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The 2 dominant paradigms for brain-computer inter-
facing today rely on noninvasive recording from 
the scalp (known as electroencephalography or 

EEG)3,38 and invasive techniques based on intracortical 
implants that are placed inside the brain.7,15 Although 
EEG-based systems are cheap and relatively easy to 
build, the EEG signals themselves are extremely noisy, 
thereby limiting the bandwidth of control signals that 
can be reliably extracted. On the other hand, the signals 
recorded using intracortical implants are much stronger, 
typically allowing one to record the individual spiking 
activities of several 10s of neurons. However, being in-
vasive, intracortical implants pose serious health risks 
and have only been used in a few cases in humans. Non-
invasive techniques such as fMR imaging do not have 
the temporal resolution needed by BCIs: because fMR 
imaging measures changes in blood oxygenation levels, 

events are temporally smeared by the vascular response.
Electrocorticography overcomes many of the above 

problems. In ECoG electrical activity is recorded using 
an array of electrodes placed on the surface of the brain. 
It is typically performed in patients who are being moni-
tored prior to epilepsy surgery. Because ECoG electrodes 
do not penetrate the brain surface, they are not as inva-
sive as intracortical implants. Additionally, ECoG allows 
electrical signals from several different brain areas to be 
recorded while at the same time providing temporal reso-
lution in the millisecond range. Electrocorticography can 
provide higher spatial resolution and signal-to-noise ra-
tio than EEG17 and higher temporal resolution than fMR 
imaging. It also minimizes the effects of muscle and 
movement artifacts commonly seen in EEG. Because of 
these factors, we and others have proposed ECoG as an 
ideal target for brain-machine computer (BCI) applica-
tions14,16,18,21,28,30,31,33 and have shown how advanced math-
ematical methods allow for fast and accurate isolation of 
BCI control signals without requiring prior knowledge of 
salient signal features: particular electrodes and frequen-
cies for BCI control do not need to be determined ahead 
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of time but can be automatically tuned to the individual’s 
ECoG signals.35,36

The ability to decode information about movements 
from ECoG has been well demonstrated.6,8,9,11,13,14,19,22,25,27 
One concern is whether these potential control signals 
for BCI are still present in an individual with a damaged 
brain.13 This concern can be addressed by the identifica-
tion of signals that are likely to be preserved after neu-
rological damage. For example, loss of subcortical func-
tion, as with an internal capsule stroke, is likely to leave 
ipsilateral motor function relatively preserved compared 
with contralateral function. The study of cortical signals 
during ipsilateral movements has received attention re-
cently.32,37,40

In this article, we report results from 2 patients who 
performed movement of different digits (thumb and index 
finger) in both the ipsilateral and contralateral hand. We 
found oscillatory components in the ECoG signal that ac-
curately predicted the movement of a specific finger and 
also which side moved (ipsilateral vs contralateral). The 
identification of individual finger movements from ECoG 
may open the door to eventual BCI control of a prosthet-
ic hand. Further, the ability to classify individual move-
ments of ipsilateral fingers may prove to be extremely 
useful for neurorehabilitation.

Methods
Patients and Data Acquisition

The study participants were 2 neurosurgical patients 
with intractable epilepsy. Both underwent temporary 
placement of a subdural electrode array to localize the 
epileptic seizure focus and map brain function prior to 
surgical resection. Electrode placement was determined 
by clinical considerations, with the necessity and loca-
tion of the electrodes determined by the interdisciplinary 
conference of the Regional Epilepsy Center, Harborview 
Medical Center, University of Washington. The patients 
gave informed consent prior to participation in a manner 
approved by the Human Studies Division (Institutional 
Review Board) of the University of Washington.

