, there is a consistent movement of the
source signals from the occipital to temporal regions. It is also clear that during the mental
tasks different regions within the brain communicate with each other. The interaction and
cross-talk among the EEG channels may be the only clue to understanding this process.
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Figure 2.17 Illustration of φ(τ, ν) for the Choi–Williams distribution

This requires recognition of the transient periods of synchrony between various regions
in the brain. These phenomena are not easy to observe by visual inspection of the EEGs.
Therefore, some signal processing techniques have to be used in order to infer such causal
relationships. One time series is said to be causal to another if the information contained
in that time series enables the prediction of the other time series.

The spatial statistics of scalp EEGs are usually presented as coherence in individual fre-
quency bands. These coherences result both from correlations among neocortical sources
and volume conduction through the tissues of the head, i.e. brain, cerebrospinal fluid,
skull, and scalp. Therefore, spectral coherence [58] is a common method for determining
the synchrony in EEG activity. Coherency is given as

Coh2
ij (ω) = E[Cij (ω)|2]

E[Cii(ω)]E[Cjj (ω)]
(2.116)

where Cij (ω) = Xi(ω)X∗
j (ω) is the Fourier transform of the cross-correlation coefficients

between channel i and channel j of the EEGs. Figure 2.18 shows an example of the
cross-spectral coherence around one second prior to finger movement. A measure of this
coherency, such as an average over a frequency band, is capable of detecting zero time lag
synchronization and fixed time nonzero time lag synchronization, which may occur when
there is a significant delay between the two neuronal population sites [59]. However, it
does not provide any information on the directionality of the coupling between the two
recording sites.

Granger causality (also called Wiener–Granger causality) [60] is another measure that
attempts to extract and quantify the directionality from EEGs. Granger causality is based
on bivariate AR estimates of the data. In a multichannel environment this causality is
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Figure 2.18 Cross-spectral coherence for a set of three electrode EEGs, one second before the
right-finger movement. Each block refers to one electrode. By careful inspection of the figure, it is
observed that the same waveform is transferred from Cz to C3

calculated from pairwise combinations of electrodes. This method has been used to eval-
uate the directionality of the source movement from the local field potential in the visual
system of cats [61].

For multivariate data in a multichannel recording, however, application of the Granger
causality is not computationally efficient [61,62]. The directed transfer function (DTF)
[63], as an extension of Granger causality, is obtained from multichannel data and can
be used to detect and quantify the coupling directions. The advantage of the DTF over
spectral coherence is that it can determine the directionality in the coupling when the
frequency spectra of the two brain regions have overlapping spectra. The DTF has been
adopted by some researchers for determining the directionality in the coupling [64,65]
since it has been demonstrated that [66] there is a directed flow of information or cross-
talk between the sensors around the sensory motor area before finger movement. The DTF
is based on fitting the EEGs to an MVAR model. Assuming that x (n) is an M-channel
EEG signal, it can be modelled in vector form as

x(n) = −
p∑

k=1

Lkx(n − k) + v(n) (2.117)
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where n is the discrete time index, p is the prediction order, v (n) is zero-mean noise,
and Lk is generally an M × p matrix of prediction coefficients. A similar method to the
Durbin algorithm for single channel signals, namely the Levinson–Wiggins–Robinson
(LWR) algorithm is used to calculate the MVAR coefficients [20]. The Akaike AIC
criterion [12] is also used for the estimation of prediction order p. By multiplying both
sides of the above equation by xT(n − k) and performing the statistical expectation, the
following Yule–Walker equation is obtained [67].

p∑
k=0

LkR(−k + p) = 0; L0 = I (2.118)

where R(q) = E[x(n)xT(n + q)] is the covariance matrix of x (n), and the cross-correla-
tions of the signal and noise are zero since they are assumed to be uncorrelated. Similarly,
the noise autocorrelation is zero for a nonzero shift since the noise samples are uncorre-
lated. The data segment is considered short enough for the signal to remain statistically
stationary within that interval and long enough to enable accurate estimation of the pre-
diction coefficients. Given the MVAR model coefficients, a multivariate spectrum can be
achieved. Here it is assumed that the residual signal, v (n), is white noise. Therefore,

Lf (ω)X(ω) = V(ω) (2.119)

where

Lf (ω) =
p∑

m=0

Lme−jωm (2.120)

and L(0) = I. Rearranging the above equation and replacing noise by σ 2
v I yields

X(ω) = L−1
f (ω) × σ 2

VI = H(ω) (2.121)

which represents the model spectrum of the signals or the transfer matrix of the MVAR
system. The DTF or causal relationship between channel i and channel j can be defined
directly from the transform coefficients [62] given by

�2
ij (ω) = |Hij (ω)|2 (2.122)

Electrode i is causal to j at frequency f if

�2
ij (ω) > 0 (2.123)

A time-varying DTF can also be generated (mainly to track the source signals) by calcu-
lating the DTF over short windows to achieve the short time DTF (SDTF) [62].

As an important feature in classification of left- and right-finger movements, or tracking
the mental task related sources, the SDTF plays an important role. Some results of using
the SDTF for detection and classification of finger movement are given in Chapter 7 in
the context of brain–computer interfacing (BCI).
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2.7 Chaos and Dynamical Analysis

As an effective tool for prediction and characterization of signals, deterministic chaos
plays an important role. Although the EEG signals are considered chaotic, there are
rules that do not in themselves involve any element of change and can be used in their
characterization [68]. Mathematical research about chaos started before 1890 when people
such as Andrey Kolmogorov or Henri Poincaré tried to establish whether planets would
indefinitely remain in their orbits. In the 1960s Stephan Smale formulated a plan to
classify all the typical kinds of dynamic behaviour. Many chaos-generating mechanisms
have been created and used to identify the behaviour of the dynamics of the system. The
Rossler system was designed to model a strange attractor using a simple stretch-and-fold
mechanism. This was, however, inspired by the Lorenz attractor introduced more than a
decade earlier [68].

To evaluate the city of chaotic a dynamical system different measures can be taken
into account. A straightforward parameter is the attractor dimension. Different multidi-
mensional attractors have been defined by a number of mathematicians. In many cases
it is difficult to find the attractor dimension unless the parameters of the system can be
approximated. However, later in this section it will be shown that the attraction dimension
[69] can be simply achieved using the Lyapunov exponents.

2.7.1 Entropy

Entropy is a measure of uncertainty. The level of chaos may also be measured using
entropy of the system. Higher entropy represents higher uncertainty and a more chaotic
system. Entropy is given as

Entropy of the signal x(n) =
∫ max(x)

min(x)

px log(1/px) dx (2.124)

where px is the probability density function (PDF) of signal x(n). Generally, the distri-
bution can be a joint PDF when the EEG channels are jointly processed. On the other
hand, the PDF can be replaced by conditional PDF in places where the occurrence of the
event is subject to another event. In this case, the entropy is called conditional entropy.
Entropy is very sensitive to noise. Noise increases the uncertainty and noisy signals have
higher entropy even if the original signal is ordered.

2.7.2 Kolmogorov Entropy

Also known as metric entropy, Kolmogorov entropy is an effective measure of chaos. To
find the Kolmogorov entropy the phase space is divided into multidimensional hypercubes.
Phase space is the space in which all possible states of a system are represented, each
corresponding to one unique point in the phase space. In phase space, every degree
of freedom or parameter of the system is represented as an axis of a multidimensional
space. A phase space may contain many dimensions. The hypercube is a generalization
of a 3-cube to n-dimensions, also called an n-cube or measure polytope. It is a regular
polytope with mutually perpendicular sides, and is therefore an orthotope. Now, let Pi0,...,in

be the probability that a trajectory falls inside the hypercube, with i0 at t = 0, i1 at t = T ,
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i2 at t = 2T , . . . . Then define

Kn = −
∑

i0,...,in

Pi0,...,in ln Pi0,...,in (2.125)

where Kn+1 − Kn is the information needed to predict which hypercube the trajectory
will be in at (n+1)T , given trajectories up to nT. The Kolmogorov entropy is then defined
as

K = lim
N→∞

1

NT

N−1∑
n=0

(Kn+1 − Kn) (2.126)

However, estimation of the above joint probabilities for large-dimensional data is compu-
tationally costly. On the other hand, in practice, long data sequences are normally required
to perform a precise estimation of the Kolmogorov entropy.

2.7.3 Lyapunov Exponents

A chaotic model can be generated by a simple feedback system. Consider a quadratic
iterator of the form x(n) → αx(n)[1 − x(n)] with an initial value of x0. This generates a
time series such as that in Figure 2.19 (for α = 3.8).

Although in the first 20 samples the time series seems to be random noise its semi-
ordered alterations (cyclic behaviour) later show that some rules govern its chaotic
behaviour. This time series is subject to two major parameters, α and x0.

In order to adopt this model within a chaotic system a different initial value may be
selected. Perturbation of an initial value generates an error E0, which propagates during
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Figure 2.19 Generated chaotic signal using the model x(n) → αx(n)[1 − x(n)] using α = 3.8
and x0 = 0.2
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the signal evolution. After n samples the error changes to En.En/E0 is a measure of how
fast the error grows. The average growth of infinitesimally small errors in the initial point
x0 is quantified by Ljapunov (Lyapunov) exponents λ(x0). The total error amplification
factor |En/E0|, can be written in terms of sample error amplifications as∣∣∣∣En

E0

∣∣∣∣ =
∣∣∣∣ En

En−1

∣∣∣∣
∣∣∣∣En−1

En−2

∣∣∣∣ . . .
∣∣∣∣E1

E0

∣∣∣∣ (2.127)

The average logarithm of this becomes

1

n
ln

∣∣∣∣En

E0

∣∣∣∣ = 1

n

n∑
k=1

ln

∣∣∣∣ Ek

Ek−1

∣∣∣∣ (2.128)

Obviously, the problem is how to measure |Ek/Ek−1|. For the iterator f (x(n)) (f (x(n)) =
αx(n)[1 − x(n)] in the above example) having a small perturbation ε at the initial point,
the term in the above equation may be approximated as

1

n
ln

∣∣∣∣En

E0

∣∣∣∣ = 1

n

n∑
k=1

ln

∣∣∣∣∣ Ẽk

ε

∣∣∣∣∣ (2.129)

where Ẽk = f (xk−1 + ε) − f (xk−1). By replacing this in the above equation the Lyapunov
exponent is approximated as

λ(x0) = lim
n→∞

1

n

n∑
k=1

ln |f ′(xk−1)| (2.130)

where f ′(x) represents differentiation of f (x) with respect to x. This measure is very
significant in separating unstable, unpredictable, or chaotic behaviour from predictable,
stable, or ordered ones. If λ is positive the system is chaotic whereas it is negative for
ordered systems.

Kaplan and Yorke [70] empirically concluded that it is possible to predict the dimension
of a strange attractor from knowledge of the Lyapunov exponents of the corresponding
transformation. This is termed the Kaplan–Yorke conjecture and has been investigated by
many other researchers [71]. This is a very important conclusion since in many dynamical
systems the various dimensions of the attractors are hard to compute, while the Lyapunov
exponents are relatively easy to compute. This conjecture also claims that generally the
information dimension DI and Lyapunov dimension DL respectively are defined as [68]

DI = lim
s→0

I (s)

log2 1/s
(2.131)

where s is the size of a segment of the attractor and I (s) is the entropy of s, and

DL = m + 1

|λm+1|
m∑

k=1

λk (2.132)

where m is the maximum integer with γ (m) = λ1 + · · · + λm ≥ 0, given that λ1 > λ2 >

· · · > λm.
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2.7.4 Plotting the Attractor Dimensions from the Time Series

Very often it is necessary to visualize a phase space attractor and decide about the stability,
chaocity, or randomness of a signal (time series). The attractors can be multidimensional.
For a three-dimensional attractor a time delay T (a multiple of τ) can be chosen and the
following sequence of vectors constructed.

