13

Computers can learn

Neural networks

The statement we made in Chapter 1 about computers being models of the
human brain is obviously a great simplification. The human brain is so com-
plex and functions at so many levels that mankind is still very far from fully
understanding its workings. Therefore, we are only able to model some aspects
of its functionality and in a very limited way.

The architecture proposed by von Neumann, the basis of all modern com-
puters, is one such simplified model. Its two main components—the central
processing unit (CPU) and the memory—are analogous to the two main func-
tions of our brain—thinking and remembering. A very simplified model of
our thinking process is realized by the CPU and it is a cyclic repetition of the
following actions.

¢ Read an instruction from memory.

¢ Read the data required to carry out the instruction from memory.
e Carry out the instruction.

e Write the resulting data to memory.

A little-known fact is that the first digital programmable computer (the Z3) was
produced in 1941, before and independently of John von Neumann, by Konrad
Zuse. Zuse built his first computer (the Z1) in his parents’ living room in 1938.
The 73 had all of the basic features of modern computers; it was programmable
and used floating-point arithmetic. it was not until much later, however, that Zuse's
ground-breaking achievements were discovered and acknowledged.

Computers can learn | 131

Konrad Zuse (1910-1995); German engineer and a computer pioneer ahead of
his time. Designed and built the first computer and developed the first high-level
programming language—Plankalkul.

We need not convince the reader of how effective this model prove to
be—the range of applications of modern computers speaks for itself. Yet it
is pretty clear that computer ‘brains’ are still a long way from ours. A major
shortcoming of the von Neumann architecture is its sensitivity to errors—even
a small change to the set of instructions for the CPU (the computer program)
usually causes the program to stop functioning altogether. Another limitation
is the sequential nature of the computing process—the fact that the processor
can only do one thing at a time. Yet another deficiency is the computer’s
inability to adapt to changing circumstances. All of these issues are addressed
by an alternative computer model—the neural network.

Neural networks, besides trying to model the functionality of the brain,
also try to imitate its structure. A brain is a network of many interconnected
components which function in parallel and communicate with each other. In
other words, it is a distributed system. Distributed systems are usually more
resistant to errors and damage than centralized ones. A centralized system
always has a weak point—its center—the damage of which renders the whole
system useless. Distributed systems have no single weak point and can often
continue functioning after a part of them has been corrupted or destroyed.

In fact, this motivation was the reason why the US Defense Department created the
experimental computer network called ARPAnet (named after the Advanced
Research Projects Agency which funded the project). The network’s distributed
architecture was supposed to assure its functionality, even in the case of extensive
damage (brought on, for example, by a Soviet nuclear attack). What nobody expec-
ted was that the ARPAnet was going to evolve into a giant worldwide computer
network called the Internet, and that the main threats to its smooth functioning
were going to be the authors of computer viruses and spam mail rather than a for-
eign enemy. Still, the distributed nature of the network fulfilled its expectations; the
Internet does not cease to function even when a virus immobilizes a large number
of its nodes.

Imitating the brain

A human brain (as well as an animal one) consists of specialized cells called
neurons. Neurons are capable of passing information to and from each other.

132 | Modeling Reality

Besides all of the typical cell elements, they are equipped with dendrites and an
axon (see Fig. 13.1). Dendrites collect signals from the surrounding neurons.
When the total intensity of the gathered signals passes a certain threshold, an
electrical impulse (called the action potential) is propagated down the axon.
Once the signal reaches the end of the axon (called the axon terminal), it can
be picked up by neurons located in the vicinity of the terminal. Some neuron
axons are short, but some can be very long.

Signals do not pass directly from one neuron to another. Each neuron con-
nection is actually a tiny valve called a synapse. Some synapses pass the actual
electrical signals between neurons, but most pass chemical substances called
neurotransmitters. The action potential triggers the axon terminal to release
neurotransmitters into the synapse. These disperse and bind to the receptors
of the receiving neurons, effectively transmitting information.

