
Page 1Copyright © 1998, NeuriCam

A primer on

Artificial Neural Networks
 Copyright © 1998, NeuriCam

❏ Please note that this material is protected by copyright

❏ Permission to copy this material is hereby granted to
everybody, provided that:
– The document is copied in its entirety and no parts of it are

extracted and used in any form separately

– Explicit reference to NeuriCam is made as the source of this
material

– The material is not sold, neither directly nor indirectly

Web: www.neuricam.com
mail: info@neuricam.com
Phone: +39 (461) 260.552

http://www.neuricam.com
mailto:info@neuricam.com

Page 2Copyright © 1998, NeuriCam

 primer on

Artificial Neural Networks

❏ Artificial Neural Networks (ANN) are a mathematical
abstraction of their biological counterpart

– Neurons are connected to each other by means of (unidirectional)
connections (axons)

– Neurons compute their activation as
the weighed sum of their inputs

– When the activation of a neuron
exceeds a given threshold, the neuron “fires”,
producing an output whose value
is mapping of its activation by
a transfer function

Neuron

Inputs

Output

A primer on

Artificial Neural Networks
 Copyright © 1998, NeuriCam

Page 3Copyright © 1998, NeuriCam

❏ Each connection from neuron L to neuron M has an
associated weight ZML

❏ Neuron L with inputs [���[���«�[L produces an activation DL

❏ Neuron L produces an output \L = I�DL), where I��� is a
transfer function

❏ Each neuron’s threshold can be taken into account by
introducing an additional fixed input (bias) = -1 and
appropriate weight

Characteristics of an artificial neuron

∑
=

=
L

M
MLML Z[D

1

Page 4Copyright © 1998, NeuriCam

❏ An ANN is a directed acyclic graph whose nodes are:
Input nodes: those without incoming edges

Output nodes: those without outgoing edges

Hidden nodes: all others

Building an ANN

Page 5Copyright © 1998, NeuriCam

Common simplifications

❏ It is convenient to draw the ANN as a layered structure,
with:

– the input nodes are placed all on the bottom layer (layer 0)

– the neurons whose predecessors are at least on layer O���are placed
on layer O

– the output nodes are placed all on the top layer (= max l)

Page 6Copyright © 1998, NeuriCam

Example - redrawn

1

1

3

3

4

0

5

2

0

5

1 1

33

4

0

5

2

0

5

The previous example, with the
nodes labelled as their respective
layer

And the graph redrawn in layers

Page 7Copyright © 1998, NeuriCam

Computing with ANNs

❏ By appropriate selection of the network topology and the
values of the weights, an ANN can compute any
computable function

❏ ANNs are a very powerful tool

❏ In addition: ANNs can learn from experience (more on that
later on)

Page 8Copyright © 1998, NeuriCam

A simple example:
 computing \� �;25�[���[���[��

[� [� [� \
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Truth table ANN

�

�
[�

�
[�

�
[�

�
��

� � �

� \

-1+1

-2 -3

0

Edge colors are
used to
denote weights

Where the transfer function
 


=

<

≥

00

01
)(

DLI

DLI
DI

Page 9Copyright © 1998, NeuriCam

More common simplifications and
conventions

❏ It can be shown that any computable function can be
computed by a three layer ANN: thus all that is needed is:
– an input layer

– a hidden layer and

– an output layer

❏ Nodes from each layer are connected only to nodes of the
next layer up

❏ Each layer can be considered fully connected to the next
layer: edges that are not used, can be given a weight of
zero

Page 10Copyright © 1998, NeuriCam

Typical graphical representation
of an ANN

[� [� [� ELDV� ���

\

ELDV� ���

Page 11Copyright © 1998, NeuriCam

Computing with ANNs

❏ Consider a
– specific network topology and a

– specific weight assignment

❏ Let ;�W� ��[��W���[��W���«���[P�W���be a vector of input values
and <�W� ��\��W���\��W���«���\Q�W���be a vector of output values

❏ To a specific input vector ;�W� corresponds a specific set of
output values <�W�

Page 12Copyright © 1998, NeuriCam

ANN as a mapping

❏ A particular ANN realizes a specific mapping
from input ;�W��to output <�W�

❏ This mapping can be changed by modifying the weights ZML
associated with the edges of the network

❏ Given an input vector ;�W��and the corresponding (desired)
output vector <�W�, one can tweak the weights of a particular
ANN until the (computed) outputs of that ANN are close
to the desired outputs (it might be impossible to make the computed
outputs the same as the desired outputs without changing the network topology
as well)

Page 13Copyright © 1998, NeuriCam

Error between desired and computed
outputs

❏ Let <�W��be the desired output vector and
let <
�W��be the output vector computed by a specific ANN

❏ Let�G�<�W���<
�W�� be some distance function that computes
the “error” between desired and computed output vectors
For example, a common choice for G�� is:

❏ By changing the weights ZML, one can attempt to reduce the
value of G�� as close to zero as possible

() ()’ -)’,()()()()(22
<<<<G WWWW =

Page 14Copyright © 1998, NeuriCam

Extension to sets of inputs/outputs

❏ The process of weight adjustment can be extended to the
more common situation where there is
– a set of input vectors (;���, ;���, … , ;�W�) and the corresponding