[x(0) x(T ) x(2T )]
[x(τ) x(τ + T ) x(τ + 2T )]
[x(2τ) x(2τ + T ) x(2τ + 2T )]

...
...

...

[x(kτ) x(kτ + T ) x(kτ + 2T )]

By plotting these points in a three-dimensional coordinate space and linking the points
together successively the attractor can be observed. Figure 2.20 shows the attractors for a
sinusoidal and the above chaotic time series. Although the attractors can be defined for a
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Figure 2.20 The attractors for (a) a sinusoid and (b) the above chaotic time sequence, both started
from the same initial point
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higher-dimensional space, visualization of the attractors is not possible when the number
of dimensions increases above three.

2.7.5 Estimation of Lyapunov Exponents from the Time Series

Calculation of the Lyapunov exponents from the time series was first proposed by Wolf
et al. [72]. In their method, initially a finite embedding sequence is constructed from the
finite time series of 2N+1 components as

x(0), x(τ ), x(2τ), . . .

This is the basic data (often called the reference trajectory or reference orbit) upon which
the model builds. Generally, the start point is not given since there is no explicit governing
equation that would generate the trajectory. From this sequence a point x(k0τ ) may be
chosen that approximates the desired initial point z0(0). Considering Figure 2.21, these
approximations should satisfy

|x(k0τ) − x(0)| < δ (2.133)

where δ is an a priori chosen tolerance. This point may be renamed as

z0(0) = x(k0τ) (2.134)

The successors of this point are known as

z0(rτ ) = x((k0 + r)τ ), r = 1, 2, 3, . . . (2.135)

Now there are two trajectories to compare. The logarithmic error amplification factor for
the first time interval becomes

l0 = 1

τ
log

|z0(τ ) − z0(0)|
|x(τ) − x(0)| (2.136)

Reference trajectory
x(0)

z0(0)

z0(t) = z1(t)

x(t)

x(2t)

x2(2t)

z1(2t)
z3(3t)

z2(3t)

x(3t)

d

Figure 2.21 The reference and the model trajectories, evolution of the error, and start and end
of the model trajectory segments. The model trajectory ends when its deviation from the reference
trajectory is more than a threshold
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This procedure is repeated for the next point x(τ ) of the reference trajectory. For that
point another point z1(τ ) needs to the formed from the trajectory, which represents an
error with a direction close to the one obtained from z0(τ ) relative to x(τ ). In the case
where the previous trajectory is still close to the reference trajectory it may be possible
simply to continue with that, thus setting z1(τ ) = z0(τ ). This yields an error amplification
factor l1. Other factors, l2, . . . , lm−1, can also be found by following the same procedure
until the segment of the time series is exhausted. An approximation to the largest Lya-
punov exponent for the current segment of the time series is obtained by averaging the
logarithmic amplification factors over the whole reference trajectory:

λ = 1

m

m−1∑
j=0

lj (2.137)

Instead of the above average, the maximum value of the error amplification factor may
also be considered as the largest Lyapunov exponent. It is necessary to investigate the
effect of noise as the data usually stem from a physical measurement and therefore contain
noise. Hence, the perturbed points, zk(kτ), should not be taken very close to each other,
because then the noise would dominate the stretching effect on the chaotic attractor. On
the other hand, the error should not be allowed to become too large in order to avoid
nonlinear effects. Thus in practice some minimal error, δ1, and a maximal error, δ2, is
prescribed and

δ1 < |x(kτ) − zk(kτ)| < δ2 (2.138)

is required.

2.7.5.1 Optimum Time Delay

In the above calculation it is important to find the optimum time delay τ . Very small time
delays may result in near-linear reconstructions with high correlations between consecutive
phase space points and very large delays might ignore any deterministic structure of the
sequence. In an early proposal [73] the autocorrelation function is used to estimate the
time delay. In this method τ is equivalent to the duration after which the autocorrelation
reaches a minimum or drops to a small fraction of its initial value. In another attempt
[74,75] it has been verified that the values of τ at which the mutual information has a
local minimum are equivalent to the values of τ at which the logarithm of the correlation
sum has a local minimum.

2.7.5.2 Optimum Embedding Dimension

To further optimize the measurement of Lyapunov exponents there is a need to specify the
optimum value for m, named the embedding dimension. Before doing that some definitions
have to be given as follows.

Fractal dimension is another statistic related to the dynamical measurement. The strange
attractors are fractals and their fractal dimension Df is simply related to the minimum num-
ber of dynamical variables needed to model the dynamics of the attractor. Conceptually,
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a simple way to measure Df is to measure the Kolmogorov capacity. In this measurement
a set is covered with small cells, depending on the dimensionality (i.e. squares for sets
embedded in two dimensions, cubes for sets embedded in three dimensions, and so on),
of size ε. If M(ε) denotes the number of such cells within a set, the fractal dimension is
defined as

Df = lim
ε→0

log[M(ε)]

log(1/ε)
(2.139)

for a set of single points Df = 0, for a straight line Df = 1, and for a plane area Df = 2.
The fractal dimension, however, may not be an integer.

The correlation dimension is defined as

Dr = lim
r→0

log C(r)

log r
(2.140)

where

C(r) =
M(r)∑
i=1

p2
i (2.141)

is the correlation sum and pi the probability of cell i.
The optimal embedding dimension, m, as required for accurate estimation of the Lya-

punov exponents, has to satisfy m ≥ 2Df + 1. Df is, however, not often known a priori.
The Grassberger–Procaccia algorithm can nonetheless be employed to measure the cor-
relation dimension, Cr. The minimum embedding dimension of the attractor is m+1,
where m is the embedding dimension above which the measured value of the correlation
dimension Cr remains constant.

As another very important conclusion,

Df = DL = 1 + λ1

|λ2| (2.142)

i.e. the fractal dimension Df is equivalent to the Lyapunov dimension [68].
Chaos has been used as a measure in analysis of many types of signals and data. Its

application to epileptic seizure prediction will be shown in Chapter 4.

2.7.6 Approximate Entropy

Approximate entropy (AE) is a statistic that can be estimated from the discrete-time
sequences, especially for real-time applications [76,77]. This measure can quantify the
complexity or irregularity of the system. The AE is less sensitive to noise and can be
used for short-length data. In addition, it is resistant to short strong transient interferences
(outliers) such as spikes [77].

Given the embedding dimension m, the m-vector x (i) is defined as

x(i) = [x(i), x(i + 1), . . . , x(i + m − 1)], i = 1, . . . , N − m + 1 (2.143)
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where N is the number of data points. The distance between any two of the above vectors,
x (i) and x (j ), is defined as

d[x(i), x(j)] = max
k

|x(i + k) − x(j + k)| (2.144)

where |.| denotes the absolute value. Considering a threshold level of β, the number
of times, Mm(i), that the above distance satisfies d[x(i), x(j)] ≤ β is found. This is
performed for all i. For the embedding dimension m,

ξm
β (i) = Mm(i)

N − m + 1
for i = 1, . . . , N − m + 1 (2.145)

Then, the average natural logarithm of ξm
β (i) is found as

ψm
β = 1

N − m + 1

N−m+1∑
i=1

ln ξm
β (i) (2.146)

By repeating the same method for an embedding dimension of m+1, the AE will be
given as

AE(m, β) = lim
N→∞

(ψm
β − ψm+1

β ) (2.147)

In practice, however, N is limited and therefore the AE is calculated for N data samples.
In this case the AE depends on m, β, and N , i.e.

AE(m, β, N) = ψm
β − ψm+1

β (2.148)

The embedding dimension can be found as previously mentioned. However, the threshold
value has to be set correctly. In some applications the threshold value is taken as a value
between 0.1 and 0.25 times the data standard deviation [76].

2.7.7 Using the Prediction Order

It is apparent that for signals with highly correlated time samples the prediction order of
an AR or ARMA model is low and for noise-type signals where the correlation among
the samples is low the order is high. This means that for the latter case a large number
of previous samples is required to predict the current sample. A different criterion such
as the Akaike information criterion (AIC) may be employed to find the prediction order
from the time series. Figure 2.22 shows the prediction order automatically computed for
overlapping segments of three sections of a time series in which the middle section is
sinusoidal and the first and third sections are noise like signals.
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Figure 2.22 (a) The signal and (b) prediction order measured for overlapping segments of the
signal

2.8 Filtering and Denoising

The EEG signals are subject to noise and artefacts. Electrocardiograms (ECGs), electrooc-
clugrams (EOG), or eye blinks affect the EEG signals. Any multimodal recording such
as EEG–fMRI significantly disturbs the EEG signals because of both magnetic fields and
the change in the blood oxygen level and sensitivity of oxygen molecule to the magnetic
field (ballistocardiogram). Artefact removal from EEGs will be explained in the related
chapters. The noise in the EEGs, however, may be estimated and mitigated using adaptive
and nonadaptive filtering techniques.

The EEG signals contain neuronal information below 100 Hz (in many applications the
information lies below 30 Hz). Any frequency component above these frequencies can
be simply removed by using lowpass filters. In the cases where the EEG data acquisition
system is unable to cancel out the 50 Hz line frequency (due to a fault in grounding or
imperfect balancing of the inputs to the differential amplifiers associated with the EEG
system) a notch filter is used to remove it.

The nonlinearities in the recording system related to the frequency response of the
amplifiers, if known, are compensated by using equalizing filters. However, the charac-
teristics of the internal and external noises affecting the EEG signals are often unknown.
The noise may be characterized if the signal and noise subspaces can be accurately
separated. In Chapter 4 it is seen that the number of sources can be estimated. Using
principal component analysis or independent component analysis it is possible to decom-
pose the multichannel EEG observations to their constituent components, such as the
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Figure 2.23 An adaptive noise canceller

neural activities and noise. Combining these two together, the estimated noise compo-
nents can be extracted, characterized, and separated from the actual EEGs. These concepts
are explained in the following sections and their applications to the artefact and noise
removal will be given in the later chapters.

Adaptive noise cancellers used in communications, signal processing, and biomedical
signal analysis can also be used to remove noise and artefacts from the EEG signals. An
effective adaptive noise canceller, however, requires a reference signal. Figure 2.23 shows
a general block diagram of an adaptive filter for noise cancellation. The reference signal
carries significant information about the noise or artefact and its statistical properties. For
example, in the removal of eye blinking artefacts (discussed in Chapter 7) a signature of
the eye blink signal can be captured from the FP1 and FP2 EEG electrodes. In detection
of the ERP signals, as another example, the reference signal can be obtained by averaging
a number of ERP segments. There are many other examples such as ECG cancellation
from EEGs and the removal of fMRI scanner artefacts from EEG–fMRI simultaneous
recordings where the reference signals can be provided.

