Chapter 12. Fast Fourier Transform

12.0 Introduction

A very large class of important computational problems falls under the general
rubric of “Fourier transform methods’ or “spectral methods.” For some of these
problems, the Fourier transform is simply an efficient computational tool for
accomplishing certain common manipulations of data. In other cases, we have
problems for which the Fourier transform (or the related “ power spectrum”) isitself
of intrinsicinterest. These two kinds of problems share a common methodol ogy.

Largely for historical reasons the literature on Fourier and spectral methods has
been digointfromtheliteratureon “classical” numerical analysis. Nowadaysthereis
no justificationfor such asplit. Fourier methods are commonplacein research and we
shall not treat them as specialized or arcane. At the same time, we realize that many
computer users have had relatively less experience with this field than with, say,
differential equations or numerical integration. Therefore our summary of analytical
resultswill be more complete. Numerical algorithms, per se, beginin§12.2. Various
applications of Fourier transform methods are discussed in Chapter 13.

A physical process can be described either in the time domain, by the values of
some quantity  as afunction of timet, eg., h(t), or else in the frequency domain,
where the process is specified by giving its amplitude H (generally a complex
number indicating phase aso) as a function of frequency f, that is H(f), with
—o00 < f < oo. For many purposesit is useful to think of h(t) and H(f) as being
two different representations of the same function. One goes back and forth between
these two representations by means of the Fourier transform equations,

mﬁ:/mmmmmﬁ
- (12.0.1)
h(t) = / H(f)e > 5" df

If t ismeasured in seconds, then f in equation (12.0.1) isin cycles per second,
or Hertz (the unit of frequency). However, the equations work with other unitstoo.
If hisafunctionof positionx (in meters), H will beafunction of inversewavelength
(cycles per meter), and so on. If you aretrained as a physicist or mathematician, you
are probably more used to using angular frequency w, which is givenin radians per
sec. The relation between w and f, H(w) and H(f) is

w=2nf H(w)=[H(f) 0 /2x (12.0.2)
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12.0 Introduction 497

and equation (12.0.1) looks like this

H(w) = / h h(t)e'dt
R (12.0.3)

h(t) = % /_ H(w)e ™ dw

We were raised on the w-convention, but we changed! There are fewer factors of
27 to remember if you use the f-convention, especially when we get to discretely
sampled data in §12.1.

From equation (12.0.1) it is evident at once that Fourier transformation is a
linear operation. The transform of the sum of two functionsis equal to the sum of
the transforms. The transform of a constant times a function is that same constant
times the transform of the function.

In the time domain, function h(¢t) may happen to have one or more specia
symmetries It might be purely real or purely imaginary or it might be even,
h(t) = h(—t), or odd, h(t) = —h(—t). Inthe frequency domain, these symmetries
lead to relationships between H(f) and H(—f). The following table gives the
correspondence between symmetries in the two domains:

If... then. .
t)isred f) [H(N))*
t) isimaginary f) =—-[HI*
t) iseven f)= H( ) [i.e, H(f)iseven)
fy=—-H(f) [i.e, H(f)isodd]

) |sreal and even
f) isimaginary and odd
f) isimaginary and even
f) isrea and odd

t) isred and odd
t) isimaginary and even
t) isimaginary and odd

h(t) H(—
h(t) H(—
h(t) H(-
h(t) isodd H(-
h(t) isreal and even H(
h(t) H(
h(t) H(
h(t) H(

In subsequent sections we shall see how to use these symmetries to increase
computationa efficiency.

Here are some other elementary properties of the Fourier transform. (We'll use
the “<=-" symbol to indicate transform pairs.) If

h(t) <= H(f)

is such a pair, then other transform pairs are

h(at) <= |1—|H(i) “time scaling” (12.0.4)

a a
o] h( ) < H(bf) “frequency scaling” (12.0.5)
h(t —to) <= H(f) *™ft0  “timeshifting” (12.0.6)

h(t) e= 2ot — H(f — fo) “frequency shifting”  (12.0.7)
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498 Chapter 12.  Fast Fourier Transform

With two functions h(t) and g(t), and their corresponding Fourier transforms
H(f) and G(f), we can form two combinationsof special interest. The convolution
of the two functions, denoted g  h, is defined by

gxh= /_OO g(T)h(t —7) dt (12.0.8)

Notethat g * h isafunction in the time domain and that g « h = h * g. It turns out
that the function g * h is one member of a simple transform pair

gxh<= G(f)H(f) “Convolution Theorem” (12.0.9)

In other words, the Fourier transform of the convolution is just the product of the
individua Fourier transforms.
The correlation of two functions, denoted Corr(g, k), is defined by

Corr(g, h) = /OO g(t +t)h(r) dr (12.0.10)

— 00

The correlationisafunction of ¢, which iscalled thelag. It thereforeliesin thetime
domain, and it turns out to be one member of the transform pair:

Corr(g, h) < G(f)H*(f) “Correlation Theorem” (12.0.11)

[Moregenerally, thesecond member of thepairisG(f)H (—f), butwearerestricting
ourselvesto theusual caseinwhich g and h arereal functions, so wetaketheliberty of
setting H(—f) = H*(f).] Thisresult shows that multiplyingthe Fourier transform
of one function by the complex conjugate of the Fourier transform of the other gives
the Fourier transform of their correlation. The correlation of afunction withitself is
called itsautocorrelation. In this case (12.0.11) becomes the transform pair

Corr(g, g) < |G(f)| “Wiener-Khinchin Theorem” (12.0.12)

The total power in a signa is the same whether we compute it in the time
domain or in the frequency domain. Thisresult isknown as Parseval’s theorem:

Total Power = /OO \h())? dt = /OO \H(f)]? df (12.0.13)

— 00 —00

Frequently onewantsto know “how much power” is contained in the frequency
interval between f and f + df. In such circumstances one does not usually
distinguish between positive and negative f, but rather regards f as varying from O
(“zero frequency” or D.C.) to +oo. In such cases, one defines the one-sided power
spectral density (PSD) of the function h as

P(f)=|HN* +H(=FP 0= f<oo (12.0.14)

so that the total power isjust theintegral of P, (f) from f = 0to f = co. When the
function h(t) isreal, thenthetwotermsin (12.0.14) areequal, 0 P, (f) = 2 |H(f)|*.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



12.0 Introduction 499

Ch(t)?

@

=

Ph(f) (one-sided)

—~
AS)

P(f)
(two-sided)

~f 0 f
(©

Figure 12.0.1. Normalizations of one- and two-sided power spectra. The area under the square of the
function, (a), equals the area under its one-sided power spectrum at positive frequencies, (b), and also
equals the area under its two-sided power spectrum at positive and negative frequencies, (c).

