
Foreword by Lynn A. Steen

In 1980 Ronald Reagan was elected president of the
United States, IBM began an urgent program to develop
a personal computer for which Microsoft agreed to pro-
vide the operating system, and Benoit Mandelbrot got
his first real look at the archetypal fractal, the epony-
mous Mandelbrot set. One hundred years from now,
which of these events is more likely to be remembered
as having had the greatest influence on science and hu-
man affairs?

At this moment, two decades later, personal com-
puters seem to be well in the lead. PCs are on every
desk, all now connected by the world-linking Internet.
The personal computer has truly transformed the way
the world works. No invention since the printing press
has created such a widespread impact and no human ac-
tivity has ever changed society so quickly.

However, when we examine Internet patterns in de-
tail, guess what we find just beneath the surface? The
footprints of fractals. These wondrous geometric ob-
jects, discovered by Mandelbrot just over twenty years
ago, turn out to be the key to understanding the frenetic
behavior of signals linking the world’s computers, as
well as the means to efficient compression that makes
it possible to transmit images over the Internet. Without
fractals, engineers would never have been able to make
the World Wide Web work as well as it does. And with-
out the Web, PCs would be just one more labor-saving
appliance.

Computers are important instrumentally; they pro-
vide tools that enable us to work more efficiently, to
see patterns previously hidden, and to organize infor-
mation in new and revealing ways. In contrast, fractals
are important fundamentally; they provide elements of
a totally new geometry that offer a profoundly differ-
ent way to understand nature. In the long run, this new
understanding of nature will count for far more than mo-
mentary advances in technology or politics.

The predominant Western view of the relation be-
tween mathematics and nature is a legacy of Plato’s dis-

tinction between a world of ideals and a world of actu-
alities. Mathematics, in this view, belongs to the ethe-
real world of ideals; nature, being earthly rather than
heavenly, belongs to a world of actualities that is both
imperfect and incomplete. Thus, reality is best under-
stood by approximation in terms of ideal mathematical
models.

Our most important inheritance from this tradition
is Euclidean geometry, the axiomatic study of lines, cir-
cles, and triangles that form an ideal (and therefore
approximate) basis for understanding geography, me-
chanics, astronomy, and everything real. From this per-
spective, nature is like noisy mathematics—rough and
crumpled, slightly out of focus.

Fractals create an alternative to Euclidean geometry
whose elements are not lines and circles but iterations
and self-similarities, whose surfaces are not smooth but
jagged, whose features are not perfect but broken. De-
rived from apparent pathologies that puzzled or affronted
traditional mathematicians, fractals reveal an entirely
new geometry that enables us to understand formerly in-
explicable real-world phenomena.

Fractals provide insight into the distribution of galax-
ies, the spread of bacterial colonies, the grammar of
DNA, the shape of coastlines, changes in climate, de-
velopment of hurricanes, growth of crystals, percolation
of ground pollutants, turbulence of fluids, and the path
of lightning. They have been employed to create power-
ful antennas, to develop fiber optics, to monitor financial
data, to compress images, and to produce artificial land-
scapes. Their influence has been felt in art, architecture,
drama (Arcadia), film (Jurassic Park), music, and po-
etry. Fractals have even penetrated the inner sanctum of
elite culture—New Yorker cartoons.

For many, this extraordinary utility would be a suf-
ficient warrant for fractals to be awarded a prominent
role in mathematics education. But reasons other than
utility can also be advanced, and it is these reasons,
not utility, that form the major thrust of this volume.
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x Foreword

Simply put, fractals enable everyone to enjoy mathe-
matics. Nothing else can make such a striking—and
important—claim.

Arguments about strategies for improving mathemat-
ics education roil state and local school politics. Some
urge strict exam-enforced standards; others advocate
more inviting contexts for learning. Some promote tra-
ditional curricula; others support enhanced or integrated
programs. Rarely do the protagonists in these “math
wars” stop to ask whether different mathematics might
yield increased learning.

But that is precisely the argument advanced by the
authors represented in this volume. They focus on teach-
ing fractals, not primarily because fractals are important
but because learning about fractals is, as one student put
it, “indescribably exciting . . . and uniquely intriguing.”
It is easy to see why:

• The first steps are so much fun. Exploring frac-
tals creates unprecedented enthusiasm for discov-
ery learning among both teachers and students.

• Fractals are beautiful. Stunning visuals appeal to
the mind’s eye and create contagious demand for
continued exploration.

• Anyone can play. Exploration of fractal geome-
try appeals to students of every age, from primary
school through college and beyond.

• Fractals promote curiosity. Simple rules, easily
modified, create nearly uncontrollable temptations
to explore different options to see what surprising
patterns will emerge.

• Simple ideas lead to unexpected complexity. Frac-
tals are more life-like than objects studied in other
parts of mathematics; thus they appeal to many
students who find traditional mathematics cold
and austere.

• Many easy problems remain unsolved. Fractals
are rich in open conjectures that lead to deep math-
ematics. Moreover, the distance from elementary
steps to unsolved problems is very short.

• Careful inspection yields immediate rewards. In-
sight and conjectures arise readily when our well-
developed visual intuition is applied to fractal
images. In studying fractals, children can see and
conjecture as well as adults.

• Computers enhance learning. The visual impact
of computer graphics makes fractal images unfor-
gettable, while the unforgiving logical demands
of computer programs yield important lessons in
the value of rigorous thinking.

