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Chapter 1—
Introduction

1.1—
Introduction

The twin subjects of fractal geometry and chaotic dynamics have been behind an enormous change in the way 
scientists and engineers perceive, and subsequently model, the world in which we live. Chemists, biologists, 
physicists, physiologists, geologists, economists, and engineers (mechanical, electrical, chemical, civil, aeronautical 
etc) have all used methods developed in both fractal geometry and chaotic dynamics to explain a multitude of 
diverse physical phenomena: from trees to turbulence, cities to cracks, music to moon craters, measles epidemics, 
and much more. Many of the ideas within fractal geometry and chaotic dynamics have been in existence for a long 
time, however, it took the arrival of the computer, with its capacity to accurately and quickly carry out large 
repetitive calculations, to provide the tool necessary for the in-depth exploration of these subject areas. In recent 
years, the explosion of interest in fractals and chaos has essentially ridden on the back of advances in computer 
development.

The objective of this book is to provide an elementary introduction to both fractal geometry and chaotic dynamics. 
The book is split into approximately two halves: the first—chapters 2–4—deals with fractal geometry and its 
applications, while the second—chapters 5–7—deals with chaotic dynamics. Many of the methods developed in the 
first half of the book, where we cover fractal geometry, will be used in the characterization (and comprehension) of 
the chaotic dynamical systems encountered in the second half of the book. In the rest of this chapter brief 
introductions to fractal geometry and chaotic dynamics are given, providing an insight to the topics covered in 
subsequent chapters of the book.

1.2—
A Matter of Fractals

In recent years, the science of fractal geometry has grown into a vast area of knowledge, with almost all branches of 
science and engineering gaining from the new insights it has provided. Fractal geometry is concerned with the 
properties of fractal objects, usually simply known as fractals. Fractals may be found in nature or generated using a 
mathematical recipe. The word 'fractal' was coined by Benoit Mandelbrot, sometimes referred to as the father of 
fractal geometry. Mandelbrot realized that it is very often
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impossible to describe nature using only Euclidean geometry, that is in terms of straight lines, circles, cubes, and 
such like. He proposed that fractals and fractal geometry could be used to describe real objects, such as trees, 
lightning, river meanders and coastlines, to name but a few.

There are many definitions of a fractal. Possibly the simplest way to define a fractal is as an object which appears 
self-similar under varying degrees of magnification. In effect, possessing symmetry across scale, with each small 
part of the object replicating the structure of the whole. This is perhaps the loosest of definitions, however, it 
captures the essential, defining characteristic, that of self-similarity. A diagram is possibly the best way to 
illustrate what is meant by a fractal object. Figure 1.1 contains sketches of two naturally occurring 'objects': an 
island coastline and a person. As we zoom into the coastline, we find that its ruggedness is repeated on finer and 
finer scales, and under rescaling looks essentially the same: the coastline is a fractal curve. The person, however, is 
not a self-similar object. As we zoom into various parts of the body, we see quite different forms. The hand does 
not resemble the whole body, the fingernail does not look like the hand and so on. Even viewing different parts of 
the body at the same scale, say the hand and the head, we would see that again they are not similar in form. We 
conclude that a person is not a fractal object. It is interesting to note at this stage that, although the body as a whole 
is not a fractal object, recent studies have attempted, with some success, to characterize certain parts of the body 
using fractal geometry, for example, the branching structure of the lung and the fine structure of the neuron (brain 
cell).

Figure 1.1.
Fractal and non-fractal objects.

Figure 1.2 contains four natural fractals: the boundary of clouds, wall cracks, a hillside silhouette and a fern. All 
four possess self-similarity. The first three natural fractals possess the same statistical properties (i.e. the same 
degree of ruggedness) as we zoom in. They possess statistical self-similarity. On the other hand, the fern 
possesses
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Figure 1.2.
Natural fractal objects.

exact self-similarity. Each frond of the fern is a mini-copy of the whole fern, and each frond branch is similar to 
the whole frond, and so on. In addition, as we move towards the top of the fern we see a smaller and smaller copy 
of the whole fern. The fractals of figure 1.2 require a two-dimensional (2D) plane to 'live in', that is all the points on 
them can be specified using only two co-ordinates. Put more formally, they have a Euclidean dimension of two. 
However, many natural fractals need a 3D world in which to exist. Take, for example, a tree whose branches weave 
through three dimensions; see the tree branching in 3D in figure 1.3 (if you can!). Fractals themselves have their 
own dimension, known as the fractal dimension, which is usually (but not always) a noninteger dimension that is 
greater than their topological dimension, DT, and less than their Euclidean dimension DE (see chapter 2). There are 
many definitions of fractal dimension and we shall encounter a number of them as we proceed through the text, 
including: the similarity dimension, DS; the divider dimension, DD; the Hausdorff dimension, DH; the box counting 
dimension, DB; the correlation dimension, DC; the information
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dimension, DI; the pointwise dimension DP; the averaged pointwise dimension, DA; and the Lyapunov dimension 
DL. The last seven dimensions listed are particularly useful in characterizing the fractal structure of strange 
attractors associated with chaotic dynamics.

