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Chapter 12. Fast Fourier Transform

12.0 Introduction

A very large class of important computational problems falls under the general
rubric of “Fourier transform methods” or “spectral methods.” For some of these
problems, the Fourier transform is simply an efficient computational tool for
accomplishing certain common manipulations of data. In other cases, we have
problems for which the Fourier transform (or the related “power spectrum”) is itself
of intrinsic interest. These two kinds of problems share a common methodology.

Largely for historical reasons the literature on Fourier and spectral methods has
been disjoint from the literature on “classical” numerical analysis. Nowadays there is
no justification for such a split. Fourier methods are commonplace in research and we
shall not treat them as specialized or arcane. At the same time, we realize that many
computer users have had relatively less experience with this field than with, say,
differential equations or numerical integration. Therefore our summary of analytical
results will be more complete. Numerical algorithms, per se, begin in §12.2. Various
applications of Fourier transform methods are discussed in Chapter 13.

A physical process can be described either in the time domain, by the values of
some quantity h as a function of time t, e.g., h(t), or else in the frequency domain,
where the process is specified by giving its amplitude H (generally a complex
number indicating phase also) as a function of frequency f , that is H(f), with
−∞ < f < ∞. For many purposes it is useful to think of h(t) and H(f) as being
two different representations of the same function. One goes back and forth between
these two representations by means of the Fourier transform equations,

H(f) =

∫ ∞
−∞

h(t)e2πiftdt

h(t) =

∫ ∞
−∞

H(f)e−2πiftdf

(12.0.1)

If t is measured in seconds, then f in equation (12.0.1) is in cycles per second,
or Hertz (the unit of frequency). However, the equations work with other units too.
If h is a function of positionx (in meters),H will be a function of inverse wavelength
(cycles per meter), and so on. If you are trained as a physicist or mathematician, you
are probably more used to using angular frequency ω, which is given in radians per
sec. The relation between ω and f , H(ω) and H(f) is

ω ≡ 2πf H(ω) ≡ [H(f)]f=ω/2π (12.0.2)

496
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and equation (12.0.1) looks like this

H(ω) =

∫ ∞
−∞

h(t)eiωtdt

h(t) =
1

2π

∫ ∞
−∞

H(ω)e−iωtdω

(12.0.3)

We were raised on the ω-convention, but we changed! There are fewer factors of
2π to remember if you use the f-convention, especially when we get to discretely
sampled data in §12.1.

From equation (12.0.1) it is evident at once that Fourier transformation is a
linear operation. The transform of the sum of two functions is equal to the sum of
the transforms. The transform of a constant times a function is that same constant
times the transform of the function.

In the time domain, function h(t) may happen to have one or more special
symmetries It might be purely real or purely imaginary or it might be even,
h(t) = h(−t), or odd, h(t) = −h(−t). In the frequency domain, these symmetries
lead to relationships between H(f) and H(−f). The following table gives the
correspondence between symmetries in the two domains:

If . . . then . . .

h(t) is real H(−f) = [H(f)]*
h(t) is imaginary H(−f) = −[H(f)]*
h(t) is even H(−f) = H(f) [i.e., H(f) is even]
h(t) is odd H(−f) = −H(f) [i.e., H(f) is odd]
h(t) is real and even H(f) is real and even
h(t) is real and odd H(f) is imaginary and odd
h(t) is imaginary and even H(f) is imaginary and even
h(t) is imaginary and odd H(f) is real and odd

In subsequent sections we shall see how to use these symmetries to increase
computational efficiency.

Here are some other elementary properties of the Fourier transform. (We’ll use
the “⇐⇒” symbol to indicate transform pairs.) If

h(t)⇐⇒ H(f)

is such a pair, then other transform pairs are

h(at)⇐⇒ 1

|a|H(
f

a
) “time scaling” (12.0.4)

1

|b|h(
t

b
)⇐⇒ H(bf) “frequency scaling” (12.0.5)

h(t− t0)⇐⇒ H(f) e2πift0 “time shifting” (12.0.6)

h(t) e−2πif0t ⇐⇒ H(f − f0) “frequency shifting” (12.0.7)



498 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

With two functions h(t) and g(t), and their corresponding Fourier transforms
H(f) and G(f), we can form two combinations of special interest. The convolution
of the two functions, denoted g ∗ h, is defined by

g ∗ h ≡
∫ ∞
−∞

g(τ )h(t − τ ) dτ (12.0.8)

Note that g ∗ h is a function in the time domain and that g ∗ h = h ∗ g. It turns out
that the function g ∗ h is one member of a simple transform pair

g ∗ h⇐⇒ G(f)H(f) “Convolution Theorem” (12.0.9)

In other words, the Fourier transform of the convolution is just the product of the
individual Fourier transforms.

The correlation of two functions, denoted Corr(g, h), is defined by

Corr(g, h) ≡
∫ ∞
−∞

g(τ + t)h(τ ) dτ (12.0.10)

The correlation is a function of t, which is called the lag. It therefore lies in the time
domain, and it turns out to be one member of the transform pair:

Corr(g, h)⇐⇒ G(f)H*(f) “Correlation Theorem” (12.0.11)

[More generally, the second member of the pair isG(f)H(−f), but we are restricting
ourselves to the usual case in whichg andh are real functions, so we take the liberty of
settingH(−f) = H*(f).] This result shows that multiplying the Fourier transform
of one function by the complex conjugate of the Fourier transform of the other gives
the Fourier transform of their correlation. The correlation of a function with itself is
called its autocorrelation. In this case (12.0.11) becomes the transform pair

Corr(g, g)⇐⇒ |G(f)|2 “Wiener-Khinchin Theorem” (12.0.12)

The total power in a signal is the same whether we compute it in the time
domain or in the frequency domain. This result is known as Parseval’s theorem:

Total Power ≡
∫ ∞
−∞
|h(t)|2 dt =

∫ ∞
−∞
|H(f)|2 df (12.0.13)

Frequently one wants to know “how much power” is contained in the frequency
interval between f and f + df . In such circumstances one does not usually
distinguish between positive and negative f , but rather regards f as varying from 0
(“zero frequency” or D.C.) to +∞. In such cases, one defines the one-sided power
spectral density (PSD) of the function h as

Ph(f) ≡ |H(f)|2 + |H(−f)|2 0 ≤ f <∞ (12.0.14)

so that the total power is just the integral of Ph(f) from f = 0 to f =∞. When the
functionh(t) is real, then the two terms in (12.0.14) are equal, soPh(f) = 2 |H(f)|2.
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Figure 12.0.1. Normalizations of one- and two-sided power spectra. The area under the square of the
function, (a), equals the area under its one-sided power spectrum at positive frequencies, (b), and also
equals the area under its two-sided power spectrum at positive and negative frequencies, (c).