The history of mathematics education is long and
convoluted, reflecting both the changing nature of math-
ematics and the evolving demands of society. Although
in the eighteenth and nineteenth centuries mathematics
was both experimental and theoretical, during much of
the twentieth century the theoretical aspect has domi-
nated. Much of mathematics education followed this
trend towards theory and abstraction, leading to alarm-
ing reports of rising mathematical illiteracy not only in
the United States but in many other countries as well.

Fractals represent a rebirth of experimental
mathematics, enabled by computers and enhanced by
powerful evidence of utility. In the ebb and flow of
mathematical fashion, the struggle between theoretical
and experimental is once again more nearly in balance.
What remains is the challenge of restoring this balance
to mathematics education. It is to that important task
that this book is devoted.

Lynn Arthur Steen

St. Olaf College

Northfield, MN

April 13, 2000.



Chapter 1

Some Reasons for the Effectiveness of Fractals
in Mathematics Education

Benoit B. Mandelbrot and Michael Frame

Short is the distance between the elementary and the most so-
phisticated results, which brings rank beginners close to cer-
tain current concerns of the specialists. There is a host of
simple observations that everyone can appreciate and believe
to be true, but not even the greatest experts can prove or dis-
prove. There is a supply of unsolved, elementary problems
that give students the opportunity to learn how mathematics
can be done by enabling them to do new (if not necessar-
ily earth-shaking) mathematics; there is a continuing flow of
new results in unexpected directions.

1 Introduction

In the immediate wake of Mandelbrot (1982), fractals began
appearing in mathematics and science courses, mostly at the
college level, and usually in courses on topics in geometry,
physics, or computer science. Student reaction often was ex-
tremely positive, and soon entire courses on fractal geom-
etry (and the related discipline of chaotic dynamics) arose.
Most of the initial offerings were aimed at students in science
and engineering, and occasionally economics, but, something
about fractal geometry resonated for a wider audience. The
subject made its way into the general education mathematics
and science curriculum, and into parts of the high school cur-
riculum. Eventually, entire courses based on fractal geometry
were developed for humanities and social sciences students,
some fully satisfy the mathematics or science requirement for
these students. As an introduction to this volume, we share
some experiences and thoughts about the effectiveness and
appropriateness of these courses.

As teachers, we tell our students to first present their case
and allow the objections to be raised later by the devil’s ad-
vocate. But we decided to preempt some of the advocate’s
doubts or objections before we move on with our story.

1.1 The early days

A few years ago, the popularity of elementary courses using
fractals was largely credited to the surprising beauty of frac-
tal pictures and the centrality of the computer to instruction
in what lies behind those pictures. A math or science course
filled with striking, unfamiliar visual images, where the com-
puter was used almost every day, sometimes by the students?
The early general education fractals courses did not fit into
the standard science or mathematics format, a novel feature
that contributed to their popularity.

1.2 What beyond novelty?

We shall argue that novelty was neither the only, nor the most
significant factor. But even if it had been, and if the popu-
larity of these courses had declined as the novelty wore off,
so what? For a few years we would have had effective vehi-
cles for showing a wide audience that science is an ongoing
process, an exciting activity pursued by living people. While
introductory courses for majors are appropriate for some non-
science students, and qualitative survey courses are appro-
priate for some others, fractal geometry provided a middle
ground between quantitative work aiming toward some later
reward (only briefly glimpsed by students not going beyond
the introductory course), and qualitative, sometimes journal-
istic, sketches. In general education fractal geometry courses,
students with only moderate skills in high school algebra
could learn to do certain things themselves rather than read
forever about what others had done. They could grow frac-
tal trees, understand the construction of the Mandelbrot and
Julia sets, and synthesize their own fractal mountains and
clouds. Much of this mathematics spoke directly to their vis-
ible world. Many came away from these courses feeling they
had understood some little bit of how the world works. And
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4 Chapter 1. Some Reasons for the Effectiveness of Fractals in Mathematics Education

the very fact that some of the basic definitions are unsettled,
and that there are differences of opinion among leading play-
ers, underscored the human aspect of science. No longer a
crystalline image of pure deductive perfection, mathematics
is revealed to be an enterprise as full of guesses, mistakes, and
luck as any other creative activity. Even if the worst fears had
been fulfilled, we would have given several years of human-
ities and social science students a friendlier view of science
and mathematics.

Fortunately, anecdotal evidence suggests that, while much
of the standard material and computerized instruction tech-
niques are no longer novel, the audience for fractal geometry
courses is not disappearing, thus disproving those fears.

1.3 What aspects of novelty have vanished?

Success destroyed part of the novelty of these courses.
Now images of the Mandelbrot set appear on screen savers,
T-shirts, notebooks, refrigerator magnets, the covers of books
(including novels), MTV, basketball cards, and as at least one
crop circle in the fields near Cambridge, UK. Fractals have
appeared in novels by John Updike, Kate Wilhelm, Richard
Powers, Arthur C. Clarke, Michael Crichton, and others.
Fractals and chaos were central to Tom Stoppard’s play Ar-
cadia, which includes near quotes from Mandelbrot. Com-
mercial television (“Murphy Brown,” “The Simpsons,” “The
X-Files”), movies (“Jurassic Park”), and even public radio
(“A Prairie Home Companion”) have incorporated fractals
and chaos. In the middle 1980s, fractal pictures produced
“oohhs,” “aahhs,” and even stunned silence; now they are an
ingrained part of both popular and highbrow culture (the mu-
sic of Wuorinen and Ligeti, for example). While still beauti-
ful, they are no longer novel.

