
Phil. Trans. R. Soc. B (2007) 362, 339–353

doi:10.1098/rstb.2006.1962
Neural networks for perceptual processing:
from simulation tools to theories

Published online 8 January 2007
Kevin Gurney*
One con
network

*k.gurne
Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield,
Sheffield S10 2TP, UK

Neural networks are modelling tools that are, in principle, able to capture the input–output behaviour
of arbitrary systems that may include the dynamics of animal populations or brain circuits. While a
neural network model is useful if it captures phenomenologically the behaviour of the target system in
this way, its utility is amplified if key mechanisms of the model can be discovered, and identified with
those of the underlying system. In this review, we first describe, at a fairly high level with minimal
mathematics, some of the tools used in constructing neural network models. We then go on to discuss
the implications of network models for our understanding of the system they are supposed to
describe, paying special attention to those models that deal with neural circuits and brain systems. We
propose that neural nets are useful for brain modelling if they are viewed in a wider computational
framework originally devised by Marr. Here, neural networks are viewed as an intermediate
mechanistic abstraction between ‘algorithm’ and ‘implementation’, which can provide insights into
biological neural representations and their putative supporting architectures.

Keywords: neural networks; connectionism; perception; meta-theory; methodology; modelling
1. INTRODUCTION
This paper has two main aims. First, to give an
introduction to some of the techniques—the ‘nuts-
and-bolts’ as it were—of neural networks deployed by
the authors in this issue of the Journal. Our intention is
to emphasize conceptual principles and their associated
terminology, and to do this wherever possible without
recourse to detailed mathematical descriptions.
However, the term ‘neural network’ has taken on a

multitude of meanings over the last couple of decades,
depending on its methodological and scientific context.
The second aim, therefore, given that the application of
the techniques described in this issue may appear
rather diverse, is to supply some meta-theoretical
landmarks to help understand the significance of the
ensuing results.

In general terms, neural networks are tools for
building models of systems that are characterized by

datasets which often (but not always) are derived by
sampling a system input–output behaviour. While a
neural network model is of some utility if it mimics the
behaviour of the target system, it is far more useful if
key mechanisms underlying the model functionality
can be unearthed, and identified with those of the
underlying system. In other words, the modeller can
‘break into’ the model, viewed initially as an input–
output ‘black box’, and find internal representations,

variable relationships and structures which may
correspond with the underlying target system. This
target system may be entirely non-biological (e.g. stock
market prices) or be of biological origin, but have
tribution of 15 to a Theme Issue ‘The use of artificial neural
s to study perception in animals’.

y@shef.ac.uk

339
nothing to do with brains (e.g. ecologically driven
patterns of population dynamics). In these instances,
we can ask whether the internal network machinations
are informative of specific relationships between system
inputs and outputs, and any internal variables.
However, the mechanistic elements of a network have
names which are evocative of processing in the animal
brain; there is talk of ‘artificial neurons’, their
interconnection strengths and ‘learning’. If, therefore,
a neural network is a model of parts of the brain, the
problem of interpretation of internal mechanisms is
particularly acute. For, if these mechanisms are based
on those in the brain, is it the case that they reflect
genuine, biological neural mechanisms? These and
related questions are explored in the second half of
the paper.
2. NEURAL NETWORK PRINCIPLES
This section gives a high-level view of some of the
principles and techniques used in the papers in this
issue of the Journal. A more comprehensive treatment
at this level can be found in Gurney (1997), while the
books by Haykin (1999) and Bishop (1996) take a
more mathematical approach.

We start with a pragmatic, working definition of a
neural network: a neural network is an interconnected
assembly of simple processing elements, units or nodes
whose functionality is loosely based on the animal
neuron. The processing ability of the network is stored
in the inter-unit connection strengths, or weights,
obtained by a process of adaptation to, or learning
from, a set of training patterns. The rest of this section is
devoted to unwrapping these terms with special
emphasis on those networks that appear in subsequent
articles in this issue.
q 2007 The Royal Society



x1

x2

xn

w1

w2

wn

wi multiplication
by wi

SUM

y

a

0.5

1.0
a y

Figure 1. Simple model neuron. A weighted sum of inputs is
compressed by a logistic sigmoid.

340 K. Gurney Neural networks for perceptual processing
(a) Artificial neurons
Figure 1 is a graphical description of a typical neural
network node. Input signals x1, x2, ., xn are combined
to form an output y via an activation variable a. The
latter is formed by taking a weighted sum of each
input xi, i.e.

aZ
X
i

wixi : ð2:1Þ

The weights wi may be positive or negative. The
activation is then usually transformed by some kind of
squashing function which limits the output y to a
specified range (usually the interval [0,1]) and
introduces a nonlinearity; this latter feature proves to
be crucial in endowing neural nets with their powerful
functionality (see §2b). In the figure, the squashing
function has been chosen to be the logistic sigmoid

yZ
1

1CexpðKðaKqÞÞ
; ð2:2Þ

although other, similar functions are occasionally used.
The constant q defines the point at which y takes its
mid-point value. Moreover, it is the point where the
function is changing most rapidly and is therefore the
value of the activation at which the node is most
sensitive to small changes in the inputs. The negative of
q is therefore sometimes referred to as the bias. Note
that y approaches 0 and 1 asymptotically as the
activation decreases and increases, respectively (so, y
is never equal to 0 or 1, but may be made as close to
these as we please).

The basic node described above has a long lineage.
The first artificial neural node was the threshold logic
unit (TLU) introduced by McCulloch & Pitts (1943).
This was also a two-stage device with the first stage
given by equation (2.1) but with the output non-
linearity defined by a discontinuous step function,
rather than the smooth ramp described by equation
(2.2). Thus, the output of the TLU had only two
values, 0 or 1, depending on whether the activation was
less than or greater than the threshold q, respectively.
A more complex node, the Perceptron, was introduced
by Rosenblatt (1958) which, retained the Boolean (0,1)
output of the TLU, but allowed pre-processing
of Boolean input variables with arbitrary functions
(so-called ‘association units’) whose outputs then
formed the variables xi in equation (2.1). The TLU is
Phil. Trans. R. Soc. B (2007)
therefore a special case of the Perceptron when
‘association units’ just pass a single input through to
each weight.

The neurobiological inspiration for the structure of
figure 1 is as follows. The input xi corresponds to the
presynaptic input on afferent i, while the weight wi

encapsulates the corresponding synaptic strength. The
product wixi is akin to the postsynaptic potential (PSP)
which is inhibitory/excitatory according to whether wi

is negative/positive. The integration of PSPs over the
dendritic arbour and soma is represented by simple
arithmetic addition, and the quantity a corresponds to
the somatic membrane potential. This is then trans-
formed by the squashing function to give a firing rate y.
Clearly, some of these correspondences are, at best,
merely qualitative analogues. The issue of realism is
revisited in the second half of the paper.

(b) Feedforward networks and classification

A ubiquitous problem in perception is that of classi-
fication or pattern recognition. As an example, consider
the problem of identifying letters of the alphabet.
Humans are able to recognize letters in many sizes,
orientations and fonts (including handwritten variations)
with ease.Any individual person can never see all possible
letter variants, but, instead, will learn idealized letter
shapes from avery small set of possibilities (usually a plain
font in childrens’ reading books). This latter point
demonstrates that generalization is a key component in
the classification process, that is, the ability to generalize
knowledge of specific pattern exemplars to a wide variety
of related cases.

Based on this example, we now formalize the general
problem of classification as follows. Given an arbitrary
sensory input pattern drawn from some universal set of
patterns, is it possible to place that pattern in its
appropriate class or category, where there are generally
many fewer classes than the patterns themselves?
Further, we suppose that we do not have an exhaustive
list of the entire universe of patterns; rather, we only
have immediate access to some subset of patterns P,
and knowledge of the category that each member of
P belongs to. By way of terminology P, is the training
set referred to in the motivational definition of a
neural network at the start of this section. The problem
is to construct an input–output model, based on
this limited knowledge, which will generalize so
that, if it is presented with a pattern not in P, it will
elicit the correct classification for that pattern.
Note that a ‘model’ which simply classifies P, but
does not generalize, is easy to construct but of no
real interest—it is just a lookup table of pattern–
class pairings. We will return to the relationship
between neural processing and generalization later
(see §2d ). In the meantime, we will look at how the
classification problem may be solved in principle by a
neural network.

Figure 2 shows a feedforward network which consists
of a layered structure with information flowing from
the inputs, at the bottom of the diagram, to the outputs
at the top. The inputs have no functionality as such, but
are simply points which receive pattern information
and distribute this information to the first layer of
neural nodes per se (of the type described previously).



pattern inputs

output layer

weighted links

category readout

weighted links

hidden layer

Figure 2. Simple feedforward neural network. The hidden
and output layers are comprised of nodes described in
figure 1.