Adaptive Wiener filters are probably the most fundamental type of adaptive filters.
In Figure 2.23 the optimal weights for the filter, w(n), are calculated such that ŝ(n) is
the best estimate of the actual signal s(n) in the mean-squared sense. The Wiener filter
minimizes the mean-squared value of the error, defined as

e(n) = x(n) − v̂(n) = x(n) − wTr(n) (2.149)

where w is the Wiener filter coefficient vector. Using the orthogonality principle [78] and
assuming x(n) and r(n) are jointly statistically wide sense stationary, the final form of
the mean-squared error will be

E[e(n)2] = E[x(n)2] − 2pTw + wTRw (2.150)

where E(.) represents statistical expectation,

p = E[x(n)r(n)] (2.151)

and

R = E[r(n)rT(n)] (2.152)
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By taking the gradient with respect to w and equating it to zero,

w = R−1p (2.153)

Since R and p are usually unknown, the above minimization is performed iteratively
by substituting time averages for statistical averages. The adaptive filter in this case
decorrelates the output signals. The general update equation is in the form of

w(n + 1) = w(n) + �w(n) (2.154)

where n is the iteration number, which typically corresponds to the discrete-time index.
�w(n) has to be computed such that E[e(n)]2 reaches a reasonable minimum. The sim-
plest and most common way of calculating �w(n) is by using the gradient descent or
steepest descent algorithm [78]. In both cases, a criterion is defined as a function of the
squared error (often called a performance index) such as η (e(n)2), that monotonically
decreases after each iteration and converges to a global minimum. This requires

η(w + �w) ≤ η(w) = η(e(n)2) (2.155)

Assuming �w to be very small, it is concluded that

η(w) + �w T∇w (η(w)) ≤ η(w) (2.156)

where ∇w (.) represents the gradient with respect to w . This means that the above equation
is satisfied by setting �w = −µ∇w (.), where µ is the learning rate or convergence param-
eter. Hence, the general update equation takes the form

w(n + 1) = w(n) − µ∇w (η(w(n)) (2.157)

Using the least mean square (LMS) approach, ∇w (η(w)) is replaced by an instantaneous
gradient of the squared error signal, i.e.

∇w (η(w(n))) ∼= −2e(n)r(n) (2.158)

Therefore, the LMS-based update equation is

w(n + 1) = w(n) + 2 µe(n)r(n) (2.159)

Also, the convergence parameter, µ, must be positive and should satisfy

0 < µ <
1

λmax
(2.160)

where λmax represents the maximum eigenvalue of the autocorrelation matrix R. The
LMS algorithm is the most simple and computationally efficient algorithm. However, the



82 EEG Signal Processing

speed of convergence can be slow, especially for correlated signals. The recursive least-
squares (RLS) algorithm attempts to provide a high-speed stable filter, but it is numerically
unstable for real-time applications [79,80]. The performance index is defined as

η(w) =
n∑

i=0

γ n−ie2(i) (2.161)

Then, by taking the derivative with respect to w gives

∇w η(w) = −2
n∑

i=0

γ n−ie(i)r(i) (2.162)

where 0 < γ ≤ 1 is the forgetting factor [79,80]. Replacing e(n) in the above equation
and writing it in vector form gives

R(n)w(n) = p(n) (2.163)

where

R(n) =
n∑

i=0

λn−ir(i)rT(i) (2.164)

and

p(n) =
n∑

i=0

λn−ix(i)r(i) (2.165)

From this equation,

w(n) = R−1(n)p(n) (2.166)

The RLS algorithm performs the above operation recursively such that P and R are
estimated at the current time n as

p(n) = λp(n − 1) + x(n)r(n) (2.167)

R(n) = λR(n − 1) + r(n)rT(n) (2.168)

In this case

r(n) =




r(n)

r(n − 1)
...

r(n − M)


 (2.169)
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where M represents the finite impulse response (FIR) filter order. On the other hand,

R−1(n) = [λR−1(n − 1) + r(n)rT(n)]−1 (2.170)

which can be simplified using the matrix inversion lemma [81]

R−1(n) = 1

λ

[
R−1(n − 1) − R−1(n − 1)r(n)rT(n)R−1(n − 1)

λ + rT(n)R−1(n − 1)r(n)

]
(2.171)

and finally the update equation can be written as

w(n) = w(n − 1) + R−1(n)r(n)g(n) (2.172)

where

g(n) = x(n) − w T(n − 1)r(n) (2.173)

and the error e(n) after each iteration is recalculated as

e(n) = x(n) − wT(n)r(n) (2.174)

The second term on the right-hand side of the above equation is v̂(n). The presence of
R−1(n) in Equation (2.172) is the major difference between the RLS and the LMS, but
the RLS approach increases computation complexity by an order of magnitude.

2.9 Principal Component Analysis

All suboptimal transforms such as the DFT and DCT decompose the signals into a set
of coefficients, which do not necessarily represent the constituent components of the
signals. Moreover, as the transform kernel is independent of the data it is not efficient in
terms of both decorrelation of the samples and energy compaction. Therefore, separation
of the signal and noise components is generally not achievable using these suboptimal
transforms.

Expansion of the data into a set of orthogonal components certainly achieves maximum
decorrelation of the signals. This can enable separation of the data into the signal and
noise subspaces.

For a single-channel EEG the Karhunen–Loève transform is used to decompose the
ith channel signal into a set of weighted orthogonal basis functions:

xi(n) =
N∑

k=1

wi,kϕk(n) or x i = �w i (2.175)

where � = {ϕk} is the set of orthogonal basis functions. The weights wi,k are then cal-
culated as

w i = �−1x i or wi,k =
N−1∑
n=0

ϕ−1
k (n)xi(n) (2.176)
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Figure 2.24 The general application of PCA

Often noise is added to the signal, i.e. xi(n) = si(n) + vi(n), where vi(n) is additive
noise. This degrades the decorrelation process. The weights are then estimated in order to
minimize a function of the error between the signal and its expansion by the orthogonal
basis, i.e. ei = x i − �w i . Minimization of the error in this case is generally carried out
by solving the least-squares problem. In a typical application of PCA as depicted in
Figure 2.24, the signal and noise subspaces are separated by means of some classification
procedure.

2.9.1 Singular-Value Decomposition

The singular-value decomposition (SVD) is often used for solving the LS problem. This
can be related to the decomposition of an M × M square autocorrelation matrix R into its
eigenvalue matrix � = diag(λ1, λ2, . . . , λM) and associated M × M orthogonal matrix of
eigenvectors V, i.e. R = V�VH, where (.)H denotes the Hermitian (conjugate transpose)
operation. If A is an M × M data matrix such that R = AHA then an M × M orthogonal
(more generally unitary) matrix U, an M × M orthogonal matrix V, and an M × M

diagonal matrix � exist with diagonal elements equal to λ
1/2
i , such that

A = U� VH (2.177)

Hence �2 = �. The columns of U are called left singular vectors and the rows of VH

are called right singular vectors. If A is a rectangular N × M matrix of rank k then U
will be N × N and � will be

� =
[

S 0
0 0

]
(2.178)

where S = diag(σ1, σ2, . . . , σk), where σi = λ
1/2
i . For such a matrix the Moore–Penrose

pseudoinverse is defined as an M × N matrix A† defined as

A† = U�†VH (2.179)

where �† is an M × N matrix defined as

�† =
[

S−1 0
0 0

]
(2.180)
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A† has a major role in the solutions of least-squares problems and S−1 is a k × k diagonal
matrix with elements equal to the reciprocals of the assumed non zero singular values
of A, i.e.

S−1 = diag

(
1

σ1
,

1

σ2
, . . . ,

1

σk

)
(2.181)

In order to see the application of the SVD in solving the LS problem consider the error
vector e, defined as

e = d − Ah (2.182)

where d is the desired signal vector and Ah is the estimate d̂. To find h , A is replaced
with its SVD in the above equation, which thereby minimizes the squared Euclidean norm
of the error vector, ||e||2. By using the SVD, it is found that

e = d − U�VHh (2.183)

or equivalently

UHe = UHd − �VHh (2.184)

Since U is a unitary matrix, ||e||2 = ||UHe||2. Hence, the vector h that minimizes ||e||2
also minimizes ||UHe||2. Finally, the unique solution as an optimum h (coefficient vector)
may be expressed as [82]:

h =
k∑

i=1

uH
i d

σi

v i (2.185)

where k is the rank of A. Alternatively, as the optimum least-squares coefficient vector

h = (AHA)−1AHd (2.186)

Performing a principal component analysis (PCA) is equivalent to performing an SVD
on the covariance matrix. PCA uses the same concept as SVD and orthogonalization
to decompose the data into constituent uncorrelated orthogonal components such that the
autocorrelation matrix is diagonalized. Each eigenvector represents a principal component
and the individual eigenvalues are numerically related to the variance they capture in the
direction of the principal components. In this case the mean squared error (MSE) is simply
the sum of the N − K eigenvalues, i.e.

MSE =
N∑

k=N−K

ϕT
k Rxϕk =

N∑
k=N−K

ϕT
k (λkϕk) =

N∑
k=N−K

λk (2.187)

PCA is widely used in data decomposition, classification, filtering, and whitening. In
filtering applications the signal and noise subspaces are separated and the data are recon-
structed from only the eigenvalues and eigenvectors of the actual signals. PCA is also
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Figure 2.25 Adaptive estimation of the weight vector w (n)

used for blind source separation of correlated mixtures if the original sources can be
considered as statistically uncorrelated.

The PCA problem is then summarized as how to find the weights w in order to minimize
the error given the observations only. The LMS algorithm is used here to minimize the
MSE iteratively as

Jn = E[(x(n) − �T(n)w (n))2] (2.188)

The update rule for the weights is then

w(n + 1) = w(n) + µe(n)�(n) (2.189)

where the error signal e(n) = x(n) − �T(n)w(n), x(n) is the noisy input, and n is the iter-
ation index. The step size µ may be selected empirically or adaptively. These weights are
then used to reconstruct the sources from the set of orthogonal basis functions. Figure 2.25
shows the overall system for adaptive estimation of the weight vector w using the LMS
algorithm.

2.10 Independent Component Analysis

The concept of independent component analysis (ICA) lies in the fact that the signals
may be decomposed into their constituent independent components. In places where the
combined source signals can be assumed independent from each other this concept plays
a crucial role in separation and denoising the signals.

A measure of independency may easily be described to evaluate the independence of
the decomposed components. Generally, considering the multichannel signal as y(n) and
the constituent signal components as yi(n), the yi(n) are independent if

pY( y(n)) =
m∏

i=1

py(yi(n)) ∀n (2.190)

where p(Y) is the joint probability distribution, py(yi(n)) are the marginal distributions
and m is the number of independent components.
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Figure 2.26 BSS concept; mixing and blind separation of the EEG signals

An important application of ICA is in blind source separation (BSS). BSS is an approach
to estimate and recover the independent source signals using only the information of
their mixtures observed at the recording channels. Due to its variety of applications BSS
has attracted much attention recently. BSS of acoustic signals is often referred to as
the ‘cocktail party problem’ [83], which means separation of individual sounds from a
number of recordings in an uncontrolled environment such as a cocktail party. Figure 2.26
illustrates the BSS concept. As expected, ICA can be useful if the original sources are
independent, i.e. p(s(n)) = ∏m

i=1 pi(s i (n)).
A perfect separation of the signals requires taking into account the structure of the

mixing process. In a real-life application, however, this process is unknown, but some
assumptions may be made about the source statistics.

Generally, the BSS algorithms do not make realistic assumptions about the environment
in order to make the problem more tractable. There are typically three assumptions about
the mixing medium. The most simple but widely used case is the instantaneous case,
where the source signals arrive at the sensors at the same time. This has been considered
for separation of biological signals such as the EEG, where the signals have narrow
bandwidths and the sampling frequency is normally low. The BSS model in this case can
be easily formulated as

x(n) = Hs(n) + v(n) (2.191)
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where m × 1 s(n), ne × 1 x(n), and ne × 1 v(n) denote respectively the vectors of source
signals, observed signals, and noise at discrete time n. H is the mixing matrix of size
ne × m. The separation is performed by means of a separating m × ne matrix, W, which
uses only the information about x(n) to reconstruct the original source signals (or the
independent components) as

y(n) = Wx(n) (2.192)

In the context of EEG signal processing ne denotes the number of electrodes. The early
approaches in instantaneous BSS started from the work by Herault and Jutten [84] in
1986. In their approach, they considered non-Gaussian sources with similar number of
independent sources and mixtures. They proposed a solution based on a recurrent artificial
neural network for separation of the sources.

