Neurons for Computers

rtificial neural networks are com-
Aputer models inspired by the
structure and behavior of real
neurons. Like the brain, they can rec-
ognize patterns, reorganize data and,
most interestingly, learn. The artificial
networks are made up of objects called
units, which represent the bodies of the
neurons. The units are connected by
links, which act as the axons and den-
drites. The link multiplies the output
from a unit by a weighting factor, a val-
ue analogous to the connection strength
at a synapse. The link then passes the
weighted output value to another unit,
which sums up the values passed to it
by all other incoming links. If the total
input value exceeds some threshold val-
ue, the unit fires.

Modifications in the firing pattern
constitute the learning. In real neurons,
learning is thought to occur in the syn-
apses: when the connection strengths
between synapses change, the firing be-
havior of the network changes. In artifi-
cial networks the learning occurs when
the weighting factors on the links change
[see “How Neural Networks Learn from
Experience,” by Geoffrey E. Hinton,
page 144].

Artificial neural networks are made up
of three types of units. The input units
take in information from the outside
world. The output units send out signals

T
INPUT
UNIT

HIDDEN
UNIT

+1

INPUT
UNIT

that are visible to the external world.
The hidden units act as go-betweens
from the input to the output units; they
neither receive input directly from the
outside nor produce a visible output.

An illustration of a simple network
appears below. The numbers in the
units indicate threshold values. The val-
ues along the connecting lines are the
link weights. Note that there can be
shortcuts: some input connections can
bypass the hidden unit.

If one input unit is presented with
1 and the other with 0, then the in-
put to the hidden unit will be (1x 1) +
(0x 1)=1. But because this value is less
than the threshold value, the hidden
unit will not fire (that is, it will have
an output of 0). The values to the
output unit will be (1 x 1) +(0x (-2)) +
(0x1)=1, which is greater than the
threshold value of 0.5. The output unit
will then fire.

You may recognize that the logic in-
volved mimics an “exclusive or” (XOR)
gate. Specifically, if just one input unit
is given the value of 1, then the net-
work will produce an output value of 1.
Otherwise, it will produce 0—that is, it
will not fire. You will find that the oth-
er three possible input patterns lead to
the appropriate output results for an
XOR gate as well.

That you can model an XOR gate

UNIT

+1

ARTIFICIAL NEURAL NETWORK shown here represents an “exclusive or” (XOR)
gate: the output unit fires only if an input unit is presented with a 1. The numbers
along the connections are weights, and those inside the units are threshold values.

Q‘ THE AM ATE UR SC IE NTI ST conducted by Drew van Camp

with an artificial neural network is not
particularly exciting. By carefully select-
ing the weights and thresholds of a suit-
ably complex network, you can mod-
el any logic function. What is exciting
about such networks is that you do not
have to choose the weights and thresh-
olds. For our XOR gate, we could have
started with any weight and threshold.
Then, by repeatedly being shown the
patterns of inputs and outputs, the net-
work would learn the weights necessary
to implement the XOR gate. Even more
interesting, the network can generalize
what it has learned. For large data sets,
it can recognize patterns that it has not
seen before.

To create such a network, we need
to make a few modifications to our
artificial neurons. First, the mathemat-
ics used to train the network becomes
much easier if we do not have to change
both weights and thresholds during the
learning. This is actually simple to do.
Any unit with a positive threshold, 7,
and a certain number, n, of incoming
links can be replaced by a unit with a 0
threshold and n + 1 links, where the ex-
tra link has the weight of -T and comes
from a unit that always fires (that is,
produces an output of 1). This trick is
called biasing. Artificial neural networks
often introduce the bias unit, which is
usually connected to every unit in the
network, to change the threshold into
a weight. Representing the output of
a unit as a sigmoid function also sim-
plifies the math. The sigmoid is just a
smooth approximation of a threshold
function.

Although there are several ways to
train a network, I chose a method from
a particular class of algorithms called
supervised learning (other types include
unsupervised learning and reinforce-
ment learning). In supervised learning
the weights of the network are adjust-
ed in a manner that causes the actu-
al outputs of the net to move closer to
the desired outputs. One of the most
successful of such training methods is
the back-propagation algorithm.

Hinton’s article gives a more detailed

DREW vaN CAMP is a computer pro-
grammer and researcher at the Univer-
sity of Toronto. He specializes in creat-
ing neural-network simulators for vari-
ous applications.

description of the technique. Briefly,
for those who have a tolerance for ele-
mentary calculus, you are taking the
derivative of a function in order to find
the direction that minimizes the net-
work’s error. The function most com-
monly used for the error is the sum of
the squared errors of the output units.
The box to the right lists the equations
and the steps needed to implement the
back-propagation algorithm.