Be warned that one occasionally sees PSDs defined without this factor two. These,
strictly spesking, are called two-sided power spectral densities, but some books
are not careful about stating whether one- or two-sided is to be assumed. We
will aways use the one-sided density given by equation (12.0.14). Figure 12.0.1
contrasts the two conventions.

If the function h(t) goes endlessly from —oo < ¢t < oo, then its total power
and power spectral density will, in generd, be infinite. Of interest then is the (one-
or two-sided) power spectral density per unit time. This is computed by taking a
long, but finite, stretch of the function A(t), computing its PSD [that is, the PSD
of afunction that equals h(t) in the finite stretch but is zero everywhere elsg], and
then dividing the resulting PSD by the length of the stretch used. Parseval’s theorem
in this case states that the integral of the one-sided PSD-per-unit-time over positive
frequency is equa to the mean square amplitude of the signa A(t).

You might well worry about how the PSD-per-unit-time, which is a function
of frequency f, converges as one evaluates it using longer and longer stretches of
data. This interesting question is the content of the subject of “power spectrum
estimation,” and will be considered below in §13.4-513.7. A crude answer for
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500 Chapter 12.  Fast Fourier Transform

now is. The PSD-per-unit-time converges to finite values at all frequencies except
those where h(t) has a discrete sine-wave (or cosine-wave) component of finite
amplitude. At those frequencies, it becomes a delta-function, i.e., a sharp spike,
whose width gets narrower and narrower, but whose area converges to be the mean
square amplitude of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especialy with experimental
data, we are amost never given a continuous function h(t) to work with, but are
given, rather, alist of measurements of h(t;) for adiscrete set of ¢;’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Aca-
demic Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(t) is sampled (i.e, its value is
recorded) at evenly spaced intervalsintime. Let A denote thetime interval between
consecutive samples, so that the sequence of sampled valuesis

hp =h(nA)  n=...,—3,-2,-1,0,1,2,3,... (12.1.1)

The reciprocal of thetimeinterval A iscalled the sampling rate; if A is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval A, there is also a specia frequency f., called the
Nyquist critical frequency, given by

1
fe= 5A (12.1.2)
If asinewave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval A. In this case the Nyquist critical frequency is
just the constant 1/2.
The Nyquist critical frequency isimportant for two related, but distinct, reasons.

Oneis good news, and the other bad news. First the good news. It isthe remarkable
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12.1 Fourier Transform of Discretely Sampled Data 501

fact known as the sampling theorem: If a continuous function A(t), sampled at an
interval A, happensto be bandwidth limitedto frequencies smaller in magnitudethan
fe e, if H(f) =0foral |f| > f., thenthefunction h(t) iscompletely determined
by its samples h,,. In fact, h(t) is given explicitly by the formula

sin[27 f.(t — nA))
Anz_ooh — (12.1.3)
This is a remarkable theorem for many reasons, among them that it shows that the
“information content” of a bandwidth limited function is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing
with a signa that is known on physical grounds to be bandwidth limited (or at
least approximately bandwidth limited). For example, the signal may have passed
through an amplifier with a known, finite frequency response. In this case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at arate A~! equal to twice the maximum frequency passed
by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continuous
function that is not bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of
the frequency range —f. < f < f. is spurioudy moved into that range. This
phenomenon is called aliasing. Any frequency component outside of the frequency
range (—f., f.) is aliased (falsely trandated) into that range by the very act of
discrete sampling. You can readily convince yourself that two waves exp(27i f1t)
and exp(27ifat) give the same samples a an interva A if and only if f; and
f2 differ by a multiple of 1/A, which is just the width in frequency of the range
(= fe, fe). Thereislittle that you can do to remove aliased power once you have
discretely sampled asignal. The way to overcome diasingisto (i) know the natural
bandwidth limit of the signal — or else enforce a known limit by analog filtering
of the continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present. Figure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we can assume (or rather we might
as well assume) that its Fourier transform is equa to zero outside of the frequency
range in between — f. and f.. Then welook to the Fourier transform to tell whether
the continuousfunction has been competently sampled (aliasing effects minimized).
We do this by looking to see whether the Fourier transform is already approaching
zero as the frequency approaches f. from below, or —f. from above. If, on the
contrary, the transform is going towards some finite value, then chances are that
components outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of a function from afinite number of its
sampled points. Suppose that we have N consecutive sampled vaues

he = h(ty), te=kA, k=0,1,2,...,N—1 (12.1.4)
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502 Chapter 12.  Fast Fourier Transform

h(t)
T
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H(f)
ci) f
(b)

aliased Fourier transform
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Figure 12.1.1.  The continuous function shown in (a) is nonzero only for a finite interval of time T'.
It follows that its Fourier transform, whose modulus is shown schematically in (b), is not bandwidth
limited but has finite amplitude for all frequencies. If the original function is sampled with a sampling
interval A, asin (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist
critical frequency. Power outside that rangeis folded over or “aliased” into the range. The effect can be
eliminated only by low-pass filtering the original function before sampling.

so that the sampling interval is A. To make things simpler, let us also suppose that
N is even. If the function h(t) is nonzero only in a finite interval of time, then
that wholeinterval of time is supposed to be contained in the range of the NV points
given. Alternatively, if the function h(t) goes on forever, then the sampled points
are supposed to be at least “typical” of what h(t) lookslikeat al other times.

With N numbers of input, we will evidently be able to produce no more than
N independent numbers of output. So, instead of trying to estimate the Fourier
transform H(f) at al values of f in the range —f. to f., let us seek estimates
only at the discrete values

n N N
fn VA n=—gan g (12.1.5)

The extreme values of n in (12.1.5) correspond exactly to thelower and upper limits
of the Nyquist critical frequency range. If you are really on the ball, you will have
noticed that there are N + 1, not N, values of n in (12.1.5); it will turn out that
the two extreme values of n are not independent (in fact they are equal), but al the
others are.  This reduces the count to N.
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12.1 Fourier Transform of Discretely Sampled Data 503

The remaining step isto approximate theintegral in (12.0.1) by a discrete sum:

0o N-1 N—-1
H(fn) :/ h(t)e%m‘fntdt ~ Z hy eszntkA — A Z hu e271'1']@11/N
- k=0 k=0

(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final eguality. The final
summation in equation (12.1.6) is called the discrete Fourier transform of the N
points h,. Let us denote it by H,,,

N—

=

H, hy, e2mikn/N (12.1.7)

k=0

The discrete Fourier transform maps NV complex numbers (the hy's) into N complex
numbers (the H,,’s). It does not depend on any dimensional parameter, such as the
time scale A. The relation (12.1.6) between the discrete Fourier transform of a set
of numbers and their continuous Fourier transform when they are viewed as samples
of a continuous function sampled at an interval A can be rewritten as

H(f,) ~ AH, (12.1.8)

where f,, is given by (12.1.5).

