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Abstract Neuronal responses are often characterized by the
firing rate as a function of the stimulus mean, or the f–I curve.
We introduce a novel classification of neurons into Types A,
B−, and B+ according to how f–I curves are modulated by
input fluctuations. In Type A neurons, the f–I curves display
little sensitivity to input fluctuations when the mean current
is large. In contrast, Type B neurons display sensitivity to
fluctuations throughout the entire range of input means. Type
B− neurons do not fire repetitively for any constant input,
whereas Type B+ neurons do. We show that Type B+
behavior results from a separation of time scales between a
slow and fast variable. A voltage-dependent time constant for
the recovery variable can facilitate sensitivity to input
fluctuations. Type B+ firing rates can be approximated using
a simple “energy barrier” model.
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1 Introduction

The output of a neuron can be described in terms of precise
spike timing or the mean firing rate (Shadlen and Newsome
1994; Konig et al. 1996; VanRullen et al. 2005). Both of
these coding strategies convey information, possibly dis-
tinct, about the stimulus (Fairhall et al. 2001; Lundstrom
and Fairhall 2006). Here, we focus on how the mean firing
rate of a single-compartment neuron encodes the statistical
properties of current inputs, which we approximate as
filtered Gaussian noise (Destexhe et al. 2001, 2003;
Moreno et al. 2002; for discussion, see Rauch et al. 2003;
Richardson 2004; Rudolph and Destexhe 2005, 2006).

While firing rate generally increases with stimulus mean,
the slope of the firing rate to input current (f–I) curve can be
altered by the variance of the fluctuating input. This can be
seen as a type of gain control (Chance et al. 2002; Fellous
et al. 2003; Rauch et al. 2003; Higgs et al. 2006; Arsiero
et al. 2007; Lundstrom et al. 2008), whereby the strength of
background fluctuations modulates the response to the
mean. More generally, the firing rate varies with, and
thereby encodes, both mean and variance, and the sensitiv-
ity to one or the other can be interpreted as conferring on
the neuron integrator-like or differentiator-like properties,
respectively (Higgs et al. 2006; Lundstrom et al. 2008). For
example, the average firing rate of layer 5 pyramidal
neurons of the sensorimotor cortex recorded in vitro varies
with input mean but depends less strongly on input variance
(Chance et al. 2002; Rauch et al. 2003); these neurons can
be thought of as integrators. The firing rates of other
neurons, e.g. from the rat prefrontal cortex, are more
sensitive to changes of input variance (Fellous et al. 2003;
Arsiero et al. 2007) and can be classified as differentiators,
or coincidence detectors, where this sensitivity to transients
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can be facilitated by mechanisms underlying spike rate
adaptation (Benda et al. 2005; Higgs et al. 2006; Prescott et
al. 2006). However, a strict dichotomy between integrator
and differentiator is artificial. Plotting f–I curves for a
number of examples of recent in vitro data [Fig. 1(a)], it is
clear that the firing rate is often sensitive to both input
mean and variance, and that sensitivity varies over the
neuron’s dynamic range.

To what extent is this range of behavior captured by
standard single-compartment model neurons? We show
responses to similar stimuli for a variety of conventional
model neurons in Fig. 1(b). None of the models reproduce
the firing rate sensitivity of some in vitro neurons to input
fluctuations above rheobase, the lowest DC current for
which the neuron fires repetitively. For example, even if
slow adaptation currents are added to the leaky-integrate-
and-fire neuron, at high enough mean inputs the interspike

interval equals the refractory period, yielding a firing rate
that is insensitive to input fluctuations. What, then, is
necessary for single-compartment model neurons to show
noise sensitivity above rheobase?

To provide a framework within which to place these and
previous results, we categorize neurons according to their f–I
curves into three classes: Types A, B+, and B−. These types
are distinct from those of Hodgkin’s three classes (Hodgkin
1948; Rinzel and Ermentrout 1998; Gerstner and Kistler
2002; Izhikevich 2007), which focus on the bifurcations of
neurons in response to noiseless currents. The f–I curves of
Type A neurons show little sensitivity to input fluctuations
above rheobase, as is the case for many standard single-
compartment model neurons [Fig. 1(b)]. On the other hand,
f–I curves from Type B neurons display sensitivity to input
fluctuations throughout the neuron’s dynamic range. We
parse Type B into two categories depending on whether or

0 2 4

200

400

F
iri

ng
 r

at
e 

(H
z)

60

120

40

80

125

250

125

250

F
iri

ng
 r

at
e 

(H
z)

I/I
thr

0 2 4
I/I

thr

0 2 4
I/I

thr

0 2 4 6
I/I

thr

0 4 8
I/I

thr

Sensorimotor cortex

0 2 4

20

40

I/I
thr

Sensorimotor cortex

0 3 6

20

40

I/I
thr

Prefrontal cortex

0 4 8

0

100

200

I/I
thr

Auditory brainste

LIF Hodgkin–Huxley Connor–Stevens Miles–Traub

m

/

Zero SD
Low SD
High SD

Type A Type B

Type A 

(a)

(b)