A similar statement can be made about methodology. In the
middle 1980s, the use of computers in the classroom was un-
common, and added to the appeal of fractal geometry courses.
Students often lead faculty in recognizing and embracing im-
portant new technologies. The presence of computers was
a definite draw for fractal geometry courses. Today, a ran-
domly selected calculus class is reasonably likely to include
some aspect of symbolic or graphical computation, and many
introductory science classes use computers, at least in the lab
sections. The use of computers in many other science and
mathematics courses no longer distinguishes fractal geome-
try from many other subjects.

1.4 Yet these courses’ popularity survived
their novelty. Why is this?

Instead of being a short-lived fad, fractal geometry survived
handsomely and became a style, part of our culture.

The absence of competition is one obvious reason: frac-
tal geometry remains the most visual subject in mathematics
and science. Students are increasingly accustomed to think-
ing pictorially (witness the stunning success of graphical user

interfaces over sequences of command lines) and continue to
be comfortable with the reasoning in fractal geometry. Then,
too, in addition to microscopically small and astronomically
large fractals, there is also an abundance of human-sized
fractals, whereas there are not human-sized quarks or galax-
ies.

Next, we must mention surprises. Students are amazed the
first time they see that for a given set of rules, the determin-
istic IFS algorithm produces the same fractal regardless of
the starting shape. The gasket rules make a gasket from a
square, a single point, a picture of your brother, . . . anything.
If the Mandelbrot set is introduced by watching videotapes
of animated zooms, then the utter simplicity of the algorithm
generating the Mandelbrot set is amazing. Part of what keeps
the course interesting is the surprises waiting around almost
every corner. Also, besides science and mathematics, fractals
have direct applications in many fields, including music, lit-
erature, visual art, architecture, sculpture, dance, technology,
business, finance, economics, psychology, and sociology. In
this way, fractals act as a sort of common language, lingua
franca, allowing students with diverse backgrounds to bring
these methods into their own worlds, and in the context of this
language, better understand some aspects of their classmates’
work.

Three other reasons are more central to the continued suc-
cess of general education fractal geometry courses. By ex-
ploiting these reasons, we keep strengthening current courses
and finding directions for future development.

As a preliminary, let us briefly list these reasons for the
pedagogical success of fractal geometry. We shall return to
each in detail.

1.4.1 First, a short distance from the downright
elementary to the hopelessly unsolved

First surprise: truly elementary aspects of fractal geometry
have been successfully explained to elementary school stu-
dents, as seen in Chapters 10 and 13. From those aspects,
there is an uncannily short distance to unsolved problems.
Few other disciplines—knot theory is an example—can make
this claim.

Many students feel that mathematics is an old, dead sub-
ject. And why not? Most of high school mathematics was
perfected many centuries ago by the Greeks and Arabs, or at
the latest, a few centuries ago by Newton and Leibnitz. Math-
ematics appears as a closed, finished subject. To counter that
view, nothing goes quite so far as being able to understand,
after only a few hours of background, problems that remain
unsolved today. Number theory had a standard unsolved but
accessible problem that need not be named. Alas, that prob-
lem now is solved. Increasing our emphasis on unsolved
problems brings students closer to an edge of our lively, grow-
ing field and gives them some real appreciation of science and
mathematics as ongoing processes.
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1.4.2 Second, easy results remain reachable

The unsolved problems to which we alluded above are very
difficult, and have been studied for years by experts. In con-
trast, not nearly all the easy aspects of fractal geometry have
been explored. At first, this may seem more relevant to grad-
uate students, but in fact, plenty of the problems are acces-
sible to bright undergraduates. The National Conference of
Undergraduate Research and the Hudson River Undergradu-
ate Mathematics Conference, among others, include presen-
tations of student work on fractal geometry. It may be uncom-
mon for students in a general education course to make new
contributions to fractal geometry (though to be sure they of-
ten come up with very creative projects applying fractal con-
cepts to their own fields), but their classmates in sciences and
mathematics can and do. (See Frame & Lanski (1999).) In-
corporating new work done by known, fellow undergraduates
can have an electrifying effect on the class. Few things bring
home the accessibility of a field so much as seeing and un-
derstanding something new done by someone about the same
age as the students. Then, too, this is quite exciting for the
science and mathematics students whose work is being de-
scribed. And it can be, and has been, a catalyst for commu-
nication between science and non-science students. So far
as we know, in no other area of science or mathematics are
undergraduates so likely to achieve a sense of ownership of
material.

1.4.3 Third, new topics continue to arise
and many are accessible

New things, accessible at some honest level, keep arising in
fractal geometry. Of course, new things are happening all
around, but the latest advances in superstring theory, for ex-
ample, cannot be described in any but the most superficial
level in a general education science course. This is not to
say all aspects of fractal geometry are accessible to nonspe-
cialists. Holomorphic surgery, for instance, lives in a pretty
rarefied atmosphere. And there is deep mathematics underly-
ing much of fractal geometry. But pictures were central to the
birth of the field, and most open problems remain rooted in
visual conjectures that can be explained and understood at a
reasonable level without the details of the supporting mathe-
matics. While undergraduates can do new work, it is unlikely
to be deep work. In fractal geometry much of even the cur-
rent challenging new work can be presented only in part but,
honestly, and without condescension to our students.