In acoustic applications, however, there are usually time lags between the arrival of the
signals at the sensors. The signals also may arrive through multiple paths. This type of
mixing model is called a convolutive model. One example is in places where the acoustic
properties of the environment vary, such as a room environment surrounded by walls.
Based on these assumptions the convolutive mixing model can be classified into two
more types: anechoic and echoic. In both cases the vector representations of mixing and
separating processes are changed to x(n) = H(n)∗s(n) + v(n) and y(n) = W(n)∗x(n)

respectively, where ∗ denotes the convolution operation.
In an anechoic model, however, the expansion of the mixing process may be given as

xi(n) =
M∑

j=1

hij sj (n − δij ) + vi(n), for i = 1, . . . , N (2.193)

where the attenuation, hij , and delay, δij , of source j to sensor i would be determined
by the physical position of the source relative to the sensors. Then the unmixing process
will be given as

yj (m) =
N∑

i=1

wjixi(m − δji), for j = 1, . . . , M (2.194)

where the wjis are the elements of W. In an echoic mixing environment it is expected that
the signals from the same sources reach to the sensors through multiple paths. Therefore
the expansion of the mixing and separating models will be changed to

xi(n) =
M∑

j=1

K∑
k=1

hk
ij sj (n − δk

ij ) + vi(n), for i = 1, . . . , N (2.195)

where K denotes the number of paths and vi(n) is the accumulated noise at sensor i.
The unmixing process will be formulated similarly to the anechoic one. Obviously, for a
known number of sources an accurate result may be expected if the number of paths is
known.
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The aim of BSS using ICA is to estimate an unmixing matrix W such that Y = WX
best approximates the independent sources S, where Y and X are respectively matrices
with columns y(n) = [y1(n), y2(n), . . . , ym(n)]T and x(n) = [x1(n), x2(n), . . . xne(n)]T.
In any case, the unmixing matrix for the instantaneous case is expected to be equal to the
inverse of the mixing matrix, i.e. W = H−1. However, in all ICAs algorithms based upon
restoring independence, the separation is subject to permutation and scaling ambiguities in
the output independent components, i.e. W = PDH−1, where P and D are the permutation
and scaling matrices respectively.

There are three major approaches in using ICA for BSS:

1. Factorizing the joint PDF of the reconstructed signals into its marginal PDFs. Under the
assumption that the source signals are stationary and non-Gaussian, the independence
of the reconstructed signals can be measured by a statistical distance between the joint
distribution and the product of its marginal PDFs. Kullback–Laibler (KL) divergence
(distance) is an example. For nonstationary cases and for the short-length data, there
will be poor estimation of the PDFs. Therefore, in such cases, this approach may not
lead to good results. On the other hand, such methods are not robust for noisy data
since in this situation the PDF of the signal will be distorted.

2. Decorrelating the reconstructed signals through time, i.e. diagonalizing the covariance
matrices at every time instant. If the signals are mutually independent, the off-diagonal
elements of the covariance matrix vanish, although the reverse of this statement is not
always true. If the signals are nonstationary the time-varying covariance structure can
be used to estimate the unmixing matrix. An advantage of this method is that it only
uses second-order statistics, which implies that it is likely to perform better in noisy
and short data length conditions than higher-order statistics.

3. Eliminating the temporal cross-correlation functions of the reconstructed signals as
much as possible. In order to perform this, the correlation matrix of observations can
be diagonalized at different time lags simultaneously. Here, second-order statistics are
also normally used. As another advantage, it can be applied in the presence of white
noise since such noise can be avoided by using the cross-correlation only for τ �= 0.
Such a method is appropriate for stationary and weakly stationary sources (i.e. when
the stationarity condition holds within a short segment of data).

It has been shown [85] that mutual information (MI) is a measure of independence and
that maximizing the non-Gaussianity of the source signals is equivalent to minimizing the
mutual information between them.

In the majority of cases the number of sources is known. This assumption avoids any
ambiguity caused by false estimation of the number of sources. In exactly determined cases
the number of sources is equal to the number of mixtures. In overdetermined situations,
however, the number of mixtures is more than the number of sources.

There have been many attempts to apply BSS to EEG signals [86–96] for separation
of normal brain rhythms, event-related signals, or mental or physical movement-related
sources. If the number of sources is unknown, a criterion has to be established to estimate
the number of sources beforehand. This process is a difficult task, especially when noise
is involved. In those cases where the number of sources is more than the number of
mixtures (known as underdetermined systems), the above BSS schemes cannot be applied
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simply because the unmixing matrix will not be invertible, and generally the original
sources cannot be extracted. However, when the signals are sparse other methods based
on clustering may be utilized.

A signal is said to be sparse when it has many zero or at least approximately zero
samples. Separation of the mixtures of such signals is potentially possible in the situation
where at each sample instant the number of nonzero sources is not more than the number
of sensors. The mixtures of sparse signals can also be instantaneous or convolutive.
However, as will be briefly described later, the solution for only a simple case of a small
number of idealized sources has been given in the literature.

In the context of EEG analysis, although the number of signals mixed at the electrodes
seems to be limited, the number of sources corresponding to the neurons firing at a
time can be enormous. However, if the objective is to study a certain rhythm in the
brain the problem can be transformed to the time–frequency domain or even to the
space–time–frequency domain. In such domains the sources may be considered disjoint
and generally sparse. Also it is said that in the brain neurons encode data in a sparse way
if their firing pattern is characterized by a long period of inactivity [97,98].

2.10.1 Instantaneous BSS

This is the most commonly used scheme for processing of the EEGs. The early work
by Jutten and Herault led to a simple but fundamental adaptive algorithm [99]. Linsker
[100] proposed unsupervised learning rules based on information theory that maximize
the average mutual information between the inputs and outputs of an artificial neural
network. Comon [85] performed minimization of mutual information to make the outputs
independent. The Infomax algorithm [101] was developed by Bell and Sejnowski, which
in spirit is similar to the Linsker method. Infomax uses an elegant stochastic gradient
learning rule that was proposed by Amari et al. [102]. Non-Gaussianity of the sources was
first exploited by Hyvarinen and Oja [103] in developing their fast ICA (fICA) algorithm.
fICA is actually a blind source extraction algorithm, which extracts the sources one-by-
one based on their kurtosis; the signals with transient peaks have high kurtosis. Later it
was demonstrated that the Infomax algorithm and maximum likelihood estimation are in
fact equivalent [104,105].

Based on the Infomax algorithm [101] for signals with positive kurtosis such as simul-
taneous EEG-fMRI and speech signals, minimizing the mutual information between the
source estimates and maximizing the entropy of the source estimates are equivalent. There-
fore, a stochastic gradient ascent algorithm can be used to iteratively find the unmixing
matrix by maximization of the entropy. The Infomax algorithm finds a W that minimizes
the following cost function:

J (W) = I (z , x) = H(z ) − H(z |x) (2.196)

where H (z ) is the entropy of the output, H (z |x ) is the entropy of the output subject to a
known input, and z = f (y) is a nonlinear activation function applied element wise to y ,
the estimated sources. I (z ,x ) is the mutual information between the input and output of
the constructed adaptive neural network (ANN). H (z |x ) is independent of W; therefore,
the gradient of J is only proportional to the gradient of H (z ). Correspondingly, the natural
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gradient [107] of J denoted as ∇WJ will be

∇WJ = ∇WI (z , x)WTW = ∇WI (z , x)WTW (2.197)

in which the time index n is dropped for convenience of presentation. Then, the sequential
adaptation rule for the unmixing matrix W becomes

W(n + 1) = W(n) + µ[I − 2f (y(n))yT(n)]W(n) (2.198)

where f (y(n)) = {1 + exp[−y(n)]}−1, assuming the outputs are super-Gaussian and µ

is the learning rate, which is either a small constant or gradually changes following the
speed of convergence.

Joint approximate diagonalization of eigenmatrices (JADE) is another well-known BSS
algorithm [106] based on higher-order statistics (HOS). The JADE algorithm effectively
diagonalizes the fourth-order cumulant of the estimated sources. This procedure uses
certain matrices Qz (M) formed by the inner product of the fourth-order cumulant tensor
of the outputs with an arbitrary matrix M, i.e.

{Qz (M)}ij =
ne∑

k=1

ne∑
l=1

Cum(z i , z ∗
j , z k, z ∗

l )mlk (2.199)

where the (l, k)th component of the matrix M is written as mlk , Z = CY, and ∗ denotes
complex conjugate. The matrix Qz (M) has the important property that it is diagonal-
ized by the correct rotation matrix U, i.e. UHQU = �M, and �M is a diagonal matrix
whose diagonal elements depend on the particular matrix M as well as Z. By using
Equation (2.199), for a set of different matrices M, a set of cumulant matrices Qz (M)
can be calculated. The desired rotation matrix U then jointly diagonalizes these matrices.
In practice, only approximate joint diagonalization is possible [106], i.e. the problem can
be stated as minimization of

J (u) =
ne∑

j=1

ne∑
i=1

off {uHQij u}

where

off (M) =
∑
i �=j

|mij |2 (2.200)

EEG signals are, however, nonstationary. Nonstationarity of the signals has been ex-
ploited in developing an effective BSS algorithm based on second-order statistics called
SOBI (second-order blind identification) [107]. In this algorithm separation is performed
at a number of discrete time lags simultaneously. At each lag the algorithm unitarily
diagonalizes the whitened data covariance matrix. It also mitigates the effect of noise
on the observation by using a whitening matrix calculation, which can improve robust-
ness to noise. Unitary diagonalization can be explained as follows. If V is a whitening
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matrix and X is the observation matrix, the covariance matrix of the whitened obser-
vation is CX = E[VXXHVH] = VRXVH = VHRSHHVH = I, where RX and RS denote
respectively the covariance matrices of the observed data and the original sources. It is
assumed that RS = I, i.e. the sources have unit variance and are uncorrelated, so VH is
a unitary matrix. Therefore H can be factored as H = V−1U, where U = VH. The joint
approximate diagonalization for a number of time lags can be obtained efficiently using
a generalization of the Jacobi technique for the exact diagonalization of a single Hermi-
tian matrix. The SOBI algorithm is implemented through the following steps as given in
Reference [106]:

(a) The sample covariance matrix R̂(0) is estimated from T data samples. The m largest
eigenvalues and their corresponding eigenvectors of R̂(0) are denoted as λ1, λ2, . . . ,

λm and h1, h2, . . . , hm respectively.
(b) Under the white noise assumption, an estimate σ̂ 2 of the noise variance is the aver-

age of the ne –m smallest eigenvalues of R̂(0). The whitened signals are z (n) =
[z1(n), z2(n), . . . , zne(n)]T, computed by zi(n) = (λi − σ̂ 2)−1/2hH

i x(n) for 1 ≤ i ≤
ne. This is equivalent to forming a whitening matrix as Ŵ = [

(λ1 − σ̂ 2)−1/2h1, . . . ,

(λne − σ̂ 2)−1/2hne

]H
.

(c) Form sample estimates R̂(τ ) by computing the sample covariance matrices of z (t)
for a fixed set of time lags τ ∈ {τj |j = 1, . . . ,K}.

(d) A unitary matrix Û is then obtained as a joint diagonalizer of the set {R̂(τj )|j = 1, . . .,
K}.

(e) The source signals are estimated as ŝ(t) = Û
H
Ŵx(t) or the mixing matrix A is

estimated as Â = Ŵ
†
Û , where the superscript † denotes the Moore–Penrose pseu-

doinverse.

The FICA algorithm [103] is another very popular BSS technique which extracts the
signals one by one based on their kurtosis. In fact, the algorithm uses an independence
criterion that exploits non-Gaussianity of the estimated sources. In some places where
the objective is to remove the spiky artefacts, such as the removal of the fMRI artefact
from the simultaneous EEG-fMRI recordings, application of an iterative fICA followed
by deflation of the artefact component gives excellent results [108]. A typical signal of
this type is given in Figure 2.27.

