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Communications

Beyond the Gamma Band: The Role of High-Frequency
Features in Movement Classification

Kai J. Miller∗, Pradeep Shenoy, Marcel den Nijs, Larry B. Sorensen,
Rajesh P. N. Rao, and Jeffrey G. Ojemann

Abstract—Electrocorticographic spectral changes during movement
show a behavioral inflection in the classic gamma band (30–70 Hz). We
quantify this inflection and demonstrate that it limits classification accu-
racy. We call for the designation of a functionally defined band above it,
which we denote the χ-band.

Index Terms—Chi (χ) band, electrocorticographic spectrum.

I. INTRODUCTION

Several current brain–computer interfaces (BCIs) using electrocor-
ticographic (ECoG) arrays rely upon changes in the power of spe-
cific spectral bands associated with actual or imagined motor move-
ment [4]–[7], [14], [18], [19]. The α (8–12) and β (14–25 Hz, also
known as µ [12]) bands have been associated in the BCI literature
with characteristic decreases in power with movement compared with
rest over a range of motor tasks. Recent results have demonstrated that
cortical spectral changes during movement imagery mimic those of
actual movement. The γ range (>30 Hz) has been reported to show
a corresponding power increase [2], [3], [12], [14]. In a previous pa-
per, we hypothesized the existence of two complementary processes:
one is the dissolution of power in band-specific peaks in the classic
electroencephalography (EEG) frequency range (up to ∼50 Hz) with
movement [event-related desynchronization—entity relationship dia-
gram (ERD) [Fig. 1(A)], [12]. The other is a power-law like broad
spectral increase across all frequencies [Fig. 1(B)] that is most cleanly
observed at high frequencies because it is masked by an ERD at low
frequencies [Fig. 1(C)]. The superposition of these two phenomena
produces an intersection point between power spectra for movement
and rest inside the classic gamma range. We denote this the “primary
junction” (J0 ) [9]. In a previous paper, we demonstrated how the in-
tegrated power in a high-frequency band, characteristically above J0 ,
could capture the broad spectral increase (χ-index), and allows func-
tional mapping of the brain in real time [8]. In this paper, we quantify
the frequency values for J0 , and show how they influence binary clas-
sification accuracy between both movement and rest, and between two
different types of movement. The choice of a frequency range above
this, χ, will be shown to be the best for classification.
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Fig. 1. Schematic illustrations of the two types of processes which create a
junction in the power spectrum. (a) Decoherence of discrete peaks in the power
spectrum with movement (ERD). (b) Power-law like power spectrum that shifts
upward with movement. It is most easily observed at high frequencies because
it is masked by peaked ERD at low frequencies. (c) Example of an actual
spectrum that demonstrates the spectral shift between hand movement and rest
for the most task-specific electrode (also for hand movement) for subject 5. The
superposition of the phenomena in (a) and (b) produces an intersection (J0 ) in
the power spectrum in the classic gamma range (shown shaded). The squares and
triangles below the curves in the shaded region indicate the individual values of
J0 for tongue and hand, respectively. Asterisks indicate the mean values across
subjects; for hand movement, J0 = 48 ± 9 Hz (mean ± SD) (range 32–57 Hz),
for tongue movement, J0 = 40 ± 8 Hz (range 26–48 Hz). The individual values
for each subject can be found in Table I.

II. METHODS

Eight patients (Table I) at the University of Washington Regional
Epilepsy Center (Seattle, WA) were implanted with subdural platinum
electrode arrays (AdTech, Racine, WI) for 7–10 days monitoring prior
to seizure focus resection, during which they participated in this motor
task study. Data were sampled in parallel with the clinical recording
system using Synamps2 amplifiers (Neuroscan, El Paso, TX) record-
ing at 1000 Hz, with a bandpass filter from 0.15 to 200 Hz. A scalp
or subdural electrode was used for reference. Electrode locations in
Talairach atlas coordinates [16] were characterized from standard X-
rays using the “location on cortex (LOC) package” [11]. Using the
BCI2000 software [13], subjects were presented with visual stimuli
instructing them to perform hand or tongue movements for 3-s-long
intervals; 30 intervals of each movement kind were presented in ran-
dom order. Movement intervals were interspersed with 3-s-long rest

0018-9294/$25.00 © 2008 IEEE

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 15,2010 at 17:21:19 EST from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 5, MAY 2008 1635

