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Iam being haunted by a fractal. In a
recent column [see “Sierpinski’s Ubiq-
uitous Gasket,” August 1999] I de-
scribed several occurrences of the

fractal known as Sierpinski’s gasket, which
can be obtained from a triangle by suc-
cessively deleting an inverted triangle
half its size. Ever since, readers have been
alerting me to new sightings of this ver-
satile figure. Its latest incarnation is in
the field of mathematical logic. Patrick
Grim and Paul St. Denis of the State Uni-
versity of New York at Stony Brook sent
me a paper entitled “Fractal Images of
Formal Systems” (Journal of Philosophical
Logic, Vol. 26, No. 2, pages 181–222; 1997). 

A fractal is a shape that can be divided
into parts that are smaller versions of the
whole. A genuine fractal such as Sierpin-
ski’s gasket has detailed structure on all
scales of magnification: any piece of it,
no matter how small, will resemble the
whole. A quasi-fractal, in contrast, is an

approximation of a true fractal—it has
detailed structure over a large but finite
range of magnification scales. The pat-
terns of a quasi-fractal do not continue to
infinitely fine scales, but because the hu-
man eye cannot distinguish such small
details, quasi-fractals look convincingly
fractal. One of the accomplishments of
Grim and St. Denis was to devise a quasi-
fractal diagram that represents all the
possible games of tic-tac-toe.

As everyone knows, tic-tac-toe is played
on a 3-by-3 grid of squares by two players,
X and O. Each player takes turns marking
squares, and the first to get three in a row
(across, down or diagonally) wins. Tradi-
tionally, X goes first, and optimal play al-
ways results in a draw. But exactly how
many games are possible? At X’s first turn,
he chooses among nine squares; then O
chooses among eight, and so on. So the
total number of games is 9! = 9 × 8 × 7 ×
6 × 5 × 4 × 3 × 2 × 1 = 362,880.

Here’s how Grim and St. Denis built
their quasi-fractal. Start with a big 3-by-3
square grid, and divide each square into a
3-by-3 subgrid [see illustration on opposite
page]. Player X has nine opening moves,
corresponding to the positions in the
larger grid. One possible move is that X
chooses to mark the top left corner. Find
the 3-by-3 subgrid in the top left corner of
the big grid and draw an X in the sub-
grid’s top left corner. The subgrid is now a
picture of the game after this opening
move. Another possibility is that X opens
with the bottom center square; to repre-
sent this move, find the subgrid in the
bottom center square of the big grid and
draw an X in the subgrid’s bottom center
square. In this way, each of the nine sub-
grids receives an X in a different subsquare.

Now concentrate on the subgrid in the
top left corner of the big grid. X’s first
move is already drawn in the top left cor-
ner; the other eight subsquares represent
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Ian Stewart finds a familiar shape in unexpected places
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SIERPINSKI’S GASKET (above left ) can be approximated using mathematical

logic. Plugging four-digit binary numbers into the truth table for the Sheffer

stroke yields a color diagram in which the green squares form a gasketlike shape

(left). The figure can also be seen in the value solid for the Sheffer stroke (above).

SIERPINSKI’S
GASKET VALUE SOLID 

FOR SHEFFER STROKE

COLOR DIAGRAM 
FOR SHEFFER STROKE
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possible moves for O. If we just put O’s in
each of those subsquares, though, we
would have nowhere to put X’s second
move. Instead we repeat the trick already
used for the opening move: We divide
each of the eight unmarked subsquares
into a 3-by-3 grid of sub-subsquares, get-
ting eight small tic-tac-toe boards. We put
an X in the top left corner of each, to rep-
resent X’s opening move. Then we put
one of O’s eight possible moves into each
of the small tic-tac-toe boards. 

We can continue in this fashion, record-
ing all the possible moves in subgrids of
ever smaller size. At every stage, all the
unoccupied squares are subdivided into
3-by-3 grids, and all moves previous to
that stage are copied into the cells of those
grids. The final figure has a quasi-fractal
structure because the rules of the game are
recursive: the possible moves at each stage
are determined by the moves made be-
fore. The geometry of fractals is also recur-
sive: similar shapes repeat on ever smaller
scales. The tic-tac-toe figure is a quasi-frac-
tal rather than a true fractal because the
game ends after a finite number of moves. 