Practically, fICA maximizes the negentropy, which represents the distance between a
distribution and a Gaussian distribution having the same mean and variance, i.e.

Neg(y) ∝ {E[f (y)] − E[f (yGaussian)]}2 (2.201)

where f is a score function [109] and Neg stands for negentropy. This, as mentioned
previously, is equivalent to maximizing the kurtosis. Therefore, the cost function can be
simply defined as

J (W) = −1

4
|k4(y)| = −β

4
k4(y) (2.202)
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Figure 2.27 A sample of an EEG signal simultaneously recorded with fMRI

where k4(y) is the kurtosis, and β is the sign of the kurtosis. Applying the standard
gradient decent approach to minimize the cost function gives

W(n + 1) = W(n) − µ
∂J (W)

∂W

∣∣∣∣
W=W(n)

(2.203)

where

−µ
∂J (W)

∂W

∣∣∣∣
W=W(n)

= µ(n)ϕ(y(n))x(n) (2.204)

Here µ(n) is a learning rate,

ϕ(yi) = β
m̂4(yi)

m̂3
2(yi)

[
m̂2(yi)

m̂4(yi)
y3

i − yi

]
(2.205)

and m̂q(yi) = Ê[yq

i (n)], which is an estimate of the qth-order moment of the actual
sources. Since fICA extracts the sources one-by-one a deflation process is followed to
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exclude the extracted source from the mixtures. The process reconstructs the mixtures
iteratively by

x j+1 = x j − w̃j yj , j = 1, 2, . . . (2.206)

where w̃j is estimated by minimization of the following cost function:

J (w̃j ) = 1

2
E


 nr∑

p=1

x2
j+1,p


 (2.207)

where nr is the number of remaining mixtures.
Figure 2.28 shows the results after application of fICA to remove the scanner artefact

from the EEGs. In addition to the separation of EEGs using fICA, very good results have
been reported after application of fICA to separation of temporomanibular joint sounds
[110].

In a time–frequency (TF) approach, which assumes that the sources are approxi-
mately cyclostationary and nonstationary, the auto-terms and cross-terms of the covariance
matrix of the mixtures are first separated and BSS is applied to both terms [111,112].
In this approach, the spatial time–frequency distribution (STFD) of the mixed signals is
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Figure 2.28 The EEG signals after removal of the scanner artefact.
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defined as

Dxx (n, ω) = 1

2π

N−τ/2∑
u=τ/2

N/2−1∑
τ=0

φ(n − u, τ)e−iωτ E
[
x
(
u + τ

2

)
x
(
u − τ

2

)]
(2.208)

where φ(.) is the discretized kernel function defining a distribution from Cohen’s class
of TF distributions [113] and x (.) is an N sample observation of the signals, which is
normally contaminated by noise. Assuming x(t) = As(t) + v(t), using the above equation
it is found that

Dxx (n, ω) = ADss(n, ω)AH + σ 2I (2.209)

where Dss (.) is the STFD of the source signals and σ 2 is the noise variance and depends on
both noise power and the kernel function. From this equation it is clear that both Dxx and
Dss exhibit the same eigenstructure. The covariance matrix of the source signals is then
replaced by the source STFD matrix composed of auto- and cross-source time–frequency
distributions (TFDs) respectively, on the diagonal and off-diagonal entries.

Defining a whitening matrix W such that U = WA is unitary, a whitened and noise-
compensated STFD matrix is defined as

D̃xx (n, ω) = W(Dxx (n, ω) − σ 2I)WH

= UDss(n, ω)UH (2.210)

W and σ 2 can be estimated from the sample covariance matrix and Dxx is estimated
based on the discrete-time formulation of the TFDs. From Equation (2.191) it is known
that the sensor STFD matrix exhibits the same eigenstructure as the data covariance
matrix commonly used for cyclic data [111]. The covariance matrix of the source signals
is replaced by a source STFD matrix composed of the auto- and cross-source TFDs on
the diagonal and off-diagonal entries respectively. The peaks occur in mutually exclusive
locations on the TF plane. The kernel function can be defined in such a way as to maximize
disjointness of the points in the TF plane. By estimation of the STFD in Equation (2.192) at
appropriate TFD points, it is possible to recover the source signals by estimating a unitary
transformation Û , via optimization of a joint diagonal and off-diagonal criterion, to have

ŝ(n) = Û
H

Wx(n) for n = 1, . . . , N − 1 (2.211)

In order to define and extract the peaks of Dxx a suitable clustering approach has a to be
followed. This algorithm has potential application for estimating the EEG sources since
in most normal cases the sources are cyclic or quasicyclic.

2.10.2 Convolutive BSS

In many practical situations the signals reach the sensors with different time delays. The
corresponding delay between source j and sensor i, in terms of number of samples, is
directly proportional to the sampling frequency and conversely to the speed of sound,
i.e. δij ∝ dijfs/c, where dij , fs, and c are the distance between source j and sensor i,
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the sampling frequency, and the speed of sound respectively. For speech and music in
air, as an example the following could be taken: dij in terms of metres, fs between 8
and 44 kHz, and c = 330 m/s. Also, in an acoustic environment the sound signals can
reach the sensors through multipaths after reflections by obstacles (such as walls). The
above two cases have been addressed as anechoic and echoic BSS models respectively and
formulated at the beginning of this section. The solution to echoic cases is obviously more
difficult and normally involves some approximations to the actual system. As an example,
in the previously mentioned cocktail party problem the source signals propagate through a
dynamic medium with many parasitic effects, such as multiple echoes and reverberation.
Therefore, the received signals are to a first approximation a weighted sum of mixed
and delayed components. In other words, the received signals at each microphone are the
convolutive mixtures of speech signals.

Unfortunately, most of the proposed BSS approaches to instantaneous mixtures fail or
are limited in separation of convolutive mixtures, generally due to:

(a) noise;
(b) possibly a smaller number of sensors than the number of source signals (from the

sources directly and through multipaths);
(c) nonstationarity of the signals;
(d) time delays, which make the overall mixing not instantaneous.

Convolutive BSS has recently been a focus of research in the acoustic signal processing
community. Two major approaches have been followed for both anechoic and echoic
cases. The first approach is to solve the problem in the time domain. In such methods, in
order to have accurate results both the weights of the unmixing matrix and the delays have
to be estimated. However, in the second approach, the problem can be transformed into

the frequency domain as h(n)∗s(n)
F→H(ω) · S(ω) and instantaneous BSS applied to each

frequency bin mixed signal. The separated signals at different frequency bins are then
combined and transformed to the time domain to reconstruct the estimated sources. The
short-term discrete Fourier transform is often used for this purpose. Figure 2.29 clearly
represents the frequency-domain BSS of convolutive mixtures. However, the inherent per-
mutation problem of BSS severely deteriorates the results since the order of the separated
sources in different frequency bins can vary from segment to segment of the signals.

An early work in convolutive BSS by Platt and Faggin [114], who applied the adaptive
noise cancellation network to the BSS model of Herault and Jutten [115], which has delays
in the feedback path, was based on the minimum output power principle. This scheme
exploits the fact that the signal corrupted by noise has more power than the clean signal.
The feedback path cancels out the interferences as the result of delayed versions of the
other sources. This circuit was also used later to extend the Infomax BSS to convolutive
cases [116]. The combined network maximizes the entropy at the output of the network
with respect to the weights and delays. Torkkola [117] extended this algorithm to the
echoic cases. In order to achieve a reasonable convergence, some prior knowledge of the
recording situation is necessary.

In another work an extension of the SOBI algorithm has been used for anechoic BSS
[118]. The problem has been transformed to the frequency domain and joint diagonaliza-
tion of spectral matrices has been utilized to estimate the mixing coefficients as well as the
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Figure 2.29 A schematic diagram of the frequency-domain BSS of convolutive mixtures for a
simple two-source model

delays [119]. In attempts by Parra et al. [120], Ikram and Morgan [121], and Cherkani and
Deville [122], second-order statistics have been used to ensure that the estimated sources,
Y(ω, m), are uncorrelated at each frequency bin. W(ω) is estimated in such a way that
it diagonalizes the covariance matrices RY(ω, k) simultaneously for all time blocks k,
k = 0, 1, . . . , K − 1, i.e.

RY(ω, k) = W(ω)RX(ω, k)WH(ω)

= W(ω)H(ω)�S(ω, k)HH(ω)WH(ω)

= �c(ω, k) (2.212)

where �S(ω, k) is the covariance matrix of the source signals, which changes with
k, �c(ω, k) is an arbitrary diagonal matrix, and RX(ω, k) is the covariance matrix of
X(ω), estimated by

R̂X(ω, k) = 1

N

N−1∑
n=0

X(ω, NK + n)XH(ω, NK + n) (2.213)

where N is the number of mixtures; the unmixing filter W(ω) for each frequency bin ω

that simultaneously satisfies the K decorrelation equations can then be obtained using an
overdetermined least-squares solution. Since the output covariance matrix RY(ω, k) has
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to be diagonalized the update equation for estimation of the unmixing matrix W can be
found by minimizing the off-diagonal elements of RY(ω, k), which leads to

Wρυ+1(ω) = Wρ(ω) − µ(ω)
∂

∂WH
ρ (ω)

{||Vρ(ω, k)||2} (2.214)

where ρ is the iteration index, ‖ · ‖2 is the squared Frobenius norm,

µ(ω) = α∑
k ||RX(ω, k)||2 (2.215)

and

V(ω, k) = W(ω)RX(ω, k)WH(ω) − diag[W(ω)RX(ω, k)WH(ω)] (2.216)

and α is a constant, which is adjusted practically.
In these methods a number of solutions for mitigating the permutation ambiguity have

been suggested. Smaragdis [123] reformulated the Infomax algorithm for the complex
domain and used it to solve the BSS in the frequency domain. Murata et al. [124] also
formulated the problem of BSS in each frequency bin using a simultaneous diagonalization
method similar to the SOBI method. To mitigate the permutation problem a method
based on the temporal structure of signals, which exploits the nonstationarity of speech
was introduced. The method exploits the correlations between the frequency bins of the
spectrum of the signals.

However, for the EEG mixing model the fs is normally low (since the bandwidth
<100 Hz) and the propagation velocity is equivalent to that of electromagnetic waves
(300,000 km/s). Therefore, the delay is almost zero and the mixing model can always
be considered to be instantaneous. The main drawbacks for the application of BSS to
separation of EEG signals is due to the:

(a) noisy environment;
(b) unknown number of sources;
(c) nonstationarity of the sources;
(d) movement of the ERP sources.

Although many attempts have been made to solve the above problems more efforts are
required to provide robust solutions for different applications.

2.10.3 Sparse Component Analysis

In places where the sources are sparse, i.e. at each time instant, the number of non-zero
values are less or equal to the number of mixtures. The columns of the mixing matrix may
be calculated individually, which makes the solution to the underdetermined case possible.
The problem can be stated as a clustering problem since the lines in the scatter plot can be
separated based on their directionalities by means of clustering [125,126]. The same idea
has been followed more comprehensively by Li et al. [127]. In their method, however, the
separation has been performed in two different stages. First, the unknown mixing matrix
is estimated using the k-means clustering method. Then, the source matrix is estimated
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using a standard linear programming algorithm. The line orientation of a dataset may be
thought of as the direction of its greatest variance. One way is to perform eigenvector
decomposition on the covariance matrix of the data, the resultant principal eigenvector,
i.e. the eigenvector corresponding with the largest eigenvalue, indicates the direction of
the data. There are many cases for which the sources are disjoint in other domains rather
than the time domain. In these cases the sparse component analysis can be performed
in those domains more efficiently. One such approach, called DUET [128], transforms
the anechoic convolutive observations into the time–frequency domain using a short-time
discrete Fourier transform, and the relative attenuation and delay values between the two
observations are calculated from the ratio of corresponding time–frequency points. The
regions of significant amplitudes (atoms) are then considered to be the source components
in the time–frequency domain.