Figure 1.3.
Tree branching in 3D. To see the 3D image, illuminate

the page with a good even source of light: daylight is by
far the best. Keeping  the page still, view the images
from a distance of 15–20 cm, let your eyes relax and

try to merge the two circles. After merging, the image
should come into focus within a few seconds. Once

focused, let your eyes wander around the image
to see 3D. The technique needs a little practice:

the trick is to focus on the merged  image without
the two constituent images diverging, but

persistence usually pays off.

We make one more important distinction between fractals which are self-similar everywhere and those which are 
self-similar only if we look in the right place. Examples are given in figure 1.4. The figure contains three 
mathematical fractals, these are: a logarithmic spiral, a binary tree, and a Sierpinski gasket. We see self-similarity 
in the logarithmic spiral of figure 1.4(a) only if we zoom into its point of convergence. The part of the spiral 
contained within box A contains the point of convergence, hence infinitely many scaled copies of the spiral exist 
within this area. However, the part of the spiral within box B does not contain the point of convergence and hence 
does not contain scaled down replicas of the whole log spiral. The binary tree (figure 1.4(b)) is simple to construct 
mathematically: we simply add further, scaled down, T-shaped branches to the ends of the previous branches. After 
an infinite number of branch additions we have the binary tree. As we zoom into the branches of the binary tree we 
see more and more detail, consisting of exactly self-similar copies of the whole tree. Hence, it is a fractal. However, 
the self-similarity of the binary tree (figure 1.4(b)) is only evident if we zoom into one of its branch ends. The 
circled area A contains one such branch end, which is an exact copy of the whole tree scaled down by one eighth. 
Contrast this with the part of the tree contained within the circled area B which is not a scaled down copy of the 
whole tree. The Sierpinski gasket of figure 1.4(c) (the construction of which is detailed in chapter 2) is self-similar 
everywhere. No matter where we zoom into the gasket, we will see further copies of the whole gasket. This 
property is known as strict self-similarity and the Sierpinski gasket is a strictly self-similar fractal. In this book we 
will concentrate on strictly self-similar fractals. In figure 1.2 the cloud boundary, wall
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Figure 1.4.
The nature of self-similarity. (a) The log spiral is self-similar only at

its point of convergence. (b) The binary tree is self-similar only at
the branch tips. (c) The Sierpinski gasket is self-similar everywhere.

crack, and hillside skyline are strictly self-similar, whereas the fern of figure 1.2 and the tree of figure 1.3 are only 
self-similar at their branch ends.

One last point worth noting is that even the best examples of natural fractals do not possess self-similarity at all 
scales, but rather over a sufficiently large range to allow fractal geometric methods to be successfully employed in 
their description. On the other hand, mathematical fractals can be specified to infinite precision and are thus self-
similar at all scales. The distinction between the two is usually blurred in the literature, however, it is one worth 
remembering if you intend using, in a practical situation, some of the methods from fractal geometry learned from 
this text.

1.3—
Deterministic Chaos.

Oscillations are to be found everywhere in science and nature. The mechanical engineer may be concerned with the 
regular oscillation of an out of balance drive shaft; the civil engineer with the potentially disastrous structural 
vibrations induced by vortex shedding on a bridge deck; the electrical engineer with the oscillatory output from 
nonlinear circuits; the chemist/chemical engineer with the regular cycling of a chemical reaction; the 
geologist/geophysicist with earthquake tremors; the biologist with the cycles of growth and decay in animal 
populations; the cardiovascular surgeon with the regular
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(and more so, irregular) beating of the human heart; the economist with the boom—bust cycles of the stock market; 
the physicist with the oscillatory motion of a driven pendulum; the astronomer with the cyclical motion of celestial 
bodies; and so on. (The list is extensive and diverse!)

