
1664 PROCEEDINGS OF  THE IEEE, VOL. 55. NO. 10, OCTOBER 1967 

What Is the  Fast  Fourier  Transform? 

Abstracr-The  fast  Fourier transform is a computational tool which 
facilitates signal analysis such as power spectnan analysis and filter simula- 
tion by means  of  digital  computers.  It is a method  for efficiently ampsting 
the  discrete  Fourier transform of a series of  data samples (referred to as a 
time series). In this paper,  the  discrete  Fourier transform of  a  time series is 
defined  some  of its properties  are disclssed, the Pssociated  fast  method ( fat  
Fourier transform) for  computing this transform is derived, and some of  the 
computational aspects of the method  are  presented. Examples are  included to 
demonstrate  the  concepts  involved. 

INTRODUCTION 

A N  ALGORITHM  for the computation of Fourier 
coefficients  which requires much less computational 
effort than was required in the past was  reported by 

Cooley and Tukey[’] in 1965. This  method is  now  widely 
known as the “fast Fourier  transform,”  and has produced 
major  changes in computational techniques used in digital 
spectral analysis, filter simulation, and related fields. The 
technique  has  a  long  and interesting history that has been 
summarized by Cooley, Lewis, and Welch in this issue[’]. 

The fast Fourier  transform (FFT) is a  method  for effi- 
ciently computing the discrete Fourier  transform (DFT) of 
a time  series (discrete data samples). The efficiency  of this 
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method is such that solutions to many  problems  can now  be 
obtained substantially more  economically  than in the past. 
This is the  reason  for the very great current interest in this 
technique. 

The discrete Fourier  transform  (DFT) is a  transform in 
its own right such as the Fourier integral transform or the 
Feu-rier series transform. It is a powerful  reversible mapping 
operation  for  time series. As the name implies, it  has  mathe- 
matical properties that  are entirely analogous to those of the 
Fourier integral transform. In particular, it  defines a spec- 
trum of a  time series; multiplication of the transform of two 
time series corresponds  to  convolving the time series. 

If digital analysis techniques are  to be  used for analyzing 
a  continuous  waveform  then  it is  necessary that the data be 
sampled (usually at equally spaced intervals of time) in 
order  to produce  a  time series  of discrete samples which 
can be  fed into  a digital computer. As is  well known[61, such 
a  time series completely represents the continuous wave- 
form,  provided this waveform is frequency  band-limited 
and the samples are taken at  a  rate  that is at least twice the 
highest frequency present in the  waveform.  When these 
samples are equally spaced  they are known as Nyquist 
samples. It will be shown that the DFT of such  a  time series 
is  closely related to the Fourier  transform of the  continuous 
waveform  from which samples  have been taken  to form  the 
time series. This  makes the DFT particularly useful for 
power  spectrum analysis and filter simulation on digital 
computers. 

The fast Fourier  transform  (FFT), then, is a highly 
efficient procedure for  computing the DFT of a time series. 
It takes advantage of the fact that the calculation of the 
coefficients  of the DFT can be carried out iteratively, which 
results in  a considerable savings of computation time. T h s  
manipulation is not intuitively obvious, perhaps explaining 
why this approach was overlooked  for  such  a  long time. 
Specifically, if the time series consists of N=2“ samples, 
then about  2nN=2N. log,N arithmetic operations will  be 
shown to be required to evaluate all N associated DFT  co- 
efficients. In  comparison  with the number of operations 
required for the calculation of the DFT coefficients with 
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straightforward  procedures (N’), this  number is so small 
when Nis large as  to completely  change  the  computationally 
economical  approach to various  problems. For example, 
it  has been reported  that  for N=  8 192 samples,  the  computa- 
tions  require about five seconds  for  the  evaluation of  all 
8 192 DFT coefficients on  an IBM 7094 computer.  Conven- 
tional  procedures  take  on  the  order of half an  hour. 

The  known  applications  where  a  substantial  reduction 
in  computation  time’has been achieved include : 1) computa- 
tion of the power spectra  and  autocorrelation  functions of 
sampled  dataf41; 2) simulation of filtersL5]; 3) pattern 
recognition by using a  twodimensional  form of the DFT; 
4) computation of bispectra,  crosscovariance  functions, 
cepstra,  and  related  functions;  and 5 )  decomposing of con- 
volved functions. 