For instantaneous cases, in separation of sparse sources the common approach used by
most researchers is to attempt to maximize the sparsity of the extracted signals in the
output of the separator. The columns of the mixing matrix A assign each observed data
point to only one source based on some measure of proximity to those columns [129];
i.e. at each instant only one source is considered active. Therefore the mixing system can
be presented as

xi(n) =
M∑

j=1

ajisj (n), i = 1, . . . , N (2.217)

where in an ideal case aji = 0 for i �= j . Minimization of the L1-norm is one of the most
logical methods for estimation of the sources. L1-norm minimization is a piecewise linear
operation that partially assigns the energy of x (n) to the M columns of A that form a cone
around x (n) in �M space. The remaining N –M columns are assigned zero coefficients;
therefore the L1-norm minimization can be manifested as

min ||s(n)||1 subject to As(n) = x(n) (2.218)

A detailed discussion of signal recovery using L1-norm minimization is presented by Taki-
gawa et al. [130], but it is worth highlighting its potential advantages for short datasets.
As mentioned above, it is important to choose a domain in which the signals are more
sparse. Para-factor (PARAFAC) analysis is an effective tool in detection and classification
of sources in a multidimensional space. In a very recent approach it has been considered
that the brain signal sources in the space–time–frequency domain are disjoint. Therefore
clustering the observation points in the space–time–frequency domain can be effectively
used for separation of brain sources [131]. The outcome is highly valuable for detec-
tion of µ rhythms corresponding to left and right finger movements in the context of
brain–computer interfacing (BCI). The details of PARAFAC and its application to BCI
can be found in Chapter 7 of this book.

2.10.4 Nonlinear BSS

Consider the cases where the parameters of the mixing system change because of changes
in the mixing environment or change in the statistics of the sources. For example, if the
images of both sides of a semi-transparent paper are photocopied the results will be two
mixtures of the original sources. However, since the minimum observable grey level is
black (or zero) and the maximum is white (say 1), the sum of the grey levels cannot go
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beyond these limits. This represents a nonlinear mixing system. As another example, think
of the joint sounds heard from surface electrodes from over the skin. The mixing medium
involves acoustic parameters of the body tissues. However, the tissues are not rigid. In
such cases, if the tissues vibrate due to the sound energy then the mixing system will be
a nonlinear system. The mixing and unmixing can generally be modelled respectively as

x(n) = f (As(n) + n(n)) (2.219)

y(t) = g(Wx(n)) (2.220)

where f (.) and g(.) represent respectively the nonlinearities in the mixing and unmixing
processes. There have been some attempts to solve nonlinear BSS problems, especially for
separation of image mixtures [132,133]. In one attempt [132] the mixing system has been
modelled as a radial basis function (RBF) neural network. The parameters of this network
are then computed iteratively. However, in these methods an assumption is often made
about the mixing model. Unfortunately, none of these methods currently give satisfactory
results.

2.10.5 Constrained BSS

The optimization problem underlying the solution to the BSS problem may be subject
to fulfilment of a number of conditions. These may be based as a priori knowledge of
the sources or the mixing system. Any constraint on the estimated sources or the mixing
system (or unmixing system) can lead to a more accurate estimation of the sources.
Statistical [104] as well as geometrical constraints [105] have very recently been used
in developing new BSS algorithms. In most of the cases the constrained problem is
converted to an unconstrained one by means of a regularization parameter such as a
Lagrange multiplier or more generally a nonlinear penalty function, as used in Reference
[104].

Incorporating nonlinear penalty functions [118] into a joint diagonalization problem
not only exploits nonstationarity of the signals but also ensures fast convergence of the
update equation. A general formulation for the cost function of such a system can be in
the form of

J(W) = Jm(W) + κϕ(Jc(W)) (2.221)

where Jm(W) and Jc(W) are respectively the main and the constraint cost functions, ϕ(·)
is the nonlinear penalty function, and κ is the penalty parameter.

Constrained BSS has a very high potential in incorporating clinical information into
the main optimization formulation. As a new application of constrained BSS, an effective
algorithm has been developed for removing the eye-blinking artefacts from EEGs. A sim-
ilar method to the joint diagonalization of correlation matrices by using gradient methods
[134] has been developed [88], which exploits the temporal structure of the underlying
EEG sources. The algorithm is an extension of SOBI, with the aim of iteratively perform-
ing the joint diagonalization of multiple time lagged covariance matrices of the estimated
sources and exploiting the statistical structure of the eye-blinking signal as a constraint.
The estimated source covariance matrix is given by

RY(k) = WRX(k)WT (2.222)
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where RX(k) = E{x(n)xT(n − k)} is the covariance matrix of the electrode data. Follow-
ing the same procedure as in Reference [135], the least-squares (LS) estimate of W is
found from

Jm(W) = arg min
W

TB∑
k=1

||E(k)||2F (2.223)

where || · ||2F is the squared Frobenius norm and E(k) is the error to be minimized between
the covariances of the source signals, RS(k) and the estimated sources, RY (k). The corre-
sponding cost function has been defined, based on minimizing the off-diagonal elements
for each time block, i.e.

J (W) = Jm(W) + �Jc(W) (2.224)

where

Jm(W) =
TB∑
k=1

||RY(k) − diag(RY(k)||2F (2.225)

and

Jc(W) = F(E[g(n)yT(n)]) (2.226)

is a second-order constraint term. F (.) is a nonlinear function approximating the cumula-
tive density function (CDF) of the data and � = {λij }(i, j = 1, . . . , N) is the weighted
factor which is governed by the correlation (matrix) between the EOG and EEG signals
(RGY), defined as � = κ diag(RGY), where κ is an adjustable constant. Then a gradi-
ent approach [112] is followed to minimize the cost function. The incremental update
equation is

W(n + 1) = W(n) − µ
∂J (W)

∂W
(2.227)

which concludes the algorithm.
Blind source separation has been widely used for processing EEG signals. Although the

main assumptions about the source signals, such as uncorrelatedness or independency of
such signals, have not yet been verified, the empirical results illustrate the effectiveness
of such methods. EEG signals are noisy and nonstationary signals, which are normally
affected by one or more types of internal artefacts. The most efficient approaches are
those that consider all different domain statistics of the signals and take the nature of the
artefacts into account. In addition, a major challenge is in how to incorporate and exploit
the physiological properties of the signals and characteristics of the actual sources into
the BSS algorithm. Some examples have been given here; more will be presented in the
other chapters of this book.

In the case of brain signals the independency or uncorrelatedness conditions for the
sources may not be satisfied. This, however, may be acceptable for abnormal sources,
movement-related sources, or ERP signals. Transforming the problem into a domain such
as the space–time–frequency domain, where the sources can be considered disjoint, may
be a good solution.
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2.11 Application of Constrained BSS: Example

In practice, the natural signals such as EEG source signals are not always independent. A
topographic ICA method proposed in Reference [136] incorporates the dependency among
the nearby sources in not only grouping the independent components related to nearby
sources but also separating the sources originating from different regions of the brain. In
this ICA model it is proposed that the residual dependency structure of the independent
components (ICs), defined as dependencies that cannot be cancelled by ICA, could be
used to establish a topographic order between the components. Based on this model, if
the topography is defined by a lattice or grid, the dependency of the components is a
function of the distance of the components on that grid. Therefore, the generative model,
which implies correlation of energies for components that are close in the topographic
grid, is defined. The main assumption is that the nearby sources are correlated and those
far from each other are independent.

To develop such an algorithm a neighbourhood relation is initially defined as

h(i, j) =
{

1, if |i − j | ≤ m

0, otherwise
(2.228)

where the constant m specifies the width of the neighbourhood. Such a function is therefore
a matrix of hyperparameters. This function can be incorporated into the main cost function
of BSS. The update rule is then given as [136]

w i ∝ E[z (w T
i z )ri] (2.229)

where z i is the whitened mixed signals and

ri =
N∑

k=1

h(i, k)g


 N∑

j=1

h(k, j)(w T
j z )2


 (2.230)

The function g is the derivative of a nonlinear function such as those defined in Reference
[136]. It is seen that the vectors w i are constrained to some topographic boundary defined
by h(i, j). Finally, the orthogonalization and normalization can be accomplished, for
example, by the classical method involving matrix square roots:

W ← (WWT)−1/2W (2.231)

where W is the matrix of the vectors w i , i.e. W = [w1, w 2, . . . , wN ]T. The original
mixing matrix A can be computed by inverting the whitening process as A = (WV)−1,
where V is the whitening matrix.

In a yet unpublished work by Jing and Sanei this algorithm has been modified for
separation of seizure signals, by (a) iteratively finding the best neighbourhood m and
(b) constraining the desired estimated source to be within a specific frequency band
and originating from certain brain zones (confirmed clinically). Figure 2.30 illustrates the
independent components of a set of EEG signals from an epileptic patient, using the above
constrained topographic ICA method. In Figure 2.31 the corresponding topographic maps
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Figure 2.30 The estimated independent components of a set of EEG signals, acquired from 16
electrodes, using constrained topographic ICA. It is seen that similar ICS are gouped together
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Figure 2.31 The topographic maps, each illustrating an IC. It is clear that the sources are geo-
metrically localized

for all independent components (i.e. backprojection of each IC to the scalp using the
inverse of estimated unmixing matrix) are shown. From these figures the sixth IC from
the top clearly shows the seizure component. Consequently, the corresponding topograph
shows the location of a seizure over the left temporal electrodes.

2.12 Signal Parameter Estimation

In many applications such as modelling, denoising, or prediction, some parameters of
signal models or distributions have often to be estimated. For example, in AR modelling
the prediction coefficients may be recursively computed using the least mean square
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(LMS) algorithm as

ap(k + 1) = ap(k) − µe(k)x(k) (2.232)

where p is the prediction order, e(.) is the error (residual) signal, and k is the iteration
number.

The same algorithm can be used for estimation of the intersection point of a number of
spheres. The spheres can be those centred at each EEG electrode and their radius propor-
tional to the inverse of the correlations between each estimated independent component
(source) and the scalp EEG signals. The intersection point is then related to the location
of the source. This problem will be explained in Chapters 3 and 5.

2.13 Classification Algorithms

In the context of biomedical signal processing, especially with application to EEG signals,
the classification of the data in feature spaces is often required. For example, the strength,
locations, and latencies of P300 subcomponents may be classified to not only detect
whether the subject has Alzheimer’s disease but also to determine the stage of the disease.
As another example, to detect whether there is a left or right finger movement in the BCI
area the time, frequency, and spatial features need to be classified. Also, in blind source
separation using the Cohen class Wigner–Ville distribution method, the status of the
auto-terms and cross-terms has to be estimated in order to separate the sources. This has
to be carried out by means of some clustering techniques such as k-means followed by
evaluation of the clusters.

The objective of classification is to draw a boundary between two or more classes and
to label them based on their measured features. In a multidimensional feature space this
boundary takes the form of a separating hyperplane. The art of the work here is to find
the best hyperplane that has a maximum distance from all the classes.

There have been several clustering and classification techniques developed within the
last forty years. Among them artificial neural networks (ANNs), linear discriminant anal-
ysis (LDA), hidden Markov modelling (HMM), k-means clustering, fuzzy logic, and
support vector machines (SVMs) have been very popular. These techniques have been
developed and are well explained in the literature [137]. The explanation for all these
methods is beyond the objective of this chapter. However, here a summary of an SVM
is provided since it has been applied to EEG signals for the removal of the eye-blinking
artefact [138], detection of epileptic seizures [139], detection of evoked potentials (EPs),
classification of left and right finger movements in BCI [140], and many other issues
related to EEGs [141].

