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High gamma (HG) power changes during motor activity, especially at frequencies above 70 Hz, play an
important role in functional cortical mapping and as control signals for BCI (brain–computer interface)
applications. Most studies of HG activity have used ECoG (electrocorticography) which provides high-quality
spatially localized signals, but is an invasive method. Recent studies have shown that non-invasive modalities
such as EEG and MEG can also detect task-related HG power changes. We show here that a 27 channel EEG
(electroencephalography) montage provides high-quality spatially localized signals non-invasively for HG
frequencies ranging from 83 to 101 Hz. We used a generic head model, a weighted minimum norm least
squares (MNLS) inverse method, and a self-paced finger movement paradigm. The use of an inverse method
enables us to map the EEG onto a generic cortex model. We find the HG activity during the task to be well
localized in the contralateral motor area. We find HG power increases prior to finger movement, with average
latencies of 462 ms and 82 ms before EMG (electromyogram) onset. We also find significant phase-locking
between contra- and ipsilateralmotor areas over a similar HG frequency range; here the synchronization onset
precedes the EMG by 400 ms. We also compare our results to ECoG data from a similar paradigm and find EEG
mapping and ECoG in good agreement. Our findings demonstrate that mapped EEG provides information on
two important parameters for functional mapping and BCI which are usually only found in HG of ECoG signals:
spatially localized power increases and bihemispheric phase-locking.

© 2009 Elsevier Inc. All rights reserved.
Introduction

High gamma (HG) oscillations of electrocorticogram (ECoG)
signals play a crucial role both for functional brain mapping (Edwards
et al., 2005; Crone et al., 2006; Miller et al., 2007; Schalk et al., 2008)
and for BCI research (Pfurtscheller et al., 2003; Leuthardt et al., 2004;
Schwartz et al., 2006). These HG signals are spatially localized over
specific areas of the cortex directly related to the individual's
environment and behavior. Consequently, these HG signals provide
unique spatio-temporal–spectral signatures of task-related brain
activity. Recent reports indicate that an individual's HG signals are
stable over time and after they have been mapped, these HG signals
do not require continuing adaptation of the BCI (Shenoy et al., 2008;
Blakely et al., 2009). The two characteristic HG signatures that have
been extracted using ECoG and then used for language and motor
mapping and to operate BCIs are the signal power and the phase
synchronization between distant cortical sites (Brunner et al., 2005;
Darvas et al., 2009). Themajor advantages of the HG signals compared
to the traditional alpha and beta signals are (1) an increased
information transfer rate and (2) a higher spatial specificity (Miller
uter Science and Engineering,
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et al., 2007). To use phase synchrony as control signals requires
reliable real-time estimation of the phase synchrony. This requires
averaging over several cycles of the phase at the signal frequency.
These averages can be carried out in a shorter time at higher
frequencies thereby lowering the real-time response (Lauchaux et al.,
2000). The major obstacle preventing the routine use of HG
oscillations is the invasive nature of ECoG. Recent reports suggest
that HG power changes can also be observed using EEG (Ball et al.,
2008) and using MEG (magnetoencephalography) (Dalal et al., 2008;
Cheyne et al., 2008). Of course, MEG, due its immobility and
infrastructure requirements, is not a practical modality for everyday
applications. This leaves EEG as the only known practical non-invasive
method. In this study, we show that EEG can be used to provide the
two above mentioned task induced HG signatures: (1) spatially
localized HG power changes and (2) interhemispheric phase
synchronization signals, both for a self-paced index finger motion
task. While previous studies have shown that EEG is in principle
capable of detecting HG activity in the channel domain, we extend the
use of EEG here to functional mapping of the HG activity to the cortex,
which allows a direct comparison with ECoG. The classical low-
frequency alpha and beta control signals for finger motion tasks have
been extensively studied using both invasive and non-invasive
methods for a long time (Pfurtscheller and Neuper, 1992; Gerloff et
al., 1998; Ohara et al., 2000). They have also been the focus of recent
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non-invasive studies using MEG (Dalal et al., 2008; Cheyne et al.,
2008). In this paper we demonstrate that scalp EEG detects early
premotor and motor HG activity in the primary motor area prior to
finger movement using a simple setup that is well suited for real-time
functional mapping and BCI applications. By comparing our results
with data recorded using ECoG during a similar finger motion
paradigm, we show that EEG inverse mappings show the same spatio-
temporal–spectral patterns as ECoG. We also show that there is early
interhemispheric synchronization in the HG band between the motor
areas prior to movement. This highlights another distinct advantage of
EEG over ECoG, namely its ability to localize activity, albeit with
limited spatial resolution, anywhere on the cortical surface.