When a signal traverses a synapse it may become stronger or weaker,
depending on the properties of the synapse. These synapse strengths influence
the way in which the brain processes information. On the other hand, pro-
cesses going on in the brain can cause the synapse strengths to change. These
two facts lead to the hypothesis that the adjustment of synapse strengths is
the basis of memory and learning. This is called the Hebbian theory after the

Dendrites Axon Synapse

Fig. 13.1 A schematic diagram of neuron connections in the brain. In reality each neuron is
connected to thousands of others, forming a much more complicated three-dimensional
mesh.

Computers can learn | 133
Canadian psychologist Donald Hebb who formulated it in 1949, thus founding
what is now called cognitive psychology.

A single neuron is very slow compared to a modern computer processor.
It takes about one millisecond (103 s) to react to an impulse, while a 1 GHz
processor performs one instruction in a nanosecond (10_9 s). However, if we
take into account that a human brain is composed of roughly 1011 simultan-
eously functioning neurons and that each neuron is connected to thousands
(sometimes even hundreds of thousands!) of other neurons, then we can safely
say that a brain has many orders of magnitude more computing power than
any computer created so far.

The former description of the workings of our brain is highly simplified. In
fact, it is yet another model which mirrors just a few aspects of the process,
leaving many elements out. This simple model, however, was what inspired
scientists to build artificial neural networks, called neural networks or neural
nets for short. Artificial neural networks are composed of artificial intercon-
nected neurons. Each artificial neuron connection, the parallel of a synapse,
has a numeric weight associated with it; as a signal (which is also a number)
passes through the connection it is multiplied by this weight. An artificial
neuron receives incoming signals, applies some simple function to their sum,
and outputs the result.

The function used by artificial neurons to transform the sum of inputs
into an output is called the activation function. As we mentioned before,
real neurons fire when the sum of their inputs reaches a certain threshold.
Imitating this behavior means applying a threshold activation function (see
Fig. 13.2) of the general form

f(x) =asign (x) +c.

This function is often used as an activation function in artificial networks.
Its main advantage is simplicity, but it does have several drawbacks, such as

Threshold function Linear function Sigmoid function

19— 1 ’ 1 F

-10 10 -10 l 10 -10 }[10
—_1 -1 -1

f(x) =sign(x) f(x)=0.1x f(x)=tanh(x) 2
=2/(1+e™)-1

Fig. 13.2 Three kinds of activation functions used in neural networks.

134 | Modeling Reality

a discontinuity at the threshold point. An aiternative is the linear function
(see Fig. 13.2)

fx)=ax+c.

The most widely-used activation functions, however, are the sigmoid func-
tions (see Fig. 13.2), a ‘compromise’ between the former two:

a

IO = e

+ c.
The most common sigmoid functions are the simplest, i.e. f(x) =1/(1+e™")
or the hyperbolic tangent f(x) =2/(1 + e_zx) — 1 = tanh(x).

Often, an additional value is associated with each neuron and is called a bias.
The bias is added to the sum of the neuron’s inputs before applying the activation
function, effectively shifting the plot of the activation function left or right and shifting
the threshold if there is one. For unifying the terminology, instead of associating
extra values with neurons, additional neurons are introduced into the network.
These additional neurons are called bias units; they have no inputs and always
output 1. Each neuron is at the output end of a connection with a bias unit and the
weight of that connection is the bias of the neuron. The advantage of this approach
is that it makes it easy to adapt an existing learning mechanism (which will be
described later) to alter the bias values as well.

Neurons in the brain are often classified as sensory neurons, motor neurons,
and interneurons. Interneurons just pass information from neurons to neur-
ons, as described earlier. Sensory neurons receive information from external
stimuli rather than from other neurons. Motor neurons, in turn, pass inform-
ation on to muscles, causing them to contract. Sensory and motor neurons
permit a two-way interaction between the brain and the environment. Like-
wise, an artificial neural network has a set of input nodes, a set of output nodes,
and a set of internal nodes (usually called hidden nodes). While the simplest
neural nets do not contain any hidden nodes, all must have some input and
some output nodes to serve their purpose.

