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Human neocortical activity is dependent upon a 
wide variety of interdependent parameters. Across 
different spatial and temporal scales, this has been 

associated with a nonstationary neural signature in ex-
perimental recording. Attempts to capture and translate 
this neural activity as a control signal in a BCI have, to 
date, all relied upon dynamic decoding algorithms that 
either adapt continuously or are recalibrated between ex-
perimental runs.

Brain-computer interfaces translate cortical signals 
for device control, bypassing the peripheral nervous sys-
tem and motor pathways, and directly coupling neural ac-
tivity in the CNS to a computational device for commu-
nication or manipulation of virtual and physical devices. 
Some common recording methods that researchers have 
used to capture neural activity have been to record the 
electric potential from extracranial EEG, cortical surface 
ECoG, and single-unit electrode recording using pen-
etrating electrodes.18 Regardless of recording technique, 
devices that replace natural control pathways will have to 
be robust over very long timescales.

To detect and localize a specific control signal for 
the purposes of a BCI, a neural feature which is corre-

lated with intent, and which can be volitionally modified, 
must be identified. The translation of the brain signal to a 
reliable control feature is characterized by some param-
eterization. An appropriate set of parameter values are 
typically learned during a controlled behavioral screen-
ing and updated using continual adaptation or repeated 
screening. Wolpaw et al.28 proposed the idea of 2 levels 
of training and adaptation of a BCI system. In the first 
level, the BCI system initially adjusts to the user and then 
remains fixed for the duration of control. Unfortunately, 
many cortical recording techniques have been found to 
show large variation both within and across experimen-
tal sessions.7,8,13,14,27 Wolpaw suggested a second level of 
adaptation was required that contained multiple online 
adjustments to account for and adjust to variation with
in a single experimental session. Other researchers have 
performed long-term experiments in which the transla-
tion parameters were not adjusted during the online ex-
perimental period, but parameterization values were re-
learned prior to each online experimental session.5,16,29 

Electroencephalography, the acquisition of cortical 
potentials from the surface of the scalp, allows long-term 
data acquisition of human cortical signals at the expense 
of spatial resolution. Guger et al.4 proposed that an ap-
propriate method for an EEG-based BCI is an adaptive 
autoregressive approach to parameter estimation, based 
upon changes in spectral power, and many EEG BCI re-
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search groups use this autoregressive estimation to isolate 
features for acceptable control of EEG systems.6,17,27 This 
approach was used by Shenoy et al.,22  who performed 
closed-loop control of an EEG system with control pa-
rameters found using training data. Because of the intrin-
sic discrepancy between training and online data, they 
found that an adaptive control algorithm was necessary 
for accurate classification.

“Single-unit” recordings use penetrating intracorti-
cal electrodes to record spike events from one or a few 
neurons adjacent to the electrode tip. They have been 
used successfully to extract features for feedback in pri-
mates1,21,23 and humans,5 but in all cases the parameter-
ization required adaptive algorithms that modified the 
control parameters in real time. In primate studies, Dono-
ghue et al.21 used coadaptive constant-parameter predic-
tion, whereas Fetz3 and Wessberg et al.25 used artificial 
neural networks that adapted to changes in spike rates 
during online control, to attain viable levels of classifi-
cation. Furthermore, both cases required novel control- 
parameter selection prior to each experimental session. 
The long-term single-unit BCI experiments in humans 
performed by Hochberg et al.,5 over a 9-month period, 
required relearning of control parameters before each of 
57 consecutive recording sessions.

Schwartz and colleagues have recently demonstrated 
the ability to record neural spikes from an intracortical 
microelectrode array implanted in the proximal arm re-
gion of monkey primary motor cortex and use these re-
cordings to control a prosthetic arm in 3 dimensions for 
the purpose of self-feeding.24 Though the monkey was 
able to gain control over the arm, a training period con-
sisting of 4 iterations of control-parameter calibration was 
required at the beginning of each daily session. Control 
parameters from the final training estimation were used 
by the expectation-maximization algorithm used for con-
trol throughout the remainder of the day.

Electrocorticography, in turn, requires invasive place-
ment of an electrode array subdurally to record cortical 
potentials at a higher spatial resolution, and thus a more 
local neuronal population, than EEG. Electrocorticogra-
phy arrays have been successfully used to control a BCI 
device in 1 dimension8,9 and recently in 2 dimensions.20 
Both control paradigms have used adaptive algorithms 
that updated control parameters during closed-loop con-
trol. The short duration of these trials, due to the clinical 
needs of the subjects enrolled in these studies, has pre-
vented investigation of the day-by-day variability of the 
classification parameters.

We demonstrate that, using anatomically intuitive 
feature localization and a robust high-frequency signal 
(“χ-band”11) from the electrocorticogram, continuous con-
trol using fixed parameters is possible without retraining, 
relearning of parameters, or continuous parameter adapta-
tion over 5 consecutive days of robust control of a BCI.