Dynamical oscillators may be classified into two main categories:  linear and nonlinear. In general, all real systems 
are nonlinear, however, very often it is the case that, as a first approximation to the dynamics of a particular system, 
a linear model may be used. Linear models are preferable from a scientist's point of view as typically they are much 
more amenable to mathematical analysis. (Hence the disproportionate number of linear systems studied in science.) 
Nonlinear systems, in contrast, are much more difficult to analyse mathematically, and, apart from a few 
exceptions, analytical solutions are not possible for the nonlinear differential equations used to describe their 
temporal evolution. In addition, only nonlinear systems are capable of a most fascinating behaviour known as 
chaotic motion, or simply chaos, whereby even simple nonlinear systems can, under certain operating conditions, 
behave in a seemingly unpredictable manner.

Figure 1.5.
Chaos and regularity. (a) Time series of the chaotic Lorenz model and a periodic

sinusoidal waveform. (b) Phase portrait of  the Lorenz strange attractor.

In 1963 Edward Lorenz published his work entitled 'Deterministic nonperiodic flow' which detailed the behaviour 
of a simplified mathematical model representing the workings of the atmosphere. Lorenz showed how a relatively 
simple, deterministic mathematical model (that is, one with no randomness associated with it) could produce 
apparently unpredictable behaviour, later named chaos. The Lorenz model (see chapter 6) contains three variables: 
x, y and z. Figure 1.5(a) shows a chaotic time series output of the x variable of the Lorenz model. Notice that there 
is a recognizable structure to the time series: first the system oscillates in the positive-x region for a couple of 
oscillations, then it switches over to the negative x-region for a couple of oscillations, then back to the positive x-
region for a few oscillations, and so on. However, the system never exactly repeats its behaviour. It would not 
matter how long we let the Lorenz model run for, we would never come across a repetition in the waveform. It is 
this aperiodic behaviour that is known as chaos. Compare it to the regular, periodic oscillations of the sinusoidal 
waveform (plotted below the Lorenz output) which repeats itself exactly and indefinitely. By plotting the Lorenz 
variables against each other, rather than against time, we can produce compact pictures of the system's dynamics. In 
two dimensions these are
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known as phase portraits. The phase portrait for the Lorenz time series is shown in figure 1.5(b). Starting the 
Lorenz system from many initial conditions produces phase portraits all of the same form: the system is attracted 
towards this type of final solution. Figure 1.5(b) is then a plot of the long term behaviour of the Lorenz system and 
is known as the attractor of the system. If we zoom into the fine scale structure of the attractor for the chaotic 
Lorenz system we see that it has a fractal structure. The attractors for chaotic systems which have a fractal structure 
are termed strange attractors. The fractal structure of strange attractors may be examined using one or more of the 
definitions of fractal dimension mentioned in the above section. (See chapter 7 for more details.)

Chaos has now been found in all manner of dynamical systems; both mathematical models and, perhaps more 
importantly, natural systems.  Chaotic motion has been observed in all of the 'real' oscillatory systems cited at the 
beginning of this section. In addition, many common qualitative and quantitative features can be discerned in the 
chaotic motion of these systems. This ubiquitous nature of chaos is often referred to as the universality of chaos.

1.4—
Chapter Summary and Further Reading

1.4.1—
Chapter Keywords and Key Phrases

fractals self-similarity natural fractals

statistical self-similarity exact self-similarity fractal dimension

mathematical fractals strict self-similarity chaotic motion/chaos

deterministic models strange attractors universality

1.4.2—
Further Reading

Non-mathematical treatments of the history and role of fractals and chaos in science, engineering and mathematics 
can be found in the books by Gleick (1987), Stewart (1989), Briggs and Peat (1989), Lorenz (1993) and Ruelle 
(1993). Also worth consulting is the highly readable collection of non-mathematical papers by leading experts from 
various fields edited by Hall (1992). The explosion in the number of scientific articles relating to chaos and fractals 
is shown graphically by Pickover (1992). Simple computer programs to generate a range of fractal and chaotic 
phenomena are given in the text by Bessant (1993). Other forms of medium worth consulting are the videos by 
Barlow and Gowan (1988) and Peitgen et al (1990), and also the freeware software package FRACTINT, widely 
available on the internet, user friendly, and of excellent quality. In fact, a search on the world wide web using the 
keywords 'fractal' or 'chaos' should yield a large amount of material, much of which is at a reasonably elementary 
level.
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Chapter 2—
Regular Fractals and Self-Similarity