Neural networks for perceptual processing K. Gurney 341
In the example, there are four inputs and so all patterns

for classification would have been defined by a list of

four numbers. In more formal analyses, these lists of

numbers are properly referred to as vectors with

numeric components, and we sometimes speak of pattern
vectors. This first layer of functional nodes is sometimes

referred to as a hidden layer, since we are not supposed

to inspect or control the output values on these nodes

( y in equation (2.2)) during the process of setting the

network weights, that is, during training or learning (see

§2c). The outputs of the hidden layer are subsequently

processed by an output layer which is used to read-out

the category in which the input pattern is placed. There

are several ways of doing this, depending on the way

information is represented in the network (see §2e). We

will refer to a network of the kind shown in figure 2 as a

two-layer network, since it contains two layers of

processing nodes. Some authors include the input

layer in the layer count so that the network in figure 2

would constitute a three-layer net. The final point to

make here is that networks of the kind shown in figure 2

are sometimes called multi-layer Perceptrons (MLPs), in

deference to the important role played by Rosenblatt’s

original Perceptron in shaping the theory of neural

network learning (Minsky & Papert 1969).

Note that processing by any particular node can be

performed independently of that in any other. Thus,

processing could, in principle, be performed in parallel

if we had the necessary hardware resources to assign to

each node. In spite of this, most networks find their

implementation in software simulation in a conven-

tional computer in which each node has to be visited

serially to compute its output.

There is a mathematical framework which is

particularly useful for describing quantitatively the

process of classification in networks. It is based on the

notion that patterns reside in some pattern space and is

evocative of geometric analogies that enable the

problem to be visualized. Suppose, for example, we

have patterns belonging to two classes, A and B. If each

pattern was defined by only two numerical com-

ponents, then it could be represented quantitatively

as a point in Cartesian axes as shown in figure 3b. If, in

fact, each pattern is a vector with nO2 components,

figure 3 is just a cartoon schematic which is simply

illustrative of the case in n-dimensions. In figure 3a, the
Phil. Trans. R. Soc. B (2007)
patterns are shown as being separated by a straight line.
In three dimensions, this situation implies a plane, and
in n-dimensions (nO3) a hyperplane. In all these cases,
we say that the patterns are linearly separable, and the
straight line is schematically indicative of this.

Suppose we have a single artificial neuron with
n-inputs, then it could attempt to solve the classi-
fication problem in figure 3a by indicating output
values of 1,0 for classes A,B, respectively. This could
occur exactly if the node was a TLU, and approxi-
mately using a node of the form shown in figure 1
(since, in this case, the output approaches 0 and 1
asymptotically). It may be shown that linearly separable
problems can indeed be solved by a single artificial
neuron: a result which follows from the linearity of
signal combination in equation (2.1). To see this,
consider the two-input case and assume, for simplicity,
a TLU. The critical condition that defines classification
occurs when the activation a equals the threshold q,
since small changes in a around this value cause
the node to switch its output between 0 and 1. Putting
aZq, gives w1x1Cw2x2Zq. This may be solved for x2

in terms of x1 to give

x2 ZK
w1

w2

� �
x1 C

q

w2

� �
;

which is a straight line with slope Kw1/w2 and intercept
q/w2. Now put, for example, w1Zw2Z1 and qZ1.5.
This defines a line x2ZKx1C1:5 as shown in figure 3b.
Here, pair of values (x1, x2) defining points on the same
side of the line as the origin gives TLU outputs of 0,
while values defining points on the other side of this line
give TLU outputs of 1. In particular, the Boolean
inputs (1,1) give an output of 1, while the other three
Boolean input pairs give an output of 0 (in this case, the
TLU is acting as a classical logic AND gate).

Figure 3c shows a harder problem in pattern space
which may only be solved by a decision line (in
n-dimensions, a decision surface) consisting of two
straight, but non-collinear segments (shown by the
solid line in the figure). The dotted lines show the
extension of the line segments which make each of them
a continuous straight line throughout pattern space
(similar to the line in figure 3a). Each extended straight
line then defines a linearly separable problem which may
be solved by nodes with outputs, h1 and h2. While each of
these separate classifications mixes patterns A and B
together, the table in the figure shows how the original
classification problem may now be solved by taking
suitable combinations of h1 and h2; that is, class B is
signalled if and only if both h1 and h2 are 0. This two-
component classification problem is linearly separable
and may be solved with a single two-input neural node.
The original A/B classification problem has therefore
been decomposed into two stages which may be solved
by a two-layer net with two hidden nodes (yielding h1
and h2) and a single output node.

As the classification becomes more complex, we may
now ask the following question: is it possible to solve
an arbitrary classification problem with a two-layer
net—or do we need to resort to more complex
structures? In other words, in an analogous way to
the example mentioned above, can we describe the



h1 h2 y

0 0 0
0 1 1

1

1

1

1 1

0

class

B
A

A

A

A

A

A

A
A

A

A

A

A
A

1

0

0

1

A

A

B

B B

B B

B

A

A
A

A

A

A

0

1

A

B

(a) (b)
x2

x1

(c)

B
B

B
B

B

1

0

0

0 0
1

1

1

1.5

1.5

Figure 3. Geometric view of pattern classification; binary decision between classes A and B. (a) The classes are linearly
separable. (b) Linear separability for two-input TLU (see text for details); the dotted line shows the decision line for the TLU.
(c) The classes are not linearly separable but may be classified by a two-layer net with two hidden nodes.

342 K. Gurney Neural networks for perceptual processing
decision surface of the problem in a piecewise linear
way, solve the resulting decomposition using hidden
units, and then combine their outputs in a linearly
separable fashion which solves the original problem?
A series of general results (Lippmann 1987; Wieland &
Leighton 1987; Makhoul et al. 1989) has answered this
in the affirmative so that, in principle, we never need a
network with more than two layers. Further, the two-
layer network capability may be extended to more than
two classes. There is certainly one solution to such
problems, since each class X may be used to define a
binary classification between X and non-X classes at a
single output node. It is worth noting that the
nonlinearity of the squashing function is essential to
these results, for it may be shown that a two-layer net
with linear nodes reduces to a single layer net (which
may only solve linearly separable problems).

While this result appears to confer enormous power
on neural networks as models of classification, it is a
double-edged sword as far as interpreting the network
in biological terms is concerned. Thus, we are not
forced to explore more biologically realistic architec-
tures simply to achieve a desired functionality (these
issues are discussed further in §3). Further, the result is
only an existence proof; no method is supplied for
identifying the detailed structure of the net (specifically
how many hidden nodes one needs), how to find the
weights (training procedure), or how to specify the size
or nature of the training set P needed to find the
solution. These problems are the subject of §2c,d.
(c) Training feedforward networks

In this section, we describe methods for determining
the weights in a network, given that it should attempt to
classify a training set P, each member p of which
Phil. Trans. R. Soc. B (2007)
belongs to a known category tp. The general idea is to
iteratively supply members of the training set as input
to the network, compare the network’s output with the
desired target performance tp, and make adjustments to
the weights to gradually bring the network’s output ever
closer to the target. Since we have access to the desired
output for each pattern, this general paradigm is
referred to as supervised training (or supervised learning).

We consider first the simple case of a ‘network’
consisting of a single node of the form described by
equations (2.1) and (2.2). In this case, the output in
response to pattern p is just a single scalar number yp, as
is also the target tp. The latter will, in general, be 0 or 1 to
flag one of the two possible classes. A quantitative way to
compare the network’s output and the target is to take
the square of the difference ypKtp which guarantees
a positive measure. Thus, we define a pattern error
epZ( ypKtp)

2, and an overall error E to be the sum of the
ep over all members of the training set, i.e.

E Z
X
p2P

ðypKtpÞ
2: ð2:3Þ

The problem can now be restated as one of
attempting to minimize E by making changes in the
network weights, a process which is shown schematically
in figure 4a. The dependence ofE on the weightsE(w) is
shown in cartoon form in figure 4a by the ‘U’-shaped
line. In general, there will be n-inputs (nO1) each with
its own weightwi, that helps determine the error; that is,
the error–weight function is described by a surface in
nC1 dimensions. In spite of this, the schematic form in
the figure gives a useful insight into the training process.
Thus, starting with an initial weight set and error,
training proceeds by altering the weights in a series of
small steps until the ideal or desired weight set is found



E

w

desired
weights

minimum E

initial
weights

initial E

(a) (b)

gradient
descent

E

w

global
minumum

local
minumum

S
L

Figure 4. Gradient descent. (a) Schematic of a simple situation in error-weight space (no local minima). (b) Schematic of local
minima.

Neural networks for perceptual processing K. Gurney 343
which corresponds to the minimum error the net can
achieve. The figure illustrates the point that, if we could
always guarantee each step giving a ‘downhill’ move
along the error–weight function E(w), then we would
eventually reach the target weight set. It is worth noting
one proviso to this, however, which arises because we
have assumed that the path from initial to final weights is
continually decreasing. In general, the error surface may
contain many ‘bumps’ and not just the global minimum
as shown in figure 4a. In this case, moving downhill may
result in the network becoming trapped in a local (rather
than the desired global) minimum. This phenomenon is
illustrated in figure 4b in which, starting at point S,
training which induces movement down the error
surface results in a suboptimal network at the local
minimum L.