Be warned that one occasionally sees PSDs defined without this factor two. These,
strictly speaking, are called two-sided power spectral densities, but some books
are not careful about stating whether one- or two-sided is to be assumed. We
will always use the one-sided density given by equation (12.0.14). Figure 12.0.1
contrasts the two conventions.

If the function h(t) goes endlessly from −∞ < t < ∞, then its total power
and power spectral density will, in general, be infinite. Of interest then is the (one-
or two-sided) power spectral density per unit time. This is computed by taking a
long, but finite, stretch of the function h(t), computing its PSD [that is, the PSD
of a function that equals h(t) in the finite stretch but is zero everywhere else], and
then dividing the resulting PSD by the length of the stretch used. Parseval’s theorem
in this case states that the integral of the one-sided PSD-per-unit-time over positive
frequency is equal to the mean square amplitude of the signal h(t).

You might well worry about how the PSD-per-unit-time, which is a function
of frequency f , converges as one evaluates it using longer and longer stretches of
data. This interesting question is the content of the subject of “power spectrum
estimation,” and will be considered below in §13.4–§13.7. A crude answer for



500 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

now is: The PSD-per-unit-time converges to finite values at all frequencies except
those where h(t) has a discrete sine-wave (or cosine-wave) component of finite
amplitude. At those frequencies, it becomes a delta-function, i.e., a sharp spike,
whose width gets narrower and narrower, but whose area converges to be the mean
square amplitude of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
data, we are almost never given a continuous function h(t) to work with, but are
given, rather, a list of measurements of h(ti) for a discrete set of ti’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Aca-
demic Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(t) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let ∆ denote the time interval between
consecutive samples, so that the sequence of sampled values is

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (12.1.1)

The reciprocal of the time interval ∆ is called the sampling rate; if ∆ is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval ∆, there is also a special frequency fc , called the
Nyquist critical frequency, given by

fc ≡
1

2∆
(12.1.2)

If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval ∆. In this case the Nyquist critical frequency is
just the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news. First the good news. It is the remarkable
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now is: The PSD-per-unit-time converges to finite values at all frequencies except
those where h(t) has a discrete sine-wave (or cosine-wave) component of finite
amplitude. At those frequencies, it becomes a delta-function, i.e., a sharp spike,
whose width gets narrower and narrower, but whose area converges to be the mean
square amplitude of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
data, we are almost never given a continuous function h(t) to work with, but are
given, rather, a list of measurements of h(ti) for a discrete set of ti’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Aca-
demic Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(t) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let ∆ denote the time interval between
consecutive samples, so that the sequence of sampled values is

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (12.1.1)

The reciprocal of the time interval ∆ is called the sampling rate; if ∆ is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval ∆, there is also a special frequency fc , called the
Nyquist critical frequency, given by

fc ≡
1

2∆
(12.1.2)

If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval ∆. In this case the Nyquist critical frequency is
just the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news. First the good news. It is the remarkable
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fact known as the sampling theorem: If a continuous function h(t), sampled at an
interval ∆, happens to be bandwidth limited to frequencies smaller in magnitude than
fc, i.e., ifH(f) = 0 for all |f | ≥ fc, then the function h(t) is completely determined
by its samples hn. In fact, h(t) is given explicitly by the formula

h(t) = ∆

+∞∑
n=−∞

hn
sin[2πfc(t− n∆)]

π(t − n∆)
(12.1.3)

This is a remarkable theorem for many reasons, among them that it shows that the
“information content” of a bandwidth limited function is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing
with a signal that is known on physical grounds to be bandwidth limited (or at
least approximately bandwidth limited). For example, the signal may have passed
through an amplifier with a known, finite frequency response. In this case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at a rate ∆−1 equal to twice the maximum frequency passed
by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continuous
function that is not bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of
the frequency range −fc < f < fc is spuriously moved into that range. This
phenomenon is called aliasing. Any frequency component outside of the frequency
range (−fc, fc) is aliased (falsely translated) into that range by the very act of
discrete sampling. You can readily convince yourself that two waves exp(2πif1t)
and exp(2πif2t) give the same samples at an interval ∆ if and only if f1 and
f2 differ by a multiple of 1/∆, which is just the width in frequency of the range
(−fc, fc). There is little that you can do to remove aliased power once you have
discretely sampled a signal. The way to overcome aliasing is to (i) know the natural
bandwidth limit of the signal — or else enforce a known limit by analog filtering
of the continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present. Figure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we can assume (or rather we might
as well assume) that its Fourier transform is equal to zero outside of the frequency
range in between −fc and fc. Then we look to the Fourier transform to tell whether
the continuous function has been competently sampled (aliasing effects minimized).
We do this by looking to see whether the Fourier transform is already approaching
zero as the frequency approaches fc from below, or −fc from above. If, on the
contrary, the transform is going towards some finite value, then chances are that
components outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of a function from a finite number of its
sampled points. Suppose that we have N consecutive sampled values

hk ≡ h(tk), tk ≡ k∆, k = 0, 1, 2, . . . , N − 1 (12.1.4)
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h(t)

t

(a)

f

0

H( f )

(b)

(c)

aliased Fourier transform

true Fourier transform

0

H( f )

1

2∆

1

2∆

−

f

∆

T

Figure 12.1.1. The continuous function shown in (a) is nonzero only for a finite interval of time T .
It follows that its Fourier transform, whose modulus is shown schematically in (b), is not bandwidth
limited but has finite amplitude for all frequencies. If the original function is sampled with a sampling
interval ∆, as in (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist
critical frequency. Power outside that range is folded over or “aliased” into the range. The effect can be
eliminated only by low-pass filtering the original function before sampling.

so that the sampling interval is ∆. To make things simpler, let us also suppose that
N is even. If the function h(t) is nonzero only in a finite interval of time, then
that whole interval of time is supposed to be contained in the range of the N points
given. Alternatively, if the function h(t) goes on forever, then the sampled points
are supposed to be at least “typical” of what h(t) looks like at all other times.