Later we shall further explore some aspects of each of these
points.

1.5 Most important of all: curiosity

Teaching endless sections of calculus, precalculus, or baby
statistics to uninterested audiences is hard work and all too
often we yield to the temptation to play to the lowest third

of the class. The students merely try to survive their mathe-
matics requirement. Little surprise we complain about our
students’ lack of interest, and about the disappearance of
childlike curiosity and sense of wonder.

Fractal geometry offers an escape from this problem. It is
risky and doesn’t always work, for it relies on keeping this
youthful curiosity alive, or reawakening it if necessary. In the
final Calvin and Hobbes comic strip, Calvin and Hobbes are
on a sled zipping down a snow-covered hill. Calvin’s final
words are, “It’s a magical world, Hobbes ol’ buddy. Let’s go
exploring!” This is the feeling we want to awaken, to share
with our students.

Teaching in this way, especially emphasizing the points we
suggest, demands faith in our students. Faith that by showing
them unsolved problems, work done by other students, and
new work done by scientists, they will respond by accepting
these offerings and becoming engaged in the subject. It does
not always work. But when it does, we have succeeded in
helping another student become a more scientifically literate
citizen. Surely, this is a worthwhile goal.

2 Instant gratification: from the
elementary to the diabolic and
unsolved, the shortest distance is . . .

In most areas of mathematics, or indeed of science, a vast
chasm separates the beginner from even understanding a
statement of an unsolved problem. The Poincarè conjec-
ture is a very long way from a first glimpse of topological
spaces and homotopies. Science and mathematics courses for
non-majors usually address unsolved problems in one of two
ways: complete neglect or vast oversimplification. This can
leave students with the impression that nothing remains to be
done, or that the frontiers are far too distant to be seen; neither
picture is especially inviting.

Fractal geometry is completely different. While the solu-
tions of hard problems often involve very clever use of sophis-
ticated mathematics, frequently the statements do not. Here
we mention two examples, to be amplified and expanded on
in the next chapter.

The first observed example of Brownian motion occurred
in a drop of water: pollen grains dancing under the impact
of molecular bombardment. Nowadays this can be demon-
strated in class with rather modest equipment: a microscope
fitted with a video camera and a projector. Increasing the
magnification reveals ever finer detail in the dance, thus pro-
viding a visual hint of self-similarity. A brief description of
Gaussian distributions—or even of random walk—is all we
need to motivate computer simulations of Brownian motion.
Taking a Brownian path for a finite duration and subtracting
the linear interpolation from the initial point to the final point
produces a Brownian plane cluster. The periphery, or hull, of
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this cluster looks like the coastline of an island. Together with
numerical experiments, this led to the conjecture that the hull
has dimension 4/3. Dimension is introduced early in fractal
geometry classes, so freshman English majors can understand
this conjecture. Yet it is unproved.1

No icon of fractal geometry is more familiar than the Man-
delbrot set. Its strange beauty entrances amateurs and ex-
perts alike. Many credit it with the resurgence of interest in
complex iteration theory, and its role in the birth of computer-
aided experimental mathematics is incalculable. For students,
the first surprise is the simplicity of the algorithm to generate
it. For each complex number c, start with z0 = 0 and pro-
duce the sequence z1, z2, . . . by zi+1 = z2

i + c. The point
c belongs to the Mandelbrot set if and only if the sequence
remains bounded. How can such a simple process make such
an amazing picture? Moreover, a picture that upon magnifi-
cation reveals an infinite variety of patterns repeating but with
variations. One way for the sequence to remain bounded is to
converge to some repeating pattern, or cycle. If all points near
to z0 = 0 produce sequences converging to the same cycle,
the cycle is stable. Careful observation of computer exper-
iments led Mandelbrot to conjecture that arbitrarily close to
every point of the Mandelbrot set lies a c for which there is
a stable cycle. All of these concepts are covered in detail in
introductory courses, so here, too, beginning students can get
an honest understanding of this conjecture, unsolved despite
heroic effort.

3 Some easy results remain:
“There’s treasure everywhere”

3.1 Discovery learning

Learning is about discovery, but undergraduates usually learn
about past discoveries from which all roughness has been pol-
ished away giving rise to elegant approaches. Good teaching
style, but also speed and efficiency, lead us to present math-
ematics in this fashion. The students’ act of discovery dis-
solves in becoming comfortable with things already known
to us. Regardless of how gently we listen, this is an asym-
metric relationship: we have the sought-after knowledge. We
are the masters, the final arbiters, they the apprentices.

In most instances this relationship is appropriate, unavoid-
able. If every student learned mathematics and science by
reconstructing them from the ground up, few would ever see
the wonders we now treasure. Which undergraduate would
have discovered special relativity? But for most undergrad-
uate mathematics and science students, and nearly all non-
science students, this master-apprentice relationship persists
through their careers, leaving no idea of how mathematics and

1Stop the presses: this conjecture has been proved in Lawler, Werner, &
Schramm (2000).

science are done. Fractal geometry offers a different possibil-
ity.