Several companies produce physical neural networks from arrays of simple
processors. Due to their lack of flexibility, however, the market for hard-
ware neural networks is still very small. A much more popular approach is
emulating neural networks with a traditional von Neumann computer. Soft-
ware neural networks are computer programs which simulate the behavior
of an actual network. Such programs can no longer take advantage of the
parallel design of neural networks, since most of them end up running on
single-processor machines. Yet they are much easier to manage than hardware

Computers can learn | 135

networks and are widely used when the ability to adapt and fault tolerance—
rather than parallelism—are the reason for choosing a neural net solution.

There are two main difficulties when trying to solve a problem using a
neural network.

¢ Designing the network—deciding on the number of neurons and spe-
cifying the connections between them; in other words, constructing a
directed graph representing the network.

¢ Teaching the network—adjusting the weights on the basis of some
sample input so that the network will ‘learn’ to serve its purpose.

We are still pretty much in the dark about how nature ‘solves’ these prob-
lems. Apparently, the ‘design’ of our brains is largely the product of evolution,
though the connections between neurons do change throughout our lives.
There are a few theories on how different kinds of stimuli can affect syn-
apse strengths resulting in learning, but nobody knows how the process works
exactly. We cannot even be sure whether synapse strengths are indeed the basis
of our memory.

Neither is there a unique methodology for designing and teaching artifi-
cial neural networks. In general, a neural network design can be any directed
graph. This large degree of freedom makes it very difficult to formulate specific
theories on the subject. Most often, additional restrictions are introduced and
theories are developed for certain narrowed-down families of networks. In the
remainder of this chapter we will describe a few of the most popular neural
network families and the algorithms associated with them.

Perceptrons

The simplest and most common type of neural network is a multi-layer per-
ceptron (MLP). MLPs are feedforward networks, meaning that they do not
contain any cycles. Information supplied to the input nodes passes through
a feedforward network once, until it reaches the output nodes, and then the
state of the network stabilizes. An MLP is organized into a series of layers: the
input layer, a number of hidden layers, and an output layer. Each node in a
layer is connected to each node in the neighboring layers. These connections
always point away from the input and in the direction of the output layer. See
Fig. 13.3 for the topology of a sample two-layer perceptron.

Some people would call the network in Fig. 13.3 a three-layer perceptron, since
it has three layers of nodes. Most often, though, one refers to the number of
connection layers, rather than node layers, when specifying the layer count of a
perceptron. The term perceptron used alone often refers to a single-layer perceptron
(SLP), with one input layer, one output layer, and no hidden layers.

136 | Modeling Reality

Output layer

Input layer

Fig. 13.3 A two-layer perceptron.

An MLP transforms signals according to the algorithm in Fig. 13.4. To better
understand this procedure and the associated notation, let us consider the
simple two-layer perceptron depicted in Fig. 13.5. This network, given two
binary values (0 or 1), outputs the exclusive or of the two values. Exclusive or,
XOR for short, is a logical function defined as follows:

0, whenx =y,

XOR(x, y) =
1, whenx #y.

In their 1969 work entitled ‘Perceptrons’, two pioneers of artificial intelligence,
Marvin Minsky and Seymour Papert, proved that no perceptron without hidden
layers can calculate the XOR function. They conjectured that the same holds for
more complicated perceptrons as well, which for a time significantly cooled the
interest in neural networks altogether. Fortunately, as the above example confirms,
MLPs are not quite as impotent as Minsky and Papert believed.

Marvin Minsky (1927-); a founder of artificial intelligence; among his many inven-
tions are the confocal scanning microscope and the Logo turtle (together with
Papert).