Notwithstanding these potential difficulties, the
required process is one of gradient descent (moving
‘downhill’) and is enabled if we can compute the
gradient or slope of the function E(w) for each weight
wi. This is indeed possible using processes in the
differential calculus. Using these techniques, it is
possible to verify the intuitively plausible result that,
since E has contributions from all patterns (see
equation (2.3)), so too do the error gradients. In
principle, therefore, we should evaluate all these
contributions and sum them to find the true gradients
for each weight. However, it transpires that it is possible
to sidestep this rather compute-intensive process and
train the network ‘online’ using estimates for the
gradients found by calculating them for the current
input pattern only. Under this regime, the required
change in the ith weight Dwi is given by

Dwi Zas0ðtpKypÞx
i
p; ð2:4Þ

where xip is the component of pattern p on input i; s 0 is
the slope of the squashing function (with the current
input) and a is a constant referred to as the learning rate
which controls how large the weight updates are at each
step. Training then consists of repeatedly supplying
input patterns from P (together with associated targets)
and updating the weights according to the learning rule
in equation (2.4). The difference term (tpKyp) is
sometimes referred to as the ‘delta’, so that this
particular method is referred to as the delta rule.
Nominally, the iterative process continues until there
is no appreciable change in the error or until all the
outputs are a reasonable match with the target.
Phil. Trans. R. Soc. B (2007)
However, we will see in §2d why it might be sensible
to curtail training before this point.

The method described above for a single node may
immediately be extended to several nodes forming a
single-layer network by simply applying equation (2.4)
to each node. Extending to the case of a two-layer
network is, however, non-trivial. The problem is that
an error on a particular output node could be due to the
weights on that node being poorly trained, or to the
hidden nodes which supply its inputs being poorly
trained; where does the blame lie? This credit assignment
problem is in fact solvable using regular techniques in
the calculus and, because the solution involves
computations at the hidden nodes which make use
of error information originally at the output nodes,
it is referred to as error backpropagation or simply
backpropagation. Several papers presented in this issue
makeuse of this learning technique.Backpropagation has
been criticized on the grounds that it is not biologically
plausible but, unless we are specifically interested in
developmental processes (rather than simply the final,
fully functional network), this is not a relevant issue.
Further, recent evidence (Fitzsimonds et al. 1997) has
shown that synaptic plasticity (the biological analogue of
weight changes in neural nets) is indeed able to propagate
in local neuronal circuits in ways not dissimilar to that
envisaged in backpropagation.

The delta rule was first reported in a meeting
abstract by Widrow & Hoff (1960); it was therefore
occasionally referred to as the Widrow–Hoff rule in
earlier work. For a derivation and overview of the delta
rule, see Widrow & Stearns (1985). Backpropagation
was discovered by Werbos (1974) who reported it in his
Ph.D. thesis. It was later rediscovered by Parker (1982)
but this version languished in a technical report that
was not widely circulated. It was discovered again and
made popular by Rumelhart et al. (1986) in their
seminal book Parallel distributed processing. Many
variants and improvements have since been made to
the backpropagation algorithm since these first formu-
lations (for a review, see Tveter 1996).

What happens if we do not have access to individual
target information for each output node, but simply
have, instead, information as to whether the net has
performed ‘well’ or ‘badly’; that is, if we have a single
scalar reinforcement signal which flags ‘reward’ if the
network performs better than expected in approximat-
ing the target, and ‘penalty’ if the net performs worse
than expected? The key to using this approach is to allow



(a) (b)

Figure 5. Overtraining in pattern space. (a) Simple decision
surface separating two classes shown by light and dark
symbols. The round symbols (for both classes) are the
training set, square symbols are test patterns. There is no
misclassification of the test patterns. (b) Same set of patterns
with a complex decision surface. There is misclassification of
the test set.

344 K. Gurney Neural networks for perceptual processing
the network to ‘explore’ the space of possible solutions to
the problem by adding noise to the node activation.
Training then proceeds by increasing the magnitude of
weights during learning trials that result in ‘reward’, and
decreasing their magnitude (and eventually changing
their sign) during ‘penalty’ trials. In this way, the
network learns by ‘trial and error’. Andrew Barto and
co-workers have developed a range of algorithms for
training both single nodes (Barto 1985; Barto &
Anandan 1985) and networks (Williams 1987). More
complex variants make use of temporal difference learning
(Sutton 1988) and actor–critic models (Barto et al.
1983). All these methods fall within the remit of the
general theory of reinforcement learning (Sutton &
Barto 1998). These methods are not intrinsically
supervised—that is, the reward signal is not necessarily
derived from knowledge of what the ‘right answer’
should be, although reward signals may be derived from
error functions of the form in equation (2.3).

Neural network learning is an example of the class
of problems known as ‘function optimization’ or
‘parameter search’. As such, neural net learning may
take advantage of any of the general purpose techniques
developed therein. In particular, those methods which
do not suffer from becoming trapped in local minima
are especially attractive. These include simulated
annealing and evolutionary computing methods such
as genetic algorithms; for a review of some of these
techniques, see Shang & Wah (1996).

(d) Networks and generalization

As noted previously, models of perceptual classification
are only useful if they can generalize and discover the
underlying model that gave rise to the training set. It is
therefore crucial to determine whether neural networks
are able to exhibit this key property. To explore this
question, consider again the model neuron defined in
equations (2.1) and (2.2). The first thing to note is that
the functionality is defined by the processing of
continuously graded signals using continuous,
smoothly varying relationships. This means that small
changes in the inputs will, in general, result in small
changes in the output. Moreover, suppose a model
neuron (with continuous output function) is respond-
ing decisively to a particular pattern so that its output
lies close to the asymptotes (0 and 1) of the squashing
function. In this regime, the slope of this function is
very small, and any change in activation will make a
negligible change in the output. Since variations in the
inputs cause activation changes, we conclude that a
model neuron which is responding decisively is
relatively insensitive to its input. This will, in turn,
foster generalization, since patterns similar to that
currently being applied will not significantly alter the
neuron’s output.

In summary, it is the ‘smooth’ or analogue style
signal processing paradigm of artificial neurons,
together with their intrinsic nonlinearity, which pro-
motes generalization. In a full well-trained network
(one which has clear responses to each pattern), these
properties work synergistically across individual model
neurons, so that similar input patterns will evoke
similar patterns of activity over the hidden layer
which will, in turn, elicit similar network outputs.
Phil. Trans. R. Soc. B (2007)
Further, while the particular artificial neuron we have
studied so far is a rather impoverished model of the real

animal neuron, the nonlinear combination of analogue
signals is almost certainly found in real neurons. We
therefore conjecture that generalization is an intrinsic
property of real brain circuits arising through some
quite general properties of biological neural processing.

Generalization in a network can, however, be severely

reduced if the network is not well suited to modelling the
underlying pattern data. In particular, if there are too
many hidden nodes, then generalization can be
curtailed—a point which is best made in the context of
pattern space. Consider the classification problem with
two classes, shown schematically in figure 5.

In figure 5a, there are two line segments indicating

two hyperplane fragments in the decision surface,
implemented using two hidden units. Two members
of the training set have been misclassified, apparently
indicating poor performance. However, suppose that
four previously unseen test patterns (i.e. patterns not
in P ) are presented as shown by the square symbols.

These have been classified correctly and the net has
generalized from the training data. Thus, if we interpret
the two misclassified training patterns as outliers or
noisy data, the net has implemented a good model of
the data which captures its essential characteristics in
pattern space.

Consider now figure 5b, in which there are six line

segments associated with the use of six hidden units.
The training set is identical to that used in the previous
example and each one has successfully been classified.
However, all four test patterns have incorrectly been
classified so that, even though the training data are all
dealt with correctly, there may be many patterns which

are misclassified. The problem here is that the net has
too much freedom (via its abundance of hidden nodes)
to choose its decision surface and has overfitted it to
accommodate any noise and intricacies in the data
without regard to the underlying model. Thus, while a
two-layer net with an essentially unlimited supply of
hidden nodes can tackle arbitrary tasks, inferring the

underlying model with a limited training set P is a
problem of some delicacy.

Some of the techniques for dealing with the problem
of overfitting are outlined in (Gurney 1997, section
6.10); however, one prominent technique deserves



er
ro

r

training set

validation set

number of epochs

Figure 6. Cross-validation. Use of a validation set allows
periodic testing to see whether the model has overfitted.
Optimal performance occurs where the error for the
validation set is minimal.

Neural networks for perceptual processing K. Gurney 345
mention here, and is based on the method of cross-
validation found in conventional statistical modelling.
Consider again the network with too many hidden units
whose decision surface is shown schematically in
figure 5b. The diagram shows the decision surface
after exhaustive training, but what form does this take
in the early stages of learning? It is reasonable to
suppose that a smoother form (something more like
that in figure 5a) would be developed at this time before
the net has had a chance to learn the details in the
training set. If we then curtail the training at a suitable
stage, it may be possible to ‘freeze’ the net in a form that
generalizes more appropriately. Rosin & Fierens (1995)
showed that this is exactly what does happen in a simple
example with two inputs.

Assuming that this process of gradual approximation
is a general one when training feedforward nets, how
are we to know when to stop training the net? One
approach is to divide the available training data into
two sets: one training set proper P, and one so-called
validation set V. The idea is to train the net in the normal
way with P but, every so often, to determine the error
with respect to the validation set V. The typical
behaviour of a network under this process of cross-
validation is shown in figure 6. One criterion for
stopping training, therefore, is to do so when the error
over V reaches a minimum, since this is indicative that
generalization with respect to patterns not in the
nominal training set P is optimal. Cross-validation is
a technique borrowed from regression analysis in
statistics and has a long history (Stone 1974). That
such a technique should find its way into the ‘toolkit’ of
supervised training in feedforward neural networks
should not be surprising because networks are also
fitting models to statistical data. While we have
emphasized the pattern space viewpoint of network
function in the paper, it is also possible to conceive of
networks as performing function approximation
(Gurney 1997, section 6.7.2) and so they can be
thought of as performing nonlinear regression. These
similarities are explored further in the review article by
Cheng & Titterington (1994).