My first implementation was an au-
to-encoder network. Such devices com-
press patterns. For example, think of a
network that has four input units, two
hidden units and four output units (a
4-2-4 encoder). When any input pat-
tern is presented to the network, all
four input values must be combined
into the two hidden units. These two
values must then be able to reproduce
the original pattern of the four values
in the output units. The entire four-val-
ued input pattern thus must be encod-
ed in the two hidden units.

In the 4-2-4 encoder, note that every
input is connected to every hidden unit.
Similarly, every hidden unit is connect-
ed to every output unit. The bias unit is
connected to all the hidden and output
units (there is no need to connect the
bias unit to the input units, as they will
Jjust reproduce the inputs). Each of the
four patterns I wanted to train the net-
work to recognize has one unit on and
the three remaining units off.

Before I started training, I assigned
random values between -1 and 1 for
the initial weights. When I presented
the four patterns to this untrained net-
work, the total error (the value of F)
varied between three and five (depend-
ing on the initial weights).

Training the network consisted of re-
peatedly presenting the patterns to the
network and updating the weights af-
ter each presentation. I decided that
the network reached an acceptable per-
formance level when the total error
of the four patterns was less than 0.1.
Using this criterion, I found it took be-
tween 800 and 2,000 presentations be-
fore the network learned the task, de-
pending on the step size, §, for chang-
ing the weights. Indeed, one of the
trickiest parts in training the network
was choosing 8. If the value chosen is
too low, the network will take a long
time to converge. If the value is too high,
the network behavior will be unstable
and may never converge. Through trial
and error, I came to use a value of 0.5.
Although the network did not train
quickly, it never blew up.

Once the network was trained, I de-
cided to see what kind of internal pat-
terns it used to encode the presented
patterns. The hidden units contained

Training an Artificial Neural Network

A network learns by successive repetitions of a problem, making smaller
errors with each iteration. The most commonly used function for the error is
the sum of the squared errors of the output units:

E=‘/zZ(y,—d,)2

The variable d; is the desired output of unit i, and y; is its actual output,
where y; is the sigmoid function 1/(1 + e-*). To minimize the error, take the
derivative of the error with respect to w;;, the weight between units iand j:

of

ahw,j =y, v,(0-y)B
where B; = (y; - d;) for output units and B; = 2w, v, (1 - y,) B, for hidden
units (k represents the number of units in the next layer that unit j is con-
nected to). Note that Y; - yj) is the derivative of the sigmoid function [see
illustration on next page).

As you can see, the error can be calculated directly for the links going into
the output units. For hidden units, however, the derivative depends on val-
ues calculated at all the layers that come after it. That is, the value B must be
back-propagated through the network to calculate the derivatives.

Using these equations, we can state the back-propagation algorithm as
follows:

=Choose a step size, 6 (used to update the weights).
=Until the network is trained,
=For each sample pattern,
=Do a forward pass through the net, producing an output pattern.
=For all output units, calculate B;= (y;— d)).
=For all other units (from last layer to first), calculate B using
the calculation from the layer after it:

B =X, w,y,(-y)B,.
=For all weights in the network, change the weight by

Aw; = —6yl. yj(l - yj,)Bj.

OUTPUT
UNITS

HIDDEN
UNITS

BIAS UNIT

INPUT
UNITS
INPUT PATTERNS . HIDDEN UNIT OUTPUTS ACTUAL OUTPUTS
1 000 0.03 0.97 091 010 000 0.07
0 10 0 0.98 0.96 0.07 088 0.06 0.00
0 01 0 ; 0.91 0.02 000 o010 091 0.06
00 0 1 0.03 0.07 007 0.00 009 0.90

4-2-4 ENCODER NETWORK compresses patterns. After the training period, the net-
work accurately reproduced the input by representing the patterns essentially as bi-
nary code (as revealed by the hidden units).

SCIENTIFIC AMERICAN September 1992 171

TA

0 > X
-10 0 +10

SIGMOID FUNCTION, defined by the
equation y = 1/(1 + e™®), produces al-
most the same output as an ordinary
threshold (a step function) but is math-
ematically simpler. Its derivative is
dy/dx =y(1-Yy).

values such as 0.03, 0.97, 0.98 and
0.07. Essentially, the network had de-
veloped a binary code for the patterns.