Computers can learn | 137

» For each node N! in the input layer (layer number 1), set its signal S to /;,
where J; is the ith component of the input signal.
» For each layer k, starting from the layer after the input layer (layer number

2) and ending with the output layer (layer number M):

—For each node N;‘ in layer k, sum the incoming signals multiplied by the
corresponding connection weights, apply the activation function f, and set
the signal of the node S”.‘ to the result. In other words, for each node Nll‘ in
layer k, set its signal to

Lyt
S—f Z k]skl

where L _; is the number of nodes in layer k — 1 and w;‘i_] is the weight

of the connection from node N;.‘_l to node Nll‘ .

+ For each node NM in the output layer (layer number M), copy its signal S
to O;, where O; is the ith component of the output signal.

Fig. 13.4 The algorithm used by an (M — 1)-layer perceptron to transform the L1-long input
vector {I,/3,...,1) into the Ly-long output vector {01, 03, ..., O, }.

Fig. 13.5 A simple MLP which
calculates the XOR of two binary
values. Its activation function is
f(x) = sign(x).

138 | Modeling Reality

Si=1,=0 S2=sign(1x0+1x1)=1 0,=5;
Sy=h=1 S2=sign(1x0+0x1)=0 =sign (2x1-1x0-1x1)
S2=sign(0x0+1x1)=1 =1

Fig. 13.6 A calculation performed by the MLP in Fig. 13.5. The network calculates that
XOR(0, 1) = 1.

Seymour Papert (1928-); American mathematician; inventor of the Logo program-
ming language.

Figure 13.6 shows how the subsequent steps of the algorithm from Fig. 13.4
applied to the network depicted in Fig. 13.5 lead to the result XOR(0, 1) = 1. As
an exercise, we encourage the reader to verify that the network also produces
the correct results when the pairs (0, 0), (1, 0), and (1, 1) are taken as input.

The network in Fig. 13.5 provides one of the most complicated ways to
calculate the XOR of two binary values using a computer. After all, the same
can be achieved with just one elementary processor instruction. The aim of the
example was to familiarize the reader with neural networks and the related ter-
minology, but it did nothing to demonstrate why neural networks are actually
useful. We contrived both the network topology and the connection weights
to achieve the desired result. It was not a simple task and what we got in the
end was a very complex way to calculate a very simple function. We did not
take advantage of the main feature of neural networks, namely their ability
to learn.

Teaching the net

Teaching neural networks is the process of adjusting the network’s connection
weights in order to make it function in the desired way. In the former example,
we picked the weights by hand to make the network function in the desired

Computers can learn | 139

way (calculate the XOR of two binary numbers). This approach may be good
in some cases of hardware neural networks, but it is usually very inefficient.
It is much easier to design an algorithm rather than to invent a network for
solving a problem. When referring to the process of teaching a neural network,
one usually means applying some learning algorithm which adjusts the net-
work’s weight automatically. There are different learning algorithms suitable
for different tasks and for different network topologies.

Perhaps the simplest learning algorithm comes from John Hopfield and is
based on Hebb’s observations of actual processes going on in the brain. Hebb
noticed than when two neurons are connected by a synapse and when these
two neurons tend to fire at the same time, then the strength of the synapse
increases. Hebb’s theory is that this process lies at the base of associative
memory—the memory which associates remembered objects with each other
(like one may associate the smell of lilacs with spring).

John J. Hopfield (1933-); a physicist at California Institute of Technology and Prin-
ceton University. In 1982 he presented a new formulation of neural network theory
based on statistical physics.

The simplest Hopfield network acts as an autoassociative memory, which
means that it associates objects with themselves. Given an input pattern, it
produces the same pattern as output. Producing the same output as input may
seem useless; but notice that neural networks tend to be fault tolerant. So when
a slightly corrupted version of a memorized pattern is inputted, the network will
still output the original memorized pattern. For example, one can teach the
network with a set of letters encoded as bitmap images. Later, when scanning
a text, one can run each scanned letter through the network to remove the
errors which the scanning process introduced. One could achieve the same by
comparing each scanned letter with the letters from the set and replacing it
with the letter from the set most similar to it. The neural network solution,
however, can be implemented in hardware and is then much faster than the
direct comparisons.