Up to now we have taken the view that the index n in (12.1.7) varies from
—N/2to N/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodicin
n, with period N. Therefore, H_,, = Hy_, n =1,2,.... With thisconversion
in mind, one generdly lets the n in H,, vary from 0 to N — 1 (one complete
period). Then n and & (in hy) vary exactly over the same range, so the mapping
of N numbers into N numbers is manifest. When this convention is followed,
you must remember that zero frequency correspondsto n = 0, positive frequencies
0 < f < f. correspond to values 1 < n < N/2 — 1, while negative frequencies
—fe < f <0 correspond to N/2+1 < n < N-—1. Thevduen = N/2
corresponds to both f = f. and f = —f..

Thediscrete Fourier transform has symmetry propertiesalmost exactly thesame
as the continuous Fourier transform. For example, all the symmetries in the table
following equation (12.0.3) hold if we read hy, for h(t), H, for H(f), and Hy_,,
for H(—f). (Likewise, “even” and “odd” intimerefer to whether the values i, at k
and N — k are identical or the negative of each other.)

The formulafor the discrete inverse Fourier transform, which recovers the set
of hy's exactly from the H,,’s is:

1 N—1
hy = — H,, e 27mikn/N 12.1.9
B= nZ:O e ( )

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (ii) dividing the answer by N. This means that a
routinefor calculating discrete Fourier transforms can al so, with slight modification,
calculate the inverse transforms.
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The discrete form of Parseva’s theorem is

N-1 1 N-1
Ihil* = < D [Hal” (12.1.10)
k=0 n=0

Therearea so discrete ana ogsto the convol ution and correl ationtheorems (equations
12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computationisinvolved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Define W as the complex number

W = e2m/N (12.2.1)

Then (12.1.7) can be written as

N—
H, = Wnkhy, (12.2.2)
k=0

=

In other words, the vector of h;’sis multiplied by a matrix whose (n, k)th element
isthe constant W to the power n x k. The matrix multiplication produces a vector
result whose components are the H,,’s. Thismatrix multiplication evidently requires
N? complex multiplications, plus a smaller number of operations to generate the
required powers of 1. So, the discrete Fourier transform appears to be an O(N?)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log, N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log, N and N? isimmense.
With N = 106, for example, it isthe difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on amicrosecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from thework
of JW. Cooley and JW. Tukey. Retrospectively, we now know (see[1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of length V/2. One of the two is formed from the
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12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computationisinvolved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
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Then (12.1.7) can be written as
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H, = Wnkhy, (12.2.2)
k=0

=

In other words, the vector of h;’sis multiplied by a matrix whose (n, k)th element
isthe constant W to the power n x k. The matrix multiplication produces a vector
result whose components are the H,,’s. Thismatrix multiplication evidently requires
N? complex multiplications, plus a smaller number of operations to generate the
required powers of 1. So, the discrete Fourier transform appears to be an O(N?)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log, N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log, N and N? isimmense.
With N = 106, for example, it isthe difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on amicrosecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from thework
of JW. Cooley and JW. Tukey. Retrospectively, we now know (see[1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of length V/2. One of the two is formed from the
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12.2 Fast Fourier Transform (FFT) 505

even-numbered points of the original N, the other from the odd-numbered points.
The proof is simply this:

2

-1

F. = e27T’L]k/ij

™

Z <
IS
o

-1 N/2—1

_ e2m’k(2j)/Nf2j_|_ Z e2m’k(2j+1)/Nf2j+1
. = (12.2.3)

91 N/2-1
e27n'kj/(N/2)f2j_|_Wk Z ezm'lm'/(zv/z)fQjJr1
j=0

2.

I
™

o

J:
= Ff +W" Fp

Inthelast line, W is the same complex constant as in (12.2.1), F}¢ denotes the kth
component of the Fourier transform of length N/2 formed from the even components
of theoriginal f;’s, while F? isthe corresponding transform of length V/2 formed
from the odd components. Notice also that & in thelast line of (12.2.3) varies from
0 to N, not just to N/2. Nevertheless, the transforms F¢ and F? are periodicin k&
with length N/2. So each is repeated through two cycles to obtain F.

The wonderful thing about the Daniel son-Lanczos Lemma isthat it can be used
recursively. Having reduced the problem of computing F}, to that of computing
F¢ and F?, we can do the same reduction of £} to the problem of computing
the transform of its N/4 even-numbered input data and N/4 odd-numbered data
In other words, we can define 7 and F£° to be the discrete Fourier transforms
of the points which are respectively even-even and even-odd on the successive
subdivisions of the data

Although there are ways of treating other cases, by far the easiest case is the
one in which the original N is an integer power of 2. In fact, we categorically
recommend that you only use FFTswith N apower of two. If thelength of your data
set isnot a power of two, pad it with zeros up to the next power of two. (Wewill give
more sophisticated suggestions in subsequent sections below.) With this restriction
on N, it is evident that we can continue applying the Danielson-Lanczos Lemma
until we have subdivided the data all the way down to transforms of length 1. What
isthe Fourier transform of length one? It isjust the identity operation that copiesits
oneinput number intoitsoneoutput slot! In other words, for every pattern of log, N
e'sand o's, thereis aone-point transform that isjust one of the input numbers f,,

eroeeoeanoee — fn for somen (1224)

(Of course thisone-point transform actually does not depend on k, sinceitis periodic
in k& with period 1.)

The next trick is to figure out which value of n corresponds to which pattern of
e'sand o'sin equation (12.2.4). The answer is. Reverse the pattern of e’'sand o’s,
thenlet e = 0 and o = 1, and you will have, in binary the value of n. Do you see
why it works? It is because the successive subdivisionsof the datainto even and odd
aretests of successive low-order (least significant) bitsof n. Thisideaof bit reversal
can be exploited in a very clever way which, adong with the Danielson-Lanczos
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000 > 000 000
001 001 001
011 011 011
100 100 100
101 > 101 101
110 / \ 110 110
111 > 111 111
@ (b)

Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

Lemma, makes FFTs practical: Suppose we take the origina vector of data f;
and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individual
numbers are in the order not of j, but of the number obtained by bit-reversing j.
Then the bookkeeping on the recursive application of the Daniel son-Lanczos Lemma
becomes extraordinarily simple. The points as given are the one-point transforms.
We combine adjacent pairsto get two-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of order N operations, and there are evidently log, N combinations, so the whole
algorithmisof order N log, N (assuming, as is the case, that the process of sorting
into bit-reversed order is no greater in order than N log, N).