Term projects are a central part of our courses for both non-
science and science students. To be sure, some projects turn
out less appropriate than hoped, but many have been quite
creative. Refer to the student project entries in A Guide to the
Topics. Generally, giving a student an open-ended project and
the responsibility for formulating at least some of the ques-
tions, and being interested in what the student has to say about
these questions, is a wonderful way to extract hard work.

3.2 A term project example: connectivity
of gasket relatives

We give one example, Kern (1997), a project of a freshman in
a recent class. Students often see the right Sierpinski gasket
as one of the first examples of a mathematical fractal. The
IFS formulation is especially simple: this gasket is the only
compact subset of the plane left invariant by the transforma-
tions

T1(x, y) =
( x
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Applying these transformations to the unit square S =
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} gives three squares
Si = Ti (S) for i = 1, 2, 3. Among the infinitely many
changes of the Ti , in general producing different fractals,
a particularly interesting and manageable class consists of
including reflections across the x- and y-axes, rotations by
π
2 , π , and 3π

2 , and appropriate translations so the three re-
sulting squares occupy the same positions as T1(S), T2(S),
and T3(S). Pictures of the resulting fractals are given on pgs
246–8 of Peitgen, Jurgens & Saupe (1992a).

What sort of order can be brought to this table of pictures?
Connectivity properties may be the most obvious: they allow
one to classify fractals.

dusts (totally disconnected, Cantor sets),

dendrites (singly connected throughout, without loops),

multiply connected (connected with loops), and

hybrids (infinitely many components each containing a
curve).

A parameter space map, painting points according to which
of the four behaviors the corresponding fractal exhibits, did
not reveal any illuminating patterns. However, sometimes
(though not always—certainly not in the Cantor set cases, for
example) in the unit square S there are finite collections of
line segments that are preserved in T1(S) ∪ T2(S) ∪ T3(S). In



4. Something new is always happening 7

Figure 1: Relatives of the Sierpinski gasket: Cantor dust, dendrite, multiply connected, and hybrid. Can you find preserved line
segments in the last three?

the cases where they could be found, these did give a trans-
parent reason for the connectivity properties. This approach
was generated by the student, looking for patterns by staring
at the examples for hours on end.

What can we make of the observation that different col-
lections of line segments work for different IFS? The student
speculated that there is a universal shape, perhaps a union
of some of the line segments from several examples, whose
behavior under one application of T1, T2, and T3 determines
the connectivity form of the limiting fractal. This is an ex-
cellent question to be raised by a freshman, especially in a
self-directed investigation.

This is just one example. Fractal geometry may be unique
in providing such a wealth of visually motivated, but ana-
lytically expressed, problems. Truly, there is treasure every-
where.

4 Something new is always happening

New mathematics is coming up all the time; ours is a very
lively field. However, many new developments are at an ad-
vanced level, often comprehensible only to experts having
years of specialized training. To be sure, deep mathemati-
cal discoveries abound in fractal geometry, too. But because
pictures are so central, here many advances have visual ex-
pressions that honestly reveal some of the underlying math-
ematics. New developments in retroviruses or in quantum
gravity are unlikely to be comprehensible at anything other
than a superficial level to general education students. They
hear about the advances, but not why or how they work. The
highly visual aspect of fractal geometry has allowed us to in-
corporate the most recent work into our courses in a serious
way.

Here we describe one new development, and mention an-
other to be explored in the next chapter.

4.1 Fractal lacunarity

It is difficult to imagine an introductory course on fractals
that does not include computing dimensions of self-similar

fractals. (See Chapters 5, 12, and 15, for example.) The
calculations are straightforward, a skill mastered without ex-
cessive effort. Moreover, the idea generalizes to data from
experiments, opening the way for a variety of student
projects. However, one of the earliest exercises we assign
points out a limitation of dimension: quite different-looking
sets can have the same dimension. For example, all four
fractals in Figure 1 have dimension log(3)/ log(2). The Sier-
pinski carpets of Figure 2 (Plate 318 of Mandelbrot (1982))
both subdivide the unit square into 49 pieces, each scaled by
1
7 , and delete nine of these pieces. So both have dimension
log(40)/ log(7). On the left, these holes are distributed uni-
formly, on the right they are clustered together into one large
hole in the middle. Lacunarity is one expression of this dif-
ference, and is another step in characterizing fractals through
associated numbers. Here the number represents the distribu-
tion of holes or gaps, lacunae, in the fractal. This reinforces
for students the relation between numbers and the visual as-
pects they are meant to represent. But also, this is current
work, and even some of the basic issues are not yet settled.
With this, our students see science as it is developing, and
can understand some components of the debate.

To give an example of the kinds of results accessible to
students having some familiarity with sequences and calcu-
lus, we describe an approach to the fractals of Figure 2. For a
subset A ⊂ R2, the ε-thickening is defined as

Aε = {x ∈ R2 : d(x, y) ≤ ε for some y ∈ A}
where d(x, y) is the Euclidean distance between x and y.

Now suppose A is either of the Sierpinski carpets in Fig-
ure 2. For large ε, Aε fills all the holes of A and the area of
Aε , |Aε |, is 1 + 4ε + πε2. As ε → 0, the holes of A be-
come visible and increase the rate at which |Aε | decreases.
Calculations with Euclidean shapes—points, line segments,
and circles, for example—show |Aε | ≈ L · ε2−d , where d is
the dimension of the object. This relation can be used to com-
pute the dimension, a technique developed by Minkowski and
Bouligand. A first approach to lacunarity is the prefactor L ,
or more precisely, 1/L , if the limit exists.
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Figure 2: Two Sierpinski carpet fractals with the same dimension.