THE DISCRETE FOURIER TRANSFORM (DFT) 
Definition of the DFT and Its  Inverse 

Since the FFT is an efficient method for computing  the 
DFT it  is appropriate to begin by discussing the DFT  and 
some of the  properties  that  make  it so useful a  transforma- 
tion.  The DFT is defined by’ 

N- 1 
A, = XkeXp(-2Kjjrk/N) r = O;”,N - 1  (1) 

k = O  

where A, is the  rth coefficient of the DFT and x, denotes 
the kth sample of the time series which consists of N samples 
and j =  J T .  The  xk’s  can be complex numbers  and  the 
A,’s are  almost always complex. For  notational convenience 
(1) is often written as 

N- 1 

A, = 1 (xk)wrk r = 0,. . . , N - 1  (2) 
k = O  

where 

W = exp (- 2nj/N). (3) 

Since the  xk’s  are often values of a  function at discrete time 
points,  the index r is sometimes called the  “frequency” of 
the DFT.  The  DFT has  also been called the “discrete 
Fourier  transform” or the  “discrete time, finite  range 
Fourier  transform.” 

There exists the  usual inverse of the DFT and, because 
the form is  very similar to that of the  DFT, the FFT may 
be used to compute  it. 

The inverse of (2) is 
N- 1 

X, = (1/N) 1 A,W-” 1 = 0, l ; . . ,N - 1. (4) 
r = O  

This  relationship is called the inverse discrete  Fourier  trans- 
form (IDFT).  It is easy to show that  this  inversion is valid 
by inserting  (2)  into (4) 

N-1  N-1 
x, = (xk/N)wr(k-J). ( 5 )  

r = O   k = O  

The  definition of the DFT is not uniform in  the  literature. Some 
authors  use A J N  as the DFT coefficients,  others use A , / n ,  still others use 
a  positive  exponent. 

Interchanging in ( 5 )  the  order of summing over the indices 
r and k,  and using the  orthogonality  relation 

N- 1 

exp (2nj(n - m)r/N) = N, if n = m mod N 
r = O  

= 0, otherwise (6)  

establishes  that  the right side of ( 5 )  is  in  fact equal to  X,. 
It is  useful to extend the  range of definition of A, to all 

integers  (positive  and negative). Within this definition it 
follows that 

Relationships Between DFT and  the Fourier 
Transform of a Continuous Watleform 

An important  property  that makes the DFT so eminently 
useful  is the  relationship between the DFT of a sequence 
of Nyquist samples and  the  Fourier  transform of a  con- 
tinuous waveform, which  is represented by the  Nyquist 
samples. To recognize this relationship,  consider  a fre- 
quency  band-limited waveform g(t) whose Nyquist samples, 
X,, vanish outside  the time interval 0 I t  I N T  

sin(n(t - kT)/T) 
’(‘) = zo (n(t - LT)/T) ’ xk 

where Tis the time spacing between the samples. A periodic 
repetition of g(t)  can be constructed  that  has  identically  the 
same  Nyquist  samples  in  the time interval 0 st I N T  

Nzl sin (n(t - kT - lNT)/T) 
gp(f) = (n(t - kT - lNT)/T) . (10) I k = O  

Let the  Fourier  transform of g(t) be G( f). As is  well 
knownL6],  this  transform is exactly specified at  discrete fre- 
quencies by the complex Fourier series coefficients of  g,(t). 
From  this it  follows : 

NT 
= ( l / N T ) j  gp(t).exp(-2njnt/NT).dt 

0 
N- 1 

= (l/NT)  Xk.exp(-2njnkT/NT) (11) 
k = O  

where In( I N/2  due  to  the  spectral  bandwidth  limitation 
implicitly assumed by the  sampling  theorem  underlying 
the validity of Nyquist samples. 

Comparing (1 1)  and (1)  it  is  seen that they are exactly 
the  same except for afactor of N T  and (r ,  n) are  both un- 
bounded.  That is, 

N . A, = D, for r = n and  T = 1 second. (12) 

The  bounds specified for r  and n require  a  correspondence 
which depends on (7) 



1666 PROCEEDINGS OF  THE IEEE.  OCTOBER 1967 

(Time) (Frequency) 
4 

L 
T = NT 

t 

G(njN T )  
N T  

= D, = N . A ,  

where 

n = r for n = 0, 1, ' . ., q < Nl2, 

and 

n = N - r for n = -1, -2;.., -4 > - N / 2  (13) 

and 

G(nINT)  
N T  

= D, = N .  A,/2 for n = N/2 .  (14) 

Equations (13) and (14) give a direct relationship between 
the DFT coefficients and the Fourier  transform at discrete 
frequencies for the waveform stipulated by (9). A one-to- 
one  correspondence  could  have been obtained if the run- 
ning variable r had been bounded by f N/2.  This, however, 
would  have required distinguishing between  even and  odd 

Fig. 1. 

Frequency band-limited source waveform. 
Nyquist samples of the frequency band-limited source 
waveform. 
Truncated source waveform. 
Truncated series of Nyquist samples of the source wave- 
form. 
Frequency band-limited waveform whose Nyquist  sam- 
ples are identical to the  truncated series of Nyquist  sam- 
ples of the  source waveform. 
Periodic continuation of the  truncated source waveform. 
Periodic continuation of the truncated series of Nyquist 
samples of the source waveform. 
D M  coefficients interpreted  as  Fourier series coefficients 
producing complex waveform. 

