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Abstract—The fast Fourier transform algorithm has a long and
interesting history that has only recently been appreciated. In this
paper, the contributions of many investigators are described and
placed in historical perspective.

HisToRrICAL REMARKS

HE FAST FOURIER transform (FFT) algo-
T rithm is a method for computing the finite Fourier

transform of a series of N (complex) data points in
approximately N log. N operations. The algorithm has
a fascinating history. When it was described by Cooley
and Tukey [1] in 1965 it was regarded as new by many
knowledgeable people who believed Fourier analysis to
be a process requiring something proportional to N2
operations with a proportionality factor which could be
reduced by using the symmetries of the trigonometric
functions. Computer programs using the N2?-operation
methods were, in fact, using up hundreds of hours of
machine time. However, in response to the Cooley—
Tukey paper, Rudnick [5], of Scripps Institution of
Oceanography, La Jolla, Calif., described his com-
puter program which also takes a number of operations
proportional to N log: N and is based on a method pub-
lished by Danielson and Lanczos [2]. It is interest-
ing that the Danielson-Lanczos paper described the
use of the method in X-ray scattering problems, an area
where, for many years after 1942, the calculations of
Fourier transforms presented a formidable bottleneck to
researchers who were unaware of this efficient method.
Danielson and Lanczos refer to Runge [6], [7] for the
source of their method. These papers and the lecture
notes of Runge and Kénig [8] describe the procedure
in terms of sine-cosine series. The greatest emphasis,
however, was on the computational economy that
could be derived from the symmeiries of the sine and
cosine functions. In a relatively short section of Runge
and Konig [8] it was shown how one could use the
periodicity of the sine-cosine functions to obtain a
2N-point Fourier analysis from two N-point analyses
with only slightly more than N operations. Going
the other way, if the series to be transformed is of
length N and N is a power of 2, the series can be split
into log: N subseries and this doubling algorithm can be
applied to compute the finite Fourier transform in logs N
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doublmgs The number of computatxons in the resulting
successive doubling algorithm is therefore proportional
to N logs N rather than N2 The use of symmetries only
reduces the proportionality factor while the successive
doubling algorithm replaces N? by N log N. This distinc-
tion was not important for the values of N used in the
days of Runge and Konig. However, when the advent of
computing machinery made calculations with large N
possible, and the N log N methods should have been
thoroughly exploited, they were apparently overlooked,
even though they had been published by well-read and
well-referenced authors.

The fast Fourier transform algorithm of Cooley and
Tukey [1] is more general in that it is applicable
when N is composite and not necessarily a power of 2.
Thus, if two factors of N are used, so that N=rXs, the
data is, in effect, put in an 7-column, s-row rectangular
array, and a two-dimensional transform is performed
with a phase-shifting operation intervening between the
transformations in the two dimensions. This results in
N(r+s5) operations instead of N2. By selecting N to be
highly composite, substantial savings result. For the
very favorable situation when N is equal to a power of
2, the Cooley-Tukey method is essentially the succes-
sive doubling algorithm mentioned above and takes
N log; N operations.

The 23-year hiatus in the use of the algorithm seemed
quite remarkable, and prompted us to inquire of Prof.
L. H. Thomas at the IBM Watson Scientific Computing
Laboratory, New York City, N. Y., as to whether he
was familiar with the successive doubling algorithm for
computing Fourier series, and knew of any occasions
when it had been used. It turned out that Prof. Thomas
had spent three months in 1948 doing calculations of
Fourier series on a tabulating machine, using what he
referred to as the “Stumpff method of subseries.” The
algorithm described by Thomas [10] was thought at
first to be essentially the same as the fast Fourier
transform algorithm of Cooley and Tukey since it also
achieved its economy by performing one-dimensional
Fourier analysis by doing multidimensional Fourier
analysis. However, the algorithms are different for the
following reasons: 1) in the Thomas algorithm the fac-
tors of N must be mutually prime; 2) in the Thomas
algorithm the calculation is precisely multidimensional
Fourier analysis with no intervening phase shifts or
“twiddle factors” as they have been called; and 3) the
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correspondences between the one-dimensional index and
the multidimensional indexes in the two algorithms are
quite different. The Thomas or “prime factor” algo-
rithm is described in detail and compared with the fast
Fourier transform algorithm in the next section.! It can
be extremely useful when used in combination with the
fast Fourier transform algorithm.

Several other calculations have been reported in the
literature and in private communications which use one
or the other of the two algorithms,

Another line of development has since led to the
Thomas algorithm in its full generality. This comes from
work in the analysis and design of experiments. Let
A(ko, By, + + -, km-1) be, for example, a crop yield when a
level k; of treatment 4, which may be an amount of
fertilizer, is used. Yates [11] considered the case
where k;=0 or 1, meaning treatment 1 is or is not used.
This yields N=2" values of crop yields and, to get all
possible differences between all possible averages, one
would, in principle, have to compute N linear combina-
tions of all of the 4’s. This would require N? operations.
Yates devised a scheme whereby one computed a new
array of N sums and differences of pairs of the 4’s. The
process was repeated on the new array with pairs se-
lected in a different order. This was done m=log: N
times, meaning he did the calculation in N log; N opera-
tions instead of N2.

Good [4] noted that the Yates method could be
regarded as m-dimensional Fourier analysis with only
two points in each direction and that the procedure
could be generalized to one for an arbitrary number of
points in each direction. Then Good showed that if
N is composite, with mutually prime factors, i.e.,
N=nrrys, -+, 7n, one could do a one-dimensional
Fourier analysis of N points by doing m-dimensional
Fourier analysis on an m-dimensional, ri XX, - - -,
Xrm, array of points. With these ideas put together and
developed, Good's paper contains the full generalization
Jf the Thomas prime factor algorithm.