(e) Knowledge representations in neural

networks

At the end of training a network, any knowledge or
long-term memory is stored in the weights or
connection strengths. This has given rise to the term
connectionism to describe the neural network modelling
approach in biological areas (especially in psychology).
However, while knowledge is stored in the weights,
there is an additional way in which knowledge
representation occurs in networks. On applying an
external input and allowing it to be processed, a
characteristic pattern of the activity will be developed
across the net that may be thought of as representing
knowledge about the current input. For feedforward
nets, it is the intermediate hidden layers that provide
a particular focus of interest here, for it is across these
nodes that an internal representation of the training set
occurs. In this view, these representations are then
operated on, or decoded by, the output layer into a
form which is to be interpreted as the ‘answer’ or
response to the input. As noted previously, the role of
Phil. Trans. R. Soc. B (2007)
the hidden layer(s) may be thought of as ensuring that

perceptually similar inputs are re-represented so as to

be close together in the pattern vector sense, a

perspective of hidden unit functionality emphasized

by Rumelhart & Todd (1993). A related viewpoint

conceives of hidden units as ‘feature detectors’ that

extract the underlying aspects of the training set while

ignoring irrelevant clutter or noise.

Whatever interpretation is adopted in respect of the

hidden layer, there are essentially three different types of

activity profile that can occur over any neural layer

(hidden or otherwise). In a localist representation, each

semantically discrete item, concept or idea is associated

with the activity of a single node. For example, in a

classification task, the occurrence of a particular class

would be signalled in a neural layer by a single node of

that layer being active (output close to 1) while all others

are inactive (output close to 0). Figure 7a shows an

example of this scheme using four nodes to categorize

objects into one of the four classes—horizontal rectangle/

ellipse, vertical rectangle/ellipse. Activities which are

close to 1/0 are shown by filled/open circles, respectively.

Figure 7b shows a semilocalist or feature-based represen-

tation of the same classes. Each node now stands for a

feature of the object class—‘horizontal’, ‘vertical’,

‘rectangle’ and ‘ellipse’. Classes are now designated by

suitable combinations of active feature nodes. Note that

in both localist and semilocalist representations, a

minimum offour nodes are required in each case. Finally,

figure 7c shows a distributed representation, in which

every node within the layer plays some role in the activity

profile representing each class. Here, nodes may be

partially active (indicated by shades of grey) and we do

not necessarily need four nodes to obtain a unique

pattern of activity for each class (the example uses three).

There is now no clear interpretation of the significance of

activity on any particular node (as indicated by the

question marks) and we talk of the nodes designating

micro-features or sub-symbolic entities.

The emphasis by some on distributed representations,

combined with the fact that, in principle, artificial

neurons can process their information in parallel, has

led to the term parallel distributed processing (PDP) to

be applied to the computational paradigm established

using neural networks (Rumelhart et al. 1986).



no pattern no patternno pattern

ve
rti

ca
l

ho
riz

on
ta

l
re

ct
an

gl
e

el
lip

se

? ? ?

(a) (b) (c)

Figure 7. Neural network representations: (a) localist, (b) semilocalist or feature-based and (c) distributed.

external
input

hidden
nodes

output
node

trainable link

fixed link

state
input

Figure 8. Net used by Elman (1990) to encode temporal
sequences. It is drawn so that the state or context nodes (that
encode the previous hidden-layer state) appear as another set
of inputs.

346 K. Gurney Neural networks for perceptual processing
(f ) Learning temporal sequences

The networks we have dealt with so far are unable to

deal with temporal dependencies; they respond

immediately to their input with an output response.

However, many perceptual processes rely on discover-

ing temporal sequences in the input. For example,

language, animal noises, and calls in general may be

thought of as a sequence of aural stimulus primitives,

concatenated to produce an overall temporal pattern.

To learn this patterning requires that a network stores

some kind of ‘memory’ or previous state information

that can be combined with its present input, thereby

conditioning that input on its temporal context within a

sequence. Figure 8 shows a simple example of a

network that can perform this kind of task. Structurally,

it consists of a two-layer network of hidden and output

nodes as shown in figure 2, but it is augmented by

another set of nodes—the state or context nodes—which

supply input to the hidden layer. The state nodes are

also hidden in the sense that they do not interact with

the environment, and receive a copy of the activity on

the hidden layer via fixed weights with value 1. The net

is also endowed with a clock which sequences

operations in the network over a series of discrete

time-steps as follows. At the start of all operations, the

context nodes are initialized to output value 0.5. At the

first time-step, the first input pattern in the sequence is

supplied to the external input, the network produces an

output, and the hidden layer copies its pattern of

activity to the state nodes. If the network is being

trained, then backpropagation could be applied at this

point. At the second time-step, the next input pattern is

presented but, since the context nodes have a record of

the previous hidden-layer activity, the hidden nodes

also receive their own previous state as input. In this

way, the network can learn temporal context and

sequential dependencies.

The first example of this kind of network appeared in

a technical report by Jordan (1986) and it was Elman

(1990) who popularized the technique by showing how

this general architecture could learn sequences in a

variety of abstract temporal patterns as well as simple

examples in the English language. Pfennig & Ryan

present a paper in this issue which uses a network of the

kind described by Elman.
Phil. Trans. R. Soc. B (2007)
Quite generally, any network with feedback or
recurrent connections (like those between the state and
hidden nodes in the Elman net) will support ‘memory’ of
some kind. Indeed, networks with massively recurrent
interconnection have been extensively studied as models
of associative memory in both abstract (e.g. Hopfield
1982) and psychological (e.g. McClelland & Rumelhart
1985) settings.

This completes the technical exposition part of the
paper. In §3, we move on to discuss the theoretical
status of network models and their structural and
functional components.
3. META-THEORETICAL ISSUES
It has already been noted that a two-layer net can, in
principle, perform any input–output mapping. The
question to ask when building a neural network model
is therefore not ‘will it work?’ but, rather, ‘does the
model shed any light on the target system?’ More
formally, we ask whether the model gives any
theoretical insight into the mental and neural processes
underlying perception and cognition. The relationship
between neural network models and theories of
mental processing has been hotly debated—for
example, Smolensky (1988), McCloskey (1991) and
Green (2001). However, as a prelude to our discussion,
it is useful to distinguish, quite generally, between two



Neural networks for perceptual processing K. Gurney 347
rather different types of computational model, without
specific reference to neural networks.
(a) Description versus governance

A phenomenological or descriptive model of a system is
one which replicates the behaviour of the system but, in
doing so, does not make recourse to the mechanisms
that are believed to govern the system’s behaviour. This
distinction is scientifically very general, but has been
explored in relation to brain modelling by Dayan
(2002). For example, the time course of the voltage of a
neural membrane when an action potential is produced
may be described reasonably accurately by some high-
order polynomial function of distance along the axon
and time. However, this makes no reference to the
sodium and potassium currents which are supposed to
underlie action potential generation. In contrast, the
account of Hodgkin & Huxley (1952) and Koch (1999)
invokes just these mechanisms to provide an account of
action potential generation. As another example, this
time from economics, consider financial indicators
such as the Dow–Jones or FTSE indices. It may be
possible to fit their time-series approximately by
arbitrarily complex functional forms (indeed a linear
trend with positive slope is a good first approximation),
but these quantities are ultimately governed by the
action of thousands of independent ‘agents’—stock-
brokers who buy and sell shares on the financial
markets. A mechanistic model might attempt to invoke
the dynamic interaction of these agents and the markets
they generate.

These two examples differ from each other in so far
as one (the neural membrane) is deterministic, while
the other (stock prices) is subject to noise and is a
problem in statistical pattern analysis. Neural networks
are a class of tools that are well suited to tackling
problems of the latter kind. For example, using training
data generated by recording market prices over the
recent past, a network could take as inputs a set of raw
share prices and other financial indicators, and attempt
to generate the next day’s prices or FTSE index. The
resulting model will make no reference to agent-based
mechanisms but will describe, phenomenologically, the
trends in the data.

Neural networks considered as general statistical
modelling tools share similarities with other techniques
in this general area. Thus, the outputs of the hidden
layer in a feedforward network—the internal represen-
tation of the data—are analogous to the factors in factor
analysis, and the hidden unit weights akin to the
loadings on the variables. Moreover, in the same way
that it is possible to try and interpret the factors of
factor analysis (under ‘rotation’ of the loading vectors),
it makes sense to try and understand what the hidden
nodes in a network are representing. In other words,
rather than conceive of the network as a ‘black box’
that simply replicates behaviour (which is nevertheless
still useful) one can probe the model to see what
combinations of input are primarily responsible for
determining the output. In this way, neural networks as
statistical models are endowed with explanatory power.
Olden (2007) provides an example of a neural network
as a statistical model in this issue of the Journal, and
Phil. Trans. R. Soc. B (2007)
goes on to examine methods for discovering causal
relationships among the model variables.