Related waveforms and their corresponding spectra as 
-defined by the  Fourier  transforms (integral transforms  for 

energy-limited waveforms; series transform for periodic 
waveforms). 

values of N ,  a distinction avoided by keeping r positive. 
A waveform of the type considered by (9) is shown in 

Fig. l(e). It is  usually obtained  as  an  approximation of a 
frequency band-limited  source waveform  [such as the one 
sketched in Fig. l(a)] by truncating the Nyquist  sample 
series of this waveform, and reconstructing the continuous 
waveform corresponding to the truncated Nyquist  sample 
series [Fig. l(b), (d), and  (e)].  Notwithstanding the identity 
of the Nyquist  samples of this reconstructed waveform and 
the frequency band-limited  source waveform, these wave- 
forms differ  in the  truncation interval pig.  l(c) and (e)]. 
The difference  is  usually  referred to as aliasing distortion ; 
the mechanics of this distortion is most apparent in the 
frequency  domain [Fig. l(cHe)]. It can be made negligibly 
small by choosing  a sufficiently large product of the fre- 
quency  bandwidth of the source waveform and the duration 
of the truncation  intervalt6] (e.g., N is greater than ten). 

These aliasing distortions  are carried over directly to the 
discrete spectra of the periodically repeated waveforms 
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TABLE I 
COMPARISON OF THE NUMBER OF MULTIPLICATIONS REQUIRED USING "DIRECT" Ah) FFT METHODS 

Approximate Number of Multiplications 
(upper  comparable  bounds) 

Direct FFT 
Operation Formula 

I 

Discrete Fourier  Transform ( D m )  
.. . 
1 "jrk  r =  1 , 2 ; . . , N -  1 ~ NZ 2N log, N 

k = O  

Filtering (Convolution) 
N -  1 

~~ . ~~~~ ~ 

X k x - k  u = O , l ; . . , N - l  N 2  3N log, N 
k = O  

Autocorrelation  Functions 
w- 1 --I 

1 r = 0, 1, . . ' ,  N - 1 z F  + 3) 3N log, N 
k = O  4 2  

Two-Dimensional FourierTransform (Pattern Analysis) X t , l e - 2 n j ( k + '  " r, q = 0, 1, . . . , N - 1 
I N-1 N-1 

N4  4N2 log, N 
k = O  1=0 

Two-Dimensional Filtering 

[Fig. l ( f )  and  (g)], and  appear  correspondingly in the DFT 
of the  truncated series of Nyquist samples [Fig. l(h)]. It 
may be of interest to observe that  the waveform corre- 
sponding to the DFT coefficients interpreted as Fourier 
series coefficients is complex [Fig. l(h)]. 

Some  Useful  Properties of the DFT 
Another  property  that  makes  the DFT eminently useful 

is the  convolution  relationship.  That is, the IDFT of the 
product of two DFTs is the  periodic  mean  convolution of 
the two time series of the  DFTs.  This  relationship  proves 
very  useful  when computing  the  filter  output as a result of 
an  input waveform ; it becomes especially effective  when 
computed by the FFT. A derivation of this  property is 
given  in Appendix A. 

Other  properties of the DFT are in agreement with the 
corresponding  properties of the  Fourier  integral  transform, 
perhaps with slight modifications. For example, the DFT 
of a time series circularly shifted by h is the DFT of the 
time series multiplied by W-rh .  Furthermore,  the DFT of 
the  sum of two functions is the  sum of the DFT of the two 
functions. These properties  are readily derived using the 
definition of the DFT. These and  other  properties have been 
compiled by Gentleman  and  Sandef'] 

THE  FAST  FOURIER  TRANSFORM 
General  Description of the FFT 

As mentioned  in  the  Introduction,  the FFT is an algo- 
rithm  that  makes  possible  the  computation of the DFT of 
a  time series more  rapidly  than do other  algorithms  avail- 
able.  The  possibility of computing  the DFT by such  a  fast 
algorithm  makes  the DFT technique  important. A com- 
parison of the  computational savings that may be achieved 
through use  of the FFT is summarized  in  Table  I  for  various 
computations  that  are  frequently  performed.  It is important 
to  add  that  the  computational  efforts listed represent  com- 
parable  upper bounds;  the actual  efforts  depend  on  the 

number N and the  programming  ingenuity applied[']. 
It may be useful to point  out  that  the FFT not only re- 

duces  the  computation  time; it also  substantially reduces 
round-off  errors  associated with these computations.  In 
fact,  both  computation  time  and  round-off  error essentially 
are reduced by a  factor of  (log, N ) / N  where N is the  number 
of data samples  in  the  time series. For example, if N =  1024 
= 21°, then N .  log, N =  10  240[71,[91. Conventional  methods 
for  computing (1) for N =  1024 would  require  an effort 
proportional  to Nz = 1 048 576, more  than 50 times that 
required  with  the FFT. 