A simple Hopfield network for recognizing binary patterns (stored as
sequences of —1s and +1s) of length # is a single-layer perceptron with » input
nodes and n output nodes. The activation function is f(x) = sign(x).

An alternative topology of Hopfield nets identifies its input nodes with its output
nodes, so that the network has just n input/output nodes and every node is con-
nected to every other. The full graph model is more powerful since it allows the

140 | Modeling Reality

network to be treated as a recurrent one. Recurrent networks will be described later
in this chapter.

We will use the term training set to mean the sample data used during the
learning process. In this case, the training set is a set of patterns to memorize
{P1,P2,..., P™}, where the kth pattern is a sequence P¥ = {pk, p&, ..., pk} of
+1 and -1 values. Training the network on this set is achieved by setting the
following weights:

1SN 4k
wi,jzzzpipj-
k=1

This simple rule can be interpreted as follows. For each pattern in the set
(P*) and for each connection (between input node i and output node j), add
to the connection weight the term 1/» if there is a positive correlation between
the values at the positions i and j in the pattern (pf‘ = +1 and p’l‘. = +1, or
p¥ = -1and p’}‘. = —1) and subtract from the connection weight the same
term if there is a negative correlation between the values at the positions i and
j in the pattern (p¥ = +1 and p"j‘. = -1, 0r pf = -1and pI;- = +1). The
correlation information is stored in the network weights so that, when later
presented with a somewhat perturbed input, the network is able to reproduce
the original pattern. Of course, in order for this method to work properly, the
patterns in the training set must by distinctly different from each other and
the perturbation of the input cannot be too great.

Hopfield’s learning method is simple—it provides a ready formula for all
of the weights—but it is also limited in its applications. It can only make the
network output identical to its input, perhaps filtering some noise on the way.
What if we want the network to compute something else?

Fifteen years after the invention of neural networks, the first algorithm
for training them was found by the American psychologist Frank Rosenblatt.
Rosenblatt described a perceptron in its simplest form (an input layer and an
output layer with the sign activation function) and simulated it in 1958 on an
IBM 704 machine. He also described a training algorithm for it, namely the
perceptron learning rule (PLR).

PLR uses a training set consisting of pairs of input and desired output. At
first, all of the weights in the network are set to random values. Next, a series
of iterations is performed. In each iteration an input pattern (I, I,..., I}
from the training set is fed to the network. The network produces some out-
put {01, O3, ..., Op} from this input, and that output is subtracted from the
desired output {D1, D3, ..., Dn} to obtain the error vector {Ey, Ey, ..., En}. The
length of the error vector is a measure of how well the network behaved. If

Computers can learn | 141

it is zero then the network produced exactly the desired output. The longer
the error vector, the worse the behavior of the net. Every network weight is
subsequently adjusted, depending on the component of the error for which it
was responsible. That is, if £; = 0 then w; ; stays unchanged, but if E; = +1
then w; ; is modified. The increment or decrement of the weight is controlled
by a small parameter called the learning rate (customarily denoted by ») and
it is additionally proportional to the input of the connection ;. Thus, the
modified weight is set to be w; ; + n/; E;. The learning rate should be some
small positive number, such as 0.1. If the learning rate is too high, then each
iteration will cause the network to ‘forget’ what it has learned during previous
iterations. If the learning rate is too low, then the learning process will take a
very long time. The PLR algorithm is detailed in Fig. 13.7.

Iterating the algorithm over and over tends to decrease the total error of
the network...up to a point. Ideally, that point is when the total error is zero,
and so the network produces the exact desired output for each pattern in the
training set. The point is that such a trained network should also be able to
behave in the desired way when provided with patterns which were not in
the training set. Whether it actually does that depends on the nature of the
problem which we are trying to solve. Simple perceptrons are good enough for
many applications. They are capable of learning only simple functions; but,
on the other hand, they work for functions with any number of arguments.