This, then, isthe structure of an FFT algorithm: It has two sections. The first
section sortsthe datainto bit-reversed order. Luckily thistakes no additional storage,
sinceit involvesonly swapping pairs of elements. (If £, isthebit reverse of k2, then
ko isthe bit reverse of k;.) The second section has an outer loop that is executed
log, N times and calculates, in turn, transforms of length 2,4,8,..., N. For each
stage of this process, two nested inner loops range over the subtransforms already
computed and the elements of each transform, implementing the Daniel son-Lanczos
Lemma. The operation is made more efficient by restricting external calls for
trigonometric sines and cosines to the outer loop, where they are made only log, N
times. Computation of the sines and cosines of multiple angles is through simple
recurrence relations in the inner loops (cf. 5.5.6).

The FFT routine given below is based on one originally written by N. M.
Brenner. The input quantities are the number of complex data points (nn), the data
array (datal1..2*nn]), and isign, which should be set to either £1 and isthesign
of 4 in the exponential of equation (12.1.7). When isign isset to —1, the routine
thus calculates the inverse transform (12.1.9) — except that it does not multiply by
the normalizing factor 1/N that appears in that equation. You can do that yourself.

Notice that the argument nn is the number of complex data points. The actual
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12.2 Fast Fourier Transform (FFT) 507

length of the real array (datal1..2*nn]) is 2 times nn, with each complex vaue
occupying two consecutive locations. In other words, data[1] is the red part of
fo, data[2] isthe imaginary part of f,, and so on up to data[2*nn-1], which
is therea part of fiy_1, and data[2#nn], which is the imaginary part of fn_1.
The FFT routine gives back the F),’s packed in exactly the same fashion, as nn
complex numbers.

Thereal and imaginary partsof the zero frequency component Fy areindata[1]
and data[2]; thesmallest nonzero positivefrequency hasreal and imaginary partsin
data[3] and data[4]; the smallest (in magnitude) nonzero negative frequency has
real and imaginary partsin data[2+nn-1] and data[2*nn]. Positive frequencies
increasing in magnitude are stored in the real-imaginary pairsdata[5], datal[6]
up todatal[nn-1], data[nn]. Negative frequencies of increasing magnitude are
stored in data[2*nn-3], data[2*nn-2] down to data[nn+3], datal[nn+4].
Finaly, thepair data[nn+1], data[nn+2] containtherea and imaginary parts of
the onealiased point that contains the most positiveand the most negative frequency.
You should try to develop a familiarity with this storage arrangement of complex
spectra, also shown in Figure 12.2.2, since it is the practical standard.

Thisis a good place to remind you that you can also use aroutine like four1
without modification even if your input data array is zero-offset, that is has the range
datal[0..2*nn-1]. Inthiscase, simply decrement the pointer to data by onewhen
fourl isinvoked, e.q., fouri(data-1,1024,1) ;. Thered part of f, will now be
returned in data[0], the imaginary part indata[1], and so on. See §1.2.

#include <math.h>
#define SWAP(a,b) tempr=(a); (a)=(b); (b)=tempr

void fourl(float data[], unsigned long nn, int isign)
Replaces data[1. .2*nn] by its discrete Fourier transform, if isign is input as 1; or replaces
datal1..2*nn] by nn times its inverse discrete Fourier transform, if isign is input as —1.
data is a complex array of length nn or, equivalently, a real array of length 2*nn. nn MUST
be an integer power of 2 (this is not checked for!).
{

unsigned long n,mmax,m,j,istep,i;

double wtemp,wr,wpr,wpi,wi,theta; Double precision for the trigonomet-

float tempr,tempi; ric recurrences.

n=nn << 1;

j=1;

for (i=1;i<n;i+=2) { This is the bit-reversal section of the

if (3 > 1) { routine.
SWAP (datal[j],datalil); Exchange the two complex numbers.
SWAP(data[j+1],datal[i+1]);
}
m=n >> 1;
while (m >= 2 && j > m) {
=
m >>= 1;
}
= m
}
Here begins the Danielson-Lanczos section of the routine.
mmax=2;
while (n > mmax) {
istep=mmax << 1;
theta=isign*(6.28318530717959/mmax) ; Initialize the trigonometric recurrence.
wtemp=sin(0.5*theta) ;
wpr = -2.0*wtemp*wtemp;

Outer loop executed log, nn times.
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@ red @ red

it t=0 | b= f=0

® imag @ imag
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@ imag @ imeg NA
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Figure 12.2.2. Input and output arrays for FFT. (a) The input array contains N (a power of 2)
complex time samples in areal array of length 2V, with real and imaginary parts alternating. (b) The
output array contains the complex Fourier spectrum at N values of frequency. Real and imaginary parts
again alternate. The array starts with zero frequency, works up to the most positive frequency (which
is ambiguous with the most negative frequency). Negative frequencies follow, from the second-most
negative up to the frequency just below zero.

wpi=sin(theta);
wr=1.0;
wi=0.0;
for (m=1;m<mmax;m+=2) {
for (i=m;i<=n;i+=istep) {
j=i+mmax; This is the Danielson-Lanczos for-
tempr=wr*datal[j]-wixdata[j+1]; mula:
tempi=wr*data[j+1]+wixdatal[j];
datal[jl=datal[i]-tempr;
data[j+1]=data[i+1]-tempi;
datal[i] += tempr;
datal[i+1] += tempi;

Here are the two nested inner loops.

wr=(wtemp=wr) *wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

Trigonometric recurrence.

}

mmax=istep;
}

(A double precision version of four1, named dfourl, isused by the routine mpmul
in §20.6. You can easily make the conversion, or else get the converted routine
from the Numerical Recipes diskette.)
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12.2 Fast Fourier Transform (FFT) 509

Other FFT Algorithms

We should mention that thereareanumber of variantson thebasic FFT algorithm
given above. As we have seen, that algorithm first rearranges the input elements
into bit-reverse order, then builds up the output transform in log, IV iterations. In
the literature, this sequence is called a decimation-in-time or Cooley-Tukey FFT
algorithm. It is also possibleto derive FFT algorithmsthat first go through a set of
log, N iterations on the input data, and rearrange the output values into bit-reverse
order. Theseare called decimation-in-frequency or Sande-Tukey FFT agorithms. For
some applications, such as convolution (§13.1), one takes a data set into the Fourier
domain and then, after some manipulation, back out again. Inthesecasesitispossible
to avoid al bit reversing. You use a decimation-in-frequency agorithm (without its
bit reversing) to get into the “scrambled” Fourier domain, do your operations there,
and then use an inverse algorithm (without its bit reversing) to get back to the time
domain. While elegant in principle, this procedure does not in practice save much
computation time, since the bit reversals represent only asmall fraction of an FFT's
operations count, and since most useful operationsin the frequency domain require
a knowledge of which points correspond to which frequencies.