Fig. 1 The firing rates of in vitro neurons (top row) can display
greater sensitivity to noise than those of conventional model neurons
(bottom row). Type A neurons show little sensitivity to input
fluctuations for large input means, while Type B neurons are sensitive
throughout their physiological range. (a) Mean firing rate is plotted as
a function of mean input current, where different traces represent
different input SD with circles as highest input SD. From left to right,
SD=[0, 0.7, 1.3], [0, 0.5, 1], [0.25, 0.75, 1.5], and [0, 1, 2] in units of
Ithr, which was estimated to be the rheobase, or minimum zero-noise
current needed to elicit spiking. From left to right Ithr=300, 400, 200,
and 200 pA. From left to right, the first three neurons are from the
neocortex (fast-spiking interneuron and two regular spiking pyramidal
neurons) and the fourth is from the auditory brainstem (nucleus
laminaris). Data from the sensorimotor cortex and auditory brainstem

are courtesy of Matthew Higgs (Higgs et al. 2006), and data from the
prefrontal cortex are courtesy of Michele Giugliano (Arsiero et al.
2007). (b) The mean firing rate of many single-compartment model
neurons is insensitive to input SD for high input currents (i.e. above
rheobase). From left to right, SD=[0, 0.5, 1], [0, 0.5, 1], [0, 1.5, 3],
and [0, 1, 2] in units of Ithr with Ithr=40, 65, 100, and 25 nA/mm2

respectively. The leaky integrate-and-fire neuron is a standard one-
dimensional model often used for network modeling (Dayan and
Abbott 2001), the classic Hodgkin–Huxley neuron models the squid
giant axon (Hodgkin and Huxley 1952), the Connor–Stevens model is
a prototypical Class I model based on a gastropod neuron (Connor and
Stevens 1971), and the Miles–Traub model is based on hippocampal
neurons (Ermentrout 1998)
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not they fire repetitively to noiseless input. Type B− models
do not fire repetitively unless noise is present in the input,
while Type B+ models can. The transition from Type A to
B- behavior has been explored previously (Lundstrom et al.
2008). We explore the causes leading to Type B+ behavior.
We show how a separation of time scales between acti-
vation and recovery from spiking, such as might be induced
by a voltage-dependent time constant for the recovery
variable, promotes sensitivity to input fluctuations in low
dimensional neuron models.

2 Methods

The two-dimensional model of Fig. 2 is described by the
following equations, which are derived from the standard
four-dimensional Hodgkin–Huxley (HH) model (Hodgkin
and Huxley 1952; Koch 1999; Dayan and Abbott 2001;
Gerstner and Kistler 2002) by eliminating the time
dependence of m and letting h linearly depend on n, as in
previous work (Rush and Rinzel 1995; Gerstner and Kistler
2002; Izhikevich 2007); we then altered the kinetics and
conductances:

C dV
dt ¼ �GNam3

1h V � ENað Þ � GKn4 V � EKð Þ � GLeak V � ELeakð Þ þ I
t dn

dt ¼ n1 � n

ð1Þ
where

m1 ¼ 1= 1þ exp �40� Vð Þ=kmð Þð Þ
h ¼ 0:89� 1:1n
n1 ¼ 1= 1þ exp Vn � Vð Þ=knð Þð Þ

; ð2Þ

with parameters C=1 nF/mm2, GNa=50 mS/cm2, GK=
36 mS/cm2, GLeak=5 mS/cm2, ENa=50 mV, EK=−77 mV,
ELeak=−54 mV, km=7, Vn=−45, kn=15, and τ=5 or 100 ms

(except as noted). This 2D model loses stability via a
subcritical Hopf bifurcation, and can be termed a Class II
model (Rinzel and Ermentrout 1998; Izhikevich 2007).
With modifed parameters, GLeak=15 ms/cm2, Vn=−30 mV,
and kn=5, the model is Class I and loses stability via a
saddle-node on invariant circle bifurcation. Bifurcation
analyses were done using XPPAUT (developed by Bard
Ermentrout). When τ was not constant, its voltage
dependence was taken to be (Izhikevich 2007):

t ¼ CBase þ CAmp exp � Vmax � Vð Þ2
.
Δ2

� �
; ð3Þ

with the parameters CBase, CAmp, Vmax, and Δ. For models
of a similar form, see Izhikevich (2007). To implement
slow sodium channel inactivation, an extra gating variable s
was added to the sodium current so that it became:

INa ¼ GNam
3hs V � ENað Þ ð4Þ

This sodium current was incorporated into the previous
Class I 2D HH model. The dynamics of the variables n and
h remained unchanged except that τ=3 ms. The slower gate
s was identical to h except that its time constant was
governed by Eq. (3) with parameters CBase=50 ms, CAmp=
2,000 ms, Vmax=−40 mV and Δ=5 mV.

Importantly for this study, input fluctuations were fast
compared to the dynamics of spike recovery and time
between spikes. The external input current I to the neuron
was 1-ms exponentially filtered Gaussian noise (i.e.
equivalent to an Ornstein–Uhlenbeck process) with the
means and standard deviations as specified. Results were
qualitatively identical with a 5-ms filter. Model equations
were integrated using a fourth-order Runge–Kutta solver
with a 0.02 ms fixed time step. Spikes were counted as
upward voltage crossings at −20 mV if the mean of the
previous 1 ms of voltages was less than −40 mV.