Let us consider the problem of optical character recognition (OCR). We are
seeking a function which will transform a bitmap image into a single letter.
This function is not complex from the mathematical point of view. Still, it is a
function of very many arguments—as many as there are pixels in the bitmap.
It would be very hard for a human to figure out how each particular pixel
influences what the resulting letter is and therefore to program a computer to
recognize letters.

The PLR provides a mechanism for teaching the computer to recognize
letters by presenting it with a set of example bitmap-letter pairs. At no point
do we have to actually know the mechanism of transforming bitmaps into
letters—the network can ‘figure it out’ on its own, with a certain degree of
error, of course.

Bernard Widrow and Marcian E. Hoff described a more general rule for teaching
perceptrons, namely the delta rule, known also as the Widrow—Hoff rule. 1t is
based on the idea of gradient descent.

Gradient descent is a way of minimizing an error when this error depends on many
factors. This is exactly the case in neural networks; the network produces some
error when acting on inputs from the training set and this error value depends on

142

Modeling Reality

1. Set all weights to random values.
2. Adjust the weights.
a) Set Ey, = 0.
b) Adjust the weights according to one pattern from the training
set.

(i) Take the next input vector {/1,/5,...,/n} and its corres-
ponding desired output vector {D,D;, ..., Dm)} from the
training set.

(i) Apply the feedforward algorithm in Fig. 13.4 to obtain the
perceptron’s output {O7,05,...,0m} from the sample
input {/1,5,...,In).

(iii) Subtract the actual output from the desired output to
obtain the error vector, i.e. £; = D; -0, fori = 1,2,...,m.

(iv) Add the squared length of the error vector to the total
error:

2 2 0
Eiotal = Etotal + (ET +E5 + ...+ E3).

(v) For each weight w;; connecting the ith node of the input
layer with the jth node of the output layer, correct the
weight by setting

Wi = Wj; + n/,'Ej.
c) If there are still patterns in the training set then return to step
2(b).

3. If the total error Eyyyy is lower than the previous time that this
point was executed, then go back to step 2.

Fig. 13.7 The perceptron learning rule. The parameter 7 is the learning rate.

all of the network’s weights. What we want to do is to find the lowest value of the
error function. What makes this problem technically difficult is the large number of
variables—all of the network's weights. The gradient descent rule tells us to start
from any random point (this is equivalent to initializing the network with random
weights) and move along each axis proportionally to the negative slope of the plot
along that axis. To visualize this process, imagine standing on the side of a hill.
Going north or west leads uphill, and going south and east both lead downhill, but
east is twice as steep as south. In this case gradient descent would tell us to make

one step south and two steps east—if we want to get to the bottom, that is.

Computers can learn | 143

Applying gradient descent to correct the behavior of a single-layer perceptron means
calculating, for each weight, the partial derivative of the error with respect to that
weight and then correcting the weight proportionally to the result. The partial deriv-
ative tells us the direction and the steepness of the slope of the error plot along the
axis corresponding to that weight. In other words, it tells us in which direction and
how strongly this particular weight influences the error. The formula for correcting
the weights of a single-layer perceptron with activation function f(x) using gradient
descent is

n
wij=wj+ nf’ Z Wk,jlk /,'(DI' - Oj),
k=1

where 7 is the learing rate. It differs from the perceptron learning rule by the
derivative of the activation function (3w ;) This term is ‘almost’ the output
of the jth output node; but, instead of the activation function, the derivative of
the activation function is evaluated at the sum of the weighted inputs. The gradi-
ent descent method requires the activation function to be differentiable, which is
not the case for the discontinuous f(x) = sign(x) function. For linear activation
functions the derivative gives just a constant and we obtain the same results as
before.

As Minsky and Papert showed, single-layer perceptrons are by their nature
limited in what they can do. They cannot even calculate the simple XOR of two
Boolean numbers! Multi-layer perceptrons are more powerful. The question
remains as to how to train a multi-layer network.