Finally, I decided to build a network
that could learn arithmetic—specifical-
ly, the addition of two three-bit bina-
ry numbers. The input to the network
would be the six binary digits specify-
ing the two numbers to add. The out-
put would be the four digits to which
they summed (four digits are necessary
in case a number carries over).

Before building this network, I gen-
erated a training set of 64 patterns. To
be sure that the representations of the
numbers in three-bit form were correct,
1 wrote a short program that did the
calculations and output all the train-
ing patterns. Next, I had to determine
the architecture of the network. Once
again, I decided to use a single hidden
layer, but I was not sure how many units
it should contain. That is because of a

/*Network parameters*/

#define NUM_INPUT 4
#define NUM_HIDDEN 2
#define NUM_OUTPUT 4
#define NUM_BIAS 1
#define STEP_SIZE 0.5

typedef struct Unit {

double input;
double output;
double target;
double beta;

} Unit;

typedef struct Net {

double
double
double
double

FILE
double

*fpPatterns;
error;

} Net;

#define sigmoid (x)

#define sigmoidDerivative (x)
#define random (x)

#define square (x)

Network Parameters and Data Structures

/*number of input units*/
/*number of hidden units*/
/*number of output units*/
/*number of bias units*/

/*step size for updating weights*/

/* Network data structures: Unit, Net */

/*total input*/
/*total output (input through

/*target output (for output units)*/
/*error derivative (backpropagated)*/

Unit input [NUM_INPUT];
Unit hidden [NUM_HIDDEN];
Unit output [NUM_OUTPUT];
Unit bias [NUM_BIAS];

/*Connections between layers (note order of indices)*/
i2h[NUM_HIDDEN][NUM_INPUT];
h20[NUM_OUTPUT][NUM_HIDDEN]; /*hidden to output*/
b2h[NUM_HIDDEN]{NUM_BIAS];
b2o[NUM_OUTPUT][NUM_BIAS];

/*circular file of patterns*/
/*network error*/

/*Useful macros: sigmoid (derivative), random, square*/

(1.0 / (1.0 + exp{-double) (x)))
((double) (x) * (1.0 = (X))
((double)rand () /(RAND_MAX))
() (x))

the sigmoid function)*/

/*layer of input units*/
/*layer of hidden units*/
/*layer of output units*/
/*layer of bias units*/

/*input to hidden*/

/*bias to hidden*/
/*bias to output*/

common problem that arises during the
training of artificial neural networks:
their performance on the training data
will always continue to improve (as-
suming a stable procedure to update
the weights). But if you give patterns
that are not from the training set, you
will notice that the network’s perfor-
mance on these patterns will first im-
prove, then get worse.

The process is called overfitting. It
occurs after the network has learned
some general rules about the data. As
you train the network, it learns more
and more about the anomalies in the
training set. It then tries to generalize
these anomalies to other data and, as a
result, produces a large error.

To avoid serious overfitting, the num-
ber of weights in a network should be
much less than the number of bits re-
quired to specify the desired output for
all the training examples. For the bi-
nary addition task, there should be far
fewer than 256 weights (64 patterns
times four digits of output). Using this
rule of thumb, I decided to try 15 hid-
den units with six input units, four out-
put units and a bias unit, which gave
169 connections. This network took
significantly longer to train than the
previous networks. In fact, it took more
than 30,000 iterations.

Once 1 knew the network could be
trained, 1 tried something different. I
removed four of the patterns from the
training data, randomized the weights
and retrained the network on the
remaining 60 patterns. Once it was
trained, I tested it on the four patterns it
had never seen. It produced the correct
answers for these patterns. The network
had learned to do binary addition.

Many modifications would greatly
enhance the network’s learning rate. In
particular, you could use more com-
plex methods for choosing the direc-
tion to move the weights or use line
searches to determine how large a step
to take. There are also many more com-
plex algorithms to try, including con-
structive algorithms that add hidden
units as they train.

For a copy of the encoder program
(written in ANSI C language), send a
formatted double-density disk (3'/> or
54 inches) with a stamped, self-ad-
dressed mailer to: The Amateur Scien-
tist, Scientific American, 415 Madison
Avenue, New York, NY 10017-1111.

FURTHER READING

EXPLORATIONS IN PARALLEL DISTRIBUTED
PROCESSING: A HANDBOOK OF MODELS,
PROGRAMS, AND EXERCISES. David E.
Rumelhart and James L. McClelland.

The MIT Press, 1988.

172 SCIFNTTFIC AMFRICAN

Sentember 1992