Another class of FFTs subdivides the initia data set of length N not al the
way down to the trivial transform of length 1, but rather only down to some other
small power of 2, for example N = 4, base-4 FFTs, or N = 8, base-8 FFTs. These
small transforms are then done by small sections of highly optimized coding which
take advantage of specia symmetries of that particular small N. For example, for
N = 4, the trigonometric sines and cosines that enter are al +1 or 0, so many
multiplications are eliminated, leaving largely additions and subtractions. These
can be faster than simpler FFTs by some significant, but not overwhelming, factor,
eg., 20 or 30 percent.

There are also FFT agorithms for data sets of length NV not a power of
two. They work by using relations analogous to the Danielson-Lanczos Lemma to
subdivide the initial problem into successively smaller problems, not by factors of
2, but by whatever small prime factors happen to divide N. The larger that the
largest prime factor of NV is, the worse this method works. If IV is prime, then no
subdivision is possible, and the user (whether he knows it or not) is taking a slow
Fourier transform, of order N2 instead of order N log, N. Our adviceisto stay clear
of such FFT implementations, with perhaps one class of exceptions, the Winograd
Fourier transformalgorithms. Winograd algorithms are in some ways ana ogous to
the base-4 and base-8 FFTs. Winograd has derived highly optimized codings for
taking small- NV discrete Fourier transforms, e.g., for N = 2,3,4,5,7,8,11,13, 16.
The agorithms also use a new and clever way of combining the subfactors. The
method involvesa reordering of the data both before the hierarchical processing and
after it, but it allows a significant reduction in the number of multiplicationsin the
algorithm. For some especidly favorable values of NV, the Winograd algorithms can
be significantly (e.g., up to a factor of 2) faster than the simpler FFT agorithms
of the nearest integer power of 2. This advantage in speed, however, must be
weighed against the considerably more complicated data indexing involved in these
transforms, and the fact that the Winograd transform cannot be done “in place.”

Finaly, an interesting class of transforms for doing convolutions quickly are
number theoretic transforms. These schemes replace floating-point arithmetic with
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integer arithmetic modulo some large prime N+1, and the Nth root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
a al, but the properties are quite similar and computational speed can be far
superior.  On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itsalf is not easily interpretable
as a “frequency” spectrum.
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12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples f;, j = 0...N — 1. To use fourl, we put these into a complex array
with all imaginary parts set to zero. The resulting transform F,,, n =0... N — 1
satisfies Fiyv_,* = F,. Since this complex-vaued array has real values for Fj
and Fi /2, and (IN/2) — 1 other independent values I} . .. Fiy/o_1, it has the same
2(N/2 —1) 4 2 = N “degrees of freedom” asthe original, real data set. However,
theuse of thefull complex FFT algorithmfor real dataisinefficient, bothin execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
rea functionsinto the input array in such away that their individua transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of haf itslength. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. Thisis donein the program realft below.
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and Fi /2, and (IN/2) — 1 other independent values I} . .. Fiy/o_1, it has the same
2(N/2 —1) 4 2 = N “degrees of freedom” asthe original, real data set. However,
theuse of thefull complex FFT algorithmfor real dataisinefficient, bothin execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
rea functionsinto the input array in such away that their individua transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of haf itslength. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. Thisis donein the program realft below.
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12.3 FFT of Real Functions, Sine and Cosine Transforms 511

Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transform F,, to handle
two real functions a once: Since the input data f; are real, the components of the
discrete Fourier transform satisfy

Frnon = (F)* (12.3.1)

where the asterisk denotes complex conjugation. By the same token, the discrete
Fourier transform of a purely imaginary set of g;'s has the opposite symmetry.

Gnon = —(Gp)* (12.3.2)

Therefore we can take the discrete Fourier transform of two real functions each of
length N simultaneoudly by packing the two data arrays as the real and imaginary
parts, respectively, of the complex input array of four1. Thentheresultingtransform
array can be unpacked into two complex arrays with the aid of the two symmetries.
Routine twofft works out these ideas.

void twofft(float datal[], float data2[], float ffti[], float fft2[],

unsigned long n)
Given two real input arrays datal[1..n] and data2[1..n], this routine calls fourl and
returns two complex output arrays, fft1[1..2n] and £ft2[1..2n], each of complex length
n (i.e., real length 2*n), which contain the discrete Fourier transforms of the respective data
arrays. n MUST be an integer power of 2.
{

void fourl(float datal], unsigned long nn, int isign);

unsigned long nn3,nn2,jj,j;

float rep,rem,aip,aim;

nn3=1+(nn2=2+n+n) ;

for (j=1,jj=2;j<=n;j++,jj+=2) { Pack the two real arrays into one com-
fft1[jj-1]=datal[j]; plex array.
fft1[jjl=data2[jl;

fourl(ffti,n,1); Transform the complex array.
fft2[1]=££t1[2];
fft1[2]=££t2[2]=0.0;
for (j=3;j<=n+1;j+=2) {
rep=0.5%(fft1[jl+fft1[nn2-3j1); Use symmetries to separate the two trans-
rem=0.5%(£ft1[j1-fft1[nn2-3j]); forms.
aip=0.6x(fft1[j+1]+fft1[nn3-3j]1);
aim=0.5* (fft1[j+1]-fft1[nn3-jl);
fft1[jl=rep; Ship them out in two complex arrays.
fft1[j+1]=aim;
fft1[nn2-jl=rep;
fft1[nn3-j] = -aim;
fft2[jl=aip;
fft2[j+1] = -rem;
fft2[nn2-jl=aip;
fft2[nn3-jl=rem;
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512 Chapter 12.  Fast Fourier Transform

What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that you know that the inverses
of both transforms are real functions. Can you invert both in asingle FFT? Thisis
even easier than the other direction. Use the fact that the FFT is linear and form
the sum of the first transform plus i times the second. Invert using four1 with
isign = —1. Thereal and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

To implement the second method, which alows us to perform the FFT of
a single real function without redundancy, we split the data set in haf, thereby
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the origina data. It will
be a schizophrenic combination of two transforms, each of which has haf of the
information we need. Fortunately, thisschizophreniaistreatable. It workslikethis:

The right way to split the origina data is to take the even-numbered f; as
one data set, and the odd-numbered f; as the other. The beauty of this is that
we can take the original real array and treat it as a complex array h; of half the
length. The first data set is the red part of this array, and the second is the
imaginary part, as prescribed for twofft. No repacking isrequired. In other words
hj = faj+ifaj+1, §=0,...,N/2—1. Wesubmitthistofouri, anditwill give
back acomplex array H,, = F¢ +iF?, n=0,...,N/2—1with

N/2—1
F:L — Z f2k e271'1']611/(N/2)
k=0
o (12.3.3)

F;; — Z f2k+1 e271'1']611/(N/2)
k=0

The discussion of program twofft tellsyou how to separate the two transforms
F¢ and F? out of H,,. How do you work them into the transform F,, of the origina
data set f;? Simply glance back at equation (12.2.3):

F,=F¢4e*™m/Npe  p=0,...,.N-1 (12.3.4)

Expressed directly in terms of the transform H,, of our real (masquerading as
complex) data set, the result is

1 ] .
Fp = =(H, + Hyja_n*) — %(Hn — Hyjp_p®)e2™ /N =0, N—1

2
(12.35)

A few remarks:

e Since Fiy_,,* = F, thereisno point in saving the entire spectrum. The
positive frequency half is sufficient and can be stored in the same array as
the origina data. The operation can, in fact, be done in place.

e Even so, weneedvaues H,,, n =0, ..., N/2 whereas four1 givesonly
thevaluesn = 0,..., N/2 — 1. Symmetry to the rescue, H /o = H.
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The values Iy and Fy /- are red and independent. In order to actualy
get the entire F, in the original array space, it is convenient to put Fy/,

into the imaginary part of Fj.

Despite its complicated form, the process above is invertible. First ped

Fpnyo out of Fy. Then construct

L1 :
P% ::§(Ek/+'PkU2—n)

1 - *
Fy = 56_2771”/N(Fn = Fnya—n)

n=0,...,N/2-1 (12.36)

and use fourl to find the inverse transform of H, = Fﬁl) + z’ngQ).
Surprisingly, the actua agebraic steps are virtualy identical to those of

the forward transform.

#include <math.h>

Here is a representation of what we have said:

void realft(float datal], unsigned long n, int isign)

Calculates the Fourier transform of a set of n real-valued data points. Replaces this data (which
is stored in array data[1. .n]) by the positive frequency half of its complex Fourier transform.
The real-valued first and last components of the complex transform are returned as elements
datal[1] and data[2], respectively. n must be a power of 2. This routine also calculates the
inverse transform of a complex data array if it is the transform of real data. (Result in this case
must be multiplied by 2/n.)

{

void fourl(float datal[], unsigned long nn, int isign);
unsigned long i,i1,i2,i3,i4,np3;
float c1=0.5,c2,hlr,h1i, h2r ,h2i;
double wr,wi,wpr,wpi,wtemp,theta;

theta=3.141592653589793/ (double) (n>>1);

if (isign == 1) {

c2 = -0.5;
fourl(data,n>>1,1);

} else {

}

c2=0.5;
theta = -theta;

wtemp=sin(0.5*theta) ;

wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0+wpr;

wi=wpi;

np3=n+3;

for (i=2;i<=(n>>2);i++) {

}

i4=1+(i3=np3-(i2=1+(il=i+i-1)));

hir=cix*(datal[il]+datal[i3]);
hii=clx*(datal[i2] -datal[i4]);
h2r = -c2x(datal[i2]+datal[i4]);
h2i=c2*(datal[il]-datal[i3]);
datal[il]l=hilr+wrxh2r-wi*h2i;
datal[i2]=hli+wr*h2i+wi*h2r;
data[i3]=hilr-wrxh2r+wi*h2i;
datal[i4] = -hli+wr*h2i+wixh2r;
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

if (isign == 1) {

Double precision for the trigonomet-
ric recurrences.
Initialize the recurrence.

The forward transform is here.

Otherwise set up for an inverse trans-
form.

Case i=1 done separately below.
The two separate transforms are sep-

arated out of data.

Here they are recombined to form
the true transform of the origi-
nal real data.

The recurrence.
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514 Chapter 12.  Fast Fourier Transform

data[1] = (hilr=datal[1])+datal[2]; Squeeze the first and last data to-
data[2] = hir-datal[2]; gether to get them all within the
} else { original array.

data[1]=c1*((hir=datal[1])+datal[2]);

data[2]=c1*(hir-data[2]);

fourl(data,n>>1,-1); This is the inverse transform for the
} case isign=-1.

Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used to solve
differential eguations (see §19.4). The most common boundary conditions for the
solutions are 1) they have the value zero at the boundaries, or 2) their derivatives
are zero a the boundaries. In the first instance, the natural transform to use is the
sine transform, given by

N-1
Fp =Y f;sin(mjk/N)  sinetransform (12.3.7)

j=1

where f;, j =0,...,N — listhedata array, and f, = 0.

At first blush thisappearsto be simply theimaginary part of the discrete Fourier
transform. However, the argument of the sine differs by a factor of two from the
value that would make this so. The sine transform uses sines only as a complete set
of functionsin the interval from 0 to 2, and, as we shall see, the cosine transform
uses cosines only. By contrast, the normal FFT uses both sines and cosines, but only
half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be“force-fit” into aform that allowsits cal culation
viathe FFT. Theideaisto extend the given function rightward past itslast tabulated
value. We extend the data to twice their length in such away as to make them an
odd function about j = N, with fy = 0,

fon—j=—f;  j=0,....N—1 (12.3.8)

Consider the FFT of this extended function:

2N—-1
Fp= Y f;e®™Ik/CN (12.3.9)
j=0

The half of this sum from j = N to j = 2N — 1 can be rewritten with the
substitution j' = 2N — j

2N—-1 N
Z fje2m'jk/(2N) _ Z sz_j/e2m'(2N_j/)k/(2N)
j=N j'=1

(12.3.10)

N-1
.y
- _ E fj/e—27'rz] k/(2N)
J'=0
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Figure 12.3.1. Basisfunctionsused by the Fourier transform (a), sinetransform (b), and cosinetransform
(c), are plotted. Thefirst five basis functions are shown in each case. (For the Fourier transform, the real
and imaginary parts of the basis functions are both shown.) While some basis functions occur in more
than one transform, the basis sets are distinct. For example, the sine transform functionslabeled (1), (3),
(5) are not present in the Fourier basis. Any of the three sets can expand any function in the interval
shown; however, the sine or cosine transform best expands functions matching the boundary conditions
of the respective basis functions, namely zero function values for sine, zero derivatives for cosine.

0 that

F [ezm'jk/(zN) _ e—2mijk/(2N)

(12.3.11)

N-1
S f
7=0

N-1
2i Y f;sin(rjk/N)

=0

Thus, up to a factor 2i we get the sine transform from the FFT of the extended
function.