A general Sierpinski carpet is made with initiator the filled-
in unit square, and generator the square with M squares of
side length s removed. The iteration process next covers the
complement of these M holes with N copies of the generator,
each scaled by r . (Note the relation 1 − Ms2 = Nr2.) For
the carpet on the left side of Fig. 2 we see M = 9, s = 1

7 ,
N = 40, and r = 1

7 ; on the right M = 1, s = 3
7 , N = 40, and

r = 1
7 .

It is well known that for the box-counting dimension the
limit as ε → 0 can be replaced by the sequential limit
εn → 0, for εn satisfying mild conditions. Although the pref-
actor is generally more sensitive than the exponent, we begin
with the sequence εn = srn−1/2. For Sierpinski carpets A
it is not difficult to see Aεn fills all holes of generation ≥ n,
while holes of generation m < n remain. They are squares
of side length s(rm−1 − rn−1). Straightforward calculation
gives

|Aεn | = (4εn + πε2
n) + Ms2

(( 2

1 − Nr
rn − 1

1 − N
r2n

)

+ (Nr2)n
( 1

1 − Nr2
− 2

1 − Nr
+ 1

1 − N

))
.

Using L ≈ |Aεn |εd−2
n , we obtain

L ≈ M22−dsd
( 1

1 − Nr2
− 2

1 − Nr
+ 1

1 − N

)
.

Substituting in the values of M , s, N , and r , we obtain
L ≈ 1.41325 and L ≈ 1.26026 for the left and right carpets.
So provisionally, the lacunarities are 0.707589 and 0.793487,
agreeing with the notion that higher lacunarity corresponds to
a more uneven distribution of holes.

Unfortunately, different sequences εn can give different
values of L . Several approaches are possible, but one that
is relatively easy to motivate and implement is to use a loga-
rithmic average

lim
T →∞

1

T

∫ T

0

|Ae−t |
(2e−t )2−d

dt.

The 2 in the denominator is a normalizing factor. For these
carpets, this reduces to

Msd

log(1/r)

( 1

1 − Nr2

1 − r2−d

2 − d
− 2

1 − Nr

1 − r1−d

1 − d

+ 1

1 − N

1 − r−d

−d

)
.

Substituting in the values of M , s, N , and r , we obtain
1.305884 and 1.164514 for the left and right carpets. The
respective lacunarities are 0.765765 and 0.858727.

These calculations involve simple geometry and can be ex-
tended easily to gaskets, their relatives, and the like. Even
as the concepts continue to evolve, this is a rich source of
ideas for student projects. Comparison with other lacunar-
ity candidate measures—crosscut (Mandelbrot, Vespignani &
Kaufman (1995)) and antipodal correlations (Mandelbrot &
Stauffer (1994)), among others—in simple cases, is yet an-
other source of projects. This has proven especially interest-
ing because it shows students first-hand some of the issues
involved in defining a measurement of a delicate property.
Without being too heavy-handed, we point out in calculus that
the definitions have been well-established for centuries. And
even students in general education courses can appreciate the
visual issues involved in the clustering of the lacunae.
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4.2 Fractals in finance

As of this writing, the most common models of the stock
market are based on Brownian motion. In fact, the first
mathematical formulation of Brownian motion was Louis
Bachelier’s 1900 model of the Paris bond market. However,
comparison with data instantly reveals many unrealistic fea-
tures of Brownian motion X (t). For example, X (t1) − X (t2)
and X (t3) − X (t4) are independent for t1 < t2 < t3 < t4, and
X (t1) − X (t2) is Gaussian distributed with mean 0 and vari-
ance |t1 − t2|. That is, increments over disjoint time intervals
are independent of one another, and the increments follow
the familiar bell curve, so large increments are very rare. The
latter is called the short tails property.

Are these reasonable features of real markets? Why should
price changes one day be independent of price changes on a
previous day? Moreover, computing the variance from mar-
ket data assembled over a very long time, events of 10σ , for
example, occur with enormously much higher frequency than
the Gaussian value, which is (!) 10−24. Practitioners circum-
vent these problems by a number of ad hoc fixes, adding up
to a feeling similar to that produced by Ptolemy’s cosmol-
ogy: add enough epicycles and you can match any observed
motion of the planets. Never mind the problems produced
by the physicality of the epicycles, among other things. (Of
course, in finance the situation is much worse. No one has a
collection of epicycles that predicts market behavior with any
reliability at all.)

In the 1960s, Mandelbrot proposed two alternatives to
Brownian motion models. Mandelbrot (1963) had increments
governed by the Lévy stable distribution (so with long tails),
but still independent of one another. In 1965 Mandelbrot pro-
posed a model based on fractional Brownian motion (See
Mandelbrot (1997).) This model consequently had incre-
ments that are dependent, though still governed by the Gaus-

sian distribution. Both are improvements, in different ways,
of the Brownian motion models.