The most commonly used learning algorithm for MLPs, and probably for
neural networks in general, is backpropagation. Backpropagation is similar to
the perceptron learning rule in the sense that it starts from random weights and
uses a set of input and desired output pairs to gradually correct these weights.
The reason that it is called backpropagation is that the weights leading to the
output layer are corrected first, then the weights before them, and so on, until
the layer at the bottom is reached. The order of correcting weights is backwards
with respect to the order in which the signals are calculated when the network
performs its task.

Just like the delta rule, backpropagation is based on applying gradient descent (see
the previous note) to the network's error. The corrections to the weights closest
to the output can be calculated just as in the case of the single-layer perceptron.
The corrections for the weights positioned deeper inside the network are harder
to calculate because each deeper weight influences all of the output nodes rather
than just one of them. Fortunately, it turns out that we can use the partial results

144 | Modeling Reality

from calculating the corrections in one layer to significantly simplify the calculations
needed for the previous layer—hence the backwards direction of the algorithm.

Using the program Hopfield you can design and train a neural network to
recognize your handwriting. You can build a training set consisting of sample
letters, choose the design of the network, and train the network on the pre-
pared training set. A trained network is capable of recognizing your handwritten
letters even though no two letters you write will ever be exactly the same.
The network is a multi-layer perceptron with a sigmoid activation function and
bias weights. The training algorithm used is backpropagation with momentum.
See the Modeling redlity help file for more information on the features and
implementation of this program.

Recurrent networks

As we mentioned earlier, perceptrons are feedforward networks, meaning that
the signal passes through such a network once—from the input to the output
nodes. Recurrent networks contain cycles, so that information can pass back
and forth between nodes. This feature makes recurrent networks potentially
much more powerful, but also makes it harder to find algorithms for such
structures.

The simplest recurrent network is an Elman network, named after its
inventor Jeff Elman. An Elman network is a two-layer perceptron with addi-
tional nodes called context units. There are as many context units as there are
hidden nodes. They are located on the level of the input nodes and connect
with all of the nodes in the hidden layer as if they were additional input nodes.
Additional feedback connections (of weight one) lead from the nodes in the
hidden layer to the context units (see Fig. 13.8). Each time the network pro-
cesses some input, the state of the hidden layer is ‘stored’ in the context units.
This state is fed together with the input the next time the network processes
something.

While feedforward networks always produce the same output given the
same input, the output of recurrent networks will depend on the current input
as well as on the previous inputs. This feature is convenient when operating
on data which naturally comes in a series—such as stock market data, for
example. Suppose that a neural network is designed to predict the closing
value of a company’s stock on a particular day. It takes as input the opening
value of the stock, the values of other related stocks, and, say, the exchange
rate of the dollar. If the network is a standard feedforward network, then it will
base its estimate on just that input. If it is an Elman network, then it will base

Computers can learn | 145

Output

Fig. 13.8 A simple EIman network with
feedback connections marked by thicker
lines.

Input Context units

its estimate on that input and on the values from the previous days. The way
in which it takes the previous results into account is also subject to training.
The Elman network in its simplest version can be trained using the standard
backpropagation algorithm, since the feedback connection weights are fixed
and do not need to be trained.

As we mentioned earlier, the simple Hopfield nets come in a more powerful
recurrent form. The learning algorithm for recurrent Hopfield nets remains the
simple one, where we set all of the weights at once using a simple formula.
When processing, however, rather then running the input once through the
network, we run it through continuously, providing the output as input again,
and so on. This process will eventually converge to the point at which the out-
put coincides with one of the memorized patterns, and so running it through
the network does not change it.

Different types of training

There are three types of learning algorithms for neural networks: supervised,
reinforcement, and unsupervised.

All of the learning algorithms which we saw earlier in this chapter are
examples of supervised learning. Supervised learning is based on presenting
the network with examples of input and the desired output. In the case of
Hopfield networks the desired output was assumed to be equal to the input.

During reinforcement learning, the network is still presented with example
input, but, instead of the correct answer being exposed, the network is just

146 | Modeling Reality

given a ‘grade’ which reflects how well it performed when processing that
input. This kind of training was invented to mimic the learning process of
humans.