With N numbers of input, we will evidently be able to produce no more than
N independent numbers of output. So, instead of trying to estimate the Fourier
transform H(f) at all values of f in the range −fc to fc, let us seek estimates
only at the discrete values

fn ≡
n

N∆
, n = −N

2
, . . . ,

N

2
(12.1.5)

The extreme values of n in (12.1.5) correspond exactly to the lower and upper limits
of the Nyquist critical frequency range. If you are really on the ball, you will have
noticed that there are N + 1, not N , values of n in (12.1.5); it will turn out that
the two extreme values of n are not independent (in fact they are equal), but all the
others are. This reduces the count to N .
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The remaining step is to approximate the integral in (12.0.1) by a discrete sum:

H(fn) =

∫ ∞
−∞

h(t)e2πifntdt ≈
N−1∑
k=0

hk e
2πifntk∆ = ∆

N−1∑
k=0

hk e
2πikn/N

(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final equality. The final
summation in equation (12.1.6) is called the discrete Fourier transform of the N
points hk. Let us denote it by Hn,

Hn ≡
N−1∑
k=0

hk e
2πikn/N (12.1.7)

The discrete Fourier transform maps N complex numbers (the hk’s) intoN complex
numbers (the Hn’s). It does not depend on any dimensional parameter, such as the
time scale ∆. The relation (12.1.6) between the discrete Fourier transform of a set
of numbers and their continuous Fourier transform when they are viewed as samples
of a continuous function sampled at an interval ∆ can be rewritten as

H(fn) ≈ ∆Hn (12.1.8)

where fn is given by (12.1.5).
Up to now we have taken the view that the index n in (12.1.7) varies from

−N/2 to N/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodic in
n, with period N . Therefore, H−n = HN−n n = 1, 2, . . . . With this conversion
in mind, one generally lets the n in Hn vary from 0 to N − 1 (one complete
period). Then n and k (in hk) vary exactly over the same range, so the mapping
of N numbers into N numbers is manifest. When this convention is followed,
you must remember that zero frequency corresponds to n = 0, positive frequencies
0 < f < fc correspond to values 1 ≤ n ≤ N/2 − 1, while negative frequencies
−fc < f < 0 correspond to N/2 + 1 ≤ n ≤ N − 1. The value n = N/2
corresponds to both f = fc and f = −fc .

The discrete Fourier transform has symmetry properties almost exactly the same
as the continuous Fourier transform. For example, all the symmetries in the table
following equation (12.0.3) hold if we read hk for h(t), Hn for H(f), and HN−n
forH(−f). (Likewise, “even” and “odd” in time refer to whether the values hk at k
and N − k are identical or the negative of each other.)

The formula for the discrete inverse Fourier transform, which recovers the set
of hk’s exactly from the Hn’s is:

hk =
1

N

N−1∑
n=0

Hn e
−2πikn/N (12.1.9)

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (ii) dividing the answer by N . This means that a
routine for calculating discrete Fourier transforms can also, with slight modification,
calculate the inverse transforms.
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The discrete form of Parseval’s theorem is

N−1∑
k=0

|hk|2 =
1

N

N−1∑
n=0

|Hn|2 (12.1.10)

There are also discrete analogs to the convolution and correlation theorems (equations
12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Define W as the complex number

W ≡ e2πi/N (12.2.1)

Then (12.1.7) can be written as

Hn =

N−1∑
k=0

Wnkhk (12.2.2)

In other words, the vector of hk’s is multiplied by a matrix whose (n, k)th element
is the constant W to the power n × k. The matrix multiplication produces a vector
result whose components are theHn’s. This matrix multiplication evidently requires
N2 complex multiplications, plus a smaller number of operations to generate the
required powers of W . So, the discrete Fourier transform appears to be an O(N2)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log2 N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log2 N and N2 is immense.
WithN = 106, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from the work
of J.W. Cooley and J.W. Tukey. Retrospectively, we now know (see [1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of lengthN/2. One of the two is formed from the
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The discrete form of Parseval’s theorem is

N−1∑
k=0

|hk|2 =
1

N

N−1∑
n=0

|Hn|2 (12.1.10)

There are also discrete analogs to the convolution and correlation theorems (equations
12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Define W as the complex number

W ≡ e2πi/N (12.2.1)

Then (12.1.7) can be written as

Hn =

N−1∑
k=0

Wnkhk (12.2.2)

In other words, the vector of hk’s is multiplied by a matrix whose (n, k)th element
is the constant W to the power n × k. The matrix multiplication produces a vector
result whose components are theHn’s. This matrix multiplication evidently requires
N2 complex multiplications, plus a smaller number of operations to generate the
required powers of W . So, the discrete Fourier transform appears to be an O(N2)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log2 N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log2 N and N2 is immense.
WithN = 106, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from the work
of J.W. Cooley and J.W. Tukey. Retrospectively, we now know (see [1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of lengthN/2. One of the two is formed from the
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even-numbered points of the original N , the other from the odd-numbered points.
The proof is simply this:

Fk =

N−1∑
j=0

e2πijk/Nfj

=

N/2−1∑
j=0

e2πik(2j)/Nf2j +

N/2−1∑
j=0

e2πik(2j+1)/Nf2j+1

=

N/2−1∑
j=0

e2πikj/(N/2)f2j +W k

N/2−1∑
j=0

e2πikj/(N/2)f2j+1

= F ek +W k F ok

(12.2.3)

In the last line, W is the same complex constant as in (12.2.1), F ek denotes the kth
component of the Fourier transform of lengthN/2 formed from the even components
of the original fj ’s, while F ok is the corresponding transform of length N/2 formed
from the odd components. Notice also that k in the last line of (12.2.3) varies from
0 to N , not just to N/2. Nevertheless, the transforms F ek and F ok are periodic in k
with length N/2. So each is repeated through two cycles to obtain Fk .

The wonderful thing about the Danielson-Lanczos Lemma is that it can be used
recursively. Having reduced the problem of computing Fk to that of computing
F ek and F ok , we can do the same reduction of F ek to the problem of computing
the transform of its N/4 even-numbered input data and N/4 odd-numbered data.
In other words, we can define F eek and F eok to be the discrete Fourier transforms
of the points which are respectively even-even and even-odd on the successive
subdivisions of the data.

Although there are ways of treating other cases, by far the easiest case is the
one in which the original N is an integer power of 2. In fact, we categorically
recommend that you only use FFTs withN a power of two. If the length of your data
set is not a power of two, pad it with zeros up to the next power of two. (We will give
more sophisticated suggestions in subsequent sections below.) With this restriction
on N , it is evident that we can continue applying the Danielson-Lanczos Lemma
until we have subdivided the data all the way down to transforms of length 1. What
is the Fourier transform of length one? It is just the identity operation that copies its
one input number into its one output slot! In other words, for every pattern of log2 N
e’s and o’s, there is a one-point transform that is just one of the input numbers fn

F eoeeoeo···oeek = fn for some n (12.2.4)

(Of course this one-point transform actually does not depend on k, since it is periodic
in k with period 1.)