Patient 1. This 27-year-old left-handed man, with 
normal examination results, had previously undergone 
resection of dysplasia in the inferior portion of ante-
rior parietal cortex. His seizures were focal motor and 
a higher density array was implanted around the central 
sulcus. The focus was at the anterior-inferior aspect of 
motor cortex and frontal operculum. The subdural array 
comprised 32 “regular” clinical ECoG electrodes (0.4-cm 
diameter), at 1-cm horizontal and vertical interelectrode 
distance, interleaved with 21 smaller ECoG electrodes 
(0.2-cm diameter), at 1-cm horizontal and 0.7-cm vertical 
interelectrode distance (Integra LifeSciences Corp.). Six 
surface EMG electrodes were used on the anterior sur-
face of the left shoulder, flexor and extensor surfaces of 
the left forearm, and back of the left hand to monitor the 
seizures. Initial maps of motor function were previously 
reported for this patient.40

Patient 2. This 24-year-old right-handed man, with 

a history of left frontal contusion following closed head 
injury, presented with partial seizures. He underwent a 
frontal electrode array placement with the posterior as-
pect of the array (Ad-Tech Medical Instrument Corp.) 
covering the central sulcus. The results of his motor func-
tion examination were normal. The focus was left anterior 
and superior frontal, away from the motor cortex.

Electrocorticography and EMG signals were record-
ed on a Synamp2 amplifier (Compumedics Neuroscan) at 
a sampling rate of 2000 samples per second and bandpass 
filtered between 1 and 500 Hz. The position of each fin-
ger was registered through a 5–degrees of freedom data 
glove device (Fifth Dimension Technologies, Inc.).

Experimental Paradigm
The patients were told to perform a simple cue-guid-

ed repetitive motion task of left or right thumb or in-
dex finger movements. Three-second-long visual cues for 
whole hand, thumb, or index finger were randomly inter-
leaved and separated by 2-second rest intervals. The cues 
were delivered visually on a 10 × 10–cm presentation 
window at a distance of 70 cm from the subject, using the 
BCI2000 software.29 In total there were at least 30 cue 
presentations per type of visual cue, for both ipsilateral 
and contralateral tasks. The results in this paper focus 
on finger movements; data from whole hand movements 
were excluded from this study.

Data Analysis
After the ECoG signal was downsampled to 500 sam-

ples per second, it was visually inspected for the presence 
of artifacts and noisy segments, which were removed. It 
was then re-referenced with respect to the common av-
erage (the arithmetically average signal of all electrodes 
was subtracted from each electrode).

Time-Frequency Maps. To get a general view of pa-
tient-specific power modulation patterns in relation to 
movement, time-frequency maps were calculated.10,12 
These maps are time-frequency plots that display signifi-
cant power decrease or increase in predefined frequency 
bands.24 Trials of 5 seconds’ duration (1 second before 
and 4 seconds after cue onset) were used to calculate the 
time-frequency maps. To remove the influence of event-
related potentials, the intertrial variance method was ap-
plied.10 The baseline activity (that is, the reference value 
that was used to calculate relative power changes) was 
defined from t = −0.75 seconds to t = −0.25 seconds. Fre-
quency bands 2 Hz wide with 1 Hz overlap and ranging 
from 6 to 125 Hz were calculated. Details about the cal-
culation of these maps have been previously reported.10,12

Feature Selection and Single-Trial Classification. 
Machine learning and pattern recognition refer to math-
ematical algorithms that allow automatic identification of 
statistical patterns in data. This is particularly useful for 
signal classification that may ultimately be used for BCI 
applications. For example, a machine learning classifier 
can be used learn to map specific patterns for ECoG activ-
ity to either middle or index finger movement by training 
the classifier on an initial set of data where the mapping is 
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known (movement was elicited by a cue-based paradigm). 
This trained classifier can subsequently be used to clas-
sify new ECoG activity into one of the two movement 
classes, which can then be converted to an output control 
signal for a BCI device.