Applying an evolutionary algorithm, such as the ones described in
Chapter 12, to find the weight values for a network is an example of reinforce-
ment training. A straightforward genetic algorithm for training a network is
based on coding all of the weights in the genotype and then applying the
standard evolutionary techniques to find the most suitable weight set. This
approach requires the ability to compare a network (identified with a weight
set) with other networks in order to give it a reproductive advantage, which is
equivalent to grading the network based on its output.

Evolutionary algorithms are relatively rarely used for training networks,
due to the availability of alternative algorithms such as the gradient descent
method. Their much more important application is in designing neural net-
works. We mentioned several algorithms for finding network weights, but
bypassed the problem of choosing the network topology (for example, the
number of hidden layers in a perceptron). The truth is that there are no meth-
ods, strictly speaking. Despite the existence of some empirical truths on the
subject (for example, that one hidden layer is enough for most things), every
rule has its exceptions. Evolutionary algorithms prove to be a very good tool
for optimizing the topology of a neural network.

In unsupervised training the network is presented with some sample input
and no additional information is provided. One might wonder how unsu-
pervised learning can teach the network to behave in the way that we want,
since we do not specify what we want at any time. This is just the point;
sometimes we do not even know ourselves what we want to achieve when
analyzing a set of data. A neural network can then help us search for some sort
of patterns and find a classification system for the data. Classifying data like
this is called clustering. Clustering is the process of dividing a set of objects
into groups of similar ones. In 1981 Teuvo Kohonen described a neural net-
work which, through unsupervised learning, finds the structure underlying
a set of data. When later presented with an input, it can show where this
input lies within the structure. This type of network is called a self-organizing
map (SOM) or a Kohonen map. SOMs are called maps because they visualize
high-dimensional data in a low-dimensional space—most often on a plane.
High-dimensional data describes objects which have many attributes. Such
objects could be sound patterns, visual patterns, text strings, or anything else.
An SOM learns to position each such object on its low-dimensional grid in
such a way that similar objects are close to each other and ones which differ
more are farther away.

Computers can learn | 147

Summary

The idea of neural networks is even older than that of the von Neumann com-
puter, and has seen many ups and downs over the years. In 1943 Warren
McCulloch and Walter Pitts described the artificial neuron and hypothesized
about networks of such neurons, but could not do much with the techno-
logy available at that time. In the late 1950s Frank Rosenblatt simulated a
trainable perceptron on an early computer, thus stimulating a great interest
in neural networks. This interest waned at the end of the 1960s with Minsky’s
and Papert’s findings concerning perceptron limitations, only to be reborn in
the 1980s with the advent of the PC and new developments in neural network
theory (such as Hopfield’s work). In recent years neural networks have found
a wide range of applications in economy, finance, medicine, science, sports,
and other many other fields of human activity. Many companies worldwide
specialize in producing neural network software for different purposes. The
following are several examples of specific neural network applications, which
we found by browsing the websites of such companies:

e currency price prediction,

¢ stock market prediction,

* investment risk estimation,

¢ direct marketing response prediction,
e identifying policemen with a potential for misconduct,
® jury summoning,

¢ forecasting highway maintenance,

¢ medical diagnosis,

¢ horse race outcome prediction,

e solar flare prediction,

e weather forecasting,

e product quality testing,

e speech synthesis,

¢ speech recognition,

¢ character recognition,

e signature verification,

e driving automation,

¢ chicken feed compound selection,

¢ finding gold,

¢ pollution monitoring,

...and these do not exhaust the list. Some even use neural networks to pre-
dict lottery results. While this particular application is not (understandably)

148 | Modeling Reality

effective, most of the others can give very good results. The theory behind
neural networks is still being developed by scientists. Meanwhile, the ability
to apply this theory in practice (to choose a network design, training algorithm,
and other parameters) has developed into a very valuable skill, whose main
component is a special type of intuition rather than sound knowledge.