The next trick is to figure out which value of n corresponds to which pattern of
e’s and o’s in equation (12.2.4). The answer is: Reverse the pattern of e’s and o’s,
then let e = 0 and o = 1, and you will have, in binary the value of n. Do you see
why it works? It is because the successive subdivisions of the data into even and odd
are tests of successive low-order (least significant) bits of n. This idea of bit reversal
can be exploited in a very clever way which, along with the Danielson-Lanczos
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Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

Lemma, makes FFTs practical: Suppose we take the original vector of data fj
and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individual
numbers are in the order not of j, but of the number obtained by bit-reversing j.
Then the bookkeeping on the recursive application of the Danielson-Lanczos Lemma
becomes extraordinarily simple. The points as given are the one-point transforms.
We combine adjacent pairs to get two-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of order N operations, and there are evidently log2N combinations, so the whole
algorithm is of order N log2N (assuming, as is the case, that the process of sorting
into bit-reversed order is no greater in order than N log2 N ).

This, then, is the structure of an FFT algorithm: It has two sections. The first
section sorts the data into bit-reversed order. Luckily this takes no additional storage,
since it involves only swapping pairs of elements. (If k1 is the bit reverse of k2, then
k2 is the bit reverse of k1.) The second section has an outer loop that is executed
log2N times and calculates, in turn, transforms of length 2, 4, 8, . . . , N . For each
stage of this process, two nested inner loops range over the subtransforms already
computed and the elements of each transform, implementing the Danielson-Lanczos
Lemma. The operation is made more efficient by restricting external calls for
trigonometric sines and cosines to the outer loop, where they are made only log2 N
times. Computation of the sines and cosines of multiple angles is through simple
recurrence relations in the inner loops (cf. 5.5.6).

The FFT routine given below is based on one originally written by N. M.
Brenner. The input quantities are the number of complex data points (nn), the data
array (data[1..2*nn]), and isign, which should be set to either±1 and is the sign
of i in the exponential of equation (12.1.7). When isign is set to −1, the routine
thus calculates the inverse transform (12.1.9) — except that it does not multiply by
the normalizing factor 1/N that appears in that equation. You can do that yourself.

Notice that the argument nn is the number of complex data points. The actual
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length of the real array (data[1..2*nn]) is 2 times nn, with each complex value
occupying two consecutive locations. In other words, data[1] is the real part of
f0, data[2] is the imaginary part of f0, and so on up to data[2*nn-1], which
is the real part of fN−1, and data[2*nn], which is the imaginary part of fN−1.
The FFT routine gives back the Fn’s packed in exactly the same fashion, as nn

complex numbers.
The real and imaginary parts of the zero frequency componentF0 are in data[1]

and data[2]; the smallest nonzero positive frequency has real and imaginary parts in
data[3] and data[4]; the smallest (in magnitude) nonzero negative frequency has
real and imaginary parts in data[2*nn-1] and data[2*nn]. Positive frequencies
increasing in magnitude are stored in the real-imaginary pairs data[5], data[6]

up to data[nn-1], data[nn]. Negative frequencies of increasing magnitude are
stored in data[2*nn-3], data[2*nn-2] down to data[nn+3], data[nn+4].
Finally, the pair data[nn+1], data[nn+2] contain the real and imaginary parts of
the one aliased point that contains the most positive and the most negative frequency.
You should try to develop a familiarity with this storage arrangement of complex
spectra, also shown in Figure 12.2.2, since it is the practical standard.

This is a good place to remind you that you can also use a routine like four1
without modification even if your input data array is zero-offset, that is has the range
data[0..2*nn-1]. In this case, simply decrement the pointer to data by one when
four1 is invoked, e.g., four1(data-1,1024,1);. The real part of f0 will now be
returned in data[0], the imaginary part in data[1], and so on. See §1.2.

#include <math.h>
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void four1(float data[], unsigned long nn, int isign)
Replaces data[1..2*nn] by its discrete Fourier transform, if isign is input as 1; or replaces
data[1..2*nn] by nn times its inverse discrete Fourier transform, if isign is input as −1.
data is a complex array of length nn or, equivalently, a real array of length 2*nn. nn MUST
be an integer power of 2 (this is not checked for!).
{

unsigned long n,mmax,m,j,istep,i;
double wtemp,wr,wpr,wpi,wi,theta; Double precision for the trigonomet-

ric recurrences.float tempr,tempi;

n=nn << 1;
j=1;
for (i=1;i<n;i+=2) { This is the bit-reversal section of the

routine.if (j > i) {
SWAP(data[j],data[i]); Exchange the two complex numbers.
SWAP(data[j+1],data[i+1]);

}
m=n >> 1;
while (m >= 2 && j > m) {

j -= m;
m >>= 1;

}
j += m;

}
Here begins the Danielson-Lanczos section of the routine.
mmax=2;
while (n > mmax) { Outer loop executed log2 nn times.

istep=mmax << 1;
theta=isign*(6.28318530717959/mmax); Initialize the trigonometric recurrence.
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
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Figure 12.2.2. Input and output arrays for FFT. (a) The input array contains N (a power of 2)
complex time samples in a real array of length 2N , with real and imaginary parts alternating. (b) The
output array contains the complex Fourier spectrum at N values of frequency. Real and imaginary parts
again alternate. The array starts with zero frequency, works up to the most positive frequency (which
is ambiguous with the most negative frequency). Negative frequencies follow, from the second-most
negative up to the frequency just below zero.

wpi=sin(theta);
wr=1.0;
wi=0.0;
for (m=1;m<mmax;m+=2) { Here are the two nested inner loops.

for (i=m;i<=n;i+=istep) {
j=i+mmax; This is the Danielson-Lanczos for-

mula:tempr=wr*data[j]-wi*data[j+1];
tempi=wr*data[j+1]+wi*data[j];
data[j]=data[i]-tempr;
data[j+1]=data[i+1]-tempi;
data[i] += tempr;
data[i+1] += tempi;

}
wr=(wtemp=wr)*wpr-wi*wpi+wr; Trigonometric recurrence.
wi=wi*wpr+wtemp*wpi+wi;

}
mmax=istep;

}
}

(A double precision version of four1, named dfour1, is used by the routine mpmul
in §20.6. You can easily make the conversion, or else get the converted routine
from the Numerical Recipes diskette.)
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Other FFT Algorithms

We should mention that there are a number of variants on the basic FFT algorithm
given above. As we have seen, that algorithm first rearranges the input elements
into bit-reverse order, then builds up the output transform in log2N iterations. In
the literature, this sequence is called a decimation-in-time or Cooley-Tukey FFT
algorithm. It is also possible to derive FFT algorithms that first go through a set of
log2N iterations on the input data, and rearrange the output values into bit-reverse
order. These are called decimation-in-frequencyor Sande-Tukey FFT algorithms. For
some applications, such as convolution (§13.1), one takes a data set into the Fourier
domain and then, after some manipulation, back out again. In these cases it is possible
to avoid all bit reversing. You use a decimation-in-frequency algorithm (without its
bit reversing) to get into the “scrambled” Fourier domain, do your operations there,
and then use an inverse algorithm (without its bit reversing) to get back to the time
domain. While elegant in principle, this procedure does not in practice save much
computation time, since the bit reversals represent only a small fraction of an FFT’s
operations count, and since most useful operations in the frequency domain require
a knowledge of which points correspond to which frequencies.