Materials and methods

Subjects

Data were recorded from ten healthy adult subjects (8 males,
mean age=34.1 years, range=19–64 years). Nine subjects were
right handed, one subject was left handed. Subjects gave their
informed consent according to the protocol approved by the internal
review board (IRB) of the University of Washington.

Task

The subjects were instructed to perform voluntary abductions of
the right index finger (left index finger for the left handed subject).
Subjects were seated comfortably during the experiment and were
instructed to tap their fingers briskly three times at their own
discretion and, in order to get a sufficiently long rest period between
movement activity, to wait 4–7 s before initiating a new tap sequence.
The subjects had their eyes open and fixated, using a fixation cross.
We recorded 4 blocks for each subject with 30 index finger tap
sequences per block and with short breaks between blocks.

Recording

Data was recorded from 27 electrodes, using an extended 10–20
system, where 8 additional electrode positions over the motor areas
where used. A schematic of the montage is shown in Fig. 1.

Data was sampled from DC to 4800 Hz with an anti aliasing filter at
2400 Hz, using two GugerTec (GugerTec, Graz, Austria) EEG
amplifiers. In parallel, we recorded at the same sampling rate the
Fig. 1. Schematic view of the expanded 10–20 system and the generic cortex surface
used for EEG data acquisition.
EMG (Electromyogram) from the extensor indicis in a bipolar setup.
Also, subjects had their index fingers placed on a photo diode, for
which a digital signal was recorded parallel to the EEG. The photo
diode threshold was set such that a TTL pulse was generated,
whenever the subject removed the index finger from the diode.

We used a 3D localizer (Patriot, Polhemus, Colchester, VT) to
determine the electrode positions for each subject as well as the
positions of three anatomical landmarks, namely, nasion and the left
and right pre-auricular points.

Data preprocessing and head modeling

Head modeling
We used the anatomical landmarks and 10–20 electrode positions

for each subject to compute a realistically shaped head model, by
warping a generic head model, the Montreal brain phantom (Collins
et al., 1998), to match individual positions (Darvas et al., 2006). We
used the warped anatomical model to construct a boundary element
model (BEM) for each subject.

The BEM computation was carried out with the BrainStorm
software package (www.neuroimage.usc.edu/Brainstorm). The BEM
consisted of three layers, skin, outer and inner skull. The bioelectric
forward problem was solved with this BEM, using the generic cortex,
whichwas tessellated into 10,001 nodes, as source space. The resulting
27×10,001 forward field matrix, which maps the electrical potentials
of all unit dipolar sources on the cortex to all 27 electrodes, was used in
subsequent inverse computations for each subject, which map the
electrical potential changes, as measured on the scalp, to the cortex
(Darvas et al., 2004). While this surface landmark based warp will not
produce an exact representation of each individuals head geometry, it
will nevertheless be sufficient to identify, whether activity is mapped
to the right functional anatomical locations, e.g. the primary motor
areas. An advantage of the generic head model is that activity for all
subjects will be mapped into the same source space and hence it will
allow us to perform a group analysis on cortical activity maps.