The FFT is a clever computational  technique of sequen- 
tially  combining progressively larger weighted sums of data 
samples so as  to produce  the DFT coefficients as defined by 
(2). The  technique  can be interpreted  in  terms of combining 
the DFTs of the  individual data samples such  that  the 
occurrence times of these samples are taken  into  account 
sequentially  and  applied to  the  DFTs of progressively 
larger  mutually exclusive subgroups of data samples, which 
are  combined to ultimately  produce  the DFT of the  com- 
plete series of data samples.  The  explanation of the FFT 
algorithm  adopted  in  this  paper is believed to be particularly 
descriptive  for  programming  purposes. 

Concentional Forms of the F F T  
Decimation  in Time: The DFT [as per (2)]  and its inverse 

[see (4)]  are of the  same form so that  a  procedure, machine, 
or subroutine  capable of computing  one  can be  used  for 
computing  the  other by simply exchanging  the  roles of X ,  
and A,, and  making  appropriate scale-factor and sign 
changes.  The  two basic forms of the FFT, each with its 
several modifications,  are  therefore  equivalent. However, it 
is worth  distinguishing between them  and discussing them 
separately. Let us first consider  the  form used by Cooley 
and  Tukeyl'] which shall be called decimation in time. Re- 
versing the roles of A ,  and X ,  gives the form called decima- 
tion in frequency, which will be considered  afterwards. 
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Suppose  a  time series having N samples [such as x k  

shown in Fig. 2(a)] is divided into  two functions, & and z k ,  

each of which has only  half as many points ( N / 2 ) .  The 
function yk is composed of the even-numbered points ( X o ,  
X , ,   X ,  ...), and z k  is composed of the odd-numbered 
points (Xl, X , ,  X ,  . . .). These functions are  shown in Fig. 
2(b) and (c), and we may write them formally as 

yk = N 
k = O , l , 2 ; ' ' , - -  1 .  ( 1 5 )  

2 
z k  = X 2 k +  1 

Since Y k  and z k  are sequences of N / 2  points each, they have 
discrete Fourier  transforms defined  by 

B, = 1 & exp ( -  4njrk/N) 
( N / 2 ) -  1 

k = O  

N 
' 2  

r = 0, 1 , 2 ; . .  -- 1 .  (16) 

( N / 2 )  - 1 

C ,  = z k  exp ( - 4njrk/N) 

The discrete Fourier  transform that we want is A,, which 
we can write in terms of the odd-  and  even-numbered points 

k = O  

- 1 

A ,  = 1 exp (- 4njrk/N) 
k = O  

+ Z k  exp (- ?$ [2k + l ] ) }  

r = 0, 1, 2, . . . ,  N - 1 (17) 

or 
( N 1 2 ) -  1 

A,  = Y k  exp ( - 4 n j r k / N )  
k = O  

( N i 2 ) -  1 + exp ( -2njr /N)  1 Zk exp ( -4n j rk /N)   (18 )  

which, using (16), may be written in the following form : 

A ,  = B, + exp ( -  2njr/N)C, 0 I r < N/2 .   (19 )  

For values of r greater than N / 2 ,  the discrete Fourier  trans- 
forms B, and C ,  repeat periodically the values taken  on 
when I <  N / 2 .  Therefore, substituting r + N / 2  for r in (19), 
we obtain 

k =  0 

0 I r < N / 2  
= B, - exp ( -  2njr/N)C,  0 5 r < N/2 .   (20 )  

By using (3), (19) and (20) may  be written as 

A,  = B, + .W'C, 0 I r < N/2   (21 )  
= B, - W'C, 0 < r < N/2.   (22)  

From (21) and (22), the first N / 2  and last N / 2  points of the 
discrete Fourier  transform of X ,  (a  sequence  having N 
samples)  can be  simply obtained  from the DFT of & and 
z k ,  both sequences of N / 2  samples. 