Another class of FFTs subdivides the initial data set of length N not all the
way down to the trivial transform of length 1, but rather only down to some other
small power of 2, for example N = 4, base-4 FFTs, or N = 8, base-8 FFTs. These
small transforms are then done by small sections of highly optimized coding which
take advantage of special symmetries of that particular small N . For example, for
N = 4, the trigonometric sines and cosines that enter are all ±1 or 0, so many
multiplications are eliminated, leaving largely additions and subtractions. These
can be faster than simpler FFTs by some significant, but not overwhelming, factor,
e.g., 20 or 30 percent.

There are also FFT algorithms for data sets of length N not a power of
two. They work by using relations analogous to the Danielson-Lanczos Lemma to
subdivide the initial problem into successively smaller problems, not by factors of
2, but by whatever small prime factors happen to divide N . The larger that the
largest prime factor of N is, the worse this method works. If N is prime, then no
subdivision is possible, and the user (whether he knows it or not) is taking a slow
Fourier transform, of orderN2 instead of orderN log2N . Our advice is to stay clear
of such FFT implementations, with perhaps one class of exceptions, the Winograd
Fourier transform algorithms. Winograd algorithms are in some ways analogous to
the base-4 and base-8 FFTs. Winograd has derived highly optimized codings for
taking small-N discrete Fourier transforms, e.g., for N = 2, 3, 4, 5, 7, 8, 11, 13, 16.
The algorithms also use a new and clever way of combining the subfactors. The
method involves a reordering of the data both before the hierarchical processing and
after it, but it allows a significant reduction in the number of multiplications in the
algorithm. For some especially favorable values of N , the Winograd algorithms can
be significantly (e.g., up to a factor of 2) faster than the simpler FFT algorithms
of the nearest integer power of 2. This advantage in speed, however, must be
weighed against the considerably more complicated data indexing involved in these
transforms, and the fact that the Winograd transform cannot be done “in place.”

Finally, an interesting class of transforms for doing convolutions quickly are
number theoretic transforms. These schemes replace floating-point arithmetic with
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integer arithmetic modulo some large prime N+1, and the N th root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall). [1]

Bloomfield, P. 1976, Fourier Analysis of Time Series – An Introduction (New York: Wiley).

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.).

Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].

Heideman, M.T., Johnson, D.H., and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14–21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples fj , j = 0 . . .N − 1. To use four1, we put these into a complex array
with all imaginary parts set to zero. The resulting transform Fn, n = 0 . . .N − 1
satisfies FN−n* = Fn. Since this complex-valued array has real values for F0

and FN/2, and (N/2) − 1 other independent values F1 . . . FN/2−1, it has the same
2(N/2− 1) + 2 = N “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the program realft below.
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integer arithmetic modulo some large prime N+1, and the N th root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:
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Academic Press) [non-Fourier transforms].
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12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples fj , j = 0 . . .N − 1. To use four1, we put these into a complex array
with all imaginary parts set to zero. The resulting transform Fn, n = 0 . . .N − 1
satisfies FN−n* = Fn. Since this complex-valued array has real values for F0

and FN/2, and (N/2) − 1 other independent values F1 . . . FN/2−1, it has the same
2(N/2− 1) + 2 = N “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the program realft below.
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Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transform Fn to handle
two real functions at once: Since the input data fj are real, the components of the
discrete Fourier transform satisfy

FN−n = (Fn)* (12.3.1)

where the asterisk denotes complex conjugation. By the same token, the discrete
Fourier transform of a purely imaginary set of gj’s has the opposite symmetry.

GN−n = −(Gn)* (12.3.2)

Therefore we can take the discrete Fourier transform of two real functions each of
length N simultaneously by packing the two data arrays as the real and imaginary
parts, respectively, of the complex input array of four1. Then the resulting transform
array can be unpacked into two complex arrays with the aid of the two symmetries.
Routine twofft works out these ideas.

void twofft(float data1[], float data2[], float fft1[], float fft2[],
unsigned long n)

Given two real input arrays data1[1..n] and data2[1..n], this routine calls four1 and
returns two complex output arrays, fft1[1..2n] and fft2[1..2n], each of complex length
n (i.e., real length 2*n), which contain the discrete Fourier transforms of the respective data
arrays. n MUST be an integer power of 2.
{

void four1(float data[], unsigned long nn, int isign);
unsigned long nn3,nn2,jj,j;
float rep,rem,aip,aim;

nn3=1+(nn2=2+n+n);
for (j=1,jj=2;j<=n;j++,jj+=2) { Pack the two real arrays into one com-

plex array.fft1[jj-1]=data1[j];
fft1[jj]=data2[j];

}
four1(fft1,n,1); Transform the complex array.
fft2[1]=fft1[2];
fft1[2]=fft2[2]=0.0;
for (j=3;j<=n+1;j+=2) {

rep=0.5*(fft1[j]+fft1[nn2-j]); Use symmetries to separate the two trans-
forms.rem=0.5*(fft1[j]-fft1[nn2-j]);

aip=0.5*(fft1[j+1]+fft1[nn3-j]);
aim=0.5*(fft1[j+1]-fft1[nn3-j]);
fft1[j]=rep; Ship them out in two complex arrays.
fft1[j+1]=aim;
fft1[nn2-j]=rep;
fft1[nn3-j] = -aim;
fft2[j]=aip;
fft2[j+1] = -rem;
fft2[nn2-j]=aip;
fft2[nn3-j]=rem;

}
}
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What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that you know that the inverses
of both transforms are real functions. Can you invert both in a single FFT? This is
even easier than the other direction. Use the fact that the FFT is linear and form
the sum of the first transform plus i times the second. Invert using four1 with
isign = −1. The real and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

To implement the second method, which allows us to perform the FFT of
a single real function without redundancy, we split the data set in half, thereby
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the original data. It will
be a schizophrenic combination of two transforms, each of which has half of the
information we need. Fortunately, this schizophrenia is treatable. It works like this:

The right way to split the original data is to take the even-numbered fj as
one data set, and the odd-numbered fj as the other. The beauty of this is that
we can take the original real array and treat it as a complex array hj of half the
length. The first data set is the real part of this array, and the second is the
imaginary part, as prescribed for twofft. No repacking is required. In other words
hj = f2j + if2j+1, j = 0, . . . , N/2− 1. We submit this to four1, and it will give
back a complex array Hn = F en + iF on , n = 0, . . . , N/2 − 1 with