Data preprocessing

The data was segmented into trials, based on the recorded EMG.
We band-pass filtered the continuous EMG signal between 70 and
80 Hz and applied a Hilbert transform to the narrow band filtered
signal to compute the time varying analytical amplitude of the EMG.
We used a 99 percentile threshold of the analytic amplitude, taken
over the whole recording, to detect movement onset. Visual
comparison of the output of this automatic algorithm with the output
of the photo diode was used to remove trials, where there was no
clear coincidence between the two measures of movement onset. We
also rejected trials, where subsequent finger movements were closer
than 2 s in time or where the total movement lasted less than 200 ms.
For each trial, data was selected between 2 s prior to movement onset
and 1 s after movement onset. We visually inspected each trial of the
EEG data for eye and movement artifacts. Trials were rejected, if
artifacts were present in any one channel between 1 s prior to
movement and 0 s. Overall, the segmentation procedure resulted in
between 69 and 108 trials per subject.We down sampled the EEG data
to 480 Hz to facilitate the subsequent signal analysis. All EEG data
were also re-referenced to a common average reference (CAR) to
reduce common mode noise.

Signal analysis

Inverse solution
We used a weighted linear minimum norm least squares (MNLS)

method to map data from the EEG sensor space to the generic cortical
surface. In this approach, the forward field matrix was weighted by
the regularized noise covariance matrix of the EEG data in order to
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Fig. 2. Left and right motor area regions of interest on the generic cortex. The cortex
surface has been smoothed for better visibility. We use these areas to compute TF maps
for HG activation and to compute interhemispheric phase-locking in the HG band.

932 F. Darvas et al. / NeuroImage 49 (2010) 930–938
reduce the impact of noisy channels on the cortical mapping (Dale and
Sereno, 1993). The noise covariance was computed from all trials over
a time segment from −1 s to −0.6 s. Source orientations in our
approach were constrained to be perpendicular to the cortical surface.

Detection of HG power changes
We used a hypothesis driven approach to identify HG power

change in the motor areas during the self-paced finger movement,
based on earlier reports of HG changes in a 70–110 Hz range in the
contralateral motor area for finger movements (Ball et al., 2008;
Fig. 3. Z-score TFmaps for each subject for activity in the contralateralmotor area.Note that sub
finger movement, hence activity in the right motor area is shown. All other subjects were righ
threshold at ||Z||≥3, which corresponds to an uncorrected p-value≤0.01. The individual maps
Cheyne et al., 2008). Our hypothesis is that changes in that frequency
band should become apparent some time between 0.5 s prior to
movement onset, when the later component of the motor-related
bereitschaftspotential sets (Shibasaki and Hallett, 2006). For each
subject, we computed for each single trial an inverse solution for
both motor areas, which we defined broadly on the generic cortex
(see Fig. 2). For each voxel in these regions of interest, we computed
a time–frequency (TF) map. TF maps were computed by the
following procedure: First we band-pass filter the data in a narrow
band (2 Hz wide) around a center frequency. Then we apply a Hilbert
transform to the filtered data. Since both the filter and the Hilbert
transform are linear operations, we can apply these before the linear
MNLS mapping. Then we compute the MNLS mapping of the analytic
signals for our regions of interest (ROI). The time varying band
power for each voxel in the ROI is then determined by taking the
absolute value of the analytic signal. Finally, we average across all
trials and voxels in the ROI to determine the overall TF map of the
region. These steps were repeated for center frequencies ranging
from 3 to 130 Hz in 1 Hz steps. We use the regional average to
determine the TF, because the number of voxels in each ROI is ≈100
and it would not be practical to analyze hundreds of maps per
subject. We applied a Z-score transform (Tallon-Baudry et al., 2005)
to these maps, i.e., for each band, we subtracted the mean band
power in the baseline interval from −1 s to −0.6 s and divided the
resulting signal by the standard deviation (over time) of the baseline.
ject 1,whosemap is shown in the top left cornerwas left handedandperformed a left index
t handed and hence all other maps show activity for the left motor area. The maps have a
show that all subjects have significant pre-movement HG increases in a narrow band.



Table 1
HG frequencies.