2.1—
Introduction

In this chapter we will examine some common mathematical fractals with structures comprising of exact copies of 
themselves at all magnifications. These objects possess exact self-similarity and are known as regular fractals. In 
chapter 1, a fractal object was loosely defined as one which appears self-similar at various scales of magnification 
and also as an object with its own fractal dimension, which is usually (but not always) a non-integer dimension 
greater than its topological dimension, DT, and less than its Euclidean dimension, DE. To date, there exists no 
watertight definition of a fractal object. Mandelbrot offered the following definition: 'A fractal is by definition a set 
for which the Hausdorff dimension strictly exceeds the topological dimension', which he later retracted and 
replaced with: 'A fractal is a shape made of parts similar to the whole in some way'. In this book, we will adopt, as a 
test for a fractal object, the condition that its fractal dimension exceeds its topological dimension—whichever 
measure of fractal dimension is employed. As we do this, bear in mind the ambiguous nature of the definition of a 
fractal.

2.2—
The Cantor Set

The Cantor set must certainly rank as one of the most frequently quoted fractal objects in the literature, alongside 
perhaps, the Koch curve and Mandelbrot set. It is arguably the simplest of fractals and a good place to begin our 
discussion on fractals and their geometric properties. The Cantor set consists of an infinite set of disappearing line 
segments in the unit interval. The best aid to the comprehension of the Cantor set fractal is an illustration of its 
method of construction. This is given in figure 2.1 for the simplest form of Cantor set, namely the triadic Cantor 
set. The set is generated by removing the middle third of the unit line segment (step k = 1 in the figure). From the 
two remaining line segments, each one third in length, the middle thirds are again removed (step k = 2 in the 
figure). The middle thirds of the remaining four line segments, each one-ninth in length, are then removed (k = 3) 
and so on to infinity. What is left is a collection of infinitely many disappearing line segments lying on the unit 
interval whose individual and combined lengths approach zero. This set of 'points' is known as a Cantor set, Cantor 
dust, or Cantor discontinuum.
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Figure 2.1.
The construction of the triadic Cantor set.

In the construction of the Cantor set the initial unit line segment, k = 0, is known as the initiator of the set. The first 
step, k = 1, is known as the generator (or sometimes motif), as it is the repeated iteration of this step on subsequent 
line segments which leads to the generation of the set. Notice in the figure that the fifth iteration is 
indistinguishable from the Cantor set obtained at higher iterations. This problem occurs due to the limit of the finite 
detail our eyes (or the printer we use to plot the image) can resolve. Thus, to illustrate the set, it is sufficient to 
repeat the generation process only by the number of steps necessary to fool the eye, and not an infinite number of 
times. (This is true for all illustrations of fractal objects.) However, make no mistake, only after an infinite number 
of iterations do we obtain the Cantor set. For a finite number of iterations the object produced is merely a collection 
of line segments with finite measurable length. These objects formed en route to the fractal object are termed 
prefractals.

The Cantor set is a regular fractal object which exhibits exact self-similarity over all scales. This property is 
illustrated at the bottom of figure 2.1, where the left-hand third of the Cantor set is magnified three times. After 
magnification we see that the original
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Cantor set is formed. Further zooming into one ninth of the newly formed set, we see that again the original set is 
formed. In fact copies of the Cantor set abound. Zooming into any apparent 'point' in the set produces the original 
set. It is easily seen that the Cantor set contains an infinite number of copies of itself, within itself, or to put it 
another way the Cantor set is made up of Cantor sets.

Figure 2.2.
Two more examples of Cantor set construction. (a) Middle

half removal. (b) Two-scale Cantor construction.

The triadic Cantor set described above is so called as it involves the removal of the middle third of the remaining 
line segments at each step in its construction. Any number of variants of the Cantor set may be formed by changing 
the form of the generator. Two such Cantor sets are shown in figure 2.2. The set on the left of the figure is formed 
by removing the middle half of each remaining line segment at each step, leaving the end quarters of the line. In the 
right-hand construction, the segment of each line removed at each stage leaves the first half of the original line and 
the last quarter. Again after an infinite number of steps a Cantor set is formed.

The Cantor set is simple in its construction, yet it is an object with infinitely rich structure. How do we make sense 
of the Cantor set? It does not fill up the unit interval continuously, as a line, i.e. one-dimensional object, nor is it a 
countable collection of zero-dimensional points. Rather, it fills up the unit interval in a special way and as a 
complete set has a dimension which is neither zero nor one, in fact it has a non-integer, fractal dimension 
somewhere in between zero and one. Non-integer, fractal dimensions are quite difficult to conceptualize initially 
and will be dealt with in the following sections.