Assuming that we have a  method which computes dis- 
crete Fourier  transforms in a time proportional  to the 
square  of the number of samples, we can use this algorithm 
to  compute the transforms of & and Zk,  requiring a  time 
proportional  to 2(N/2) , ,  and use (21) and (22) to find A ,  
with additional N operations. This is illustrated in the sig- 
nal flow graph of Fig. 3. The  points  on  the left are the values 
of x ,  (i.e., yk and z k ) ,  and the points on the right are the 
points of the discrete Fourier transform, A,. For simplicity, 
Fig. 3 is drawn for the case  where x ,  is an eight-point 
function, and  advantage is taken of the fact that W"= 

However, since Y k  and z k  are  to be transformed,  and 
since we have shown that the computation of the DFT of 
N samples  can  be  reduced to computing the DFTs of two 
sequences of N / 2  samples each, the computation of Bk (or 
C,) can be reduced to the computation of sequences of 
N / 4  samples. These reductions can be carried out as long 
as each function has  a  number of samples that is  divisible 
by 2. Thus, if N = 2" we can  make n such reductions, applying 
(15 ) ,  (21), and (22) first  for N ,  then for N / 2 , .  . . , and finally  for 
a  two-point function. The discrete Fourier  transform of a 
one-point function is, of course, the sample itself. The suc- 
cessive reduction of an eight-point discrete Fourier trans- 
form, begun  in Fig. 3, is continued in Figs. 4 and 5. In Fig. 5 
the operation  has been completely  reduced to complex 
multiplications and additions. From the signal  flow graph 
there are 8 by 3 terminal nodes  and 2 by 8 by 3 arrows, cor- 
responding  to 24 additions  and 48 multiplications. Half of 
the multiplications can  be  omitted since the transmission 
indicated by the arrow is unity. Half of the remaining multi- 
plications are also easily eliminated, as we shall see  below. 
Thus, in general, N .log, N complex  additions and, at  most, 
4 N .  log, N complex multiplications are required for com- 
putation of the discrete Fourier  transform of an N point 
sequence, where N is a power of 2. 

When N is not  a  power of 2, but  has  a factor p ,  the de- 
velopment of equations  analogous to ( 1 5 )  through (22) is 
possible by forming p different sequences, Yf)=  x p k +  i ,  each 
having N / p  samples. Each of these sequences  has  a DFT 
@:), and the DFT of the sequence x k  can be computed 
from the p simpler DFTs with pN complex multiplications 
and  additions.  That is, 

- wn - N12 , as per (3). 

P- 1 

+ m ( N / p )  = @;)wi[r+ m(Nip) l  

i = O  

rn = 0, 1 , 2 ,  ..., p - 1 
_ -  1 .  

' P  

The  computation of the DFTs can be further simplified if 
N has  additional  prime factors. 

Further information about the fast Fourier  transform 
can  be extracted from Fig. 5. For example, if the input se- 
quence x ,  is stored in computer  memory in the order 

x,, x,, x,, x,, x , ,  x,,  x,, x,,  (24)  
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'k 

0 1 2 3 4 5 6 7  

Fig. 2. Decomposition of a time series into two part-time series. 
each of which consists of half the samples. 

X 0  

x 4  

x 2  

e .  e 

XI 

e . .  

x 3  

e . .  

x 7  

Fig. 4. Signal flow graph  illustrating  further reduction of the DFT 
computation suggested by Fig. 3. 

DISCRETE 

A2 

A3 
3 

A4 

DISCRETE As 
TRANSFORM 

Fig. 3. Signal flow graph illustrating the reduction of endpoint DFT  to 
two DFTs of N!2 points each, using decimation in time. The signal 
flow graph may be unfamiliar to some readers. Basically it is composed 
of dots (or nodes) and arrows  (transmissions).  Each  node represents a 
variable, and the arrows terminating at  that node  origmate at the nodes 
whose variables contribute to the value of the variable at  that node. 
The contributions are additive, and the weight of each contribution, if 
other than unity, is indicated by the  constant written close to the  arrow- 
head of the transmission. Thus, in this example, the  quantity A ,  at the 
bottom right node is equal to B 3 +  W X C3. Operations  other  than  Fig. 5. Signal flow graph illustrating the computation of the DFT 
addition and constant multiplication must be clearly indicated by when the  operations involved are completely reduced to multiplications 
symbols other  than . or -. and  additions. 
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as in  Fig. 5, the  computation of the  discrete  Fourier  trans- 
form may  be done “in place,”  that is, by writing all inter- 
mediate  results over the  original data sequence, and writing 
the final answer over the  intermediate results. Thus, no 
storage is needed beyond that  required for the  original N 
complex numbers. To see this,  suppose  that  each  node  cor- 
responds to two memory  registers  (the  quantities to be 
stored  are complex). The  eight  nodes  farthest to  the left in 
Fig. 5 then  represent  the registers containing  the  shufaed 
order  input  data.  The first step in the  computation is to 
compute  the  contents of the registers represented by the 
eight nodes just to the  right of the  input nodes. But  each 
pair of input  nodes affects only the  corresponding  pair of 
nodes  immediately to the  right,  and if the  computation 
deals with two nodes at  a time,  the newly computed  quan- 
tities may be written into  the registers from which the  input ‘4 

values  were taken, since the  input values are  no  longer 
needed for further  computation.  The  second  step,  com- 
putation of the  quantities  associated with the next vertical 
array of nodes to the  right,  also involves pairs of nodes 
although these pairs  are now two  locations apart instead 
of one.  This fact does  not  change  the  property of “in place” 
computation, since each  pair of nodes affects only the  pair 
of nodes  immediately to the  right. After a new pair of results 
is computed, it  may be stored in the registers which held 
the  old  results  that  are no longer needed. In the  computa- A7 

tion for the final array of nodes,  corresponding to the values 
of the DFT, the  computation involves pairs of nodes  sepa- 
rated by four  locations,  but  the “in place”  property  still 