(b) The problem of biological realism

Suppose we have a neural network model which takes
inputs that could directly represent sensory stimuli of
some kind, and whose outputs represent a perceptual
classification. The function of the network is, therefore,
potentially mirroring a processing task performed in the
brain. We might then reasonably ask to what extent any
explanatory power of the neural network relates to the
mechanisms in the brain that underlie the perceptual
task. The problem here however is that, while biological
perception is mediated by the brain, and neural
networks are somewhat brain-like, they are in many
respects biologically implausible. The functionality of
real neurons is enormously more complex than that
implied in our model neuron (equations (2.1) and (2.2))
and brain circuits are usually more complex than the
simple homogeneous feedforward nets described here.
Neural networks might therefore appear prima facie to
have little or no explanatory power with regard to the
computations performed by brain circuits underlying
perception (Crick 1989).

There are two possible ways to tackle this problem.
First, we could choose to meet the demands of
biological realism head on, as it were, and constrain
our models to be biologically plausible. This route
takes us into the newly established discipline of
computational neuroscience in which it is acknowl-
edged that, unlike the stereotypical and homogeneous
networks described so far, brain systems typically make
use of complex circuits with many layers, together with
both inter- and intra-layer feedback connections
(Shepherd & Koch 1998). Further, the functionality
of real neurons is more powerful than that of the
artificial nodes in neural networks, and shows a much
richer diversity (Koch et al. 2002). Thus, the output of
real neurons is best characterized as a series of discrete
voltage ‘spikes’ (action potentials) rather than a
continuous valued variable. Information may therefore
be encoded, not only in the mean firing rate (one
interpretation of the node output y), but also in the
specifics of inter-spike timing (Rieke et al. 1996).
Neural behaviour is mediated by a profusion of
different ionic currents traversing the neural mem-
brane, and real neurons have an extended morphology
allowing complex computation to be performed over
the dendritic arbour. The possible variations of
membrane function and morphology give rise to a
huge diversity of cell types in the brain with a
corresponding diversity of computations. This may
include the simple ‘weight and add’ of artificial neural
net nodes, but also extends to include nonlinear
combinations of inputs (Shepherd & Koch 1998).
Models which are explicitly constrained by detailed
biological data form the subject of the papers in this
issue by Borst (2007) and by Williamson (2007).

An alternative approach to tackling the problem of
biological realism and neural networks is to step back
and try to define the problem space of ‘brains and
computation’ more precisely. This was the remit of
Dror & Gallogly (1999) when they explored the problem
of biological plausibility in the general arena of cognitive



348 K. Gurney Neural networks for perceptual processing
modelling. Here, we focus specifically on neural net-
work models of brain function but, nevertheless, start
with a general contextual framework for our analysis.

(c) Marr’s hierarchical analysis

In a technical report (Marr & Poggio 1976), and later in
his seminal book on vision (Marr 1982), Marr described
a hierarchical framework for understanding compu-
tational processes in perception and cognition. At the
top of the hierarchy is the computational level. This
attempts to answer the questions—what is being
computed and why? It describes the essential charac-
teristics of the input–output transforms and any
constraints that apply therein. The next level is the
algorithmic which describes precisely how the compu-
tation is being carried out, and finally, there is the
implementation level which gives a detailed description of
what hardware the algorithm makes use of. Marr’s
original example in his book Vision (Marr 1982),
provides a very clear illustration of this framework.
Consider the computation of the bill in a supermarket
with a cash register. In answer to the top-level question of
‘what’ is being computed, it is the arithmetical operation
of addition. As to ‘why’ this is being done, it is simply that
the laws of addition reflect or model the way we should
accumulate prices together from piles of goods in a
trolley; it is incorrect, for example, to multiply the prices
together. Next, we wish to know exactly how this
arithmetic operation is performed. The answer is that it
is done by the normal procedure taught at school where
we add individual digits in columns and carry to the next
column if required. Further, in cash registers, this will be
done in the decimal representation rather than binary
(normally encountered in machine arithmetic) because
rounding errors are incurred when converting between
the normal (decimal) representation of currency and
binary. As for the implementation, this occurs using logic
gates made out of silicon, silicon oxide and metal. Note
that choices at different levels are, in principle, indepen-
dent of each other. For example, we could have chosen to
use a binary representation and alternative implemen-
tations might make use of mechanical machines or pencil
and paper. The importance of discovering good rep-
resentations for solving the problem is crucial; the
ancient Romans failed to develop a positional number
system and so struggled to fully develop arithmetic.

We now consider an example in neural networks
models of perception. It concerns the computation of
the apparent velocity of moving objects in the visual
field. This is ethologically useful since we might want
to know how fast a car, or falling piece of fruit, is
travelling in order to avoid it, or catch it, respectively.
In Marr’s scheme, then, the computation being
performed is to find the velocity of the object in
retinotopic coordinates (find how fast the object is
moving with respect to the eye).

One algorithm for doing this computation is based
on Fourier analysis of the image. Just as one-
dimensional temporal audio waveforms may be decom-
posed into Fourier (sinusoidal) components, so too can
two-dimensional spatial images be decomposed into
components which consist of gratings with sinusoidally
varying luminance. Figure 9a shows an example of
such a grating which is supposed to be moving in a
Phil. Trans. R. Soc. B (2007)
direction indicated by the velocity vector (arrow) vg.
This direction is defined by the perpendicular to the
grating bars, and the length of this vector is
proportional to the speed of the grating. However, if
the grating is the only component in the image, it
nominally extends infinitely in all directions in the
plane. Therefore, any motion component of the grating
along its bars is undetectable. Even if the grating was
attached to some large but finite surface, any realizable
motion detection system will only be able to sample a
small part of this image (indicated in the figure by the
circular aperture through which the grating is being
viewed). Thus, both theoretically and practically, the
only observable motion component is that which is
perpendicular to the grating bars (Wallach 1976;
Vallortigara & Bressan 1991). The grating motion is
therefore indistinguishable from that of any other
grating which has the same perpendicular velocity
component (for example, the one with velocity v� in
figure 9a) and there is a family of gratings compatible
with the moving image, having velocities whose vectors
lie on a constraint line (shown as a dotted line in the
figure). Of course, real moving surfaces consist of
the superposition of many sinusoidal components, the
simplest of which consists of a combination of two
gratings. This results in a moving plaid, an example of
which is shown in figure 9b. The velocity of the plaid
must be the same as that of its components and so its
vector must lie at the intersection of the two constraint
lines associated with the two component gratings. The
algorithm for computing the image velocity is therefore
a two-stage process: evaluate the perpendicular motion
vectors of each spatial component and then compute
the velocity consistent with the intersection of con-
straints (IOC) of these components (Adelson &
Movshon 1982).

In Marr’s scheme, there are several possibilities at
the implementational level for executing the IOC
algorithm. It could be done, for example, with paper
and pencil using a drawing of the geometry (as in
figure 9b), or algebraically using the associated
trigonometric relations. We now show that there is a
neural network implementation, which can solve IOC
(Gurney & Wright 1992). The network has a layer of
inputs that encode preferential responses to specific
gratings and motions. Thus, each input responds best
to a grating of given direction, speed and spatial
frequency. The output layer is trained to preferentially
encode true image velocity in which each node
responds most strongly when encoding a particular
image speed v, and direction q. For example, the plaid
of figure 9b would give rise to two inputs responding to
the component gratings, and a single output encoding
the plaid velocity.1 Suppose we arrange the output
nodes on a pair of Cartesian axes for speed, and
direction, so the location of each node is determined by
its preferred values for these quantities (see figure 9c).
By dint of the arguments above, the response of the
network to an input representing a single grating with
speed vg and direction qg is ambiguous; the grating does
not uniquely define an image velocity and it will
stimulate many output nodes. The resulting pattern
of activity in the output layer is shown schematically in
figure 9c by the ‘U’-shaped curve (the geometry



v*

vg

0

v

vg

qg

q q

q

360 0

v

qp
360

(a) (b)

(c) (d)

co
ns

tra
int

 li
ne

vg

vp

vp

Figure 9. Intersection of constraints. (a) A single image component (moving sinusoidal grating) viewed through a circular
aperture. The motion of the grating is consistent with all motion vectors that fall on the dotted constraint line. (b) Two moving
gratings superposed produce a plaid whose image velocity is unambiguously given by the intersection of the constraint lines for
each component. (c) Response of a network (trained on image motion) to single moving grating. (d ) Response of network to a
plaid with largest response shown by the filled circle.

Neural networks for perceptual processing K. Gurney 349
in figure 9b shows that this function takes the form
vg /cos(qpKqg) where qp is the associated pattern
direction). When two gratings are presented, as input,
they each give rise to ‘U’-shaped pattern of activity but,
at the point where these functions overlap, the response
of the network is enhanced since it sees twice the input
(figure 9d ). There is therefore a unique ‘hump’ of
activity in the network corresponding to a velocity
defined by the IOC, and the network implements the
IOC algorithm.
(d) Mapping from networks to biological

neural circuits

The image velocity network, as well as illustrating an
application of Marr’s hierarchy to perceptual proces-
sing, also shows that it is possible to think of networks
as implementing algorithms rather than simply com-
bining signals in apparently unstructured ways. This is
important because it points to the possibility that
network models could be thought of as quantitative
tests of computational hypotheses about perceptual
and cognitive processing in the brain. This idea is
predicated on the following assumption: that neural
network models have sufficient points of contact with
real brain circuits that the hypotheses they are founded
on can allude directly to the brain, albeit at a fairly high
level of abstraction. Thus, in the example of the neural
network model of IOC, we demonstrated that, since an
abstract neural network can implement the proposed
algorithm, a real brain system could also in principle
do the same thing. In other words, we hypothesize
that the brain solves the computational problem of
Phil. Trans. R. Soc. B (2007)
determining image motion velocity using a two-stage

process with IOC applied to analysis of local Fourier
components.