To identify the structure of oscillatory components 
during different movement tasks, the distinction-sensitive 
learning vector quantization (DSLVQ) method26 was ap-
plied to the data. Previously DSLVQ was successful ap-
plied to ECoG signals to study spectral components in the 
low frequency range (8–40 Hz).31 Distinction-sensitive 
LVQ approximates the distribution of the analyzed data 
by forming clusters; labeled training data are represented 
by a set of reference points (a codebook) and a distance 
function. Classification is achieved by assigning new un-
labeled data samples to the label of its closest codebook. 
(Figure 1 shows an example with 2 classes.) Because of 
the resulting decomposition of the feature space into cells, 
the resulting decision border is composed of multiple lin-
ear pieces. During training, these pieces are analyzed 
independently and their position is adjusted. Distinction-
sensitive LVQ makes adjustments by weighting the influ-
ence of individual features—the influence of features that 
contribute to classification is increased, while that of fea-
tures that lead to a misclassification is reduced (Fig. 1). 
The main advantage of DSLVQ is that it does not require 
expertise or any a priori knowledge about the distribu-
tion of the data. Because the training is based on data 
representation rather than on error minimization, even for 
high-dimensional feature problems with a low number of 
samples, some generalization can be found.

The spectral components used by DSLVQ were com-
puted by bandpass filtering the signal from single trials, 

with a fourth-order Butterworth filter, squaring and aver-
aging the samples over 1-second intervals (moving aver-
age). A 1-second interval was selected because in Patient 
1, the average duration for a single movement of a finger 
was about 1 second. Individual DSLVQ analyses were 
computed from features extracted from 9 overlapping 
time intervals of 1 second’s length and a time lag of 0.5 
seconds (starting with cue onset at t = 0.0 seconds). For 
each time interval, 32 logarithmic band power features 
between 6 and 120 Hz (6–16 Hz, bandwidth 2 Hz, no over-
lap; 16–40 Hz, bandwidth 4 Hz, overlap 2 Hz; 40–120 Hz, 
bandwidth 10 Hz, overlap 5 Hz) were computed. To sta-
bilize the variance of spectral components, a logarithmic 
transformation was performed prior to DSLVQ analysis.2 
Due to the low ratio between the number of trials and the 
number of examined features, channels were analyzed in-
dividually. The rationale for the single-channel analysis 
was to obtain good generalization for the classifier and to 
avoid overfitting (to prevent the classifier from “simply” 
memorizing the data).

Four binary classification problems were addressed: 
1) contralateral thumb versus contralateral index finger, 
2) ipsilateral thumb versus ipsilateral index finger, 3) con-
tralateral thumb versus ipsilateral thumb, and 4) contral-
ateral index finger versus ipsilateral index finger.

For each time interval, the DSLVQ method was re-
peated 100 times (DSLVQ parameter setup: 3 codebooks 
per class, 2000 training iterations). Random subsampling 
was used to assess the capability of the classifier to gen-
eralize to an independent data set. For each DSLVQ run, 
a randomly selected 50% subset of the data was used to 
train the classifier and to identify relevant features. The 
remaining 50% was used to test the classifier’s perfor-
mance.

Results
Time-Frequency Maps

The computed time-frequency maps were projected 
onto a template brain based on the postoperative skull 
radiograph.20 These maps show widespread movement-
related patterns in lower frequency ranges (6–40 Hz) and 
spatially more focused changes in higher frequency ranges 
(> 50 Hz). Figure 2 shows examples of these power modu-
lations over selected sensorimotor hand areas. The maps 
furthermore show that contralateral and ipsilateral changes 
overlap to a large degree. Ipsilateral movements, however, 
induce less pronounced activity, particularly in the higher 
frequency ranges, than do contralateral movements.

Single-Trial Classification
The results of the DSLVQ analysis are summarized 

in Fig. 3. Most discriminative electrodes were found over 
sensorimotor hand areas and were topographically fo-
cused. The topographic focus was more pronounced for 
contralateral movements, as ipsilateral movement classifi-
cation occurred over a more widespread distribution. 