Fig.  6. Rearrangement of the  flow  graph of Fig. 5 illustrating  the DFT 
computation from  naturally  ordered  time  samples. 

holds. 
For this version of the  algorithm,  the  initial  shuf3ing  of 

the data sequence, X , ,  was necessary for the “in place” 
computation. Thus shuffling is due to the  repeated move- 
ment of odd-numbered  members of a sequence to the  end of 
the  sequence  during  each  stage of the  reduction, as shown 
in Figs. 3, 4, and 5. This shuffling has been called bit  re- 
versal’ because the  samples  are  stored in bit-reversed order ; 
i.e., X ,  =X(100)2 is stored in position (01 1)’ = 3, etc. Note 
that  the  initial  data shuffling can  also be done “in place.” 

Variations of Decimation in Time: If one so desires, the 
signal flow graph shown in Fig. 5 can be manipulated to 
yield different forms of the decimation in time version of the 
algorithm. If one  imagines that in Fig. 5 all the  nodes  on  the 
same  horizontal level as A ,  are  interchanged with all  the 
nodes  on  the  same  horizontal level as A,, and all the nodes 
on the level of A ,  are  interchanged with the  nodes on  the 
level  of A,, with  the  arrows  carried along with  the  nodes, then 
one  obtains  a flow graph  like  that of Fig. 6.  

For this  rearrangement  one need not shuffle the  original 
data  into the bit-reversed order,  but  the  resulting  spectrum 
needs to be unshuffled. An additional  disadvantage might 
be that  the powers of W needed in the  computation  are  in 
bit-reversed  order. Cooley’s original  description of the 
algorithm[’]  corresponds to the flow graph of Fig. 6. 

This is a  special  case of digit  reversal  where  the radix of the  address is 
2; more  general  digit  reversals  are available  for transforms with other 
radices. 

Fig. 7. Rearrangement of the  flow  graph of  Fig. 5 illustrating  the DFT 
computation without  bit  reversal. 
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A somewhat more complicated rearrangement of Fig. 5 
yields the signal  flow graph of Fig. 7 .  For this case both the 
input data and the resulting spectrum are in “natural” 
order,  and the coefficients  in the computation  are also used 
in a natural order. However, the  computation may no longer 
be done “in  place.” Therefore, at least one other array of 
registers must be provided. This signal  flow graph,  and a 
procedure  corresponding to it,  are due  to Stockham“]. 

Decimation in Frequency: Let us now consider a second, 
quite distinct, form of the fast Fourier transform algorithm, 
decimation in frequency. This form was found independently 
by Sande[’] and by Cooley and Stockham[’]. Let the time 
series xk have a DFT A, .  The series and the DFT  both con- 
tain N terms. As before, we divide X ,  into two sequences 
having N,’2 points each. However, the first  sequence, Yk, is 
now composed of the first N,/2 points in x,, and the second, 
Z , ,  is composed of the last Ni2  points in X , .  Formally, 
then 

5 = x ,  
N 

’ 2  
k = 0, 1 , 2 ,  ’ . .  - - 1 .  (25) 

zk  = X k + N ’ 2  

The N point DFT of X ,  may now be written in terms of 
Y k  and z k  

( m 2 ) -  1 

A ,  = 1 exp ( -  2lrjrkiN) 
k = O  

+ z k  exp (- 2njr [k + t] /N)} (26)  

( N ( 2 ) -  1 

A ,  = { K + [exp ( - lrjr)]Zk) exp ( -  2lrjrk/N).  (27) 
k = O  

Let us consider separately the even-numbered and  odd- 
numbered  points of the transform. Let the even-numbered 
points be R, and  the  odd-numbered  points be S, ,  where 

R r  = - 4 2 ,  

0 I r < N/2 .   (28 )  
S r  = A2r+ 1 

It  is this step that may be  called decimarion in frequency. 
Note  that for computing  the even-numbered spectrum 
points, (27)  becomes simply 

which we recognize as the N / 2  point DFT of the function 
( K + Z k ) ,  the  sum of the first N / 2  and the last N / 2  time 
samples. Similarly,  for the  odd-numbered spectrum points, 
(27)  becomes 