To test this hypothesis, we are now charged with

trying to map the abstract neural network onto real
brain circuits. Gurney & Wright (1992) advanced the
argument that there is evidence for correspondence

between the input layer and visual cortical area V1, and
the output layer and visual area MT in primates. This
evidence is based on V1- and MT-expressing sensitivity

to moving gratings (Hubel & Wiesel 1968) and image
motion (Movshon et al. 1985), respectively, which

is consistent with the representations used in the
network. The project of mapping the neural network
for IOC onto biological neuronal circuits is, however,

far from complete. Neocortex (including MT) is a
complex six-layered structure with a variety of neural
cell types and microcircuits that our impoverished

single layer of simplified neurons cannot hope to
emulate. In addition, while we know V1 innervates
MT, we do not know if the precise connectivity

required by the model is to be found anatomically.
However, generalizing the foregoing analysis from the
IOC example implies that, in so far as neural networks

are used to model brain processes, they occupy a
position between the algorithmic level in the
Marr hierarchy and the implementational level (i.e.

biological neural tissue). The abstract neural network is
an additional mechanistic level, and we refer to the
process of attempting to realize the neural network

in brain circuits as one of mechanism mapping (Gurney
et al. 2004).



350 K. Gurney Neural networks for perceptual processing
(e) Networks and neural representations

We now explore further the role played by represen-
tations in linking neural networks with brain circuits.
The first step in attempting to map the IOC net onto
the visual system in the brain depended on an
identification of the representations used in the net
with counterparts in the visual system. In this model,
the input representation was explicitly based on
knowledge of the way in which gratings are known to
be represented in area V1. However, the network was
trained in a way rather different to those outlined in the
first half of this article. Rather than supplying the net
with a supervisory target output, the net had to
‘discover’ structure in the training set under a process
of self-organization using learning rules that had
biological plausibility.

The function of this kind of network has similarities
with statistical techniques like principal component
analysis (PCA), since the network performs a dimension
reduction or compression of the patterns in the input
space. Thus, the network consists of a single layer of
artificial neurons and, like PCA, discovers features of
the training set that are sufficient to describe the
essentials of this set of patterns. In the IOC net, for
example, these features are speed and direction. Each
node becomes maximally responsive to patterns with a
particular speed and direction, and tends to ignore other
aspects of the input. To this extent, it has ‘discovered’
that the input set is essentially two dimensional.

The learning takes place using rules based on the
principles outlined by Hebb (1949) that are supposed to
govern synaptic change in real neurons. Hebb proposed
that if a presynaptic neuron was simultaneously active
with a postsynaptic partner, then the synapse between
these neurons would increase its strength. In the
network, the amount of change on a weight is governed
by the size of the corresponding input and the output
of the neuron to which the weight belongs; the weight
grows if there is a strong correlation between input
and output, and decays if there is little or none. Self-
organizing networks of this kind were developed and
popularized by Kohonen (1984); an introduction to
these ideas may also be found in Gurney (1997).

Based on the observations above, self-organizing
networks can be used in situations where we suspect
that the input patterns have too many components and
that they may essentially be described more naturally
using only a few parameters or dimensions. The utility
of the IOC network model was, however, motivated by
a more biologically grounded developmental perspec-
tive. Thus, it aimed to demonstrate that the represen-
tation of image velocity, observed in area MT, could
emerge naturally from a biologically plausible develop-
mental process using a prior stage of processing whose
encoding was also biologically plausible. The use of
self-organizing neural networks to demonstrate the
emergence of known neural representations has a long
history associated especially with topographic maps
of retinotopy (Willshaw & von der Malsburg 1976),
orientation selectivity (von der Malsburg 1973) and
ocular dominance (Swindale 1980). For a more recent
review of the field, see Price & Willshaw (2000).

In contrast to this, Zipser (1992) has shown how
feedforward networks trained with supervised methods
Phil. Trans. R. Soc. B (2007)
to perform a perceptual task often develop represen-
tations in their hidden layer which appear similar to
those observed experimentally in the neural circuits
believed to implement the same computational task in
the brain. For example, neurons in posterior parietal
area 7a in monkeys are believed to compute a head
centred representation of object location in space, by
combining retinotopic information about object spatial
location, together with gaze angle (Andersen et al.
1985). Zipser & Andersen (1988) constructed a
network model with two layers to perform the same
computation. They discovered that the hidden layer
yielded nodes whose response properties mimicked
well that of certain neurons in area 7a.

Zipser (1992) supplies further examples of this kind,
and conjectures an explanation for why the represen-
tations found in networks might mirror the biology.
First, he notes that the setting of parameters (the
weights) in a network, in order to achieve some given
input–output behaviour, is an example of the general
process of system identification. In the general case,
forcing a model to show the same behaviour as a target
system will not necessarily force the behaviour of the
model’s constituents to mimic those of the system.
Indeed, it may not even be sensible to make that
comparison because the constituents in each case will be
too dissimilar. However, in the case of neural networks
and biological neural circuits, there is enough similarity
to at least attempt a comparison, and Zipser (1992)
speculates that this similarity is, in fact, sufficient to
force a close correspondence between the model
representations and those in the target neural system.

The ability of neural networks to exhibit biologically
plausible representations leads to hypotheses that can
guide experimental programmes, and can help explain
complex patterning in physiological data from cells that
have non-trivial receptive field properties as a result of
taking part in complex representations.

(f ) Networks and neural architectures

We now turn to another way in which neural networks
can test computational hypotheses about perceptual
processing. In this instance, it concerns the gross
structural properties or architecture of the network and
the target brain system. We illustrate it with an example
based on the connectionist model of Stroop processing
by Cohen et al. (1990). In the Stroop task, the subject
has to name the colour used to render stimulus words
which are colour names (e.g. ‘red’, ‘blue’, etc.). In
some instances, the word and the colour ink are
congruent (e.g. ‘red’ in red ink) in others they conflict
(e.g. ‘red’ in blue ink). The subject has to speak aloud
the name of the ink colour as quickly as possible, and
reaction times and error rates are used as performance
measures. There is also a control condition in which no
word is presented but, rather, a meaningless pattern
like ‘XXXX’. In addition, it is possible to contrast the
colour-naming task with another one in which
the subject has to read the word. The main result is
that the mean reaction time in the colour-naming task
for the conflict condition is usually longer than that for
the congruent condition—a phenomenon known as the
Stroop effect (Stroop 1935; MacLeod 1991). Typical
reaction time data are shown in figure 10a.



colour
naming

word
reading

task demand

‘green’‘red’

word

red green

ink colour

red green
response

(c)

(a) (b)

450

550

control conflict congruent control conflict congruent

650

750

850

word reading
colour naming

empirical data model

colour
pathway

word
pathway

Figure 10. The model of Cohen et al. (1990) for the Stroop
task. (a) Stroop task, experimental data. (b) Replication of
data by the model. (c) The model architecture.

Neural networks for perceptual processing K. Gurney 351
In their model, Cohen et al. (1990) advanced the

hypothesis that the Stroop effect may be explained by

the difference in processing strength between the

pathways in the brain that process colour information

and word information. Note that this hypothesis is

couched in terms of neural processing because it refers

to signal ‘pathways’ and the relative strength of

transmission within these pathways. It therefore

makes sense to test this hypothesis with a neural

network. The model consisted of two subnetworks—

one each for colour and word information (see

figure 10c). The pathways had an identical minimal

architecture with two inputs (for two colours), two

hidden nodes and a common output layer. Crucially,

the pathways for colour and word information differed

in their connection strengths, with the word pathway

having the stronger links (as indicated by thicker lines

in the figure). The task (word reading or colour

naming) was specified by sensitizing or biasing the

hidden nodes using task-demand nodes. When the

latter became active, the hidden nodes required less

input from elsewhere to generate significant output.

The model was successful in several respects,

including its ability to replicate the basic pattern of

Stroop data (see figure 10b). At the very least, it is

therefore a successful phenomenological model of the

Stroop task. However, the model also provides

evidence for the differential strength of processing

hypothesis for, while there is clearly more to the

biological neural processing of colour and word than

the simple subnetworks used in this model, the
Phil. Trans. R. Soc. B (2007)
hypothesis is not contingent on the details within
those pathways. Thus, any arbitrarily complex pair of
pathways would give the same result, so long as that
used for word reading transmitted information more
efficiently than that for colour processing.

In a similar way to the use of networks in discovering
neural representations, the Stroop example highlights
the utility of the core similarity between abstract nets
and real neuronal circuits. In the Stroop network, this
similarity (connection strengths, pathways, signal
combinations, etc.) is sufficient to frame a hypothesis
about biological neural architectures (different
‘strengths’ in two pathways) in a simplified setting.
Indeed, the simplification implicit in the abstract
network endows the model with explanatory power
that it would not have if encumbered with too much
detail. Of course, in going further and attempting to
map the colour- and word-reading pathways onto their
biological counterparts, we would discover whether the
pathways really were different in the way suggested, and
a more stringent test of the hypothesis would ensue.