Methods
Patient Characteristics

The patient in our ECoG study was a 32-year-old man 

who was being treated at Harborview Hospital at the Uni-
versity of Washington for intractable epilepsy, refractory 
to medical therapy. The patient underwent implantation of 
a subdural electrode array above the right frontotemporal 
cortex to localize the seizure focus during a 7-day moni-
toring period. The postoperative radiograph was used to 
determine the electrode grid locations.12 Informed con-
sent was given by the patient in accordance with Univer-
sity of Washington Institutional Review Board protocol.

Signal Acquisition
The implanted ECoG array contained platinum elec-

trodes in an 8 × 6 rectangular formation. Electrode con-
tacts were circular (4 mm in diameter, 2.3 mm exposed) 
and embedded in Silastic with a face-center spacing of 
1 cm. After leaving the head, the signals were split into 
2 paths: one into the clinical monitoring system and the 
other into a SynAmp 2 (Compumedics Neuroscan) re-
cording system. The amplified signals were passed to 
the general-purpose BCI2000 software suite. Samples 
were taken at 1000 Hz and band pass filtered from 0.3 
Hz to 200 Hz. Since the sampling rate and filtering set-
tings were much greater than the range used for control 
in this trial (80–100 Hz), the Nyquist frequency consider-
ations did not impact the findings and filtering artifacts 
were not present. The BCI2000 software suite19 was used 
for stimulus presentation, data acquisition, and real-time 
processing.

Study Tasks

The study consisted of an initial screening for control 
features, and then a 5-day repeated BCI feedback experi-
ment. The initial screening was a simple cue-based move-
ment task to identify an appropriate electrode-frequency 
band combination for cursor control. In this task, a 3-sec-
ond visual word cue was given to move either the tongue 
(the word “tongue” displayed on the screen) or the hand 
(“hand”). During the cue presentation, the patient would 
repeatedly open and close his left hand 3–4 times or pro-
trude and retract his tongue 3–4 times. Thirty cues of 
each type were interleaved in random order, with 3-second 
rest periods (blank screen) after each cue. An appropri-
ate frequency range–electrode combination for feedback 
(80–100 Hz, in 2 electrodes, at Talairach coordinates [58, 
13, 28] and [58, 4, 33]) was chosen by comparing the dis-
tributions of power at each frequency, in each electrode, 
during “tongue” cues with the corresponding distribution 
from rest cues (quantified using the squared cross-cor-
relation coefficient, r2, associated with the comparison). 
The power in this frequency range–electrode combina-
tion was then coupled to the movement of a cursor in a 
cursor-based BCI experiment.2,8–10,18,26 Due to the lack of 
electrode coverage over the hand motor cortex area, no 
significant difference in power distributions was present 
between “hand” cues and rest cues, and thus hand motor 
cortex was not chosen as a control feature for the BCI 
task. The velocity of the cursor, ẏ, was determined by the 
relation ẏ = g[P(t) − P0], where P(t) denotes the power 
between 80–100 Hz in the electrode at Talairach coor-
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dinates [58, 13, 28] and [58, 4, 33] (Fig. 1B). P0 denotes 
a “mean” value (Fig. 1C), above which the cursor moved 
up, and below which, the cursor moved down. The gain, 
g, was chosen so that the cursor would move in a reason-
able range. The parameters P0 and g were not changed 
throughout the task. For each target trial during the BCI 
experimental runs, the subject was presented with a cur-
sor in the center of the screen and a target at either the 
top or bottom of the screen (Fig. 1A). When the patient 
imagined moving or actually moved his tongue, the cur-
sor would be driven upwards and when the patient was at 
rest, the cursor would move downward (according to the 
relation above). If the cursor was successfully directed to 
the target or 7 seconds elapsed without cursor/target col-
lision, the trial was reset and a new target was presented. 
Target locations at the top or bottom of the screen were 

presented in randomized order, but in roughly equal num-
ber during each experimental trial. A set of 40 consecu-
tive, randomized target presentations (“trials”) were per-
formed during an experimental run. Specific instructions 
were given to imagine the kinematics of the movement 
(“kinesthetic imagery”15). Sublingual differential EMG 
was used to verify that there was no muscle movement 
during the imagery-based experimental runs.