(N/Z) -  1 

S ,  = A2,+ = I K + Zk exp (-7rj[2r + 1))) - - 
k = O  

. exp ( - 27rj[2r + l ] k / N )  

which we recognize as the N / 2  point DFT of the function 

It  can be concluded from (29)  and (30) that the DFT  of 
an N-sample sequence, X , ,  may be determined as follows. 
For even-numbered transform points, it may be computed 
as  an N / 2  point DFT of a simple combination of the first 
N / 2  and last N / 2  samples of x,. For odd-numbered  trans- 
form points, it may be computed as  another N / 2  point 
DFT of a different simple combination of the first and last 
N / 2  samples of x,. This is illustrated in the signal  flow 
graph of Fig. 8 for an eight-point function. W has been de- 
fined  in (3). 

As was the case with decimation in  time, we can replace 
each of the DFTs indicated in Fig. 8 by 2 two-point DFTs, 
and  each of the  two-point DFTs by 2 one-point transforms, 
these  last  being  equivalency operations. These steps are 
indicated in  Figs. 9 and 10. 

Examination of Fig. 10 gives us much  information about 
the  method of decimation  in frequency, and allows us to 
compare it  with decimation in time. Both methods require 
N / 2  .log N complex additions, complex subtractions,  and 
complex multiplications. Both  computations can be done 
in  place. If the coefficients  in the  computation  are to be  used 
in a “natural” rather than “bit-reversed’’ order, as in  Figs. 
5 and 10, then the decimation-in-frequency method works 
on time samples in  unshuffled order  and yields  frequency 
samples in  shuffled (bit-reversed) order. Recall that Fig. 5 
yielded the  opposite result. 

We are also able to rearrange  the nodes in Fig. 10 to 
obtain  the signal flow graph, Fig. 1 1 ,  which works on 
shuffled time samples and yields naturally ordered fre- 
quency samples, but  the coefficients are needed by the com- 
putation in  bit-reversed order.  The geometry of this signal 
flow graph is identical to the geometry of Fig. 5, just  as the 
geometry of Fig. 10 is identical to the geometry of Fig. 6 .  
The differences  lie  in the transmissions. 

A somewhat more complicated rearrangement of Fig. 10 
(shown in Fig. 12) yields a signal  flow graph that takes un- 
shuffled samples of the time  series and produces a set of 
Fourier coefficients that  are nor in  bit-reversed order.  The 
computation  cannot, however,  be done “in  place,” and at 
least one  other array of registers must be provided. The 
method is similar to  that shown in Fig. 7 for decimation in 
time. The forms of Figs. 5 ,  6 ,  7, 10, 1 1 ,  and 12 constitute a 
set of what we might call canonic forms of the fast Fourier 
transform. We may choose among these forms to find an 
algorithm with the properties of “in place” computation, 
normally ordered  input, normally ordered output,  or nor- 
mally ordered coefficients, but  not all four at once. To 
achieve  “in place” computation, we must deal with  bit 
reversal, and  to eliminate bit reversal we must give up 
“in place” computation.  The  two  methods most effective 
when  using homogeneous  storage facilities are  those pro- 
viding  in right order  the sine and cosine  coefficients  needed 
in the Computation. The  other  methods seem  less desirable 
since they require wasteful tables. Still,  all  six methods 
have about equal usefulness, and  the  method used  best 
will depend on the  problem at  hand.  For example, the 

( K  - zk) exp ( - 2rcjk/N). 
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Fig. 8. Signal flow graph illustrating the reduction of endpoint DFT 
to two DFTs of N / 2  points each, using decimation in frequency. 

Fig. 9. Signal flow graph illustrating  further reduction of the DFT 
computation suggested by Fig. 8.  

Fig. 10. Signal flow graph illustrating  the  computation of the DFT 
when the  operations involved are completely r e d u d  to multiplica- 
tions and additions. 

Fig. 11. Rearrangement of the flow graph of Fig. 10 illustrating  the 
computation of the DFT to yield naturally  ordered DFT coefficients. 
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Fig. 12. Rearrangement of the flow graph of Fig. I O  illustrating 
the DFT computation  without bit  reversal. 

method  shown in Fig. 10  may  be  used to transform from 
the time to the frequency domain,  and  the  method shown 
in Fig. 4 may  be  used  for the inverse transform. Any  of the 
methods described above may be used  for the inverse dis- 
crete Fourier  transform if the coefficients are replaced by 
their complex conjugates, and if the result of the  computa- 
tion is multiplied by 1/N. 

The six forms mentioned are, in a sense, canonic, but  one 
could also employ a combination of decimation in  time 
and  decimation in  frequency at different  stages  in the re- 
duction process,  yielding a hybrid signal  flow graph. 