2.3—
Non-Fractal Dimensions:
The Euclidean and Topological Dimensions.

Generally, we can conceive of objects that are zero dimensional or 0D (points), 1D (lines), 2D (planes), and 3D 
(solids) see figure 2.3. We feel comfortable with zero, one, two and three dimensions. We form a 3D picture of our 
world by combining the 2D images from each of our eyes. Is it possible to comprehend higher-dimensional objects, 
i.e. 4D, 5D, 6D and so on? What about non-integer-dimensional objects such as 2.12D, 3.79D or 36.91232 . . . D?
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Figure 2.3.
Common integer dimensions.

We will encounter many definitions of dimension as we proceed through this book. Before we deal with fractal 
dimensions, let us look at the two most common, and perhaps most comprehensible, definitions of dimension, the 
Euclidean dimension, DE, and topological dimension, DT. Both definitions lead to non-fractal, integer dimensions. 
The Euclidean dimension is simply the number of co-ordinates required to specify the object. The topological 
dimension is more involved. The branch of mathematics known as topology considers shape and form of objects 
from essentially a qualitative point of view. Topology deals with the ways in which objects may be distorted from 
one shape and formed into another without losing their essential features. Thus straight lines may be transformed 
into smooth curves or bent into 'crinkly' curves as shown in figure 2.4, where each of the constructions are 
topologically equivalent. Certain features are invariant under proper transformations (called homeomorphisms by 
topologists)— for instance, holes in objects remain holes regardless of the amount of stretching and twisting the 
object undergoes in its transformation from one shape to another. All of the two-holed surfaces in figure 2.5, 
although quite different in shape, are topologically equivalently as each one may be stretched and moulded into one 
of the others.

Figure 2.4.
Topologically equivalent curves.

The topological dimension of an object does not change under the transformation of the object. The topological 
dimension derives from the ability to cover the object with discs of small radius. This is depicted in figure 2.6. The 
line segment may be covered using many discs intersecting many times with each other (figure 2.6(a)). However, it 
is possible to refine this covering using discs with only a single intersection between adjacent pairs of discs (figure 
2.6(b)). Even when the line is contorted, one can find
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Figure 2.5.
Topologically equivalent forms—surfaces with two holes.

Figure 2.6.
The covering of objects with discs and spheres to reveal the topological

dimension. (a) Line segment covered by discs. (b) Line segment covered by
discs only  intersecting in pairs. (c) Crinkly line covered by discs only  intersecting

in pairs. (d) Surface covered by spheres the intersection region is shaded.

discs sufficiently small to cover it with only intersections occurring between adjacent pairs of the covering discs, 
depicted in figure 2.6(c). The segment within each covering disc can itself be covered using smaller discs which 
require only to intersect in pairs. In a similar manner, a surface may be covered using spheres of small radius with a 
minimum number of intersections requiring intersecting triplets of spheres (figure 2.6(d)). The definition of the 
topological dimension stems from this observation. The covering of an object by elements (discs or spheres) of 
small radius requires intersections between a minimum  of DT + 1 groups of elements. Figure 2.7 shows a 
comprehensive set of common forms with their respective Euclidean and topological dimensions. Figure 2.8 
contains the Cantor set. Its Euclidean dimension, DE, is obviously equal to one, as we require one co-ordinate 
direction to specify all the points on the set. It can be seen from the figure that it is possible to find single non-
intersecting discs of smaller and smaller radius to cover sub-elements of the set, thus the topological dimension, DT, 
of the Cantor set is zero.
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Figure 2.7.
A set of common forms with their respective

Euclidean and topological dimensions.
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Figure 2.8.
Covering the Cantor set with successively
smaller, non-intersecting discs to reveal

the topological dimension.

2.4—
The Similarity Dimension

Their are many definitions of dimension which give a non-integer, or fractal, dimension. These dimensions are 
particularly useful in characterizing fractal objects.  In the remaining parts of this chapter we will concentrate on 
the similarity dimension, denoted Ds, to characterize the construction of regular fractal objects. As we proceed 
through subsequent chapters of the text further definitions of dimension will be introduced where appropriate.

The concept of dimension is closely associated with that of scaling. Consider the line, surface and solid depicted in 
figure 2.9, divided up respectively by self-similar sub-lengths, sub-areas and sub-volumes of side length ε. For 
simplicity in the following derivation assume that the length, L, area, A, and volume, V, are all equal to unity.