Offline Analysis
The signal was re-referenced to the common average 

potential across all electrodes at each sample. The data 
were then segmented into blocks from 3 types of periods: 
when the upper target was presented, when the lower tar-
get was presented, and when no target was presented. The 
power spectral density (PSD) for each block was calcu-

Fig. 1.  A: Cursor control task. A sequence of screenshots illustrating a successful trial: The patient was able to drive the 
square cursor toward the rectangular goal region.  B: Standardized brain image showing electrode locations superimposed 
as orange dots. The electrode used for control is indicated by the green circle.  C: Linear feature found during screening for 
Electrode 44 (green circle in B). The blue trace shows the power spectral density during rest; the red trace shows the movement 
spectra. The green line within 80–100 Hz is the threshold set on the 1st day; it was not modified during the 5-day recording ses-
sion. Note the broad spectral shift within the χ band (75–150 Hz).  D: Cortical plots of low- and high-frequency power, showing a 
broad decrease in power at low frequencies and a localized increase at high frequencies. Freq = frequency.  E: Graph illustrat-
ing the results of 4 overt cursor control runs, showing the learning curve during the 1st day. The second run showed significant 
differences in the control feature at a level of p < 0.05 and the final 2 runs at p < 0.001. Tongue (Up) indicates the tongue task 
was being performed, causing the cursor to move up on the screen; Rest (Down) indicates that the patient’s tongue was at rest, 
allowing the cursor to move down. Abbreviation: CAR =  Common Average Referencing.   F: An r2 plot of frequency versus 
channel for an imagined control trial. High frequency band activity can be seen from 60 to 200 Hz on a number of channels, 
including the control Channel 44.  
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lated using Welch’s averaged periodogram method with 
the fast Fourier transform and a Hann windowing func-
tion. The length of data for the FFT was a 1000-sample 
window, and windows were overlapped by 900 msec. The 
spectra from each block were normalized by dividing 
through by the mean power across all blocks (of all types 
combined) at each frequency (effectively whitening the 
spectra), and then the log of the summed values across 
the 80–100 Hz range were determined as shown in the 
figures.

Online Control
For each electrode in the grid, we continuously calcu-

lated the voltage PSD using an autoregressive technique9 
for frequencies between 0 and 200 Hz (binned at 2 Hz) 
for each trial and for the rest periods between trials. The 
PSD was calculated from the previous 280 msec of data, 
every 40 msec. Cursor velocity was calculated by com-
paring the power between 80 and 100 Hz in electrodes 
at Talairach coordinates [58, 13, 28] and [58, 4, 33]. The 
position was then updated according to ẏ = g[P(t) − P0], 
as described above.

Results
After the initial learning trial (during which the dif-

ference in power within the control band was significant 
at p < 0.01), the results of every subsequent overt trial 
were statistically significant at p < 0.001. For each ses-
sion, bootstrapping was performed for 105 iterations on 
the mean power during activity and rest for each run. All 
power values for each day were combined and a random 
permutation of the powers was selected for both activity 
and rest. The difference between the bootstrapped means 
was compared with the original distribution’s difference 
in means resulting in a p value calculated according to 
p = 1 − (n/N), where N is the total number of bootstrap 
iterations and n is the number of bootstraps in which the 
difference in means was smaller than the 2 initial distri-
butions. 

During all but one overt trial, target accuracy was 

100%; accuracy during the remaining trial was 97.5%. 
Once control was demonstrated with overt control, imag-
ery tasks were performed. Due to the nature of the imag-
ery task, it is not possible to ensure that every run or trial 
is performed in the exact same manner for each run. The 
final run of imagery-based feedback for each day during 
imagery (Fig. 2) showed significant (p < 0.001, bootstrap 
105 iterations) control, with accuracies of 20/2 (hits/miss-
es), 19/0, 19/5, 14/4, and 17/2, compared with a random 
chance accuracy of 50/50.

Discussion
All previous BCI studies have used some form of an 

adaptive algorithm. In this study, however, we have dem-
onstrated that extended control of a simple ECoG-based 
BCI is possible with fixed parameters for a 5-day period, 
without recalibration, adaptation, or retraining. This sug-
gests that the high-frequency ECoG signal is robust across 
several days. This phenomenon could not be explored in 
previous ECoG studies2,7,8,18,26 because of the limited time 
with this patient population. This finding suggests that 
ECoG-based BCIs can be implemented in a population 
of impaired patients (with conditions such as paralysis, 
stroke, or amyotrophic lateral sclerosis) for the purpose of 
prosthesis development. Furthermore, recent studies have 
demonstrated the potential to extract several simultane-
ous control signals from an ECoG array.20

For any long-term BCI applications such as pros-
thetic limbs, it is important that the neural signals used 
for control be robust and remain spatially and frequency-
range stable over a long period of time. Relearning con-
trol parameters before every use of BCI applications may 
not be realistic or feasible, thus a signal that is robust and 
stable over long periods of time would be an ideal can-
didate for a control feature. Spatially distinct features on 
the cortex (for example, tongue and hand motor) can be 
combined to add multiple degrees of robust, stable control 
from ECoG. Future studies will investigate intuitive map-
pings of changes in the cortical power spectra to differ-
ent modalities of control of a prosthetic limb, including 
individual joint angle modulation and linear/nonlinear 
grip pose synergies. Additional research into whether the 
current binary output can be mapped to a scalar domain 
would aid in applying ECoG signals to these types of ap-
plications.

Conclusions
We have shown that it is possible to select a control 

feature in the χ-band range that is stable and robust over a 
long period of time, suggesting the χ-band is an appropri-
ate range to use for long-term ECoG BCI applications.
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