Fig. 2 A two-dimensional modified and reduced Hodgkin-Huxley
(HH) model neuron can show all three types of behavior. Type A is
similar to the standard HH model and is insensitive to input SD for
high currents. In contrast, Type B+ is sensitive to input SD throughout
the dynamic range and fires repetitively to inputs with SD=0. Type

B− models never fire repetitively when input SD=0 and never
undergo a bifurcation from stable fixed point to limit cycle. For the
three models, GNa and τ were [50, 50, 15] mS/cm2 and [5, 100, 5] ms,
respectively. Input SD was [0, 10, 20] μA/cm2. Other parameters were
as given in the Section 2
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3 Results

Many single-compartmental biophysical model neurons,
implemented with their standard parameters, display f–I
curves best described as Type A [Fig. 1(b)]: their firing
rates are not sensitive to input fluctuations above rheobase.
Here, we are interested in model neurons that display
sensitivity to noise above rheobase until depolarization
block, which we have called Type B. We subclassify Type
B neurons as Type B− when they do not fire repetitively to
noiseless current regardless of its magnitude, and Type B+
if they do for some magnitude. In previous work (Lundstrom
et al. 2008), we demonstrated that the alteration of a model’s
conductance ratio, e.g. GNa/GK, can lead to Type B− f–I
curves. This behavior is generated by neuronal dynamical
systems with fixed points that remain stable regardless of
input mean. Thus, these neurons never fire repetitively at
steady state in response to noiseless input. We focus here on
Type B+ neurons whose firing rates are sensitive to input
fluctuations throughout the dynamic range and which can
fire repetitively at steady state to noiseless input.

3.1 2D model demonstrating three types of f–I curves

We begin with a two-dimensional model, similar to the
Hodgkin–Huxley neuron, that can demonstrate three types
of f–I curves: Type A, B+, and B− (Fig. 2). We wish to
identify the specific characteristics of the differential
equations describing the neuronal dynamics that lead to

the generation of Type A vs. B+ behavior. For 2D
dynamical systems, these characteristics can be explored
geometrically using phase portraits. To do this, we reduced
the standard 4D HH model to two dimensions by
eliminating the time dependence of m and letting h linearly
depend on n (Izhikevich 2007); we slightly altered the
kinetics and conductances. We then examined 2D model
trajectories in the phase plane for each of the neuron types.

Two-dimensional dynamical systems can be analyzed by
examining a phase portrait, which is a plot of one dynamical
variable against the other (Strogatz 1994; Gerstner and
Kistler 2002; Izhikevich 2007). In this case, the model has a
fast positive feedback variable V and a slow negative
feedback variable n. V is the model’s membrane voltage,
while n is a combined variable, representing sodium
channel inactivation as well as potassium activation. As
the membrane voltage V spikes in time, the neuron’s
trajectory travels counter-clockwise around the phase plane
(Fig. 3). The upswing and downswing of the action
potential (dashed lines) correspond to the left-to-right and
right-to-left trajectory jumps, respectively, between the
arms of the V-nullcline (thick solid line). The V-nullcline
and n-nullcline (fine solid line) correspond to points on the
phase plane where dV/dt=0 and dn/dt=0, respectively.

3.2 The effect of increasing time scale separation

From the behavior of the trajectories of this two-variable
(V and n) model in the phase plane, we can relate the

(a) (b)

Fig. 3 The action potential in the phase portrait. (a) The membrane
voltage and recovery variable n change as a function of time and (b)
can be plotted against each other in a phase portrait. The membrane
voltage as a function of time shows a sharp upswing that corresponds
to a rightward, horizontal movement in the 2D phase plane of voltage,
the activation variable V, and the recovery variable n. Dashed lines

represent the neuron’s trajectory, the N-shaped solid line is the V-
nullcline, the solid straight line is the n-nullcline, and arrows represent
the flow field with vectors given by (dV/dt, dn/dt) at each point (V, n).
Data are from the Type A model in Fig. 2 with stimulus mean I=
50 μA/cm2
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computational behavior of the models to properties of the
dynamical system. We considered two models that differed
only in the value of the recovery variable time constant τ: a
short time scale model with τ=5 ms, and a model with τ=
100 ms (see Methods). Figure 4 shows responses of both
models to an input with a standard deviation of zero and an
input mean of μ=100 μA/cm2. Without input fluctuations,
the neuron spikes regularly with a stereotyped voltage
trajectory. In other words, during the spike upswing the
value of n is the same from spike to spike.

The time constant τ controls the speed of the slow variable
n in this model, while the speed of the fast variable V is
governed by GNa, GK, and GLeak, biophysical conductance
parameters describing the density of sodium, potassium, and
leak channels in the membrane. Because the ionic con-
ductances are constant, τ represents the time scale separation
in the model: as τ increases, the time scale separation
between the two variables increases. For increasing τ, the
spikes have a similar shape but are wider. Spikes of this
width are clearly not physiological; this is a limitation of an
increased time scale separation in 2D systems that we
address later. The phase plane representation shows that as τ
decreases, trajectories start to overshoot the left and right
bends of the V-nullcline (Fig. 4).