TABLE I
SUBJECT DESCRIPTIONS

Fig. 2. Individual traces for movement versus rest to demonstrate the junction
of spectra. The axes of each task are the same as in Fig. 2. Insets (A)–(H)
compare hand movements (dark) to rest intervals (light) for subjects 1–8, re-
spectively (Table I) Insets (I), (J) demonstrate the shift for tongue movement
(dark) compared to rest intervals (light) for subjects 1, 4, 5, and 8, respectively.
The amount of contamination from 60 and 120 Hz is variable, and can be seen
in prominent peaks throughout.

periods. During the movement intervals, the subjects would clench and
unclench their hand (contra-lateral to electrode array) three to six times,
or periodically extrude their tongue three to six times.

The data were notch filtered for 60, 120, and 180 Hz to eliminate line
noise, using a third-order Butterworth filter. We rereferenced the data
with respect to the common average, and computed the fast Fourier
transform (FFT) for the t = 1–2.5 s interval from each t = 0–3 s epoch
(a subinterval was used because of jitter in behavioral response). The
data from these epochs were transformed using overlapping 0.256 s
(256 sample) windows with 0.1 s step sizes between them. A Hann
window was imposed on each data window to attenuate edge effects.
Spectral coefficients were normalized with respect to a baseline period.
For classification accuracy, we looked at a gamut of ranges: the classic
ranges of low α (7–12 Hz), high α (10–13 Hz), β (14–25), low γ
(26–35Hz), high γ (36–70 Hz) [12], as well as the higher frequency
power–law range, χ (76–150 Hz, [9]). In this study, the upper limit of
150 Hz for χ was determined based upon the roll-off frequency of the
built-in amplifier filter.

We identified the statistically most specific electrodes for each task
by taking the maximum product of the square of cross-correlation
coefficients between each movement type and rest for a low (8–32 Hz)
band and a high (76–100 Hz) band [10], and identified the frequency
of the primary junction (J0 ) between movement and rest spectra across
the entire task. In cases of multiple crossings related to noise, we took
the mean value of the cross-over frequencies [Fig. 2(C) and (G)–(J)].

Fig. 3. This figure shows the relevant electrode locations identified for hand
and tongue movement, using the LOC package [11]. Triangles denote hand areas
and squares denote tongue areas. The areas found naively using the combination
of an 8–32 Hz spectral decrease and a 76–100 Hz increase fall roughly in classic
hand and tongue areas. Our mean position of the most task-specific electrodes
were y = −15 ± 11 mm (mean ± SD) and z = 50 ± 6 mm for hand movement
and y = −5 ± 6 mm and z = 25 ± 14 mm for tongue movement, in Talairach
coordinates [18].

We measured the total integrated power Pb (e; t, nt ) for each elec-
trode “e,” where “nt ” is an interval of task type “t” (t can be hand,
tongue, or rest). Next, we tested how well a particular frequency range
“b” (b = high- and low- α, β, high- and low- γ, χ) could be used to distin-
guish between the tasks. We used the library for support vector machine
(LIBSVM) implementation [1] of a linear SVM classifier [17], to make
pairwise class divisions between hand, tongue, and rest data, using the
projection vector Pb (e;t,nt ) with sixfold nested cross-validation.

III. RESULTS

The locations of each subject’s most significant electrodes were
in the region of sensorimotor cortex (Fig. 3). The primary junction,
J0 , across these task-specific electrodes was 48 ± 9 Hz (mean ±
SD) (range 32–57 Hz) for hand, and 40 ± 8 Hz (range 26–48 Hz)
for tongue [Fig. 1(C) and Table I]. The classification accuracy of each
band across the entire electrode array tended to increase with frequency
band, with the notable exception of the high-γ band, and was always
highest in the χ-band (Fig. 4 and Table II). The χ-band classification
accuracy was never below 83% for all individuals (with a mean of
91%) whereas the low and high γ-band mean classification rates were
74–79% for movement versus rest classification. The high γ-band was
at or below the classification accuracy level of the low γ-band in both
of the movement versus rest tasks, but well above the low γ-level in
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Fig. 4. Classification accuracy percentages for hand, tongue, and rest intervals
using an SVM with six-fold cross-validation. Error bars indicate the standard
error of the mean. The frequency ranges used for classification were low α
(7–12 Hz), high α (10–13 Hz), β (14–25 Hz), low γ (26–35 Hz), high γ (36–70
Hz), and χ (76–150 Hz, chosen such that χ > J0 ). Note that, in the movement
versus rest classifications (top two graphs), the γ ranges suffer (high in both, low
in tongue versus rest). We propose that the reason which classification suffers
in these, and not in the hand movement versus tongue movement comparison,
is that fluctuations in ERD when shifting between rest and movement confuse
classification. In the case of comparison between different types of movement,
the J0 is largely absent (due to the spatially broad nature of the ERD), and so
classification in the γ bands is much better. Individual classification values for
each subject, in each range, can be found in Table II.

hand versus tongue movement tasks, where the variable difference in
the ERD/economic research service (ERS) compared to the rest state
was no longer a factor.