F en =

N/2−1∑
k=0

f2k e
2πikn/(N/2)

F on =

N/2−1∑
k=0

f2k+1 e
2πikn/(N/2)

(12.3.3)

The discussion of program twofft tells you how to separate the two transforms
F en and F on out of Hn. How do you work them into the transform Fn of the original
data set fj? Simply glance back at equation (12.2.3):

Fn = F en + e2πin/NF on n = 0, . . . , N − 1 (12.3.4)

Expressed directly in terms of the transform Hn of our real (masquerading as
complex) data set, the result is

Fn =
1

2
(Hn + HN/2−n*)− i

2
(Hn −HN/2−n*)e2πin/N n = 0, . . . , N − 1

(12.3.5)

A few remarks:
• Since FN−n* = Fn there is no point in saving the entire spectrum. The

positive frequency half is sufficient and can be stored in the same array as
the original data. The operation can, in fact, be done in place.

• Even so, we need values Hn, n = 0, . . . , N/2 whereas four1 gives only
the values n = 0, . . . , N/2− 1. Symmetry to the rescue, HN/2 = H0.
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• The values F0 and FN/2 are real and independent. In order to actually
get the entire Fn in the original array space, it is convenient to put FN/2
into the imaginary part of F0.

• Despite its complicated form, the process above is invertible. First peel
FN/2 out of F0. Then construct

F en =
1

2
(Fn + F *

N/2−n)

F on =
1

2
e−2πin/N (Fn − F *

N/2−n)

n = 0, . . . , N/2− 1 (12.3.6)

and use four1 to find the inverse transform of Hn = F
(1)
n + iF

(2)
n .

Surprisingly, the actual algebraic steps are virtually identical to those of
the forward transform.

Here is a representation of what we have said:

#include <math.h>

void realft(float data[], unsigned long n, int isign)
Calculates the Fourier transform of a set of n real-valued data points. Replaces this data (which
is stored in array data[1..n]) by the positive frequency half of its complex Fourier transform.
The real-valued first and last components of the complex transform are returned as elements
data[1] and data[2], respectively. n must be a power of 2. This routine also calculates the
inverse transform of a complex data array if it is the transform of real data. (Result in this case
must be multiplied by 2/n.)
{

void four1(float data[], unsigned long nn, int isign);
unsigned long i,i1,i2,i3,i4,np3;
float c1=0.5,c2,h1r,h1i,h2r,h2i;
double wr,wi,wpr,wpi,wtemp,theta; Double precision for the trigonomet-

ric recurrences.
theta=3.141592653589793/(double) (n>>1); Initialize the recurrence.
if (isign == 1) {

c2 = -0.5;
four1(data,n>>1,1); The forward transform is here.

} else {
c2=0.5; Otherwise set up for an inverse trans-

form.theta = -theta;
}
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0+wpr;
wi=wpi;
np3=n+3;
for (i=2;i<=(n>>2);i++) { Case i=1 done separately below.

i4=1+(i3=np3-(i2=1+(i1=i+i-1)));
h1r=c1*(data[i1]+data[i3]); The two separate transforms are sep-

arated out of data.h1i=c1*(data[i2]-data[i4]);
h2r = -c2*(data[i2]+data[i4]);
h2i=c2*(data[i1]-data[i3]);
data[i1]=h1r+wr*h2r-wi*h2i; Here they are recombined to form

the true transform of the origi-
nal real data.

data[i2]=h1i+wr*h2i+wi*h2r;
data[i3]=h1r-wr*h2r+wi*h2i;
data[i4] = -h1i+wr*h2i+wi*h2r;
wr=(wtemp=wr)*wpr-wi*wpi+wr; The recurrence.
wi=wi*wpr+wtemp*wpi+wi;

}
if (isign == 1) {
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data[1] = (h1r=data[1])+data[2]; Squeeze the first and last data to-
gether to get them all within the
original array.

data[2] = h1r-data[2];
} else {

data[1]=c1*((h1r=data[1])+data[2]);
data[2]=c1*(h1r-data[2]);
four1(data,n>>1,-1); This is the inverse transform for the

case isign=-1.}
}

Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used to solve
differential equations (see §19.4). The most common boundary conditions for the
solutions are 1) they have the value zero at the boundaries, or 2) their derivatives
are zero at the boundaries. In the first instance, the natural transform to use is the
sine transform, given by

Fk =
N−1∑
j=1

fj sin(πjk/N) sine transform (12.3.7)

where fj , j = 0, . . . , N − 1 is the data array, and f0 ≡ 0.
At first blush this appears to be simply the imaginary part of the discrete Fourier

transform. However, the argument of the sine differs by a factor of two from the
value that would make this so. The sine transform uses sines only as a complete set
of functions in the interval from 0 to 2π, and, as we shall see, the cosine transform
uses cosines only. By contrast, the normal FFT uses both sines and cosines, but only
half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be “force-fit” into a form that allows its calculation
via the FFT. The idea is to extend the given function rightward past its last tabulated
value. We extend the data to twice their length in such a way as to make them an
odd function about j = N , with fN = 0,

f2N−j ≡ −fj j = 0, . . . , N − 1 (12.3.8)

Consider the FFT of this extended function:

Fk =

2N−1∑
j=0

fje
2πijk/(2N) (12.3.9)

The half of this sum from j = N to j = 2N − 1 can be rewritten with the
substitution j′ = 2N − j

2N−1∑
j=N

fje
2πijk/(2N) =

N∑
j′=1

f2N−j′e
2πi(2N−j′)k/(2N)

= −
N−1∑
j′=0

fj′e
−2πij′k/(2N)

(12.3.10)
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Figure 12.3.1. Basis functions used by the Fourier transform (a), sine transform (b), and cosine transform
(c), are plotted. The first five basis functions are shown in each case. (For the Fourier transform, the real
and imaginary parts of the basis functions are both shown.) While some basis functions occur in more
than one transform, the basis sets are distinct. For example, the sine transform functions labeled (1), (3),
(5) are not present in the Fourier basis. Any of the three sets can expand any function in the interval
shown; however, the sine or cosine transform best expands functions matching the boundary conditions
of the respective basis functions, namely zero function values for sine, zero derivatives for cosine.

so that

Fk =

N−1∑
j=0

fj

[
e2πijk/(2N) − e−2πijk/(2N)

]

= 2i

N−1∑
j=0

fj sin(πjk/N)

(12.3.11)

Thus, up to a factor 2i we get the sine transform from the FFT of the extended
function.