Subject Handedness Age Gender Finger Peak frequency [Hz] (band power) Peak frequency [Hz] (PLV) Lat. 1 [ms] Lat. 2 [ms]

1 Left 37 M Left 83 84 −458 −44
2 Right 25 M Right 94 89 −441 35
3 Right 36 M Right 83 88 −538 −65
4 Right 22 M Right 81 85 −292 −29
5 Right 19 M Right 93 94 −525 −125
6 Right 64 F Right 97 94 −573 −165
7 Right 21 M Right 101 88 −467 −246
8 Right 58 M Right 101 94 −415 −119
9 Right 37 M Right 85 89 −533 −88
10 Right 22 F Right 88 81 −366 25
Mean 34.1 90.6 88.6 −461 −82
SD 15.8 7.6 4.5 86.8 86.0
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We used the resulting Z-score maps to determine the dominant HG
frequency for each subject. We then used this band to map activity to
the whole cortex for each subject. For each subject, we converted the
band power maps to Z-scores, which allows us to compute a spatial
group average over all subjects. From the band specific maps, we
select those voxels, which show maximal increase over the baseline
period prior to EMG onset.

Detection of bihemispheric phase synchronization
Interhemispheric synchronization during self-paced finger move-

ments has been observed in the lower rhythms (alpha and beta band
(Gerloff et al., 1998; Serrien, 2008)). However, this synchronization
may not be limited to these low-frequency rhythms and therefore we
tested for HG synchronization between the motor areas, using our
Fig. 4. Group average of the Z-score TF maps across all subjects (top) and the mean EMG activ
average over nine subjects this threshold corresponds to 3 SD which is equivalent to an un
increase across all subjects.
generic model and the regions of interest, as shown in Fig. 2. We used
the phase-locking value (PLV) (Lachaux et al., 1999) to test for
interhemispheric interactions, specifically in the HG band. We
computed interactions between each voxel in the left hemispheric
ROI (111 locations) and each voxel in the right hemispheric ROI (115
locations), resulting in 12,765 interaction maps. In order to eliminate
the influence of evoked potentials on the PLV computation, we
subtracted the trial average from each single trial. PLV maps were
computed for center frequencies ranging from 5 Hz to 130 Hz in 1 Hz
steps and from times 1 s prior to movement onset to 0.5 s post-
movement onset, i.e., over 1247 samples. Like TF maps, a PLV map
covers time and frequency and it would be impractical to analyze each
single map for each time and frequency. In order to determine
whether significant interaction between any of the 12,765 voxel pairs
ity at 72–105 Hz (bottom). The threshold for the Z-score map is set at ||Z||≥1. Since we
corrected p≤2.3×10−5. The group average also shows significant pre-movement HG



Fig. 5. Time course of the HG activity (blue) for the strongest voxels and peak frequencies in the contralateral motor area. Activity has been converted to Z-scores, based on the−1 s
to −0.6 s interval. The red curves show the scaled mean EMG power at the same frequencies. Most subjects show HG activity curves with an early and a late increase. Black circles
indicate the earliest and the latest peak of HG activity prior to EMG onset. The green shaded areas indicate the time interval corresponding to themean±1 SD of the peak time across
all subjects. This implies that for all subjects, the peak HG activity takes place at two distinct latencies prior to EMG onset.
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exists prior to movement onset, we averaged the PLV across all
interaction pairs and applied a Z-score transform to the resulting
mean PLV map to determine the relevant interaction frequencies.

Results

Local power changes

We first computed the TF maps for each single subject for the
strongest voxel in the contralateral motor area, which are shown in
Fig. 3. All subjects show significant HG activity prior to movement in
relatively narrow bands, centered between 81 and 101 Hz. All
subjects, except for subjects 3 and 7, show a prominent drop in beta
activity. Individual peak frequencies in the HG range and latencies for
these peak frequencies are shown in Table 1. While the mean
frequency of over all subjects lies at 90.6 Hz, there appears to be a
clustering around two frequency bands at around 80 and 100 Hz. This
can also be seen in the group average of individual TF maps over all
subjects (Fig. 4), where the stronger activity is focused shortly before
EMG onset around 80 Hz, but earlier activity takes place also at around
100 Hz. In order to identify common HG onset latencies, we plot the
time courses of the peak HG frequencies for the contralateral motor
area for each subject (Fig. 5).We identified local maxima closest to the
baseline (i.e., at −600 ms) and to the nominal EMG onset (at time 0)
for each subject. On average (across subjects), we find that the first
peak of HG activity prior to movement occurs at −461 ms, followed
by a second peak shortly before EMG onset (average −82 ms).
However, some subjects also show activity between these latencies.
We found that our EEG recordings in some subjects suffer strongly
from EMG contamination after movement onset, which has strong
high-frequency components. In order to ensure that the TF maps and
time courses are not caused by EMG artifacts, wemapped the peak HG
activity to the generic cortex for each subject and formed a group
average of the individual cortical maps, after applying a Z-score
transform to each individual map. It can be expected that EMG
artifacts will produce a broad activation, which would not be located
in specific functionally related cortical areas. The group averages of
the spatial mapping of the HG changes and the associated beta band
(15–35 Hz) power changes are shown in Fig. 6. Note that the group
average was computed for the nine right handed subjects, since
subject 1 used the left hand and consequently, HG activity for this
subject mapped to the right hemisphere.