Consider first the line. If the line is divided into N smaller self-similar segments, each ε in length, then ε is in fact 
the scaling ratio, i.e. ε /L = ε, since L = 1. Thus

i.e. the unit line is composed of N self-similar parts scaled by ε = 1/N.

Now consider the unit area in figure 2.4. If we divide the area again into N segments each ε 2 in area, then

i.e. the unit surface is composed of N self-similar parts scaled by ε = 1/N1/2.

Applying similar logic, we obtain for a unit volume

i.e. the unit solid is N self-similar parts scaled by ε = 1/N1/3.

bytemare
Note
Aqui Voy
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Figure 2.9.
Scaling and dimension. Each object consists of N elements of side length ε,

N is determined by the choice of ε. It should be noted that N for each
object need not necessarily be the same, as is the case shown above.

Examining expressions (2.1a–c) we see that the exponent of e in each case is a measure of the (similarity) 
dimension of the object, and we have in general

Using logarithms leads to the expression,

Note that here the subscript 'S' denotes the similarity dimension.

The above expression has been derived using familiar objects which have the same integer Euclidean, topological 
and similarity dimensions, i.e. a straight line, planar surface and solid object, where DE = DS = DT. However, 
equation (2.3) may also be used to produce dimension estimates of fractal objects where DS is non-integer. This can 
be seen by applying the above definition of the self-similar dimension to the triadic Cantor set constructed in 
section 2.2, (see figures 2.1 and 2.8). From figure 2.1 we saw that the left-hand third of the set contains an identical 
copy of the set. There are two such identical copies of the set contained within the set, thus N = 2 and ε = . 
According to equation (2.3) the similarity dimension is then

Thus, for the Cantor set, DS is less than one and greater than zero: in fact it has a non-integer similarity dimension 
of 0.6309 . . . due to the fractal structure of the object. We saw in the previous section that the Cantor set has 
Euclidean dimension of one and a topological dimension of zero, thus DE > DS > DT. As the similarity dimension
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exceeds the topological dimension, according to our test for a fractal given in section 2.1, the set is a fractal with a 
fractal dimension defined by the similarity dimension of 0.6309. . . . As an aid to comprehension it may be useful to 
think of the Cantor set as neither a line nor a point, but rather something in between.

Instead of considering each sub-interval of the Cantor set scaled down by one-third we could have looked at each 
subinterval scaled down by one-ninth. As we saw from figure 2.1, there are four such segments, each an identical 
copy of the set. In this case N = 4 and ε = and again this leads to a similarity dimension of

Similarly there are eight smaller subintervals containing identical copies of the set each at a scale of 2 of the 
original set, giving

and so on.

By now a general scaling rule is apparent. The general expression for the similarity dimension of the Cantor set is

where the scaling constant, C, depends on the scale used to identify the self-similarity of the object. It can be seen 
from the above that the similarity dimension is independent of the scale used to investigate the object.

2.5—
The Koch Curve

The Koch curve, the method of construction of which is illustrated in figure 2.10, is another well documented 
fractal. As with the Cantor set, the Koch curve is simply constructed using an iterative procedure beginning with 
the initiator of the set as the unit line segment (step k = 0 in the figure). The unit line segment is divided into thirds, 
and the middle third removed. The middle third is then replaced with two equal segments, both one-third in length, 
which form an equilateral triangle (step k = 1): this step is the generator of the curve. At the next step (k = 2), the 
middle third is removed from each of the four segments and each is replaced with two equal segments as before. 
This process is repeated an infinite number of times to produce the Koch curve. Once again the self-similarity of 
the set is evident: each sub-segment is an exact replica of the original curve, as shown in figure 2.11.

A noticeable property of the Koch curve is that it is seemingly infinite in length. This may be seen from the 

construction process. At each step, k, in its generation, the length of the prefractal curve increases to Lk–1, where 
Lk–1 is the length of the curve in the preceding step. As the number of generations increase the length of the curve 
diverges. It is therefore apparent that length is not a useful measure of the Koch curve, as
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Figure 2.10.
The construction of the Koch curve.

defined in the limit of an infinite number of iterations. In addition, it can be shown that the Koch curve is 
effectively constructed from corners, hence no unique tangent occurs anywhere upon it. The Koch curve is not a 
smooth curve and is nowhere-differentiable, as a unique tangent, or slope, cannot be found anywhere upon it.