With a noisy input, voltage trajectories are less stereo-
typed and the intervals between spikes are irregular (Fig. 5).
In the model with small τ, noise does not change the mean
value of n during spike upswings and downswings but only
adds variability [Fig. 5(a)]. Thus, when there is little
separation of time scales, input fluctuations do not alter

the mean firing rate, as seen in Fig. 2, but only spike timing.
However, in the model with large τ, input noise shortens the
average oscillation period, increasing the mean firing rate
[Fig. 5(b)]. Although noise does not appreciably change
hni on the spike downswing, it does on average increase n
during the upswing. When τ is large, trajectories travel
more slowly down the left arm of the V-nullcline. This
allows input fluctuations the opportunity to initiate a spike
sooner by pushing the neuron past its spiking threshold,
which is approximately given by the upward-turning middle
arm of the V-nullcline (Hong et al. 2007; Izhikevich 2007).
Although this threshold is two-dimensional, once the
neuron begins to fire, n stays relatively constant during
the fast upswing of the action potential.

3.3 Defining an instantaneous potential barrier

Since noise causes the trajectory to jump across the
threshold sooner, this implies that there is a barrier that
prevents crossing in the absence of noise. To gain insight
into how noise drives spiking, we examined how noise-
driven trajectories escape over a barrier. Consider a simple
1D model as in Fig. 6(a), where input fluctuations of typical
scale σ cause trajectories to move in the voltage V
dimension, such that sometimes the trajectory can over-
come an instantaneous potential barrier ΔU located at a
threshold for spiking. This picture is reminiscent of
problems in physics and chemistry wherein the activation
rate is determined by the size of an energy barrier and the
temperature and is given by the Arrhenius rate or Kramer’s

Fig. 4 As the recovery time scale τ increases, the upswing of the
action potential (large, black arrow) occurs closer to the local
minimum of the V-nullcline (curved green line). Changing the
recovery time scale τ does not alter the nullclines but rather affects
how neuronal trajectories move in the phase plane, which can also be

seen in voltage vs. time plots (left; notice the different x-axis scale).
The direction and magnitude of the small, green arrows represent the
relative magnitudes of dV/dt and dn/dt for the (V, n) points in the
phase portrait. Notice that trajectories overshoot the local minimum of
the left arm of the V-nullcline (large arrow) only when τ is small
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escape rate equation, r ~ exp(−ΔU/kT). In our case, thermal
energy kT is replaced by a factor proportional to the
variance of the driving current fluctuations, σ2.

DeVille et al. (2005) developed this framework for a
Fitzhugh–Nagumo excitable system in the limit when noise
σ is very small and τ is very large. We wish to apply this
approach to situations where the values of input noise σ and
the separation of time scales τ are relevant for physiological
neurons. First, we test this relationship for less extreme
values of σ and τ.

To find ΔU, we need the relevant potential. In general,
the potential is defined as a scalar function with the
property that its negative derivative is the force (Arfken
and Weber 1995). When the separation of time scales is
large, we can consider n to be fixed in the equation of
motion for V, Eq. (5), so that the relevant force is −dV/dt
and the problem reduces to a series of one-dimensional
cases for various n. We therefore define the negative
integral of dV/dt as an instantaneous potential landscape,

as in Fig. 6(a), for each value of n. Specifically, we
consider:

dV

dt
¼ �GNam3

1 Vð Þh nð Þ V � ENað Þ � GKn4 V � EKð Þ
� GLeak V � ELeakð Þ þ I

0
BB@

1
CCA�

C;

ð5Þ

which can be rewritten as:

kc ¼ f V ; nð Þ; ð6Þ
where the kc=0 contour is the nullcline. As in DeVille et al.
(2005), we seek a function U such that

@U V ; nð Þ
@V

¼ �f V ; nð Þ: ð7Þ

Integrating Eq. (6) with respect to V, we obtain U(V) for
a given value of n. This produces a double-well potential

(a)

(b)

Fig. 5 Input fluctuations do not
change the mean firing rate
when τ is small, but increase
firing rate when τ is large. (a)
When τ is small (5 ms), input
fluctuations (SD=10 μA/cm2)
increase the variance of n during
the up- and downswings of the
action potential, but do not alter
the mean value of n. Histograms
are shown at right during action
potential upswing (V=-20 mV)
and downswing (V=-40 mV), as
indicated by the vertical black
lines on the phase portraits. The
dashed lines represent the value
of n when input SD=0 mV,
while the solid lines show the
mean values of the data. The
dashed and solid lines are nearly
the same; the neuron’s firing rate
does not change with increased
input SD, but spiking becomes
irregular. (b) When τ is large
(100 ms), increasing input SD
leads to an increasing mean
firing rate. Although the mean
value of n during the action
potential downswing does not
appreciably change, during the
upswing <n> increases, since
on average the input SD causes
the neuron to spike sooner, i.e.
before n has returned to the
minimum. The input current I
had a mean of 100 μA/cm2
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for each n, where the local minima and maxima of U(V)
occur where the V-nullcline passes through that value of n.
For an N-shaped nullcline, this leads to two minima and
one maximum [Fig. 6(b)]. The shape of this instantaneous
potential changes with n. During the spike upswing, the
trajectory “rolls” down the potential to the right [Fig. 6(c,
d), solid lines]. Then, as membrane voltages remain high, n
increases until eventually the trajectory “rolls” down the
potential to the left (Fig. 6(c, d), dash-dotted lines). When
the separation of time scales is large, the potential
landscape is quasistatic, and spikes can occur sooner due
to noise-driven jumps over the potential barrier.