The group average was carried out over the same generic
representation of the cortex that was used to compute the band
power maps for individual subjects and therefore we cannot expect
precise anatomical localization from these maps. Nevertheless, the
maps qualitatively show the correct anatomical sites being active
before movement onset, i.e., first at the earlier latencies, more frontal,
premotor areas are active and then activity shifts towards the primary
motor area shortly before movement onset. The group average Z-
score time series for the most active voxels during premotor and
motor activity are shown in Fig. 7. We used a bootstrap (Efron and
Gong, 1983) method to compute the 95% confidence interval across
subjects. Time intervals, where the group average for the respective
cortical location exceeds the mean base line activation, are shaded.
The consistent increase in HG power across subjects for the group



Fig. 6. Group average maps for all right handed subjects (n=9). The top row shows the average HG activity across all subjects for three pre EMG onset latencies. The bottom row
shows the corresponding beta band (15–35 Hz) activity. The band power maps for each subject have been converted to Z-scores, based on the −1 s to −0.6 s interval, prior to
averaging. A threshold of ||Z||≥1.5 is used for both, HG and beta band activity. Note that, since we average over nine subjects, only values exceeding 4.5 SD are shown, corresponding
to an uncorrected p≤2×10−10 for each voxel. These maps show that HG and beta band changes in the motor areas are the dominant activity.
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average shows clearly the separation between the more frontal and
posterior motor areas into early and late activation.

The well-documented drop in beta band power (Stancak and
Pfurtscheller, 1996) during self-paced movements also maps to the
left hemisphere but sets in later than the earlier HG power increase. In
accordance with previous ECoG studies (Crone et al., 1998; Miller et
al., 2007), the group average for the HG power shows a focal
activation, while the beta power drop covers a broad region. Since
Fig. 7. Time series for the premotor (blue line) and motor area (green line) of the group
average HG activity. The shaded areas (cyan for the premotor activity and yellow for
motor activity) indicate the times, where the lower bound of the 95% confidence
interval for each time series exceeds the mean baseline activity. The inset shows the
position of the premotor (blue) and motor (green) voxels on the generic cortex. The
premotor area activity peak (blue) precedes the motor area (green) peak.
these activities are well localized in the correct functional areas, this
also indicates that prior to movement onset, the recorded HG activity
is of genuine cortical origin.

Comparison with ECoG data

To put our results into context, we compare them to ECoG data,
recorded from 7 patients, who had electrode grids implanted for
preoperative screening that covered their motor areas. All subjects
carried out repetitive cued index finger movements, using the hand
contralateral to the grid. The details of this study are described in
Miller et al. (2007). Finger positions were recorded with a data glove
and data were segmented based on the rising flank of the data glove
output for the index finger. Since ECoG records directly from the
cortical surface and ECoG electrodes pick up only local activity,
ECoG, unlike EEG, where cross talk affects data on the electrode level
and propagates into the inverse solution as well, allows us to
monitor specific anatomical locations. Also, ECoG is little affected by
muscle artifacts and thus provides reliable data during the period
when the finger is actually moving. We processed the ECoG data in
the same way as the EEG data, i.e., time–frequency maps were
converted into Z-score maps, based on the −1 s to −0.6 s interval,
prior to forming group averages. Instead of ROIs, we selected single
electrodes over the premotor and motor areas in each subject. The
ECoG TF map for the premotor electrodes shows a similar timing of
HG activity as our EEG data, with activity beginning at 380 ms prior
to movement onset. The premotor electrodes also show later peaks
of activity at −208 ms and −60 ms, similar to the EEG findings. It
also shows, similar to the EEG, that HG activity takes place in two
bands with centers at 74 and 99 Hz. The motor area electrodes,
however, show their earliest activity after movement onset and also
peak in discrete bands at 77, 85, and 95 Hz. Note that since these
maps are group averages, individually more pronounced HG activity
bands appear smeared out in the average.