Now we turn to logic. The simplest area
of conventional mathematical logic, prop-
ositional calculus, is concerned with state-
ments whose “truth-value” is either 1, rep-
resenting true, or 0, representing false. For
example, the statement P = “pigs can fly”
has a truth-value of 0, whereas Q = “Africa
is a continent” has a truth-value of 1.
Statements can be combined using vari-
ous logical operators, such as AND and
OR. If P and Q are as above, the state-
ment P AND Q is “pigs can fly, and Africa
is a continent.” This statement is false, so
the truth-value of P AND Q is 0. The re-
sults of applying AND to statements can
be summed up in a truth table:

P Q P AND Q
0 0 0
0 1 0
1 0 0

It is also possible to change 0 to 1 and 1
to 0 by applying the operator NOT: that is,
NOT P is true if P is false, and vice versa.

There are 16 possible truth tables for

P Q P AND Q
0 0 0
0 1 0
1 0 0
1 1 1

Mathematical Recreations

ALL POSSIBLE GAMES of tic-tac-toe can be de-

picted in a quasi-fractal diagram. The squares

in the 3-by-3 grid are divided into smaller grids

that show all the opening moves (right). Subse-

quent moves are illustrated in still smaller grids

created by subdividing the unoccupied squares.

A sample game can be viewed by repeatedly

magnifying sections of the diagram ( far right).
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s two statements, representing all the pos-

sible ways to put 0’s and 1’s in the table’s
final column. We can denote them with
successive four-digit binary numbers:
0000, 0001, 0010, 0011 and so on, up to
1111. (In decimal notation, these num-
bers are 0, 1, 2, 3, ... , 15.) This list leads to
another quasi-fractal. To draw it, sketch a
16-by-16 array of squares and add a bor-
der above the top row that identifies each
column with one of the binary numbers
[see illustration on page 86]. Then add a
similar border down the left side of the
array to enumerate the rows. Choose 16
different colors to correspond to the 16
binary numbers and color the border
squares accordingly. Next, choose a logi-
cal operator: for example, the Sheffer
stroke, which is represented by the sym-
bol |. In computer engineering, the Shef-
fer stroke is known as NAND, because 
P | Q = NOT (P AND Q). Its truth table is:

P Q P | Q
0 0 1
0 1 1
1 0 1
1 1 0

Now, for each of the squares in the 16-
by-16 array, put the square’s four-digit
row number in the first column of the 

P | Q truth table and put the square’s col-
umn number in the table’s second col-
umn. Then perform the NAND opera-
tions and put the resulting truth-values in
the table’s final column. This yields anoth-
er four-digit binary number. Find the color
that corresponds to this number and use it
to mark the square in the 16-by-16 array.
For instance, consider the square in row
5, column 11. In binary notation, these
numbers are 0101 and 1011. Plugging
them into the truth table for P | Q yields:

P Q P | Q
0 1 1
1 0 1
0 1 1
1 1 0

The number in the final column is
1110, or 14 in decimal notation. So the

square in row 5, column 11 is given the
color corresponding to 14.

The final product of this laborious pro-
cess is shown in the illustration on page
86. Notice that the green squares, corre-
sponding to the binary number 1111,
form a shape very similar to Sierpinski’s
gasket! Instead of color-coding the picture,
one can also graph the value of each
square in a third dimension, as a height
given by its decimal number divided by
16. For example, the height of the square
in row 5, column 11 would be 14/16 =
0.875. These graphs are called value solids.
In the value solid for the Sheffer stroke, a
gasketlike shape can clearly be seen. The
explanation is simple: any formal logical
system that involves recursion—whether a
game or a truth table—can provide a
recipe for drawing quasi-fractals. SA

P Q P | Q
0 0 1
0 1 1
1 0 1
1 1 0 In response to “Counting the Cattle of the Sun” [April], Chris Rorres of Drexel

University tells me that more information can be found in a preprint entitled “A
Simple Solution to Archimedes’ Cattle Problem,” by A. Nygrén of the University

of Oulu in Finland. The preprint describes an algorithm for solving the problem that
takes only five seconds to run on a Pentium II personal computer using Maple or
Mathematica software. Links to electronic files of this preprint are on Rorres’s Web
page (www.mcs.drexel.edu/~crorres/Archimedes/Cattle/Solution2.html). —I.S.
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P Q P | Q
0 1 1
1 0 1
0 1 1
1 1 0
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