It is a considerable surprise, then, that Mandelbrot found
a better model, and in addition a simple collection of car-
toons, basically just iterates of a broken line segment, that by
varying a single parameter can be tuned to produce graphs in-
distinguishable from real market data. The point, of course, is
not to just make Pick the Fake quizzes that market experts fail,
though to be sure, that has some entertainment and educa-
tional value. All these cartoons have built in the self-affinity
observed in real data. Pursuing the goal of constructing the
most parsimonious models accounting for observation, these
cartoons suggest that dependence and non-Gaussian distribu-
tions may be a consequence of properly tuned self-affinity.
More detail is given in the next chapter.

Finally, these cartoons are a perfect laboratory for student
experimentation.

5 Conclusion

Some view science, perhaps especially mathematics, as a se-
rious inquiry that should remain aloof from popular culture.
Many of these people regret our teaching of fractal geometry,
because its images have been embraced by popular culture.

We take the opposite view. As scientists, our social re-
sponsibility includes contributing to the scientific literacy of
the general population. That fractal geometry has the visual
appeal to excite wide interest is undeniable. This introduc-
tion argued that fractal geometry has the substance to en-
gage non-science students in mathematics, in a serious way
and to a greater degree than any other discipline of which we
are aware. The chapters of this volume amplify this position
by showing how a wide variety of teachers have done this in
many settings.





Chapter 2

Unsolved Problems and Still-Emerging
Concepts in Fractal Geometry

Benoit B. Mandelbrot

The preceding chapter sketches a striking property of fractal
geometry. Its first steps are, both literally and demonstrably,
childishly easy. But high rewards are found just beyond those
early steps. In particular, forbiddingly difficult research fron-
tiers are so very close to the first steps as to be understood
with only limited preparation. Evidence of this unique as-
pect of fractal geometry is known widely, but scattered among
very diverse fields. It is good, therefore, to bring a few to-
gether. A fuller awareness of their existence is bound to in-
fluence many individuals’ and institutions’ perception of the
methods, goals, and advancements of fractal geometry.

1 Introduction

“You find fractals easy? This is marvelous.” Thus begins my
response to an observation that is sometimes heard. “If you
are a research mathematician, the community needs you to
solve the challenging problems in this nice long list I carry
around. If you are a research scientist, you could help to bet-
ter analyze the important natural phenomena in this other long
list.”

The first half-answer is elaborated in Section 2. The point
is that fractal geometry has naturally led to a number of com-
pelling mathematical conjectures. Some took 5, 10, or 20
years to prove, others—despite the investment of enormous
efforts—remain open and notorious. If anything, what slows
down the growth of fractal-based mathematics is the sheer
difficulty of some of its more attractive and natural portions.

The second-half answer is elaborated in Section 3. The
point is that, among other features, fractal geometry is, so far,
the only available language for the study of roughness, a con-
cept that is basic and related to our senses, but has been the
last to give rise to a science. In many diverse pre-scientific

fields, the absence of a suitable language delays the moment
when some basic problems could be attacked scientifically. In
other instances, it even delays the moment when those prob-
lems could be stated.

2 From simple visual observation
to forbiddingly difficult
mathematical conjecture

A resolutely purist extreme view of art holds that great
achievements must be judged for themselves, irrespective of
their period and the temporary failures that preceded their be-
ing perfected. In contrast, the most popular view attaches
great weight to cultural context and mutual influences, and
more generally tightly links the process and its end-products.
Some works do not survive as being excellent but as being
representative or historically important. For example, a res-
olutely sociological extreme view that we do not share holds
that Beethoven’s greatness in his time and ours distracts from
the more important appreciation of his contemporaries. Few
persons, and not even all teachers, are aware that a very simi-
lar conflict of views exists in mathematics.

As widely advertised, the key product of mathematics con-
sists in theorems; in each, assumptions and conclusions are
linked by a proof. It is also well known that many theorems
began in the incomplete status of conjectures that include
assumptions and conclusions but lack a proof. The iconic ex-
ample was a conjecture in number theory due to Fermat. Af-
ter a record-breaking long time it led to a theorem by Wiles.
Conjectures that resist repeated attempts at a proof acquire an
important role, in fact, a very peculiar one. On occasion the
news that an actual proof has made a conjecture into a theo-
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rem is perceived as a letdown, while it is suggested that these
conjectures’ main value resides in the insights provided by
both the unsuccessful and the successful searches for a proof.

Be that as it may, fractal geometry is rich in open conjec-
tures that are easy to understand, yet represent deep mathe-
matics. First, they did not arise from earlier mathematics, but
in the course of practical investigations into diverse natural
sciences, some of them old and well established, others newly
revived, and a few altogether new. Second, they originate in
careful inspections of actual pictures generated by comput-
ers. Third, they involve in essential fashion the century-old
mathematical monster shapes that were for a long time guar-
anteed to lack any contact with the real world. Those fractal
conjectures attracted very wide attention in the professions
but elude proof. We feel very strongly that those fractal con-
jectures should not be reserved for the specialists, but should
be presented to the class whenever possible. The earlier, the
better. To dispel the notion that all of mathematics was done
centuries ago, nothing beats being able to understand appro-
priate problems no one knows how to solve. Not all famous
unsolved problems will work here: the Poincaré conjecture
cannot be explained to high school students in an hour or a
few. But many open fractal conjectures can.