This method introduces a factor of two inefficiency into the computation by
extending the data. This inefficiency shows up in the FFT output, which has
zeros for the real part of every element of the transform. For a one-dimensional
problem, the factor of two may be bearable, especially in view of the simplicity
of the method. When we work with partial differential equations in two or three
dimensions, though, the factor becomes four or eight, so efforts to eliminate the
inefficiency are well rewarded.
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From the original real data array fj we will construct an auxiliary array yj and
apply to it the routine realft. The output will then be used to construct the desired
transform. For the sine transform of data fj, j = 1, . . . , N−1, the auxiliary array is

y0 = 0

yj = sin(jπ/N)(fj + fN−j) +
1

2
(fj − fN−j) j = 1, . . . , N − 1

(12.3.12)

This array is of the same dimension as the original. Notice that the first term is
symmetric about j = N/2 and the second is antisymmetric. Consequently, when
realft is applied to yj , the result has real parts Rk and imaginary parts Ik given by

Rk =

N−1∑
j=0

yj cos(2πjk/N)

=

N−1∑
j=1

(fj + fN−j) sin(jπ/N) cos(2πjk/N)

=

N−1∑
j=0

2fj sin(jπ/N) cos(2πjk/N)

=

N−1∑
j=0

fj

[
sin

(2k + 1)jπ

N
− sin

(2k − 1)jπ

N

]
= F2k+1 − F2k−1 (12.3.13)

Ik =

N−1∑
j=0

yj sin(2πjk/N)

=
N−1∑
j=1

(fj − fN−j)
1

2
sin(2πjk/N)

=

N−1∑
j=0

fj sin(2πjk/N)

= F2k (12.3.14)

Therefore Fk can be determined as follows:

F2k = Ik F2k+1 = F2k−1 +Rk k = 0, . . . , (N/2− 1) (12.3.15)

The even terms of Fk are thus determined very directly. The odd terms require
a recursion, the starting point of which follows from setting k = 0 in equation
(12.3.15) and using F1 = −F−1:

F1 =
1

2
R0 (12.3.16)

The implementing program is
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#include <math.h>

void sinft(float y[], int n)
Calculates the sine transform of a set of n real-valued data points stored in array y[1..n].
The number n must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/n.
{

void realft(float data[], unsigned long n, int isign);
int j,n2=n+2;
float sum,y1,y2;
double theta,wi=0.0,wr=1.0,wpi,wpr,wtemp; Double precision in the trigono-

metric recurrences.
theta=3.14159265358979/(double) n; Initialize the recurrence.
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
y[1]=0.0;
for (j=2;j<=(n>>1)+1;j++) {

wr=(wtemp=wr)*wpr-wi*wpi+wr; Calculate the sine for the auxiliary array.
wi=wi*wpr+wtemp*wpi+wi; The cosine is needed to continue the recurrence.
y1=wi*(y[j]+y[n2-j]); Construct the auxiliary array.
y2=0.5*(y[j]-y[n2-j]);
y[j]=y1+y2; Terms j and N − j are related.
y[n2-j]=y1-y2;

}
realft(y,n,1); Transform the auxiliary array.
y[1]*=0.5; Initialize the sum used for odd terms below.
sum=y[2]=0.0;
for (j=1;j<=n-1;j+=2) {

sum += y[j];
y[j]=y[j+1]; Even terms determined directly.
y[j+1]=sum; Odd terms determined by this running sum.

}
}

The sine transform, curiously, is its own inverse. If you apply it twice, you get the
original data, but multiplied by a factor of N/2.

The other common boundary condition for differential equations is that the
derivative of the function is zero at the boundary. In this case the natural transform
is the cosine transform. There are several possible ways of defining the transform.
Each can be thought of as resulting from a different way of extending a given array
to create an even array of double the length, and/or from whether the extended array
contains 2N − 1, 2N , or some other number of points. In practice, only two of the
numerous possibilities are useful so we will restrict ourselves to just these two.

The first form of the cosine transform uses N + 1 data points:

Fk =
1

2
[f0 + (−1)kfN ] +

N−1∑
j=1

fj cos(πjk/N) (12.3.17)

It results from extending the given array to an even array about j = N , with

f2N−j = fj, j = 0, . . . , N − 1 (12.3.18)

If you substitute this extended array into equation (12.3.9),and follow steps analogous
to those leading up to equation (12.3.11), you will find that the Fourier transform is
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just twice the cosine transform (12.3.17). Another way of thinking about the formula
(12.3.17) is to notice that it is the Chebyshev Gauss-Lobatto quadrature formula (see
§4.5), often used in Clenshaw-Curtis adaptive quadrature (see §5.9, equation 5.9.4).

Once again the transform can be computed without the factor of two inefficiency.
In this case the auxiliary function is

yj =
1

2
(fj + fN−j) − sin(jπ/N)(fj − fN−j) j = 0, . . . , N − 1 (12.3.19)

Instead of equation (12.3.15), realft now gives

F2k = Rk F2k+1 = F2k−1 + Ik k = 0, . . . , (N/2− 1) (12.3.20)

The starting value for the recursion for odd k in this case is

F1 =
1

2
(f0 − fN ) +

N−1∑
j=1

fj cos(jπ/N) (12.3.21)

This sum does not appear naturally among the Rk and Ik , and so we accumulate it
during the generation of the array yj .

Once again this transform is its own inverse, and so the following routine
works for both directions of the transformation. Note that although this form of
the cosine transform has N + 1 input and output values, it passes an array only
of length N to realft.

#include <math.h>
#define PI 3.141592653589793

void cosft1(float y[], int n)
Calculates the cosine transform of a set y[1..n+1] of real-valued data points. The transformed
data replace the original data in array y. n must be a power of 2. This program, without
changes, also calculates the inverse cosine transform, but in this case the output array should
be multiplied by 2/n.
{

void realft(float data[], unsigned long n, int isign);
int j,n2;
float sum,y1,y2;
double theta,wi=0.0,wpi,wpr,wr=1.0,wtemp;
Double precision for the trigonometric recurrences.

theta=PI/n; Initialize the recurrence.
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
sum=0.5*(y[1]-y[n+1]);
y[1]=0.5*(y[1]+y[n+1]);
n2=n+2;
for (j=2;j<=(n>>1);j++) { j=n/2+1 unnecessary since y[n/2+1]unchanged.

wr=(wtemp=wr)*wpr-wi*wpi+wr; Carry out the recurrence.
wi=wi*wpr+wtemp*wpi+wi;
y1=0.5*(y[j]+y[n2-j]); Calculate the auxiliary function.
y2=(y[j]-y[n2-j]);
y[j]=y1-wi*y2; The values for j and N − j are related.
y[n2-j]=y1+wi*y2;
sum += wr*y2; Carry along this sum for later use in unfold-

ing the transform.}
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realft(y,n,1); Calculate the transform of the auxiliary func-
tion.y[n+1]=y[2];

y[2]=sum; sum is the value of F1 in equation (12.3.21).
for (j=4;j<=n;j+=2) {

sum += y[j]; Equation (12.3.20).
y[j]=sum;