For each classification task, Fig. 3 shows the com-
puted classification performance, the contribution of the 
analyzed spectral components to correct classification 

Fig. 1. Schematic illustration of the DSLVQ principle. Given is a 
2-class classification problem and observations for Features X and 
Y. Each class is represented by a cluster center (codebook) compris-
ing 2 clusters. The upper plot illustrates the clustering of the training 
data. The resulting decision border is not optimal for classification. By 
weighting the influence of features, the decision border can be adjusted 
and misclassification reduced. In this case Feature Y is relevant for 
classification.
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Fig. 2. Time-frequency maps for contralateral and ipsilateral thumb and index finger movements for both subjects. Electrode 
positions are marked on the template brain. Significant (α = 0.01) power modulations for highlighted (red) electrodes are topo-
graphically arranged for each motor task. Time t = 0 seconds represents the time of cue onset. Each plot shows a 4-second 
period after cue onset. The frequency range is 8–125 Hz. The numbers in the right upper corner of some maps are the numbers 
of the electrodes and indicate the electrode relevant for classification.
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(feature relevance) and the averaged movement pattern 
for each finger. The reported classification accuracies 
are the average values over the 100 random subsampling 
DSLVQ runs. An average classification accuracy (average 
of the maximum accuracy for each classification task) of 
87.8% was achieved. To judge the computed classification 
performance, a comparison with random classification 
was performed. With 2 classes, 30 trials per class, and the 
same probability of occurrence for each trial (p = 0.5), the 
upper level of chance classification at α = 0.01 (0.05) is 
72.1 (66.9)%.23 Except for the comparison in Patient 1 of 
ipsilateral thumb versus ipsilateral index, all classification 
accuracies were significantly better than random.

To investigate the computed feature relevance, the 
DSLVQ method was applied to selected feature subsets 
and to lower (8–30 Hz) and higher (76–100 Hz) fre quency 
ranges.40 The DSLVQ algorithm was applied as described 
in Methods (Feature Selection and Single Trial-Classi-
fi cation). Table 1 summarizes the most discriminative 
frequency components derived from the DSLVQ feature 
relevance estimation (Fig. 3) and the computed classifica-
tion accuracies. Reducing the dimensionality of the fea-
ture—that is, reducing features that do not contribute to 
correct classification—increases the average accuracy by 
1.1% (from 87.8 to 88.9%). Two-tailed t-tests between the 
computed classification accuracies show that the selected 
subsets perform equally or significantly better (Table 2). 
The average accuracy for the standard frequency bands 
was 83.3%. Except for the 2 cases of perfect classification 
for Patient 2, the identified feature subsets performed sig-
nificantly better than the standard frequency ranges.

Discussion
The time-frequency maps show similar patterns in 

both patients during execution of movement (Fig. 2): focal 
broadband power increases in higher frequencies (> 50 
Hz) and a widespread power decrease in lower frequen-
cies (8–40 Hz). These findings are in accordance with 

previous findings in the literature.4,5,19,22,24 Additionally the 
maps suggest that similar activation patterns are induced 
during both contralateral and ipsilateral movements. The 
ipsilateral movement-related power modulations are not 
as prominent as the contralateral ones. However, high-
frequency modulations during ipsilateral movement ap-
pear to be even more focal than those during contralateral 
movement.