A Useful Compurational Variation: It may be worth 
pointing out here how some programming simplicity  is 
realized  when the factors p and q = N / p  are relatively prime. 
As described by Cooley, Lewis, and WelchL2], the “twiddle 
factor” W” of (23) can be eliminated by choosing sub- 
sequences of the xk’s  that are different from those used be- 
fore. The DFT  computations are then conveniently per- 
formed in two stages. 

1)  Compute the q-point transforms 

of each of the p sequences 

2)  Compute, then, the p-point transforms 
I)- 1 

of the q sequences B f ) ,  where 

s = r . p ( p ) ; ’  + m.q(q)p l  (modN,O I s < N )  (34) 

and  the notation I$),’ is meant to represent the reciprocal 
of p ,  mod q, i.e., the  solution of p(p ) ,  ’ > 1  (mod q). 

CONCLUSION 
The integral transform  method  has been one of the 

foundations of analysis for  many years  because  of the ease 
with which the  transformed expressions may be manipu- 
lated, particularly in such diverse areas as acoustic wave 
propagation, speech transmission, linear network theory. 
transport phenomena, optics, and electromagnetic theory. 
Many  problems whch  are particularly amenable to solution 
by integral transform  methods have not been attacked by 
this method  in  the  past because of the high cost of obtaining 
numerical results this way. 

The  fast  Fourier  transform  has certainly modified the 
economics of solution by transform  methods. Some new 
applications were presented in the  June, 1967,  issue  of the 
IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS. 
Further interesting and profitable applications  probably 
will  be found during the next  few  years. 

APPENDIX 
As  is  well known, if the filter impulse response is  fre- 

quency band-limited to  1/2T Hz and is  given by its Ny- 
quist samples Yh spaced T seconds apart,  and furthermore, 
if the  input waveform is also frequency band-limited to 
1/2T Hz and given by its Nyquist samples x ,  spaced T 
second apart, then  the filter output waveform  is also fre- 
quency band-limited to  l /2T Hz and completely  specified 
by its Nyquist samples Z ,  spaced T seconds apart 

S S 

2, = x,’  X - k  = 1 x,-,’x. (35) 
k =  0 I = O  

The  convolution  relationship facilitates computation of 
this equation. 

To prove the convolution relationship, let the DFT of 
the xk’s  be A ,  and, correspondingly, let the DFT of the 
Yh’s be Br.  The IDFT of the  product of A , .  Br then becomes 
[see  (4)1 
/ I \ N-1 

1 N-l N-l N-1 

1 N-1  N-1 N-1 W r ( k + f - s )  

= -  1 x k 4  1 N N k = O  I = O  r = O  
1 s  1 N - 1  

= (h). Z ,  + perturbation  term. (36) 
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If the first N/2  samples of each of the two time series (X,) 
and ( y h )  are assumed to be identically  zero,  then  the per- 
turbation  term of (36) is zero so that  the IDFT of the 
product of the  two DFTs multiplied by N is equal to the 
convolution  product 2, of (35).  Since  it is always possible 
to select the time series to be convolved such  that half of 
the  samples  are  zero,  the  convolution  relationship  for  the 
DFT can be  used to compute  the  convolution  product 
[see (35)] of two time series. 

It is  useful to point out  that if.A,= Bwr ,  a  periodic auto- 
correlation  function of E; emerges. 
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Correction to “Noise in FM Receivers with Negative 
Frequency 

P. Frutiger, author of the  above  paper which appeared on 
pages 1506-1520 of the  November, 1966, issue of the 
PROCEEDINGS, has called the following to  the  attention  of 
the  Editor. 

On page 1507, the  function 4(t) in (7) should  have  read 
@(t), where Wr) represents 

+(t) - mot - - sin at. Am 
n 

On page 1508, (8)  should have appeared as 

. Am 
n 

e(t) = 4(t) + t g - ’  

The first factor  in (9), page 1508, should  have  read 

In (lo), page 1508, the sine function  should be replaced 
(f - Af COS at). 

by the  cosine  function : 

Manuscript received July 24,  1967. 

Feedback” 

e , ( f )  = f i i k  cos k2nft. (10) 
00 

k= 1 

The Rayleigh function following (1 l), page 1508, should 
have read 

w(n) = r exp (- $) = 2np exp (- pn2). 
2n 
n2 

Finally, it should be remembered that  the mean value of 
the noise voltage e,( f), as  a consequence of the fact that it 
exists only where n(t)< 1, is equal to that given in (lo), 
multiplied by the  mean time where the  fundamental fre- 
quency f is not “switched off,” i.e.,  jA2np exp ( - p n 2 )  dn. 
For k =  1, this leads to (12) in the following form: 

On page 1511, the  measure of the abscissa in  Fig. 4 is 

4 - *  
B 
f n  