– set of desired output vectors (<���, <���, … , <�W�) with

– set of computed output vectors (<
���, <
���, … , <
�W�)

❏ The error between desired and computed outputs will be
given by '�G�<�����<
������G�<�����<
������«���G�<�W���<
�W���
(a common choice for '�� is the average for the various G��)

Page 15Copyright © 1998, NeuriCam

Minimizing the error

❏ Given specific:
– network topology,

– set of inputs vectors and,

– corresponding output vectors

the objective is to search for a weight assignment that
minimizes the error '��

Page 16Copyright © 1998, NeuriCam

A graphical example

❏ Assume a given set of inputs and desired outputs;
then, for a given network topology and for a particular choice of weights ZML
there is a corresponding set of computed outputs and its error '��

❏ For ease of visualization, assume that there are only two weights, Z� and Z�
❏ On the vertical �]� axis the value of '�� At Z�=32, Z�=12, the

error function '�� has a
global minimum.
(Other local minima can be
seen elsewhere)

The question is
how to find the global
minimum?

0

8

16

24

32

40

0 2 4 6 8

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

10

20

30

40

50

60

70

80

'��

Z�

Z�

Page 17Copyright © 1998, NeuriCam

Possible ways to find the weight
assignment that minimizes '��

❏ Exhaustive search: Explore all possible values of the
weights

• Computationally prohibitively expensive!!!

❏ Steepest gradient method: start from a random assignment
of the weights (a specific point in the '�� surface), find the
steepest direction of the '�� surface around that point and
move in that direction to the next point; repeat until further
improvements are not possible

• Frequently used, usually under the name “backpropagation”

• Requires to compute the slope of the D() surface, a computationally
difficult task

• Might get stuck in a local minimum

Page 18Copyright © 1998, NeuriCam

Finding the best weight assignment

❏ Search-based methods: start with a random weight
assignment, compute the error function for some
neighbours of that point, go to the best neighbour and
repeat this process until no further progress is possible

• Computationally simpler than the previous case, but requires fast re-
evaluation of the entire set of input vectors for each neighbour

• Can take advantage of a hardware implementation of the basic
neurons

• Might get stuck in a local minimum

• Can be improved by adding a mechanism to “escape” from local
minima

• Can be improved by adding a mechanism to avoid retracing points
that were evaluated before

Page 19Copyright © 1998, NeuriCam

Reactive Tabu Search (RTS)

❏ A Primer on RTS can be found in the Docs folder of the
NeuriCam’s site. Here is a brief summery

• Global search-based method

• Avoids getting trapped in local minima

• Keeps track of previous “moves” to avoid looping

• Can work with short (few bit) representation of weights and inputs
and achieves at least the same performance of more costly methods
based on back-propagation

• Does not require “smooth” transfer functions (it can work even with non-
continuous functions)

• “VLSI-friendly” technique: can be implemented in application-
specific digital circuits for fast ANN evaluations (see NeuriCam’s
Totem chip)

Page 20Copyright © 1998, NeuriCam

ANNs that learn

❏ The process of error minimization described earlier can be
interpreted as a training of the ANN by presenting it with
“examples” of inputs and the desired corresponding
outputs

❏ Thus, the ANN can be thought of as going through a phase
of supervised learning, where we provide it with the inputs
and their corresponding expected responses so that later on
it can provide reasonable responses to inputs that were not
seen before
(There are also non-supervised training techniques that use an objective
functions that must be optimized)

Page 21Copyright © 1998, NeuriCam

Things that need to be decided upon

❏ The topology of the network (typically, a balance has to be
found between too many and too few nodes)

❏ The transfer function of the neurons (typically some sort of
“S”-shaped curve)

❏ The size of the input/output training set

Page 22Copyright © 1998, NeuriCam

How many nodes should be in the ANN?

❏ More nodes in each layer permit more accurate
associations between inputs and outputs

❏ More nodes allow the net to learn the training examples
very well (high memorization capability), but …

❏ but then the trained ANN can behaves poorly when
presented with new inputs (low generalization capability)

❏ More nodes require more computation time

❏ There are techniques to give guidelines for selecting the
appropriate number of nodes

Page 23Copyright © 1998, NeuriCam

What kind of transfer function?

❏ Generally, some “S” shaped transfer function is used, such
as:

❏ Typically, one tunes the transfer function by tuning the
parameter α

❏ The adaptability of ANNs makes the overall computation
fairly tolerant of changes in the transfer functions, so this
is not a major problem

H [α−+1
1

Page 24Copyright © 1998, NeuriCam

How many input/output vectors for the
training set?

❏ In general, the more the vectors, the better the results

❏ Crucial is that the training vectors are statistically
representative of the entire possible input universe

❏ however, the training methods are usually robust in the
presence of spurious or ill-defined data in the training set
(outlyers)

❏ The WinTot32™ software package provided a graphic-
based user interface that simplifies the task of network
configuration and testing. (See the WinTot32 primer on this site)