The Stroop network of Cohen et al. (1990) is but
one example of many where neural networks have been
used to explore architectural issues. Jacobs et al.
(1991) examined networks that could simultaneously
determine the location and identity (‘where’ and ‘what’)
of objects in visual space. Undifferentiated networks did
not perform as well as split or modular networks that
dealt with each sub-problem independently, thereby
giving insight into why these problems also appear to be
solved independently in the animal visual system.
Hinton & Shallice (1991) described a network model
which was able to exhibit many of the phenomena
associated with deep dyslexia in humans. More
significantly, in the current context, they experimented
with a variety of architectures and discovered that many
of the key results were contingent only on there being
a layer of nodes with internal recurrent (feedback)
connections able to support ‘memory’ or state infor-
mation. Finally, we draw attention to the work of
McClelland et al. (1995) which used a neural network-
based analysis of the need for two memory systems in
animals: a short-term memory system which can learn
‘isolated’ or episodic items rapidly, and a long-term
system that integrates each episode into a wider
knowledge base in a prolonged process of consolidation.
Once again, the arguments used by the authors of the
model were quite general, making reference to only
fundamental properties of neural network development
and learning.
4. CONCLUDING REMARKS
In the fist half of the paper, we outlined some of the
technical issues in neural networks. We focused largelyon
feedforward nets (and variants) because these form the
basis of many of the models described in this issue.
However, there are a plethoraofnetworkarchitectureswe
have not covered and the reader is referred to the
references at the beginning of that section for more
information. The concept of generalization leads to a
better understanding of what neural networks might buy
us in terms of modelling power, and enables us to develop
principled ways of training them to take advantage of this



352 K. Gurney Neural networks for perceptual processing
power (using cross-validation and the like). The theory of
knowledge representation is an important one if we are to
understand network mechanisms and their relation to
any corresponding features in the target system (be it the
animal brain or an ecosystem).

Our aim in the second half of the paper was to
demonstrate that neural networks are not limited to
‘mere simulation’ of input–output behaviour, but that
they have a role to play in developing theories of
cognition and perception. Some neural network
models are purely phenomenological descriptions of a
target system and make no claim to establish links with
internal mechanisms in that system. Rather, the
network is a statistical model of the system which,
nevertheless, provides explanatory power by high-
lighting relationships between variables, and suggesting
new internal (hidden layer) variable combinations,
features or ‘factors’. If a network models some
computational task performed by the animal brain, it
is tempting to make correspondences between the
network and the corresponding brain mechanisms
underlying the computation. At first glance, this
approach appears flawed because neural networks
lack the biological realism to directly model real neural
tissue. However, careful examination of a principled
approach to computational modelling due to Marr
suggests otherwise. Thus, neural networks appear to
occupy a place in Marr’s hierarchy somewhere between
the abstract algorithmic level and implementation in
biological neural circuits. Construction of neural
networks at this ‘abstract mechanistic’ level is therefore
one part of much larger modelling strategy that seeks to
understand high-level computational questions, and
algorithms, as well as details of implementation in real
neural tissue. As such, neural networks seem to have
sufficient core similarities to biological neural circuits
to offer insights in two general areas: first, in
discovering and understanding the role of neural
representations; and second, in testing hypotheses
about large-scale neural connectivity or architectures.

I would like to thank Tom Stafford for reading a draft of the
paper. This work was supported in part by EPSRC grant
EP/C516303/1.
ENDNOTE
1
In fact the net uses so-called ‘course coding’ (Touretzky 1995).

Thus small clusters of nodes are active rather than individuals, but

this is not crucial to the argument.
REFERENCES
Adelson, E. H. & Movshon, J. A. 1982 Phenomenal

coherence of moving visual patterns. Nature 300,
523–525. (doi:10.1038/300523a0)

Andersen, R. A., Essick, G. K. & Siegel, R. M. 1985
Encoding of spatial location by posterior parietal neurons.
Science 230, 456–458. (doi:10.1126/science.4048942)

Barto, A. G. 1985 Learning by statistical cooperation of sele-
interested neuron-like computing elements. Hum. Neuro-
biol. 4, 229–256.

Barto, A. G. & Anandan, P. 1985 Pattern-recognizing
stochastic learning automata. IEEE Syst. Man Cybern.
SMC-15, 360–375.
Phil. Trans. R. Soc. B (2007)
Barto, A. G., Sutton, R. S. & Anderson, C. W. 1983

Neuronlike elements that can solve difficult learning

control problems. IEEE Trans. Syst. Man Cybern. 13,

835–846.

Bishop, C. M. 1996 Neural networks for pattern recognition.

Oxford, UK: Oxford University Press.

Borst, A. 2007 Correlation versus gradient type motion

detectors: the pros and cons. Phil. Trans. R. Soc. B 362,

369–374. (doi:10.1098/rstb.2006.1964)

Cheng, B. & Titterington, D. M. 1994 Neural networks: a

review from a statistical perspective. Stat. Sci. 9, 2–54.

Cohen, J. D., Dunbar, K. & McClelland, J. L. 1990 On the

control of automatic processes—a parallel distributed-

processing account of the Stroop effect. Psychol. Rev. 97,

332–361. (doi:10.1037/0033-295X.97.3.332)

Crick, F. 1989 The recent excitement about neural networks.

Nature 337, 129–132. (doi:10.1038/337129a0)

Dayan, P. 2002 Levels of analysis in neural modeling. In

Encyclopedia of cognitive science (ed. L. Nadel). London,

UK: Nature Publishing Group; John Wiley and Sons Ltd.

Dror, I. E. & Gallogly, D. P. 1999 Computational analyses in

cognitive neuroscience: in defense of biological implausi-

bility. Psychon. Bull. Rev. 6, 173–182.

Elman, J. L. 1990 Finding structure in time. Cogn. Sci. 14,

179–211. (doi:10.1016/0364-0213(90)90002-E)

Fitzsimonds, R. M., Song, H. J. & Poo, M. M. 1997

Propagation of activity-dependent synaptic depression in

simple neural networks. Nature 388, 439–448. (doi:10.

1038/41267)

Green, C. D. 2001 Scientific models, connectionist networks,

and cognitive science. Theor. Psychol. 11, 97–117.

Gurney, K. 1997 An introduction to neural networks. London,

UK: UCL Press (Taylor and Francis group).

Gurney, K. N. & Wright, M. J. 1992 A self-organising neural

network model of image velocity encoding. Biol. Cybern.

68, 173–181. (doi:10.1007/BF00201439)

Gurney, K., Prescott, T. J., Wickens, J. R. & Redgrave, P.

2004 Computational models of the basal ganglia: from

robots to membranes. Trends Neurosci. 27, 453–459.

(doi:10.1016/j.tins.2004.06.003)

Haykin, S. 1999 Neural networks: a comprehensive foundation.

Englewood Cliff, NJ: Prentice Hall.

Hebb, D. 1949 The organization of behaviour. New York, NY:

Wiley.

Hinton, G. E. & Shallice, T. 1991 Lesioning an attractor

network—investigations of acquired dyslexia. Psychol. Rev.

98, 74–95. (doi:10.1037/0033-295X.98.1.74)

Hodgkin, A. L. & Huxley, A. F. 1952 A quantitative

description of membrane current and its application to

conduction and excitation in nerve. J. Physiol. 117,

500–544.

Hopfield, J. J. 1982 Neural networks and physical systems

with emergent collective computational abilities. Proc.

Natl Acad. Sci. USA 79, 2554–2558. (doi:10.1073/pnas.

79.8.2554)

Hubel, D. H. & Wiesel, T. N. 1968 Receptive fields and

functional architecture of monkey striate cortex. J. Physiol.

195, 215–243.

Jacobs, R. A., Jordan, M. I. & Barto, A. G. 1991 Task

decomposition through competition in a modular con-

nectionist architecture. Cogn. Sci. 15, 219–250. (doi:10.

1016/0364-0213(91)80006-Q)

Jordan, M. I. 1986 Serial order: a parallel distributed approach.

San Diego, CA: University of California, Institute for

Cognitive Science.

Koch, C. 1999 The biophysics of computation: information

processing in single neurons. New York, NY: Oxford

University Press.

http://dx.doi.org/doi:10.1038/300523a0
http://dx.doi.org/doi:10.1126/science.4048942
http://dx.doi.org/doi:10.1098/rstb.2006.1964
http://dx.doi.org/doi:10.1037/0033-295X.97.3.332
http://dx.doi.org/doi:10.1038/337129a0
http://dx.doi.org/doi:10.1016/0364-0213(90)90002-E
http://dx.doi.org/doi:10.1038/41267
http://dx.doi.org/doi:10.1038/41267
http://dx.doi.org/doi:10.1007/BF00201439
http://dx.doi.org/doi:10.1016/j.tins.2004.06.003
http://dx.doi.org/doi:10.1037/0033-295X.98.1.74
http://dx.doi.org/doi:10.1073/pnas.79.8.2554
http://dx.doi.org/doi:10.1073/pnas.79.8.2554
http://dx.doi.org/doi:10.1016/0364-0213(91)80006-Q
http://dx.doi.org/doi:10.1016/0364-0213(91)80006-Q


Neural networks for perceptual processing K. Gurney 353
Koch, C., Mo, C. & Softky, W. 2002 Single-cell models.