This method introduces a factor of two inefficiency into the computation by
extending the data. This inefficiency shows up in the FFT output, which has
zeros for the red part of every element of the transform. For a one-dimensional
problem, the factor of two may be bearable, especially in view of the simplicity
of the method. When we work with partia differential equations in two or three
dimensions, though, the factor becomes four or eight, so efforts to eliminate the
inefficiency are well rewarded.
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516 Chapter 12.  Fast Fourier Transform

From theoriginal real dataarray f; we will construct an auxiliary array y; and
apply toit theroutinerealft. The output will then be used to construct the desired
transform. For thesinetransformof data f;, j = 1,..., N —1, theauxiliary array is

Yo =10
y 1 .
y; = s(Gr/N)(fj + fv-j) + 5(fi = fv—j) =1 . N~1
This array is of the same dimension as the original. Notice that the first term is

symmetric about j = N/2 and the second is antisymmetric. Consequently, when
realft isappliedto y;, theresult hasreal parts R, and imaginary parts I;, given by

N—1
Ry = y; cos(2mjk/N)
3=0
N—1
= ) _(fi + fn—j)sin(jm/N) cos(2mjk/N)
j=1
N—1
= 2f;sin(jm/N) cos(2mjk/N)
7=0
N—1 . .
. 2k+ Dy . (2k-1)jrm
= . fi [sm N — sin N
7=0
= Forp1 — Fors (12.3.13)
N—1
I = y; sin(2mjk/N)
7=0
N—1
=D (fi = fn—j)5 sin(2mjk/N)
j=1
N—1
= fjsin(2mjk/N)
3=0
— Fu (12.3.14)

Therefore F), can be determined as follows:
Fy, = Iy, Fopy1=Fop_1+ Ry k=0,...,(N/2-1) (12.3.15)
The even terms of F}, are thus determined very directly. The odd terms require

a recursion, the starting point of which follows from setting £ = 0 in equation
(12.3.15) and using Fy = —F_q:

1
Fy = R (12.3.16)

The implementing program is
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12.3 FFT of Real Functions, Sine and Cosine Transforms 517

#include <math.h>

void sinft(float y[], int n)

Calculates the sine transform of a set of n real-valued data points stored in array y[1..n].
The number n must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/n.

{

void realft(float datal], unsigned long n, int isign);

int j,n2=n+2;

float sum,yl,y2;

double theta,wi=0.0,wr=1.0,wpi,wpr,wtemp; Double precision in the trigono-

metric recurrences.

theta=3.14159265358979/ (double) n; Initialize the recurrence.

wtemp=sin(0.5*theta) ;

wpr = -2.0*wtemp*wtemp;

wpi=sin(theta);

y[11=0.0;

for (j=2;j<=(m>>1)+1;j++) {
wr=(wtemp=wr)*wpr-wi*wpi+wr;  Calculate the sine for the auxiliary array.
wi=wixwpr+wtemp*wpi+wi; The cosine is needed to continue the recurrence.
yl=wix(y[jl+y[n2-3j1); Construct the auxiliary array.
y2=0.5*(y[jl-y[n2-j1);
y[jl=y1+y2; Terms j and N — j are related.
y[n2-jl=y1-y2;

}

realft(y,n,1); Transform the auxiliary array.

y[1]1%=0.5; Initialize the sum used for odd terms below.

sum=y [2]=0.0;

for (j=1;j<=n-1;j+=2) {
sum += y[j];
y[jl=y[j+11; Even terms determined directly.
y[j+1]=sum; Odd terms determined by this running sum.

}

The sine transform, curioudly, isitsown inverse. If you apply it twice, you get the
origina data, but multiplied by a factor of N/2.

The other common boundary condition for differential eguations is that the
derivative of the function is zero at the boundary. In this case the natural transform
is the cosine transform. There are severa possible ways of defining the transform.
Each can be thought of as resulting from a different way of extending a given array
to create an even array of doublethe length, and/or from whether the extended array
contains 2N — 1, 2N, or some other number of points. In practice, only two of the
numerous possibilitiesare useful so we will restrict ourselves to just these two.

The first form of the cosine transform uses N + 1 data points:

N—-1
Fi = é[fo + (=D ]+ D S cos(mik/N) (12.3.17)

j=1
It results from extending the given array to an even array about j = N, with
fon—j=1f;,  7=0,....N—-1 (12.3.18)

If you substitutethisextended array into equation (12.3.9), and foll ow stepsanal ogous
to those leading up to equation (12.3.11), you will find that the Fourier transform is
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518 Chapter 12.  Fast Fourier Transform

just twice the cosinetransform (12.3.17). Another way of thinking about theformula
(12.3.17) isto noticethat it isthe Chebyshev Gauss-L obatto quadrature formula (see
§4.5), often used in Clenshaw-Curtis adaptive quadrature (see §5.9, equation 5.9.4).

Once agai n thetransform can be computed without thefactor of two inefficiency.
In this case the auxiliary function is

1 . .
yi = 5(fi + fy—g) —sin(Gn/N)(fj = fv—j) 7 =0,...,N-1 (123.19)
Instead of equation (12.3.15), realft now gives
For. = Ry Fopy1 = Fop—1 + I, ]C:O,,(N/2—1) (12320)

The starting value for the recursion for odd % in this case is

N—-1
b= %(fo —fn)+ Y ficos(jm/N) (12.3.21)

j=1

This sum does not appear naturally among the Ry, and I, and so we accumulate it
during the generation of the array y;.

Once again this transform is its own inverse, and so the following routine
works for both directions of the transformation. Note that although this form of
the cosine transform has N + 1 input and output values, it passes an array only
of length N to realft.