Unlike many mathematical problems in which some form of explicit formula based on
a number of inputs results in an output, in certain forms of classification of data there will
be no model or formula of this kind. In such cases the system should be trained to be able
to recognize the inputs. Many classification algorithms do not perform efficiently when:

(a) the number of features is high;
(b) there is a limited time for performing the classification;
(c) there is a nonuniform weighting among the features;
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(d) there is a nonlinear map between the inputs and the outputs;
(e) the distribution of the data is not known;
(f) the convergence is not convex (monotonic), so it may fall into a local minimum.

There are two types of machine learning algorithms for classification of data: supervised
learning and unsupervised learning. In the former case the target is known and the classifier
is trained to minimize a difference between the actual output and the target values. A
good example of such classifiers is the multilayered perceptron (MLP). In unsupervised
learning, however, the classifier clusters the data into the groups having farthest distances
from each other. A popular example for these classifiers is the k-means algorithm.

2.13.1 Support Vector Machines

Among all supervised classifiers, the SVM is the one that performs well in the above
situations [142–147]. The concept of SVM was initiated in 1979 by Vapnik [147]. To
understand the concept of the SVM consider a binary classification for the simple case
of a two-dimensional feature space of linearly separable training samples (Figure 2.32)
S = {(x 1, y1), (x 2, y2), . . . , (xm, ym)} where x ∈ Rd is the input vector and y ∈ {−1, 1}
is the class label. A discriminating function could be defined as

f (x) = sgn(〈w,x 〉 + b) =
{ +1 if x belongs to the first class •
−1 if x belongs to the second class ◦ (2.233)

In this formulation w determines the orientation of a discriminant plane (or hyperplane).
Clearly, there is an infinite number of possible planes that could correctly classify the
training data. One can be as shown in Figure 2.32.

An optimal classifier finds the hyperplane for which the best generalizing hyperplane
is equidistant or farthest from each set of points. The set of input vectors is said to be
optimally separated by the hyperplane if they are separated without error and the distance
between the closest vector and the hyperplane is maximal. In that case there will be only
one hyperplane to achieve optimal separation. This can be similar to the one shown in
Figure 2.33.

Figure 2.32 A two-dimensional separable dataset and a separating hyperplane
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Figure 2.33 An optimal separating hyperplane

d

c

Figure 2.34 Graphical determination of the convex hulls, support vectors, and the separating
hyperplane

One way to find the separating hyperplane in a separable case is by constructing the
so-called convex hulls of each dataset as in Figure 2.34. The encompassed regions are
the convex hulls for the datasets. By examining the hulls it is possible then to determine
the closest two points lying on the hulls of each class (note that these do not necessarily
coincide with actual data points). By constructing a plane that is perpendicular and equiv-
alent to these two points an optimal hyperplane should result and the classifier should be
robust in some sense.

Notice in Figure 2.35 that three data points have been identified with circles. These
are the only data points required to determine the optimal hyperplane, and are commonly
referred to as the support vectors (SVs). In places where the data are multi dimensional
and the number of points is high the graphical solution to find the hyperplane will no
longer be practical. A mathematical solution will then be necessary.

To formulate an SVM, start with the simplest case: linear machines trained on separable
data (it will be seen that in the analysis for the general case, nonlinear machines trained
on nonseparable data result in a very similar quadratic programming problem). Again
label the training data {x i , yi}, i = 1, . . . , m, yi ∈ {−1, 1}, x i ∈ Rd .

Suppose that a hyperplane separates the positive from the negative examples. The points
x which lie on the hyperplane satisfy 〈w,x〉 + b = 0, where w is normal to the hyperplane,
|b|/||w ||2 is the perpendicular distance from the hyperplane to the origin, and ||w ||2 is the
Euclidean norm of w . Define the ‘margin’ of a separating hyperplane as in Figure 2.36. For
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Figure 2.35 Linear separating hyperplane for the separable case, the support vectors are circled
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Figure 2.36 The constraints for the SVM

the linearly separable case, the support vector algorithm simply looks for the separating
hyperplane with the largest margin. The approach here is to reduce the problem to a convex
optimization by minimizing a quadratic function under linear inequality constraints. First
it should be noted that in the definition of linear classifiers there is an inherent degree
of freedom, in that the function can be scaled arbitrarily. This allows the margins to be
set to be equal to unity for simplicity (hyperplanes with a functional margin of unity are
sometimes referred to as canonical hyperplanes) and subsequently to minimize the norm
of the weight vector. To find the plane farthest from both classes of data, the margins
between the supporting canonical hyperplanes for each class are simply maximized. The
support planes are pushed apart until they meet the closest data points, which are then
deemed to be the support vectors (circled in Figure 2.36). Therefore, since

〈x i , w〉 + b ≥ +1 for yi = +1
〈x i , w〉 + b ≤ −1 for yi = −1

(2.234)



Fundamentals of EEG Signal Processing 109

which can be combined into one set of inequalities as yi(〈x i , w〉 + b) − 1 ≥ 0∀i, the
margin between these supporting planes (H1 and H2) can be shown to be γ = 2/||w ||2.
To maximize this margin, the following is therefore required:

Minimize 〈w,w〉
subject to yi(〈xi .w〉 + b) − 1 ≥ 0, i = 1, . . . , m. (2.235)

To perform this constrained optimization problem the constraint can be incorporated into
the main cost (risk) function by using Lagrange multipliers. This leads to minimization
of an unconstrained empirical risk function (Lagrangian) which consequently results in a
set of conditions called the Kuhn–Tucker (KT) conditions.

In order to perform Lagrangian optimization the so-called primal form must be con-
structed:

L(w , b, α) = 1

2
〈w,w〉 −

m∑
i=1

αi[yi(〈x i , w〉 + b) − 1] (2.236)

where the αi, i = 1, . . . , m, are the Lagrangian multipliers. Thus, the Lagrangian primal
has to be minimized with respect to w , b and maximized with respect to αi ≥ 0. Con-
structing the classical Lagrangian dual form facilitates this solution. This is achieved by
setting the derivatives of the primal to zero and resubstituting them back into the primal.
Hence,

∂L(w , b, α)

∂w
= w −

m∑
i=1

yiαix i = 0 (2.237)

Thus

w =
m∑

i=1

yiαix i (2.238)

and
∂L(w , b, α)

∂b
=

m∑
i=1

yiαi = 0 (2.239)

By replacing these into the primal form the dual form is obtained as

L(w , b, α) = 1

2

m∑
j=1

m∑
i=1

yiyjαiαj 〈x i , x j 〉 −
m∑

i=1

yiyjαiαj 〈x i , x j 〉 +
m∑

i=1

αi (2.240)

which is reduced to

L(w , b, α) =
m∑

i=1

αi − 1

2

m∑
i=1

yiyjαiαj 〈x i , x j 〉 (2.241)

considering that
∑m

i=1 yiαi = 0 and αi ≥ 0.
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These equations can be solved mathematically (with the aid of a computer) using
quadratic programming (QP) algorithms. There are many algorithms available within
numerous publicly viewable websites [148,149].

However, in many practical situations the datasets are not separable (i.e. they have
overlaps in the feature space). Therefore the maximum margin classifier described above
will no longer be applicable. Obviously, it may be possible to define a complicated
nonlinear hyperplane to separate the datasets perfectly but, as seen later this causes the
overfitting problem which reduces the robustness of the classifier.

As can be seen in Figure 2.37, the convex hulls overlap and the datasets are no longer
linearly separable. The ideal solution where no points are misclassified and no points
lie within the margin is no longer feasible. This means that the constraints need to be
relaxed to allow for the minimum amount of misclassification. In this case, the points
that subsequently fall on the wrong side of the margin are considered to be errors. They
are, however, apportioned a lower influence (according to a preset slack variable) on
the location of the hyperplane and therefore are considered to be support vectors (see
Figure 2.38). The classifier obtained in this way is called a soft margin classifier (see
Figure 2.39).

Figure 2.37 Encompassed regions for the nonseparable case

Figure 2.38 Support vectors in a nonseparable case with a linear hyperplane
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Figure 2.39 Soft margin and the concept of the slack parameter

In order to optimize the soft margin classifier, the margin constraints must be allowed to
be violated according to a preset slack variable ξi in the constraints, which then become

〈x i , w〉 + b ≥ +1 − ξi for yi = +1
〈x i , w〉 + b ≤ −1 + ξi for yi = −1
and ξi ≥ 0 ∀i

(2.242)

Thus for an error to occur, the corresponding ξi must exceed unity, so
∑

i ξi is an upper
bound on the number of training errors. Hence a natural way to assign an extra cost for
errors is to change the objective function to

Minimize〈w,w〉 + C

m∑
i=1

ξi

subject toyi(〈x i , w〉 + b) ≥ 1 − ξi and ξi ≥ 0 i = 1, . . . , m (2.243)

The primal form will then be

L(w , b, ξ,α, r) = 1

2
〈w,w〉 − C

m∑
i=1

ξi −
m∑

i=1

αi[yi(〈w,x i〉 + b) − 1 + ξi]−
m∑

i=1

riξ i

(2.244)

Hence,

∂L(w , b, ξ,α, r)

∂w
= w −

m∑
i=1

yiαix i = 0 (2.245)
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Thus again

w =
m∑

i=1

yiαix i (2.246)

and

∂L(w , b, ξ,α, r)

∂ξ
= C − αi − ri = 0 (2.247)

so that

αi + ri = C (2.248)

and

∂L(w , b, α)

∂b
=

m∑
i=1

yiαi = 0 (2.249)

By replacing these into the primal form the dual form is obtained as

L(w , b, ξi,α, r) =
m∑

i=1

αi − 1

2

m∑
i=1

yiyjαiαj 〈x i , x j 〉 (2.250)

by again considering that
∑m

i=1 yiαi = 0 and αi ≥ 0. This is similar to the maximal
marginal classifier. The only difference is the new constraints of αi + ri = C, where
ri ≥ 0 and hence 0 ≤ αi ≤ C. This implies that the value C sets an upper limit on the
Lagrangian optimization variables αi . This is sometimes referred to as the box constraint.
The value of C offers a trade-off between accuracy of data fit and regularization. A
small value of C (i.e. <1) significantly limits the influence of error points (or outliers),
whereas if C is chosen to be very large (or infinite) then the soft margin approach (as
in Figure 2.39) becomes identical to the maximal margin classifier. Therefore in the use
of the soft margin classifier, the choice of the value of C will depend heavily on the
data. Appropriate selection of C is of great importance and is an area of research. One
way to set C is gradually to increase C from max (αi) for ∀i and then find the value for
which the error (outliers, cross-validation, or number of misclassified points) is minimum.
Finally, C can be found empirically [150].

There will be no change in formulation of the SVM for the multidimensional cases.
Only the dimension of the hyperplane changes depending on the number of feature types.

In many nonseparable cases use of a nonlinear function may help to make the datasets
separable. As can be seen in Figure 2.40, the datasets are separable if a nonlinear hyper-
plane is used. Kernel mapping offers an alternative solution by nonlinearly projecting
the data into a (usually) higher-dimensional feature space to allow the separation of such
cases.
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Figure 2.40 Nonlinear discriminant hyperplane

The key success of kernel mapping is that special types of mapping that obey Mercer’s
theorem, sometimes called reproducing kernel Hilbert spaces (RKHSs) [147], offer an
implicit mapping into the feature space:

K(x , z ) = 〈ϕ(x), ϕ(z )〉 (2.251)

This means that the explicit mapping need not be known or calculated; rather the inner
product itself is sufficient to provide the mapping. This simplifies the computational burden
dramatically and in combination with the inherent generality of SVMs largely mitigates
the dimensionality problem. Further, this means that the input feature inner product can
simply be substituted with the appropriate kernel function to obtain the mapping while
having no effect on the Lagrangian optimization theory. Hence,

L(w , b, ξi, α, r) =
m∑

i=1

αi − 1

2

m∑
i=1

yiyjαiαjK(x i , x j ) (2.252)

The relevant classifier function then becomes

f (x) = sgn

[
nSVs∑
i=1

yiαiK(x i , x j ) + b

]
(2.253)

In this way all the benefits of the original linear SVM method are maintained. A highly
nonlinear classification function, such as a polynomial or a radial basis function or even
a sigmoidal neural network, can be trained using a robust and efficient algorithm that
does not suffer from local minima. The use of kernel functions transforms a simple linear
classifier into a powerful and general nonlinear classifier [150].