In agreement with these characteristic patterns, the 
results of the single-trial DSLVQ analysis confirm that 
electrodes placed over sensorimotor hand areas are most 
relevant for the classification between the different fin-
ger movement tasks. Electrodes with the most prominent 
power modulations were usually selected by the DSLVQ 
method. Expectedly the average classification accuracies 
increase during finger motion and fall below chance level 
after movement stops. The accuracies reported in Table 1 
suggest that a very general subdivision of the frequency 
range into lower (8–30 Hz) and higher (76–100 Hz) fre-
quency ranges provides enough information to discrimi-
nate significantly better than chance between the different 
finger movements. Optimizing the frequency components, 
however, increases the average classification performance 
by 5.6% (Table 1, from 83.3 to 88.9%). The benefit of an 
accurate selection is most obvious for the classification of 
contralateral thumb versus contralateral index finger for 
Patient 1. The found subdivision of the higher frequency 
range into 3 smaller sub-bands boosts the accuracy from 
73.8% for standard bands to 89.7%. This suggests that 
from a machine learning point of view, it is meaningful 
to investigate the finer structure of the higher frequency 
band and to isolate further such narrow-band activities.

It is interesting to note that the comparison of the 
power modulation maps for ipsilateral thumb and ipsi-
lateral index finger movements for Patient 1 showed a 
significant increase in the power of higher frequencies 
over Electrode 28. The DSLVQ analysis found the high-
est classification performance for the same electrode. The 
single-trial performance, however, was at chance level. 

TABLE 1: Distinction-sensitive LVQ classification performance*

Selected Feature Subsets

Pt 
No. Classification Ch

All 
(mean ± SD) Components† Mean ± SD Std Mean ± SD

1 contralat thumb vs contralat index 41 81.7 ± 7.3 65–90, 90–105, 105–120 90.0 ± 5.0 73.4 ± 7.8

ipsilat thumb vs ipsilat index 28 66.6 ± 7.1 20–30, 95–105 65.7 ± 8.9 58.9 ± 6.9

contralat thumb vs ipsilatl thumb 50 94.7 ± 3.3 60–100 93.9 ± 5.4 88.8 ± 5.5

 contralat index vs  ipsilat index 20 98.5 ± 1.5 36–60 96.4 ± 2.2 91.3 ± 4.6
2 contralat thumb vs contralat index 16 79.2 ± 6.9 80–115 83.6 ± 6.2 75.9 ± 7.8

ipsilat thumb vs  ipsilat index 16 81.3 ± 5.3 12–16, 70–95 81.5 ± 6.4 77.8 ± 7.3

contralat thumb vs ipsilat thumb 32 100.0 ± 0.0 70–115 100.0 ± 0.0 100 ± 0.3

 contralat index vs ipsilat index 24 100.0 ± 0.0 80–115 100.0 ± 0.0 99.9 ± 5.7
Average 87.8 88.9 83.3

* The best performing individual channel and the mean (± SD) classification accuracy (%) for all features, for selected feature subsets, and for the stan-
dard frequency ranges 8–30 Hz and 76–100 Hz  are summarized for each subject and classification task. Bold values indicate the maximum accuracy 
for each classification task. Abbreviations: Ch = channel; Pt = patient; Std = standard frequency ranges. 
† The identified most discriminant frequency components.
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Fig. 3. Distinction-sensitive LVQ single-trial classification results. The template brain shows areas where the classification 
accuracy was better than random (> 72.1%). The most discriminative electrode for each classification task is marked with a 
blue circle. The plots and curves on the right-hand side show the most relevant spectral components (upper plot), the DSLVQ 
classification accuracies for all spectral components (middle plot), and the average digit movements recorded with the data 
glove (lower plot). The dashed lines in the accuracy plots show the level of random classification. The DSLVQ feature relevance 
estimation is only meaningful if the classification performance is better than random. Components that are not reliable are only 
faintly indicated.
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One can expect an improvement in classification accu-
racy by combining features from different electrodes or 
by incorporating the temporal structure of these power 
modulations at different frequencies. In this study, due 
to the reduced number of trials, we only considered the 
average spectral power over a 1-second time interval ex-
tracted from individual electrodes.