TueE PRIME FACTOR ALGORITHM

As mentioned in the previous section, the algorithm
used by Thomas and described later by Good has been
mistakenly said to be equivalent to the fast Fourier
transform algorithm of Cooley and Tukey. It is impor-
tant to distinguish between these two algorithms since
each has its particular advantages which can be ex-
ploited in appropriate circumstances.

The differences will be illustrated by considering the
calculation of a Fourier series using two factors of N.

1 Actually, Stumpff [9] gave only a doubling and a tripling algo-
rithm and suggested (see Stumpff [9] p. 442, line 11) that the reader
eneralize to obtain the method for factors of N other than 2 or 3.
homas made a further assumption (assuming that the index called
r by Stumpff was equal to N/s where s =2 or 3) which led to his
algorithm. Without this assumption, Stumpff's description leads to
‘he Cooley-Tukey algorithm.

TABLE I

CORRESPONDENCE BETWEEN ONE- AND Two-DIMENSIONAL
INDEXING IN THE ARBITRARY FACTOR ALGORITHM FOR THE
CASE r=8, s=3, AND N=24

n=sn+no=3n+n,

m

0 1 2 3 4 5 6 7

0 0 3 6 9 12 15 18 21

ny 1 1 4 7 10 13 16 19 22
2 2 5 8 11 14 17 20 23

J=rih+jo=8h+jo
Jo

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

7t 1 8 9 10 11 12 13 14 15
2 16 17 18 19 20 21 . 22 23

The Fourier series is

N~1
X(G) = X AWy

n=0

¢9)

where Wy =e?*i1¥, Consider first the fast Fourier trans-
form algorithm. We assume N =r-s, and define a one-to-
one mapping between the integers j, 0<j <N, and the
pairs of integers (j1, jo), 0<jo <7, 0<j1 <s, by the rela-
tion '

Jj =7+ jo (2
Similarly, we let
n = nis + no, (3)
where
0<n<N, 0 < n <s, 0<m<r.

This enables us to refer to A(n) and X (j) asthough
they were two-dimensional arrays and permits us to do
the Fourier analysis in two steps

r—1
> A(ny, no)Wiom

ny=0

A1(jo, no) = )]

"1
Z A1(Fo, 1o) W, 1meW oo,

ngm=0

X(j1, jo) = )

Table I shows where 4(n) and X (j) are placed in the
two-dimensional arrays indexed by (n, no) and (j, o),
respectively, for r=8 and s=3. For this case, (4) con-
sists of three eight-term Fourier series, one for each row
of the n table. Then, if j, is taken to be the column index
of the results, 41(jo, no), (5) describes eight Fourier
series of three terms each on the columns of the array of
A1r(jo, no)Wyions, The factor Wiome, referred to as the
“twiddle factor” by Gentleman and Sande [3], is
usually combined with either the W,#™ factor in (4) or
the W,#n0 factor in (5).
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For the Thomas prime factor algorithm, one must
require that » and s be mutually prime. In this case,
different mappings of the one-dimensional arrays into
two-dimensional arrays are used. These are also one-to-
one mappings and are defined as follows. Let

n = rny + sn, (mod N) O<n<N) (6)

and ’
© Lje< )
0<Ljii<9). O]

Then the expression of j, in terms of jo and jy, is a solu-
tion of the “Chinese remainder problem” and is given by

0<j<N) (8

jo=j (mod7)
j1=j (mod s)

j = sS40+ 71,51 (mod N)
where s, and 7, are solutions of
ss, =1 (mod r) sp <7
rr,=1 (mods) r, <s,
respectively. Substituting (6) and (8) and using (7) gives
W_\,in/= W yino IV pinte = W,in Wim = WV dom

which enables one to write the Fourier series (1) in the
form

r—1

Al(j01 "o) = E A(ﬂh no)I/V,fo"l (9)
ny=90
s—1

X(jh ]0) = Z Al(jo, ﬂo)'n”,il"o, (1())

no=0

As in the fast Fourier transform algorithm, this is a two-
dimensional Fourier transform. The essential difference
is that the “twiddle factor” Wyim does not appear in
(10) and the correspondence between one- and two-
dimensional indexing is different. The presence of the
“twiddle factor” does not introduce any more computa-
tion, but it does increase programming complexity
slightly. To illustrate better how the indexing in the
two algorithms differs, the mappings of » and j for the
Thomas prime factor algorithm are given in Table II
for comparison with the indexing described in Table I.

The prime factor algorithm can be programmed very
easily in a source language like FORTRAN and, therefore,
can be used efficiently with a subroutine designed for a

TABLE 11

CORRESPONDENCE BETWEEN ONE- AND Two-DIMENSIONAL
INDEXING IN THE PRIME FACTOR ALGORITHM FOR THE
CASE r=8, s=3, AND N=24

nsrno+sn;58n‘;+3n. (mod 24, 0<n < N)
n
' 1 2 3 4 5 6 7

0

0 3 6 9 . 12 15 18 21
8 11 14 17 20 23 2 S
16

0
No 1
2 19 22 1 4 7 10 13

j=5-Sgotr 11 =9j0+16j: (mod 24, 0<F < N)

Jo s
0 1 2 3 4 5 6 7

0 9 18 3 12 21 6 15
16 1 10 19 4 13 22 7
8 17 2 11 20 5 14 23

number of terms equal to a potwer of two. For example,
if 7 is a power of 2 and s is any odd number, the sub-
series (9) can be computed by the power of 2 sub-
routine.
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