3.4 Relating τ and ΔU

Given this expression for U, for every n there exists a
barrier height ΔU. By the Arrhenius, or Kramer’s escape
rate, equation, the time scale λ(n), or inverse rate, for
jumping the barrier for a given input σ is given by:

l nð Þ ¼ k exp ΔU nð Þ�ms2
� �

; ð8Þ
where m is a constant. As in DeVille et al. (2005), for low
noise levels the trajectory following a spike moves down

the left arm of the V-nullcline with a time scale determined
by the recovery time constant τ. While following this
trajectory, the jumping rate λ−1(n) changes with n. The
system becomes susceptible to barrier crossing when λ(n) is
of same order as the recovery time scale τ. Therefore, we
expect that average barrier crossing behavior of the system
is characterized by

t ¼ k exp ΔU nð Þ�ms2
� �� �

; ð9Þ
where the brackets indicate an average over many spikes.
Furthermore, since the variance of n at barrier crossing is
small, and the value of n is nearly constant during each
spike upswing and downswing, as seen in Fig. 5, we can
simplify Eq. (9), without significant loss of accuracy, to:

t ffi k exp ΔU nh ið Þ�ms2
� �

: ð10Þ
ΔU(hni) is determined by evaluating the potential

difference at hni for either the spike upswing (fast
depolarization) or spike downswing (fast repolarization).
If Eq. (10) accurately describes this system, we should find
that ΔU(hni) is linearly related to ln(τ). Using the values of
hni that correspond to a given τ [Fig. 7(a)], we find that
ΔU and τ are indeed exponentially related for a given σ

(a) (b)

(d)(c)

2550 0
V (mV)

0.65

0.55

n

Fig. 6 Input fluctuations can
shorten interspike intervals by
causing the neuron’s trajectory
to cross an instantaneous poten-
tial barrier. (a) A simple 1D
model relates spike initiation to
crossing an energy barrier. (b)
The instantaneous potential
landscape can be found by inte-
grating –dV/dt (solid, blue line)
with respect to V for constant n,
here represented by the solid
black line in the inset. The result
of the integral is represented by
the dashed, green line. (c) The
instantaneous potential land-
scape changes as n changes, and
potentials are shown for three
specific values of n, which rep-
resent three different slices
through the inset of (b). The
action potential upswing and
downswing occur at approxi-
mately n=0.56 and n=0.66, re-
spectively. The middle hump is
the barrier related to the spiking
threshold. Units are defined up
to a constant. (d) The barrier
height from low to high V is the
potential U at the middle hump
subtracted from the potential U
for the left hump. As n
increases, the barrier height for
the rapid depolarization of the
spike upswing increases
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[Fig. 7(b)], as suggested by the simple 1D picture of
Fig. 6(a). The results in Fig. 7(b) and (c) can be
summarized by the following equation:

ΔU s; tð Þ ¼ A ln tð Þ þ Bð Þs2; ð11Þ
with A and B constant, and where ΔU and constants differ
for the upswing and downswing.

Thus, the simple picture of Fig. 6(a) holds approximately
even away from the limits of very large time scale
separation and low noise. We now wish to predict the
mean firing rate as a function of σ and τ. Equation (11)
relates σ and τ with ΔU. We next relate the oscillation
period T to nup, the value of n when membrane voltage
rapidly depolarizes during the spike upswing. Finally, we
relate nup to ΔU.

We began by examining n and T. As seen in Fig. 4, for
large τ the trajectory spends essentially all of its time slowly
moving along the left and right arms of the V-nullcline.
Given this, one can find an approximate analytical expres-
sion for T(n) directly from the model equations. Along the

V-nullcline, dV/dt=0, and thus motion along the nullcline,
i.e. along f(V, n)=0, can be described by dynamics due to dn/
dt. In this case, the equation of motion is:

t
dn

dt
¼ n1 Vð Þ � n:

The period of the trajectory, i.e. the interspike interval, is
dominated by the time spent traveling on the left and right
arms of the V-nullcline,

T ¼ t
Z
L

dn
1

n1 Vð Þ � n

� 	
þ
Z
R

dn
1

n1 Vð Þ � n

� 	0
@

1
A;

ð12Þ
where the bounds of integration are given by nup and ndown
for the left and right arms. One can numerically integrate
Eq. (12) to find T(nup, ndown).

We can, however, take a simpler approach based on the
following observations. Due to the geometry of the
nullclines, changes in ndown are small relative to those in

(a) (b)

(c) (d)

Fig. 7 The ability of input fluctuations to cause an increase in firing
rate is fit by an exponential relationship with the time scale separation.
(a) As recovery time constant increases, action potentials are initiated
and terminated sooner, i.e. upswings are at higher mean values hni
and downswings are at lower hni. For each n there exists a barrier
height ΔU, as illustrated in Fig. 6. The upswing hni and downswing
hni were measured at V=−20 and V=−40 mV, respectively, as in

Fig. 5, and the symbols remain the same for the next two panels. (b)
The mean barrier height ΔUh i is exponentially related to the
separation of time scales, (c) and linearly related to input variance
σ2. (d) Firing rate increases with variance, as seen from simulation
data (circles, diamonds, and squares). These firing rates can also be
calculated as a function of σ with the parameter τ=[50, 100, 400] ms
using Eq. (15). The input current I had a mean of 100 μA/cm2
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nup (Fig. 5), and the firing rate is relatively insensitive to
ndown. We therefore consider only the dependence on nup.
Further, focusing on the left branch, the V-nullcline and the
n-nullcline n∞(V) can be approximated as linear in this
region, as suggested by the phase plots (e.g. Fig. 5). From
the flow field, as depicted by the arrows in Figs. 3 and 4, it
can be seen that the rate at which n changes with time
decreases as the trajectory comes down the left branch.
Thus, the time spent along the left branch is:

TL ¼ t
Z nup

ndown

1

k1 � k2n
dn ¼ t ln

k1 � k2nup
k1 � k2ndown

� 	

¼ t ln 1þ ndown � nup
� �
k1=k2 � ndown

� 	
;

where k1 and k2 are positive constants and k1>>k2. A
similar expression gives the time along the right branch.
Using ln(1+x) ≈ x for small x, the oscillation time is
approximated by

T � t �anup þ b
� �

; ð13Þ
where ndown−nup is small relative to ndown and α and β are
positive constants.

Now, we relate ΔU and n. For the spiking barrier, i.e. for
ΔUup, this is accomplished by finding V*1 nð Þ and V*2 nð Þ, the
voltages for which dV/dt=0 on the left and middle arms
given n, and substituting them into U(V), which is defined
by Eq. (7). This gives ΔUup ¼ U V*2

� �
� U V*1

� �
as in

Fig. 6(d). In general, ΔUup(n) and ΔUdown(n) are compli-
cated functions that depend on the widths between the left
and middle branches and right and middle branches of the V-
nullcline, respectively. However, as can be seen from the

shape of the V-nullcline, they are monotonic, and numeri-
cally we find

ffiffiffiffiffiffiffiffiffiffiffiffiffi
$U nð Þp

∝ n to be a good approximation. We
now have the necessary equations to calculate firing rate:

ΔU ¼ A1 ln t � B1ð Þs2ffiffiffiffiffiffiffiffi
ΔU

p ¼ A2n� B2

T ¼ �A3nþ B3ð Þt
; ð14Þ

where Ai and Bi are positive constants. Straightforward
algebra yields an equation for the mean period, T:

T ¼ t
�A3

A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 ln t � B1ð Þs2

p
þ B2

� �
þ tB3; ð15Þ

and thus T ∝ (const−σ) for a given τ. We find very good
agreement between Eq. (15) and the simulated data
[Fig. 7(d)].

3.5 Type B+ behavior with narrow spike widths

In this 2D model, large τ leads to very wide spikes (e.g.
Fig. 4), so this regime of a separation of time scales may
seem physiologically irrelevant. To achieve B+ behavior
with narrow spike widths in this model, one can manipulate
the geometry of the nullclines around the left knee of the V-
nullcline (Fig. 4, black arrow). For example, the model of
Eq. (2) with km=5 and kn=23 both has a sharper left knee
of the V-nullcline and an n-nullcline that is reduced in
slope, slowing spike trajectories at the left knee. This model
exhibits Type B+ behavior with τ=5 ms and spike widths
of approximately 5 ms. Increasing the dimensionality of the
model is an alternative approach, allowing separation of the
slow time constant from the spike recovery process. For
example, one can add long time-scale adaptation through a

(a)

(c)

(b)Fig. 8 Addition of voltage de-
pendence to the slow time scale
of a 2D Hodgkin–Huxley model
gives Type B+ behavior. (a) The
time constant of the recovery
variable is taken to be large only
at peri-threshold voltages.
CBase=3 ms, CAmp=50 ms,
Vmax=−50 mV, Δ=1 mV
(see Section 2). (b) This allows
input fluctuations to increase
average firing rate. SD=0,
10, 20 μA/cm2 for squares,
diamonds, and circles, respec-
tively. (c) Membrane voltages
corresponding to two points on
the f–I curve as indicated. Spike
widths are narrow
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slow spike-dependent current with a constant time constant,
thus altering the shape of the V-nullcline as input current is
increased.

Until now, we have considered the slow time constant of
the recovery variable to be constant. However, a straightfor-
ward way to achieve narrow spikes in a 2D model is by
allowing this time scale to be voltage dependent. When the
recovery time constant becomes very large for peri-threshold
voltages [Fig. 8(a)], spike trajectories slow down during
depolarization, allowing the influence of noise. Thus,
average firing rates become sensitive to input fluctuations
[Fig. 8(b)], but spike widths are nonetheless narrow
[Fig. 8(c)]. The details of the voltage dependence can
strongly influence the details of shapes of the f–I curves.

3.6 Relation to Hodgkin’s Classification

Our classification of neurons into types A and B is distinct from
Hodgkin’s Class I/II/III categories (Hodgkin 1948). Hodgkin

classified neuronal response to noiseless injected current
according to whether action potentials could be generated
with an arbitrarily low frequency (Class I), with a certain
minimum frequency with firing rates that were rather
insensitive to applied current (Class II), or with only very
strong current or not at all (Class III; Hodgkin 1948; Gerstner
and Kistler 2002; Izhikevich 2007). This classification scheme
focuses on how neurons respond to inputs in the absence of
input fluctuations, and has been identified with the bifurcation
structure of the neuronal dynamical system (Rinzel and
Ermentrout 1998; Izhikevich 2007), while our approach
emphasizes neuronal sensitivity to input fluctuations.