IV. DISCUSSION

Examining the most task-specific electrodes, we obtained charac-
teristic values for a junction J0 in the ECoG power spectra that lies in
the classical gamma band (>25 Hz) and separates two characteristic
movement-related phenomena: a decrease in low-frequency power and
an increase in power at high frequencies. The existence of such a junc-

TABLE II
CLASSIFICATION ACCURACY

tion constrains the classic gamma band as a practical feature for cortical
mapping or control in a BCI. We propose that this junction, which spans
25–55 Hz, is due to the superposition of two distinct phenomena: 1) the
formation and dissolution of distinct spectral peaks at low frequencies
(ERD/ERS [12]) and 2) shifts in a power law that extends across the
entire range of frequencies (see Fig. 1). When classification accuracy
was evaluated by frequency band (using all electrodes), classifiability
using the high γ range was much lower for both types of movement ver-
sus rest than in a direct comparison of hand versus tongue movement.
We suggest that this feature confusion near J0 is due to fluctuations
in ERD when shifting between rest (peak in the power spectrum) and
movement (no peak in the power spectrum). In direct comparisons be-
tween different types of movement, the peak is largely absent (ERD is
spatially broad for both cases [8]–[10]). As a result, J0 is also largely
absent, and classification using the classic gamma band improves.

Based upon our results, the optimal range for spectral-band-based
features for BCIs and brain mapping (that may include resting states)
uses the broad spectral power of the χ-index.
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The Effect of Electrical Anisotropy During
Magnetoacoustic Tomography With Magnetic Induction

Kaytlin Brinker* and Bradley J. Roth

Abstract—Magnetoacoustic tomography with magnetic induction
(MAT-MI) is a technique for imaging electrical conductivity in tissue. A
time-varying magnetic field induces currents that interact with a static
magnetic field to produce a Lorentz force, initiating ultrasonic waves. The
goal of this communication is to examine the effect of anisotropy during
MAT-MI.

Index Terms—Anisotropy, conductivity, imaging, magnetic induction,
magnetoacoustic tomography.

I. INTRODUCTION

Bin He and his colleagues [1]–[5] developed magnetoacoustic to-
mography with magnetic induction (MAT-MI), a noninvasive technique
for imaging the electrical conductivity of biological tissue. The method
uses two magnetic fields: one static and one changing with time. The
time-varying magnetic field induces eddy currents in the tissue, and
these eddy currents interact with the static magnetic field to produce a
Lorentz force that initiates ultrasonic waves. The goal of the method is
to deduce the conductivity distribution from the acoustic signal.

He and his coworkers analyzed MAT-MI both theoretically and ex-
perimentally. However, their analysis considered only isotropic tissue.
Muscle and nerve are anisotropic (the conductivity depends on direc-
tion). Our goal is to examine the effect of anisotropy on the MAT-MI
signal.

II. METHODS

Consider a uniform sheet of tissue having anisotropic conductiv-
ity, with the fiber direction parallel to the x-axis (Fig. 1). The static
magnetic field is uniform and in the z direction, of strength Bo . The
time-dependent magnetic field B (t) is also in the z direction, but is
restricted to the region r < R, where r is the radial distance in cylin-
drical coordinates and R indicates the region where B(t) is applied. It
increases at a constant rate Ḃ from time zero to T , and then decreases
at a rate −Ḃ from time T to 2 T , after which it is zero. Faraday induc-
tion results in an eddy current J that produces a Lorentz force per unit
volume F = J × B. The pressure p obeys a wave equation, with the
source term equal to the divergence of the Lorentz force [6], [7]

∇2p − 1
c2

∂2p

∂t2 = ∇ · (J × B) (1)

where c is the speed of sound in the tissue.
The electric field E in the tissue is

E = −∂A

∂t
−∇V (2)
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