The Koch curve is a fractal object possessing a fractal dimension. Each smaller segment of the Koch curve is an 
exact replica of the whole curve. As we can see from figure 2.11, at each scale there are four sub-segments making 

up the curve, each one a one third reduction of the original curve. Thus, N = 4, ε = , and the similarity dimension 
based on expression (2.3) is

that is, the Koch curve has a dimension greater than that of the unit line (DE = DT = 1) and less than that of the unit 
area (DE = DT = 2). The Euclidean dimension of the Koch curve, DE, is two as we need two co-ordinate directions to 
specify all points on it. The topological dimension, DT, of the Koch curve is unity , as we can cover it with 
successively smaller discs intersecting in pairs. The similarity dimension of the Koch curve lies between its 
Euclidean and topological dimension, i.e. DE > DS > DT, which leads us to conclude that it is indeed a fractal object, 
with a fractal (similarity) dimension, DS, of 1.2618 . . . .
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Figure 2.11.
The self-similar structure of the Koch curve.

Figure 2.12.
The first three stages in the

construction of the quadratic Koch curve.
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2.6—
The Quadratic Koch Curve

The Koch curve shown in both figures 2.10 and 2.11 is more specifically known as the triadic Koch curve. As with 
the triadic Cantor set, the triadic Koch curve's name stems from the fact that the middle thirds of the line segments 
are modified at each step. By changing the form of the generator a variety of Koch curves may be produced. Figure 
2.12 contains the first three stages in the construction of the quadratic Koch curve, also known as the Minkowski 
sausage. This curve is generated by repeatedly replacing each line segment, composed of four quarters, with the 
generator consisting of eight pieces, each one quarter long (see figure 2.12). As with the triadic Koch curve the 
Minkowski sausage is a fractal object. Each smaller segment of the curve is an exact replica of the whole curve. 
There are eight such segments making up the curve, each one a one-quarter reduction of the original curve. Thus, N 
= 8, ε = , and the similarity dimension based on expression (2.3) is

Figure 2.13 contains four more Koch curves produced using a variety of generators. The reader is invited to define 
his, or her, own generators, and use them to produce new fractal curves.

Figure 2.13.
Miscellaneous Koch curve constructions (all have unit line initiators—not shown).

2.7—
The Koch Island

The Koch island (or snowflake) is composed of three Koch curves rotated by suitable angles and fitted together: its 
construction is shown in figure 2.14. We already know that the length of the Koch curve is immeasurable, so the 
length of the coastline of the Koch island is seemingly infinite, but what about the area bounded by the perimeter of 
the island? It certainly looks finite. We can obtain a value for the bounded area by examining the construction 
process. Let us first assume for simplicity that the initiator is



  

Page 20

Figure 2.14.
The Koch island and its construction.

composed of three unit lines. The area bounded by the perimeter is then half of the base multiplied by the height of 
the equilateral triangle, i.e.  × 1 × . At step k = 1 three smaller triangles are added, each with a base length 
equal to one third. At step k = 2 another twelve smaller triangles are added, each with base length equal to one 
ninth. At step k = 3 (not shown in the figure) forty-eight smaller triangles are added, each with base length of one 
twenty-seventh. The area then increases at each stage as follows:

In general, for an arbitrary step k
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We may then split up this expression to give

In the limit, as k tends to infinity, the geometric series in the brackets on the right-hand side of the above expression 

tends to : this leaves us with an area of

The Koch island therefore has a finite area of , or about 0.693 units (of area). Thus, the Koch island has a 
regular area, in the sense that it is bounded and measurable, but an irregular, immeasurable perimeter. To generate 
the Koch island, we used three Koch curves with unit initiator. However, if the initiator were a in length, then the 
area would be simply . You can easily verify this for yourself. We will return briefly to the Koch island in our 
discussion of the fractal nature of natural coastlines in the next chapter.

Figure 2.15.
The construction process for curves with

similarity dimension greater than two.

2.8—
Curves in the Plane with Similarity Dimension Exceeding Two

The similarity dimension can exceed two for curves in the plane. This may initially seem counter-intuitive, 
however, it may be easily demonstrated. Figure 2.15 contains two curves whose generators replace the original line 
segments with curves consisting of eighteen and twenty segments respectively, each of side length one quarter of 
the original. The similarity dimension of the curve resulting from the eighteen-segment generator is
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Similarly, DS = 2.1609 . . . for the twenty-segment curve. The similarity dimension exceeds two in these cases due 
to the overlapping parts of the fractal curve. Here, for both curves we have the slightly unusual condition that DS > 
DE > DT, however, as the fractal dimension exceeds the topological dimension the object is still fractal by our 
definition. One way to avoid the fractal dimension exceeding DE is to use alternative definitions of dimension 
which only count overlapping parts of the curve once. These will be explored in the next chapter.