Although Type B− and Class III neurons are equivalent for
excitable neurons (Hong et al. 2008; Lundstrom et al. 2008),
there is no apparent correspondence between Classes I and II
and Types A and B+. The 2D reduced HH models (Types A
and B+) are Class II models, as verified by bifurcation
analyses showing a loss of stability via a subcritical Hopf
bifurcation. With the choice of parameters GLeak=15 ms/cm2,

(a) (b)Fig. 9 A Class I 2D Hodgkin–
Huxley model can show either
Type A or Type B+ behavior.
The previous Class II model is
now Class I (see Section 2) with
(a) τ=5 ms, or (b) τ=100 ms.
SD=0, 10, 20 μA/cm2 for
squares, diamonds, and circles,
respectively

(a)

(c)

(b)Fig. 10 Addition of a voltage-
dependent slow time scale to a
Class I 2D HH neuron model.
(a) The time constant of the
recovery variable is large only at
peri-threshold voltages. CBase=
5 ms, CAmp=200 ms, Vmax=
−44 mV, Δ=4 mV (see Section
2). (b) SD=0, 10, 20 μA/cm2

for squares, diamonds, and
circles, respectively. (c) Mem-
brane voltages corresponding to
two points on the f–I curve as
indicated
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Vn=−30 mV, and kn=5, the reduced models become Class I,
Fig. 9. Their corresponding f–I curves are qualitatively
identical to those of the Class II models, suggesting that the
particular way in which the model loses stability does not
dramatically influence its sensitivity to input fluctuations over
its dynamic range. Similar results were obtained using the
Morris-Lecar model (Morris and Lecar 1981) implemented
with Class I dynamics (Rinzel and Ermentrout 1998; Tateno
and Pakdaman 2004). This is in agreement with previous
work showing that Class I and Class II Morris–Lecar models
respond similarly to noisy inputs (Tateno and Pakdaman
2004), although other work has highlighted the models’
different transient responses to fluctuating inputs near firing
threshold (Gutkin and Ermentrout 1998; Robinson and
Harsch 2002). As with the Class II models, adding voltage
dependence to the recovery time constant of Class 1
neurons can give rise to Type B+ behavior. In Fig. 10,
the time constant is larger for peri-threshold values, and the
shape of the f–I curves depends on the particular form of
voltage dependence, especially for inputs with large input
fluctuations.

3.7 Higher dimensional models and adaptation

For these 2D models, a voltage-dependent recovery variable
that slows greatly near threshold allows the neuron to be
sensitive to input fluctuations while maintaining narrow spike
widths. While in 2D models the time scales for voltage reset
and for recovery from spiking are combined into a single
variable, higher-dimensional models may have more than two
time scales. Thus, slow recovery from sodium inactivation
(Fleidervish et al. 1996) may serve a similar function. In
Fig. 11, we added a sodium inactivation gating variable to

the Class I 2D HH model (see Section 2). This 3D model has
three time scales: a fast time scale for membrane voltage, a
slow time scale for the linearly related recovery variables n
and h, and a yet slower, voltage-dependent time scale for the
slow sodium inactivation variable s. This model also displays
Type B+ behavior, over a wider parameter range than the 2D
model of Fig. 10. The repolarization of spikes in Fig. 11(c) is
governed by the intermediate time scale of n and h, while the
slow depolarization just prior to spiking threshold is
governed by the slowest time scale of s. When s has a fixed
time constant, the effect of slow sodium inactivation in this
model is to modify the shape of the V-nullcline differentially
as firing rate increases; as for 2D models, this can also
facilitate B+ behavior but the effect is not strong.

The important required effect is that the trajectories
remain just below threshold for an extended time, allowing
input fluctuations to initiate spiking sooner on average. For
phase portraits such as Fig. 5, this corresponds to
trajectories spending an extended time near the left knee
of the V-nullcline. Lower energy barriers ΔU occur when
the system is held near threshold, and when there is a
smaller distance between the left and center arms of the V-
nullcline, Fig. 6. Thus, slow sodium inactivation, in
addition to causing spike frequency adaptation (Fleidervish
et al. 1996), may facilitate sensitivity to input fluctuations
as in Type B+ behavior.

4 Discussion

We set out to understand, using the simplest models possible,
what is required to produce the experimentally observed

(a)

(c)

(b)Fig. 11 Addition of slow sodi-
um inactivation to 2D HH neu-
ron model. (a) The time constant
of the slow sodium inactivation
gate is large only at peri-
threshold voltages. CBase=50 ms,
CAmp=2,000 ms, Vmax=−40 mV,
Δ=5 mV (see Section 2).
(b) SD=0, 10, 20 μA/cm2 for
squares, diamonds, and circles,
respectively. (c) Membrane
voltages corresponding to two
points on the f–I curve as
indicated. Slow depolarization
near threshold voltages is
controlled by slow sodium
inactivation
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diversity of f–I curves in response to input mean and
variance (Chance et al. 2002; Fellous et al. 2003; Rauch et
al. 2003; Higgs et al. 2006; Arsiero et al. 2007), as in
Fig. 1(a). Many single-compartment neuron models display
converging f–I curves and low sensitivity to input fluctua-
tions at high input mean currents [Fig. 1(b)]; we call these
Type A neurons. However, there are clear experimental
examples of neurons whose f–I curves show sensitivity to
input fluctuations throughout their dynamic range [Fig. 1(a)],
which we term Type B. Neuronal sensitivity to input
fluctuations may provide an additional communication
channel for neural coding (Fairhall et al. 2001), implement
a type of noise-driven gain control (Chance et al. 2002;
Higgs et al. 2006), underlie the ability of neurons to perform
coincidence detection (Konig et al. 1996; Slee et al. 2005;
Higgs et al. 2006), and promote persistent activity in
networks (Arsiero et al. 2007). These computational regimes
are distinct from Hodgkin’s classification scheme; for
example, a Type B neuron may be either Class I or II.