The group average TF maps for the ECoG data are shown in Fig. 8,
along with the average data glove output for the index finger. Similar



Fig. 8. Group average maps for the motor and premotor areas as recorded by ECoG for cued index finger movements (n=7). The left figure shows the Z-score map for the premotor
electrodes. The middle figure shows motor activity. The band power maps for each subject have been converted to Z-scores, based on the−1 s to−0.6 s interval, prior to averaging.
A threshold of ||Z||≥3 is used for both areas, corresponding to 8 SD of the baseline. The right figure shows the mean data glove output across all subjects. Our ECoG shows premotor/
motor HG activity patterns that are similar to our EEG.
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to the EEG results, the premotor region shows a late HG component in
addition to the early activation.

Interhemispheric phase-locking

The phase-locking maps for individual subjects between voxels in
the generic motor areas, after normalization with respect to the
Fig. 9. Phase-locking maps for interhemispheric synchronization between the left and right m
areas and then averaged over all pairs. The PLV values have been converted to Z-scores based
the individual HG power changes, the PLV increases for individual subjects are not limited
baseline, are shown in Fig. 9. The maps there reflect the normalized
mean phase-locking over all left–right hemispheric voxel pairs. While
most subjects exhibit significant HG phase-locking, there is also
phase-locking in other bands and individual results are less clear. The
group average of individual Z-score maps is shown in Fig. 10. Both the
individual maps and the group average of the PLV show that there is
significant phase-locking between the left and right motor areas prior
otor areas. Phase-locking was computed between all voxels in the left and right motor
on the−1 s to−0.6 s interval. The threshold for the Z-scoremap is set at ||Z||≥3. Unlike
to the HG range and show a much greater variation across subjects.



Fig. 12. Group average time course of the PLV between the left and right hemispheric
motor areas, averaged from 81 to 95 Hz. Red lines indicate the lower and upper 5%
confidence interval across subjects. The green areas indicate times where the lower 5%
confidence interval of the PLV Z-score exceeds the mean Z-score of the baseline (−1 s
to −0.6 s).The synchronization between left and right motor area peaks at −400 ms
and stays high until 275 ms after the EMG onset.

Fig. 10. Group average of the mean PLV for all subjects. The threshold for the Z-score
map is set at ||Z||≥1. Note that since we average over 10 subjects, only values exceeding
3.16 SD are shown, corresponding to an uncorrected p≤10−5 for each voxel. In contrast
to individual results, the group average shows that phase-locking is limited to the HG
range.
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to movement onset. Since the PLV is a symmetric measure, we
included subject 1, who was left handed, in the group statistic. Just as
for the HG band power changes, there is some variation in the
frequencies at which maximum synchronization takes place and the
synchronization frequencies are not exactly the same as the
maximum band power changes (see Table 1), but they fall well
within the range of the power changes. The group average also shows
significant synchronization in the mu-band (9–13 Hz) after EMG
onset. The map also shows strong changes at very low frequencies
(≤7 Hz); however, at these low frequencies, the 400 ms long baseline
segment contains less than 3 cycles of the respective frequencies and
therefore estimates of relative changes with respect to the baseline
become increasingly unreliable for lower frequencies.

The average HG synchronization map, which maps the Z-
transformed PLV between all voxel pairs across subjects is shown in
Fig. 11. The left hemispheric ROI was used as seed region.