#include <math.h>
#define PI 3.141592653589793

void cosfti(float y[], int n)
Calculates the cosine transform of a set y [1. .n+1] of real-valued data points. The transformed
data replace the original data in array y. n must be a power of 2. This program, without
changes, also calculates the inverse cosine transform, but in this case the output array should
be multiplied by 2/n.
{

void realft(float datal], unsigned long n, int isign);

int j,n2;

float sum,yl,y2;

double theta,wi=0.0,wpi,wpr,wr=1.0,wtemp;

Double precision for the trigonometric recurrences.

theta=PI/n; Initialize the recurrence.
wtemp=sin(0.5*theta) ;

wpr = -2.0*wtemp*wtemp;

wpi=sin(theta);

sum=0.5*(y[1]-y[n+11);

y[1]1=0.5*%(y[1]+y[n+1]);

n2=n+2;
for (j=2;j<=(m>>1);j++) { j=n/2+1 unnecessary since y [n/2+1] unchanged.
wr=(wtemp=wr)*wpr-wi*wpitwr; Carry out the recurrence.

wi=wi*wpr+wtemp*wpi+wi;
y1=0.5%(y[jl+y[n2-j1);
y2=(y[jl-y[n2-31);

Calculate the auxiliary function.

y[jl=y1-wixy2; The values for j and N — j are related.
y[n2-jl=yl+wixy2;
sum += wrxy2; Carry along this sum for later use in unfold-

} ing the transform.
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12.3 FFT of Real Functions, Sine and Cosine Transforms 519

realft(y,n,1); Calculate the transform of the auxiliary func-
y[n+1]l=y[2]; tion.
y[2]=sum; sum is the value of F in equation (12.3.21).
for (j=4;j<=n;j+=2) {
sum += y[jl; Equation (12.3.20).
y[jl=sum;
}
The second important form of the cosine transform is defined by
N—-1 . 1
wk(j + 3)
Fy = ; cos ——2~ 12.3.22
k Z f] S N ( )
7=0
with inverse
N-1
2 / wk(j + %)
fi=% ;O Fi cos ———2= (12.3.23)

Here the prime on the summation symbol means that the term for £ = 0 has a
coefficient of % in front. Thisform arises by extending the given data, defined for
j=0,...,N—1,t0j = N,...,2N —1insuch away that it iseven about the point
N — 1 and periodic. (It istherefore also even about j = —1.) The form (12.3.23)
is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev
approximation (5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (§5.9).

This form of the cosine transform is useful when solving differential equations
on “staggered” grids, where the variables are centered midway between mesh points.
It isaso the standard form in the field of data compression and image processing.

The auxiliary function used in this case is similar to equation (12.3.19):

m(j+ 1
%(fj—ffv—j—l) j=0,...,N—1

(12.3.24)

1 .
Y = §(fj + fn—j—1) —sin

Carrying out the steps similar to those used to get from (12.3.12) to (12.3.15), wefind

k k
Faj, = cos %Rk — sin %Ik (12.3.25)

k k
Faj,_1 = sin %Rk + cos %Ik + Fapi (12.3.26)

Note that equation (12.3.26) gives
1
Fy_1= §RN/2 (12.3.27)

Thus the even components are found directly from (12.3.25), while the odd com-
ponents are found by recursing (12.3.26) down from k = N/2 — 1, using (12.3.27)
to start.

Since the transform is not self-inverting, we have to reverse the above steps
to find the inverse. Here is the routine:
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520 Chapter 12.  Fast Fourier Transform

#include <math.h>
#define PI 3.141592653589793

void cosft2(float y[], int n, int isign)
Calculates the “staggered” cosine transform of a set y[1..n] of real-valued data points. The
transformed data replace the original data in array y. n must be a power of 2. Set isign to
+1 for a transform, and to —1 for an inverse transform. For an inverse transform, the output
array should be multiplied by 2/n.
{

void realft(float datal], unsigned long n, int isign);

int i;

float sum,suml,yl,y2,ytemp;

double theta,wi=0.0,wil,wpi,wpr,wr=1.0,wrl,wtemp;

Double precision for the trigonometric recurrences.

theta=0.5*PI/n; Initialize the recurrences.
wrl=cos(theta);
wil=sin(theta);
wpr = -2.0*wilx*wil;
wpi=sin(2.0*theta) ;
if (isign == 1) {

for (i=1;i<=n/2;i++) {

y1=0.5%(y[i]+y[n-i+1]);
y2=wil*(y[i]-y[n-i+1]1);

Forward transform.

Calculate the auxiliary function.

ylil=y1+y2;
y[n-i+1]=y1-y2;
wri=(wtemp=wrl) *wpr-wil*wpi+wri; Carry out the recurrence.
wil=wil*wpr+wtemp*wpi+wil;
}
realft(y,n,1); Transform the auxiliary function.
for (i=3;i<=n;i+=2) { Even terms.
wr=(wtemp=wr) *wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
yil=y[i]*wr-y[i+1]*wi;
y2=y [i+1]*ur+y[i]*wi;
ylil=y1;
yli+1]l=y2;
}
sum=0.5*y[2]; Initialize recurrence for odd terms
for (i=m;i>=2;i-=2) { with £ Rp/a.
suml=sum; Carry out recurrence for odd terms.
sum += y[i];
y[il=sumil;
}
} else if (isign == -1) { Inverse transform.
ytemp=y[n];
for (i=n;i>=4;i-=2) yl[il=y[i-2]-y[i]; Form difference of odd terms.

y[2]1=2.0*ytemp;

for (i=3;i<=n;i+=2) {
wr=(wtemp=wr) *wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
yl=y[i]*wr+y [i+1]*wi;
y2=y [i+1] *wr-y[i]*wi;
y[il=y1;
y[i+1]=y2;

Calculate Ry and Iy.

}

realft(y,n,-1);

for (i=1;i<=n/2;i++) {
yl=y[il+y[n-i+1];
y2=(0.5/wil)*(y[i]-y [n-i+1]);
y[i]=0.5*(y1+y2);
y[n-i+1]=0.5%(y1-y2);
wrl=(wtemp=wrl) *wpr-wil*wpi+wrl;
wil=wil*wpr+wtemp*wpi+wil;

Invert auxiliary array.
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12.4 FFT in Two or More Dimensions 521

An aternative way of implementing this agorithm is to form an auxiliary
function by copying the even elements of f; into the first N/2 locations, and the
odd elements into the next N/2 elements in reverse order. However, it is not easy
to implement the aternative agorithm without a temporary storage array and we
prefer the above in-place agorithm.

Finally, we mention that there exist fast cosine transforms for small NV that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed N of small dimension [1].
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12.4 FFT in Two or More Dimensions

Given a complex function h(k1, k2) defined over the two-dimensiona grid
0<k <N;—1, 0<ky<Ny;—1,wecan define its two-dimensiona discrete
Fourier transform as a complex function H(n1, n2), defined over the same grid,

Na—1N;—1

H(?’Ll, TLQ) = Z Z exp(2m'k2n2/N2) exp(2m'k1n1/N1) h(kl, k2)
ko=0 k1=0
(12.4.1)

By pulling the“ subscripts 2" exponential outside of the sum over k1, or by reversing
the order of summation and pulling the “subscripts 1" outside of the sum over k-,
we can see instantly that the two-dimensional FFT can be computed by taking one-
dimensional FFTs sequentially on each index of the original function. Symbolically,

H(ny,n9) = FFT-on-index-1 (FFT-on-index-2 [h(k1, k2)])

12.4.2
= FFT-on-index-2 (FFT-on-index-1 [h(k1, k2)]) ( )
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