}
}

The second important form of the cosine transform is defined by

Fk =

N−1∑
j=0

fj cos
πk(j + 1

2)

N
(12.3.22)

with inverse

fj =
2

N

N−1∑′

k=0

Fk cos
πk(j + 1

2
)

N
(12.3.23)

Here the prime on the summation symbol means that the term for k = 0 has a
coefficient of 1

2 in front. This form arises by extending the given data, defined for
j = 0, . . . , N −1, to j = N, . . . , 2N−1 in such a way that it is even about the point
N − 1

2 and periodic. (It is therefore also even about j = −1
2 .) The form (12.3.23)

is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev
approximation (§5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (§5.9).

This form of the cosine transform is useful when solving differential equations
on “staggered” grids, where the variables are centered midway between mesh points.
It is also the standard form in the field of data compression and image processing.

The auxiliary function used in this case is similar to equation (12.3.19):

yj =
1

2
(fj + fN−j−1)− sin

π(j + 1
2
)

N
(fj − fN−j−1) j = 0, . . . , N − 1

(12.3.24)

Carrying out the steps similar to those used to get from (12.3.12) to (12.3.15), we find

F2k = cos
πk

N
Rk − sin

πk

N
Ik (12.3.25)

F2k−1 = sin
πk

N
Rk + cos

πk

N
Ik + F2k+1 (12.3.26)

Note that equation (12.3.26) gives

FN−1 =
1

2
RN/2 (12.3.27)

Thus the even components are found directly from (12.3.25), while the odd com-
ponents are found by recursing (12.3.26) down from k = N/2− 1, using (12.3.27)
to start.

Since the transform is not self-inverting, we have to reverse the above steps
to find the inverse. Here is the routine:
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#include <math.h>
#define PI 3.141592653589793

void cosft2(float y[], int n, int isign)
Calculates the “staggered” cosine transform of a set y[1..n] of real-valued data points. The
transformed data replace the original data in array y. n must be a power of 2. Set isign to
+1 for a transform, and to −1 for an inverse transform. For an inverse transform, the output
array should be multiplied by 2/n.
{

void realft(float data[], unsigned long n, int isign);
int i;
float sum,sum1,y1,y2,ytemp;
double theta,wi=0.0,wi1,wpi,wpr,wr=1.0,wr1,wtemp;
Double precision for the trigonometric recurrences.

theta=0.5*PI/n; Initialize the recurrences.
wr1=cos(theta);
wi1=sin(theta);
wpr = -2.0*wi1*wi1;
wpi=sin(2.0*theta);
if (isign == 1) { Forward transform.

for (i=1;i<=n/2;i++) {
y1=0.5*(y[i]+y[n-i+1]); Calculate the auxiliary function.
y2=wi1*(y[i]-y[n-i+1]);
y[i]=y1+y2;
y[n-i+1]=y1-y2;
wr1=(wtemp=wr1)*wpr-wi1*wpi+wr1; Carry out the recurrence.
wi1=wi1*wpr+wtemp*wpi+wi1;

}
realft(y,n,1); Transform the auxiliary function.
for (i=3;i<=n;i+=2) { Even terms.

wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
y1=y[i]*wr-y[i+1]*wi;
y2=y[i+1]*wr+y[i]*wi;
y[i]=y1;
y[i+1]=y2;

}
sum=0.5*y[2]; Initialize recurrence for odd terms

with 1
2
RN/2.for (i=n;i>=2;i-=2) {

sum1=sum; Carry out recurrence for odd terms.
sum += y[i];
y[i]=sum1;

}
} else if (isign == -1) { Inverse transform.

ytemp=y[n];
for (i=n;i>=4;i-=2) y[i]=y[i-2]-y[i]; Form difference of odd terms.
y[2]=2.0*ytemp;
for (i=3;i<=n;i+=2) { Calculate Rk and Ik.

wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
y1=y[i]*wr+y[i+1]*wi;
y2=y[i+1]*wr-y[i]*wi;
y[i]=y1;
y[i+1]=y2;

}
realft(y,n,-1);
for (i=1;i<=n/2;i++) { Invert auxiliary array.

y1=y[i]+y[n-i+1];
y2=(0.5/wi1)*(y[i]-y[n-i+1]);
y[i]=0.5*(y1+y2);
y[n-i+1]=0.5*(y1-y2);
wr1=(wtemp=wr1)*wpr-wi1*wpi+wr1;
wi1=wi1*wpr+wtemp*wpi+wi1;
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}
}

}

An alternative way of implementing this algorithm is to form an auxiliary
function by copying the even elements of fj into the first N/2 locations, and the
odd elements into the next N/2 elements in reverse order. However, it is not easy
to implement the alternative algorithm without a temporary storage array and we
prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for small N that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed N of small dimension [1].

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §10–10.

Sorensen, H.V., Jones, D.L., Heideman, M.T., and Burris, C.S. 1987, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 849–863.

Hou, H.S. 1987, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
pp. 1455–1461 [see for additional references].

Hockney, R.W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).

Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314–329.

Clarke, R.J. 1985, Transform Coding of Images, (Reading, MA: Addison-Wesley).

Gonzalez, R.C., and Wintz, P. 1987, Digital Image Processing, (Reading, MA: Addison-Wesley).

Chen, W., Smith, C.H., and Fralick, S.C. 1977, IEEE Transactions on Communications, vol. COM-
25, pp. 1004–1009. [1]

12.4 FFT in Two or More Dimensions

Given a complex function h(k1, k2) defined over the two-dimensional grid
0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1, we can define its two-dimensional discrete
Fourier transform as a complex functionH(n1, n2), defined over the same grid,

H(n1, n2) ≡
N2−1∑
k2=0

N1−1∑
k1=0

exp(2πik2n2/N2) exp(2πik1n1/N1) h(k1, k2)

(12.4.1)

By pulling the “subscripts 2” exponential outside of the sum over k1, or by reversing
the order of summation and pulling the “subscripts 1” outside of the sum over k2,
we can see instantly that the two-dimensional FFT can be computed by taking one-
dimensional FFTs sequentially on each index of the original function. Symbolically,

H(n1, n2) = FFT-on-index-1 (FFT-on-index-2 [h(k1, k2)])

= FFT-on-index-2 (FFT-on-index-1 [h(k1, k2)])
(12.4.2)