In The handbook of brain theory and neural networks (ed.

M. Arbib). Cambridge, MA: MIT Press.

Kohonen, T. 1984 Self-organization and associative memory.

Berlin, Germany: Springer.

Lippmann, R. 1987 An introduction to computing with

neural nets. ASSP Mag. IEEE 4, 4–22.

MacLeod, C. M. 1991 Half a century of research on the

Stroop effect—an integrative review. Psychol. Bull. 109,

163–203. (doi:10.1037/0033-2909.109.2.163)

Makhoul, J., El-Jaroudi, A. & Schwartz, R. 1989 Formation

of disconnected decision regions with a single hidden

layer. In Int. Joint Conf. on Neural Networks, vol. 1,

pp. 455–460, Seattle.

Marr, D. 1982 Vision: a computational investigation into human

representation and processing of visual information. New York,

NY: W.H. Freeeman and Co.

Marr, D. & Poggio, T. 1976 From understanding computation to

understanding neural circuitry. Cambridge, MA: MIT AI

Laboratory.

McClelland, J. L. & Rumelhart, D. E. 1985 Distributed

memory and the representation of general and specific

information. J. Exp. Psychol. Gen. 114, 159–188. (doi:10.

1037/0096-3445.114.2.159)

McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. 1995

Why there are complementary learning systems in the

hippocampus and neocortex: insights from the successes

and failures of connectionist models of learning and

memory. Psychol. Rev. 102, 419–457. (doi:10.1037/0033-

295X.102.3.419)

McCloskey, M. 1991 Networks and theories—the place of

connectionism in cognitive science. Psychol. Sci. 2,

387–395. (doi:10.1111/j.1467-9280.1991.tb00173.x)

McCulloch, W. S. & Pitts, W. 1943 A logical calculus of the

ideas immanent in nervous activity. Bull. Math. Biophys. 7,

115–133. (doi:10.1007/BF02478259)

Minsky, M. & Papert, S. 1969 Perceptrons. Cambridge, MA:

MIT Press.

Movshon, J. A., Adelson, E. H., Gizzi, M. S. & Newsom,

W. T. 1985 The analysis of moving visual patterns. In

Pattern recognition mechanisms (eds C. Chagas, R. Gattas &

C. G. Gross), pp. 117–151. Berlin, Germany: Springer.

Olden, J. D. 2007 Critical threshold effects of benthiscape

structure on stream herbivore movement. Phil. Trans. R.

Soc. B 362, 461–472. (doi:10.1098/rstb.2006.1974)

Parker, D. B. 1982 Learning-logic: office of technology licensing.

Stanford, CA: Stanford University.

Price, D. & Willshaw, D. 2000 Mechanisms of cortical

development. Oxford, UK: Oxford University Press.

Rieke, F., Warland, D., de Ruyter van Steveninck, R. &

Bialek, W. 1996 Spikes. Cambridge, MA: MIT Press.

Rosenblatt, F. 1958 The perceptron: a probabilistic model for

information storage and organization in the brain. Psychol.

Rev. 65, 386–408. (doi:10.1037/h0042519)

Rosin, P. L. & Fierens, F. 1995 Improving neural net

generalisation. In Proc. IGARSS’95. Firenze, Italy.

Rumelhart, D. E. & Todd, P. 1993 Learning and connec-

tionist representations. In Attention and performance XIV

(eds D. Meyer & S. Kornblum), pp. 3–31. Cambridge,

MA: MIT Press.
Phil. Trans. R. Soc. B (2007)
Rumelhart, D. E., McClelland, J. L. & The PDP Research
Group 1986 Parallel distributed processing: explorations in the
microstructure of cognition. Cambridge, MA: MIT Press.

Shang, Y. & Wah, B. W. 1996 Global optimization for neural
network training. IEEE Comput. 29, 45–54.

Shepherd, G. M. & Koch, C. 1998 Introduction to synaptic
circuits. In The synaptic organization of the brain (ed. G. M.
Shepherd), pp. 1–36. Oxford, UK: Oxford University Press.

Smolensky, P. 1988 On the proper treatment of connection-
ism. Behav. Brain Sci. 11, 1–23.

Stone, M. 1974 Cross-validatory choice and assessment of
statistical predictions. J. R. Stat. Soc. B36, 111–133.

Stroop, J. R. 1935 Studies of interference in serial verbal
reactions. J. Exp. Psychol. 18, 643–662. (doi:10.1037/
h0054651)

Sutton, R. S. 1988 Learning to predict by the method of
temporal differences. Mach. Learn. 3, 9–44.

Sutton, R. S. & Barto, A. G. 1998 Reinforcement: an
introduction. Cambridge, MA: MIT Press.

Swindale, N. V. 1980 A model for the formation of ocular
dominance stripes. Proc. R. Soc. B 208, 243–264.

Touretzky, D. S. 1995 Connectionist and symbolic represen-
tations. In The handbook of brain theory and neural networks
(ed. M. Arbib), pp. 243–247, 1st edn. Cambridge, MA:
MIT Press.

Tveter, D. R. 1996 Backpropagator’s review. See http://www.
dontveter.com/bpr/bpr.html.

Vallortigara, G. & Bressan, P. 1991 Occlusion and the
perception of coherent motion. Vis. Res. 31, 1967–1978.
(doi:10.1016/0042-6989(91)90191-7)

von der Malsburg, C. 1973 Self-organization of orientation
sensitive cells in the striate cortex. Kybernetik 14, 85–100.
(doi:10.1007/BF00288907)

Wallach, H. 1976 On perceived identity 1: the direction of
motion of straight lines. In On perception (ed. H. Wallach).
New York, NY: Quadrangle.

Werbos, P. 1974 Beyond regression: new tools for prediction and
analysis in the behavioral sciences. Boston, MA: Harvard
University.

Widrow, B. & Hoff Jr, M. E. 1960 Adaptive switching circuits.
In IRE WESCON Convention Record, pp. 96–104.

Widrow, B. & Stearns, S. D. 1985 Adaptive signal processing.
Englewood Cliffs, NJ: Prentice Hall.

Wieland, A. & Leighton, R. 1987 Geometric analysis of
neural network capabilities. In 1st IEEE Int. Conf. on
Neural Networks, vol. III, pp. 385–392. San Diego, CA.

Williams, R. J. 1987 Reinforcement learning connectionist
systems. Boston, MA: Northeastern University.

Williamson, R. & Chrachri, A. 2007 A model biological
neural network: the cephalopod vestibular system. Phil.
Trans. R. Soc. B 362, 473–481. (doi:10.1098/rstb.2006.
1975)

Willshaw, D. J. & von der Malsburg, C. 1976 How patterned
neural connections can be set up by self-organization.
Proc. R. Soc. B 194, 431–445.

Zipser, D. 1992 Identification models of the nervous system.
Neuroscience 47, 853–862. (doi:10.1016/0306-4522(92)
90035-Z)

Zipser, D. & Andersen, R. A. 1988 A back-propagation
programmed network that simulates response properties
of a subset of posterior parietal neurons. Nature 331,
679–684. (doi:10.1038/331679a0)

http://dx.doi.org/doi:10.1037/0033-2909.109.2.163
http://dx.doi.org/doi:10.1037/0096-3445.114.2.159
http://dx.doi.org/doi:10.1037/0096-3445.114.2.159
http://dx.doi.org/doi:10.1037/0033-295X.102.3.419
http://dx.doi.org/doi:10.1037/0033-295X.102.3.419
http://dx.doi.org/doi:10.1111/j.1467-9280.1991.tb00173.x
http://dx.doi.org/doi:10.1007/BF02478259
http://dx.doi.org/doi:10.1098/rstb.2006.1974
http://dx.doi.org/doi:10.1037/h0042519
http://dx.doi.org/doi:10.1037/h0054651
http://dx.doi.org/doi:10.1037/h0054651
http://www.dontveter.com/bpr/bpr.html
http://www.dontveter.com/bpr/bpr.html
http://dx.doi.org/doi:10.1016/0042-6989(91)90191-7
http://dx.doi.org/doi:10.1007/BF00288907
http://dx.doi.org/doi:10.1098/rstb.2006.1975
http://dx.doi.org/doi:10.1098/rstb.2006.1975
http://dx.doi.org/doi:10.1016/0306-4522(92)90035-Z
http://dx.doi.org/doi:10.1016/0306-4522(92)90035-Z
http://dx.doi.org/doi:10.1038/331679a0

	Neural networks for perceptual processing: from simulation tools to theories
	Introduction
	Neural network principles
	Artificial neurons
	Feedforward networks and classification
	Training feedforward networks
	Networks and generalization
	Knowledge representations in neural networks
	Learning temporal sequences

	Meta-theoretical issues
	Description versus governance
	The problem of biological realism
	Marrs hierarchical analysis
	Mapping from networks to biological neural circuits
	Networks and neural representations
	Networks and neural architectures

	Concluding remarks
	Endnote1In fact the net uses so-called ‘course coding’ (Touretzky 1995). Thus small clusters of nodes are active rather than individuals, but this is not crucial to the argument.
	Endnote
	References