We parse Type B into two subtypes: B− and B+. B-
neurons do not repetitively fire at steady state to noiseless
current, regardless of how large, and are similar to
differentiating neurons that respond primarily to input
changes as seen in the auditory brainstem (Slee et al.
2005; Higgs et al. 2006). Previous work (Lundstrom et al.
2008) has explored the underlying causes of B− responses:
these neurons always have a stable fixed point, meaning
that input variance is an essential cause of spiking. Further,
there is a well-defined boundary in conductance space
between Type A and B−, such that upon lowering the
conductance GNa, a neuron can suddenly switch from Type
A to B−. This boundary is planar in the 3D space of (GNa,
GK, GLeak), where an equation of the form GNa−AGK−
BGLeak=0 describes the boundary. The coefficients A and B
can be determined analytically from model equations. Thus,
it is a ratio of depolarizing and hyperpolarizing conductan-
ces that determines when a neuron is Type A or B−.

On the other hand, B+ neurons can repetitively fire to
noiseless current and are more similar to some cortical
neurons (Rauch et al. 2003; Higgs et al. 2006; Arsiero et al.
2007). Here, we link Type B+ behavior to two factors: the
shape of the V-nullcline, which determines the height of an
effective barrier to spiking, and a separation of time scales
between an activation and recovery variable. Implicitly, the
time scale of input fluctuations, which may be influenced
by synaptic filtering and membrane time constants, must
also be fast relative to that of the recovery variable. Our
classification is based on sensitivity to input fluctuations,
which is somewhat arbitrary. Here, we have classified
neurons as sensitive to fluctuations, or Type B, when their
firing rates vary by more than a few percent as input
fluctuations are increased from zero to physiologically
realistic levels (i.e. such that noise-induced membrane

voltage fluctuations are small compared to spike height).
The transition from Type A to B for model neurons can be
gradual, thus potentially creating difficulties with regard to
classification. However, many in vitro and model neurons,
as in Fig. 1, clearly fall into one of these types, emphasizing
distinct differences in sensitivity to input fluctuations.

Although we initially focused on 2D systems, our results
apply to 3D neuron models (Fig. 11), and thus may also be
relevant for more complex experimentally recorded neu-
rons. Slow sodium inactivation allows the voltage trajectory
to stay near threshold for a prolonged amount of time,
which gives rise to Type B+ behavior. This may provide a
theoretical underpinning for in vitro data showing Type B+
behavior in response to somatically injected current
Gaussian noise (Higgs et al. 2006; Arsiero et al. 2007). In
these studies, slow adaptive mechanisms were implicated,
both slow sodium inactivation (Arsiero et al. 2007) and
slow afterhyperpolarization (sAHP) currents (Higgs et al.
2006), but the manner in which they were related to
increased fluctuation sensitivity was unclear. For example,
in Higgs et al. (2006) it was found that firing rates were
more sensitive to input fluctuations in rat pyramidal
neurons with large sAHP currents compared to those with
small sAHP currents. With the application of α-methyl-5-
HT, a 5-HT2 agonist that reduces sAHP currents, the
sensitivity of the neurons to input fluctuations was reduced.
When artificial sAHP currents were enhanced using
dynamic clamp, the sensitivity of firing rates to input
fluctuations was increased.

The present results more directly implicate adaptive
mechanisms that have a voltage-dependent time constant
that is large for peri-threshold values. However, in higher
dimensional neurons it is possible that multiple time scales
of currents active at peri-threshold voltages may interact
such that slow currents with voltage-independent time
constants also enhance fluctuation sensitivity. Certainly, in
3D models slow adaptive currents with voltage-independent
time constants can alter the geometry of the V-nullcline
such that trajectories are slower near threshold, although
this has a weaker effect than a voltage-dependent recovery
time constant.

In summary, we have categorized neurons into Types A,
B+, and B− according to how the mean firing rate varies
with input mean and variance. We identify three ways that a
neuron might increase its sensitivity to input fluctuations:
(1) by decreasing its effective sodium pool, or otherwise
decreasing the inward-to-outward current ratio prior to
spiking, so that the neuron’s rest state is always stable
(Lundstrom et al. 2008), (2) by changing conductances, or
other parameters, to alter the shape of the V-nullcline,
especially the width between the left and center arms that
determines the barrier height ΔU, and (3) by slowing a
“recovery” time constant such that the neuron’s voltage
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spends a relatively long time near but below threshold. We
believe that this analysis provides a simple and general
picture of how the neuron’s computation in terms of its f–I
curves depends on intrinsic parameters. These results help
us better understand what from a biophysical standpoint
determines or alters a neuron’s input/output properties and
may assist in predicting the functional effect of seemingly
minor homeostatic or adaptive sub-cellular processes.
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