Figure 2.16.
Construction of the Sierpinski gasket (top) and carpet (bottom).
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2.9—
The Sierpinski Gasket and Carpet

The construction of the Sierpinski gasket is illustrated in figure 2.16. The initiator in this case is a filled triangle in 
the plane. The middle triangular section is removed from the original triangle. Then the middle triangular sections 
are removed from the remaining triangular elements and so on. After infinite iterations the Sierpinski gasket is 
formed. Each prefractal stage in the construction is composed of three smaller copies of the preceding stage, each 
copy scaled by a factor of one half. The similarity dimension is given by

A sister curve to the Sierpinski gasket is the Sierpinski carpet also shown in figure 2.16. Its method of 
construction is similar to that of the gasket: this time the initiator is a square and the generator removes the middle 
square, side length one-third, of the original square. With both the Sierpinski gasket and carpet, the constructions 
lead to fractal curves whose area vanishes.

Figure 2.17.
Constructing the Menger sponge.

2.10—
The Menger Sponge.

So far we have looked at constructions on the line (Cantor set) and in the plane (Koch curve and Sierpinski gasket 
and carpet). We end this chapter with an interesting object constructed in 3D space—the Menger sponge. Its 
construction is shown in figure 2.17 and, as can be seen, it is closely related to the Sierpinski carpet. The initiator in 
the construction is a cube. The first iteration towards the final fractal object, the generator, is formed by 'drilling 
through' the middle segment of each face. This leaves a prefractal composed of twenty smaller cubes each scaled 
down by one-third. These cubes are then drilled out leaving 400 cubes scaled down by one-ninth from the original 
cube (step k = 2 in the figure). Repeated iteration of this construction process leads to the Menger sponge. The 
similarity dimension of the Menger sponge is
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which is between its topological dimension of one (as it is a curve with zero volume, zero area and infinite length) 
and Euclidean dimension of three.

2.11—
Chapter Summary and Further Reading

2.11.1—
Chapter Keywords and Key Phrases

exact self-similarity regular fractals fractal dimension

Cantor set initiator generator

prefractals Euclidean dimension topological dimension

similarity dimension Koch curve Sierpinski gasket/carpet

Menger sponge   

2.11.2—
Summary and Further Reading

In this chapter we have been introduced to regular fractal objects which have exact self-similarity at all scales, i.e. 
each small part of the object contains identical copies of the whole. To characterize these fractals requires that we 
re-evaluate our concepts of dimension. The Euclidean and topological definitions of dimension give only integer 
values. To obtain a fractal dimension for the exactly self-similar fractals we used, possibly the simplest definition 
of fractal dimension, the similarity dimension, DS. In general, if the similarity dimension is greater than the 
topological dimension of the object then the object is a fractal, and, more often than not, the fractal dimension is a 
non-integer value. For more examples and information on exactly self-similar fractals the reader is referred for an 
elementary introduction to the book by Lauwerier (1991), and for an intermediate and comprehensive introduction 
to the book by Mandelbrot (1977), or, better, the extended version of this text by Mandelbrot (1982a). In-depth 
accounts of the Cantor set, Koch curve, Sierpinski gasket and Menger sponge, together with brief biographical 
details of their originators, are given by Peitgen et al (1992a). A method for the generation of the Sierpinski gasket 
using random numbers is given, amongst other useful information, by Peitgen et al (1991). Reiter (1994) presents 
some computer generated generalizations of the Sierpinski gaskets and carpets and the Menger sponge. The 
computer generation of the Koch curve is discussed by Hwang and Yang (1993). David (1995) presents two 
examples of 3D regular fractals based on Keplerian solids and Wicks (1991) presents an advanced mathematical 
account of fractals and hyperspaces.

Much of the interest in fractal geometry lies in its ability to describe many natural objects and processes, however, 
generally these are not exactly self-similar but rather statistically self-similar, whereby each small part of the fractal 
has the same statistical properties as the whole. We move on to these statistical, or random, fractals in the following 
chapter.

2.12—
Revision Questions and Further Tasks

Q2.1 List the keywords and key phrases of this chapter and briefly jot down your