To explore the discriminative power of the identified 
channels (Table 1), a 4-class DSLVQ analysis was com-
puted for each patient. Parameters as described earlier 
in the paper were used. To limit the number of features 
for each patient, only channels listed in Table 1 were 
included. By selecting just 3 and 5 features for Patients 
1 and 2, respectively, maximum accuracies of 74.8 and 
83.1% were calculated. Note that the theoretical chance 

level for a 4-class problem, where each class has the same 
number of occurrences, is 25%. Figure 4 shows the clas-
sification accuracy curves and the distribution of the 3 
selected band power features for Patient 2. The distribu-
tion plots suggest that contralateral movements induced 
higher power increases than did ipsilateral motion. Such a 
distribution was also visible for Patient 1 and is the reason 
for the high classification accuracies between ipsilateral 
and contralateral finger movements for the same digit (see 
also Table 1 and Fig. 3). Differences between different 
fingers of the same hand were much less pronounced, re-
sulting in a lower discriminative power.

Patient 1 had a somewhat atypical electrode array in 
that the resolution was 30% better than that of our prior 
electrode arrays (7-mm interelectrode distance). It is of 

TABLE 2: Comparison of classification performance for all features versus selected subsets and for 
the standard frequency ranges versus the selected subsets*

All vs Sel Std vs Sel

Classification t df p Value t df

contralat thumb vs contralat index –9.847 99 0.000† 16.499 99
ipsilat thumb vs ipsilat index 0.881 99 0.380 6.195 99
contralat thumb vs ipsilat thumb 1.762 99 0.081 6.857 99
contralat index vs ipsilat index 8.385 99 0.000† 10.313 99
contralat thumb vs contralat index –4.994 99 0.000† 7.452 99
ipsilat thumb vs ipsilat index –0.245 99 0.807 3.607 99
contralat thumb vs ipsilat thumb 1.000 99
contralat index vs ipsilat index    1.750 99

* Sel = selected feature subsets.
† Statistically significant by 2-tailed t-test (α = 0.01).

Fig. 4. Left: Line graph showing the average 4-class classification accuracy over time for both patients.   Right: Box and 
whisker plots summarizing the distribution of the 3 most discriminative selected features (F1, F2, and F3) for Patient 2. The boxes 
have lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the boxes 
to show the extent of the rest of the data. Outliers are data with values beyond the ends of the whiskers. s = seconds; S1 = Patient 
1; S2 = Patient 2.
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interest that we achieved greater discriminative ability 
in this case than with the 1-cm interelectrode array. The 
existence of microstructure within the ECoG signal has 
previously been demonstrated for seizures34,39 and for 
speech function.1 Our results suggest that higher spatial 
resolution of electrode arrays may pave the way for clas-
sification of increasingly fine and complex movements 
from ECoG signals.

Conclusions
In this article, we provided further evidence for the 

utility of ECoG in brain-computer interfacing by dem-
onstrating that individual finger movements from both 
the ipsi- and contralateral hands can be discriminated 
from ECoG signals. We found that time-frequency pat-
terns over sensorimotor areas for contralateral and ipsi-
lateral movements overlap to a large degree. Ipsilateral 
movements, however, result in less pronounced activity 
compared with contralateral movements, especially in the 
case of power increases.

By using the full set of frequencies present in the 
ECoG signal, we obtained classification accuracy superi-
or to that obtained with previous methods that look a pri-
ori at an isolated band of frequencies.18,33 Our results also 
suggest that single-trial classification can be improved by 
selecting patient-specific frequency components in higher 
frequency bands (> 50 Hz). This is consistent with the 
idea that only coadaptation of brain and machine allows 
the most accurate and robust direct brain-computer inter-
action in a limited amount of time

Finally, our discovery that ipsilateral hand movements 
can be discriminated from ECoG is particularly exciting 
for BCI applications, because after unilateral damage to 
one hemisphere, brain signals from the intact hemisphere 
could potentially be used to regain control of ipsilateral 
movement through muscle or nerve stimulation.

Disclaimer

The authors report no conflict of interest concerning the mate-
rials or methods used in this study or the findings specified in this 
paper.
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