Some examples of popular RKHS functions used in SVMs are given below:

Polynomial K(u, v) = (〈u, v〉 + c)d (2.254)

Gaussian radial basis function K(u, v) = exp

(
−||u − v||22

2σ 2

)
(2.255)
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Exponential radial basis function K(u, v) = exp

(
−||u − v||22

2σ 2

)
(2.256)

Multilayer perceptron K(u, v) = tanh(ρ(〈u, v〉 + c)) (2.257)

Potentially, it is possible to fit a hyperplane using an appropriate kernel to the data in order
to avoid overlapping the sets (or nonseparable cases) and therefore produce a classifier
with no error on the training set. This, however, is unlikely to generalize well. More
specifically, the main problem with this is that the system may no longer be robust since
a testing or new input can be easily misclassified.

Another issue related to the application of SVMs is the cross-validation problem. The
distribution of the output of the classifier (without the hard limiter ‘sign’ in Equation
(2.253)) for a number of inputs of the same class may be measured. The probability
distributions of the results (which are centred at −1 for class ‘−1’ and at ‘+1’ for class
‘+1’) are plotted in the same figure. Less overlap between the distributions represents a
better performance of the classifier. The choice of the kernel influences the performance
of the classifier with respect to the cross validation concept.

SVMs may be slightly modified to enable classification of multiclass data [151]. More-
over, some research has been undertaken to speed up the training step of the SVMs [152].

2.13.2 The k-Means Algorithm

The k-means algorithm [153] is an effective and generally a simple clustering tool that
has been widely used for many applications such as in those given in References [126]
and [154]. This algorithm divides a set of features (such as points in Figure 2.41) into
k clusters.

The algorithm is initialized by setting ‘k’ to be the assumed number of clusters. Then
the centre for each cluster k is identified by selecting k representative data points. The next
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Figure 2.41 A two-dimensional feature space with three clusters, each with a different colour
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step in the k-means clustering algorithm after initialization is to assign the remaining data
points to the closest cluster centre. Mathematically, this means that each data point needs
to be compared with every existing cluster centre and the minimum distance found. This
is performed most often in the form of error checking (which will be discussed shortly).
However, before this, new cluster centres are calculated. This is essentially the remaining
step in k-means clustering: once clusters have been established (i.e. each data point is
assigned to its closest cluster centre), the geometric centre of each cluster is recalculated.

The Euclidian distance of each data point within a cluster to its centre can be calculated.
It can be repeated for all other clusters, whose resulting sums can themselves be summed
together. The final sum is known as the sum of within-cluster sum of squares. Consider
the within-cluster variation (sum of squares for cluster c) error as εc:

εc =
nc∑
i=1

d2
i =

nc∑
i=1

||xc
i − xc||22 ∀c (2.258)

where d2
i is the squared Euclidean distance between data point i and its designated cluster

centre xc, nc is the total number of data points (features) in cluster c, and xc
i is an

individual data point in cluster c. The cluster centre (mean of data points in cluster c)

can be defined as

xc = 1

nc

nc∑
i=1

xc
i (2.259)

and the total error is

Ek =
k∑

c=1

εc (2.260)

The overall k-means algorithm may be summarized as:

1. Initialization
(a) Define the number of clusters (k).
(b) Designate a cluster centre (a vector quantity that is of the same dimensionality of

the data) for each cluster, typically chosen from the available data points.
2. Assign each remaining data point to the closest cluster centre. That data point is now

a member of that cluster.
3. Calculate the new cluster centre (the geometric average of all the members of a certain

cluster).
4. Calculate the sum of within-cluster sum of squares. If this value has not significantly

changed over a certain number of iterations, stop the iterations. Otherwise, go back to
Step 2.

Therefore, an optimum clustering depends on an accurate estimation of the number of
clusters. A common problem in k-means partitioning is that if the initial partitions are
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not chosen carefully enough the computation will run the chance of converging to a local
minimum rather than the global minimum solution. The initialization step is therefore
very important.

One way to combat this problem is to run the algorithm several times with different
initializations. If the results converge to the same partition then it is likely that a global
minimum has been reached. This, however, has the drawback of being very time consum-
ing and computationally expensive. Another solution is to change the number of partitions
(i.e. number of clusters) dynamically as the iterations progress. The ISODATA (iterative
self-organizing data analysis technique algorithm) is an improvement on the original k-
means algorithm that does exactly this. ISODATA introduces a number of additional
parameters that allow it to progressively check within- and between-cluster similarities
so that the clusters can dynamically split and merge.

Another approach for solving this problem is to use so-called gap statistics [155]. In
this approach the number of clusters are iteratively estimated. The steps of this algorithm
are:

1. For a varying number of clusters k = 1, 2, . . . , K , compute the error measurement Ek

using Equation (2.238).
2. Generate a number B of reference datasets. Cluster each one with the k-means algo-

rithm and compute the dispersion measures, Ĕkb, b = 1, 2, . . . , B. The gap statistics
are then estimated using

Gk = 1

B

B∑
b=1

log(Ĕkb) − log(Ek) (2.261)

where the dispersion measure Ĕkb is the Ek of the reference dataset B.
3. To account for the sample error in approximating an ensemble average with B reference

distributions, the standard deviation is computed as

Sk =
[

1

B

B∑
b=1

[log(Ĕkb) − Eb]2

]1/2

(2.262)

where

Eb = 1

B

B∑
b=1

log(Ĕkb) (2.263)

4. By defining S̆k = Sk (1 + 1/B)1/2, the number of clusters is estimated as the smallest
k such that Gk ≥ Gk+1 − S̆k+1.

5. With the number of clusters identified, use the k−means algorithm to partition the
feature space into k subsets (clusters).

The above clustering method has several advantages since it can estimate the number of
clusters within the feature space. It is also a multiclass clustering system and unlike SVM
can provide the boundary between the clusters.
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2.14 Matching Pursuits

EEG signals are often combinations of rhythmical and transient features. These features
may best be explored in the time–frequency (TF) domain. The matching pursuit (MP)
algorithm [156] is often used instead of popular TF approaches such as the STFT and the
WT because of its higher temporal–spatial resolution in the TF space [4], local adaptivity
to transient structure, and its computational compatibility to the EEG data structure despite
its computational complexity.

Here the formulation of MP is given for continuous-time signals and the dictionary.
A similar presentation can be given for discrete signals simply by changing t to n.
The definition of matching pursuits is straightforward; given a set of functions D(t) =
{g1(t), g2(t), . . . , gK(t)}, called the dictionary of MP, where ||gi || = 1, m signals from D

can be found to best approximate a signal f (t). The approximation error is obtained as

ε =
∥∥∥∥∥f (t) −

m∑
i=1

wigγi
(t)

∥∥∥∥∥
2

(2.264)

where || · ||2 denotes the Euclidean norm, wi are the weights, and {γi}i=1,...,m represents
the indices of the selected functions gγi

. The MP algorithm provides a suboptimal iterative
solution for the above expansion. The MP algorithm performs the following steps. In the
first step the waveform gγ0(t) that best matches the signal f (t) is chosen. Then, in the
consecutive steps, the waveform gγi

is matched to the signal f̃k , which is the residual
from the previous iteration:

f̃0(t) = f (t)

f̃k+1(t) = f̃k(t) − 〈f̃k(t), gγk
(t)〉gγk

(t) for k = 1, . . . , m (2.265)

gγn(t) = arg max
gγi

∈D
|〈f̃n(t), gγi

(t)〉|

where 〈f (t), g(t)〉 represents the cross correlation of f (t) and g(t). The orthogonality of
f̃k+1(t) and gγk

(t) at each step implies energy conservation, i.e.

||f (t)||2 =
m−1∑
k=0

|〈f̃k(t), gγk
(t)〉|2 + ||f̃m(t)||2 (2.266)

where f̃k+1(t) in the above procedure converges to f (t) if the complete dictionary (m =
D) is used. In that case

f (t) =
∞∑

k=0

〈f̃k(t), gγk
(t)〉gγn(t) (2.267)

From this equation it is possible to derive a TF distribution of the signal’s energy F(t, ω)

that is free of cross-terms (i.e. the sum is 100 % correlated with the data f (t)) by adding
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Wigner distributions of selected functions

F(t, ω) =
m∑

n=0

|〈f̃n(t), gγn(t)〉|2Gγn(t, ω) ∀t, ∀ω (2.268)

where Gγk
(t, ω) is the Wigner time–frequency distribution of the kth selected function.

A combination of MP and the WT has also been proposed [157].
Gabor functions (sine-modulated Gaussian functions), are often used as the dictio-

nary functions and provide optimal joint TF localization. A real Gabor function may be
expressed as [158]

gγ (t) = K(γ )e−π[(t−τ)/σ ]2
sin

[ ω

N
(t − τ) + θ

]
(2.269)

where K(γ ) is the normalization factor, i.e. it makes ||gγ (t)|| = 1, N is the length of the
signals, and γ = {τ, ω, σ, θ} are the parameters of the functions (time–frequency atoms)
that form the dictionary. In the original MP algorithm proposed by Mallat and Zhang [156]
the parameters of the dictionary are selected from dyadic sequences of integers and their
sampling interval is governed by another integer parameter (octave) j . The parameter σ ,
the width of the signal in the time domain, is set to 2j , 0 ≤ j ≤ L (signal size N = 2L).
The time–frequency coordinates of τ and ω are sampled for each octave j with interval
σ = 2j . In the case of oversampling by l it is sampled with interval 2j−l.

Analysing sleep EEG data by means of the MP algorithm has been attempted [4]. In this
approach a statistical bias of the decomposition, resulting from the structure of the applied
dictionary, has been considered. In the proposed stochastic dictionaries the parameters of
the waveforms within the dictionary are randomized before each decomposition. The
MP algorithm was modified for this purpose and tuned for maximum time–frequency
resolution.

The above method was also applied to analysis of single-trial event-related potentials, in
particular ERD (event-related desynchronization)/ERS related to a voluntary movement.
The main idea was based upon averaging energy distributions of single EEG trials in the
time–frequency plane. Consistent results, essential for the brain–computer interfacing
(BCI) problem, have been reported.

Several other applications of MP for analysis of the EEG signals have been reported
[50,157,159]. It is a powerful method for detection of the features localized in the
time–frequency domain [160] and transient signals [159]. This includes ERP detection,
detection and classification of movement-related potentials, seizure detection [50], and
identification of gamma bursts.

2.15 Summary and Conclusions

In this chapter several concepts in the processing of EEG signals, including signal mod-
elling, signal segmentation, signal transforms, multivariate modelling and direct transfer
functions, chaos and dynamic analysis, independent component analysis and blind source
separation, classification and clustering, and matching pursuits, have been reviewed. It
is very difficult to bring all the methods and algorithms used in the processing of EEG
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signals into a single chapter or even a book. In reality, algorithms are developed generally
based on the specific requirements of certain applications. Therefore, this chapter is not
expected to cover all the aspects of digital signal processing applied to EEGs.

However, to the best knowledge of the authors, the sections included cover the important
fundamental signal processing techniques required by the EEG research community. This
chapter also provides certain key references for further reading in the field of signal
processing for the analysis of the EEG signals. With this information the readers will be
better able to digest the contents of the later chapters of this book.
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