The average PLV time course across all subjects for the right
hemispheric ROI is shown in Fig. 12, where we averaged the Z-scores
for all frequenciesbetween81and95Hz, covering thepeak frequencies
for each subject. We determined the 5% confidence intervals of the
group average by bootstrapping the mean across subjects.

Discussion

In agreement with previous studies (Ball et al., 2008; Cheyne et al.,
2008), we have shown that movement-related HG activity can be
Fig. 11. Map of the group average over all subjects for the PLV between all voxels in the
left hemispheric ROI and the right hemispheric ROI. The threshold is set at ||Z||≥1.5,
corresponding to 4.5 std or an uncorrected p-value of p≤2×10−10 for each voxel. The
left hemispheric ROI, outlined in black, was used as the seed region. Themap shows that
synchronization from the seed area to the right motor area is the only significant
synchronization at this latency (400 ms before movement onset).
detected by non-invasive methods. We have also demonstrated, using
a simple and inexpensive setup which is well suited for BCI and
functional mapping applications, that EEG provides spatially localized
HG power changes in the correct anatomical locations associated with
movement. We also found highly consistent mapping of the HG
activity to the contralateral motor area. We observed focal HG
increases and the spatially delocalized beta band decreased across
subjects, that is in good agreement with previous reports that used
ECoG (Crone et al., 1998; Pfurtscheller et al., 2003; Miller et al., 2007)
as well as with our own ECoG recordings. For HG, the range of
reported frequencies is quite large (59–85 Hz (Ball et al., 2008), 65–
90 Hz (Dalal et al., 2008), 70–85 Hz (Cheyne et al., 2008), 70–90 Hz
(Pfurtscheller et al., 2003), and 75–100 Hz (Crone et al., 1998)) and
our findings, ranging from 81 to 101 Hz, also fall within that range.
Mapping the EEG data onto the generic cortex allows us to separate
the pre-movement HG activity in space, time, and frequency. It should
be noted that such a separation cannot be achieved in the channel
domain, since electrode topographies are not necessarily reflections of
the underlying cortical activity. We find the earliest activity in the
premotor area followed later by activation in the primary motor area.
Earlier MEG studies, using functional localization (Huang et al., 2004;
Onishi et al., 2006), also showed that the movement induced power
increases in the contralateral primary motor area peaked slightly
before movement onset. A study byWaldert et al. (2008) also showed
early activation of the HG prior to movement onset in the channel
domain in contralateral prefrontal channels. We also find a post EMG
onset activation of the motor area, similar to the results reported by
Cheyne et al. (2008). Both the temporal order and the spatial
localization of our observed HG activity suggest that it is associated
with movement planning and movement initiation (Pfurtscheller et
al., 2003). Other ECoG studies have shown that there is post-
movement onset HG that is strongly correlated with ongoing
individual finger motion that could also provide a control signal
(Miller et al., 2007). In contrast to our EEG data, the post-movement
ECoG activity does not suffer from EMG artifacts. Strong EMG
contamination after the subject started to move made our signal-to-
noise ratios too low to reliably use the post-movement activity to
provide useful control signals. We also found a significant movement
induced increases in the HG interhemispheric phase-locking. This
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supports the speculation by Cheyne et al. (2008) that there might be
an underlying network that links the motor areas at alpha and beta
frequencies (Gerloff et al., 1998; Mima et al., 2000; Pollok et al., 2005),
but also in the HG range. We also see increased interhemispheric
phase synchronization in the alpha band (see Fig. 10) after movement
onset. In contrast, the HG band synchronization we detect starts
earlier, on average 400 ms prior to EMG onset, and remains high
throughout movement onset. Compared to the average latency of the
earliest contralateral activity, the bilateral synchronization starts
later. This suggests that movement initiation begins in the contralat-
eral premotor areas and then activates the ipsilateral motor areas via
phase synchronization. Our group average EEG results compared with
our group average ECoG results show that, during the quiet artifact-
free period prior to movement onset, the two modalities agree.
Consequently, spatially mapped EEG can be used as a non-invasive
alternative to ECoG to study HG activity.
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