For the reasons listed above, the questions raised in this
chapter bear on an issue of great consequence. Does pure (or
purified) mathematics exist as an autonomous discipline, one
that can and should develop in total isolation from sensations
and the material world? Or, to the contrary, is the existence
of totally pure mathematics a myth?

The role of visual and tactile sensations. The ideal of pure
mathematics is associated with the great Greek philosopher
Plato (427?–347 BC). This (at best) mediocre mathematician
used his great influence to free mathematics from the perni-
cious effects of the real world and of sensations. This position
was contradicted by Archimedes (287–212 BC), whose real-
ism I try to emulate.

Indeed, my work is unabashedly dominated by awareness
of the importance of the messages of our senses. Fractal
geometry is best identified in the study of the notion of rough-
ness. More specifically, it allows a place of honor to full-
fledged pictures that are as detailed as possible and go well
beyond mere sketches and diagrams. Their original goal was
modest: to gain acceptance for ideas and theories that were
developed without pictures but were slow to be accepted be-
cause of cultural gaps between fields of science and mathe-
matics. But those pictures then went on to help me and many
others generate new ideas and theories. Many of these pic-
tures strike everyone as being of exceptional and totally un-
expected beauty. Some have the beauty of the mountains and
clouds they are meant to represent; others are abstract and
seem wild and unexpected at first, but after brief inspection
appear totally familiar. In front of our eyes, the visual geo-
metric intuition built on the practice of Euclid and of calculus
is being retrained with the help of new technology.

Pondering these pictures proves central to a different philo-
sophical issue. Does the beauty of these mathematical pic-
tures relate to the beauty that a mathematician rooted in the
twentieth century mainstream sees in his trade after long and
strenuous practice?

2.1 Brownian clusters: fractal islands

The first example, introduced in Mandelbrot (1982), is a wrin-
kle on Brownian motion. The historical origins of random
walk (drunkard’s progress) and Brownian motion are known
and easy to understand, at least qualitatively. From this, it is
simple to motivate the definition of the Wiener Brownian mo-
tion: a random process B(t) with increments B(t + h)− B(t)
that obey the Gaussian distribution of mean 0 and variance h,
and that are independent over disjoint intervals.

For a given time L , the Brownian bridge Bbridge(t) is de-
fined by

Bbridge(t) = B(t) − (t/L)B(L),

for 0 ≤ t ≤ L . Taking B(0) = 0, we find Bbridge(L) =
Bbridge(0). Combining one Brownian bridge in the x-
direction and one in the y-direction and erasing time yields a
Brownian plane cluster Q. Because we use Brownian bridges
to construct it, the Brownian plane cluster is a closed curve.
See Figure 1. An example of a well-known and fully proven

Figure 1: A Brownian plane cluster; Plate 243 of Mandelbrot
(1982).
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fact is that the fractal dimension of Q is D = 2. This result
is important but not really perspicuous, because the big holes
seem to contradict the association of D = 2 with plane-filling
curves. Results that are well known and not perspicuous are
not for the beginner.

Let us proceed to the self-avoiding planar Brownian mo-
tion Q̃. It is defined in Mandelbrot (1982) as the set of points
of the cluster Q accessible from infinity by a path that fails to
intersect Q. That is, Q̃ is the hull of Q, also called its bound-
ary or outer edge. The hull Q̃ is easy to comprehend because
it lacks double points. The unanswered question associated
with it is the 4/3 Conjecture, that Q̃ has fractal dimension
4/3.

An early example of Q, and hence of Q̃ is seen in Figure 1.
It looks like an island with an especially wiggly coastline,
and experience suggested its dimension is approximately 4/3.
This comparison with islands made the 4/3 conjecture sensi-
ble and plausible in 1982 and it remains sensible and plausi-
ble to students; that it remained a conjecture for many years
is something they can appreciate. Numerical tests and physi-
cists’ heuristics were added to the empirical evidence and
the conjecture was proved in Lawler, Werner, & Schramm
(2000).

2.2 The Mandelbrot set

Second example: In the past, music could be both popular
and learned, but elitists believe that this is impossible to-
day. For mathematics, the issue was not raised because no
part of it could be called a part of popular culture. Pro-
viding a counterexample, no other modern mathematical ob-
ject has become part of both scientific and popular culture as
rapidly and thoroughly as the Mandelbrot set. Moreover, an
algorithm for generating this set is readily mastered by any-
one familiar with elementary algebra. Thousands of people,
from middle school children to senior researchers and Fields
Medalists, have written programs to visualize various aspects
of the Mandelbrot set.

Recall the simplest algorithm: a complex number c be-
longs to the Mandelbrot set M if and only if the sequence
z0, z1, z2, . . . stays bounded, where z0 = 0 and zi+1 = z2

i +c.
For instance, the sequence can stay bounded by converg-

ing to a fixed point or to a cycle. Denote by M0 the set of
all c for which this is true. Of course, M0 ⊂ M . In fact,
M0 is of interest to the students of dynamics, hence my orig-
inal investigations were of M0, not of M . Interest shifted to
M because producing pictures of M is easy. By contrast, to
test if c ∈ M0, we first generate several hundred or thou-
sand points of the sequence z0, z1, z2, . . . , and test if for
large enough i there is an n for which |zi+n − zi | is very
small. This suggests convergence to a cycle of length n. (An
impractical theoretical alternative is to solve the 2n-degree
polynomial equation f n

c (z) = z, where fc(z) = z2 + c,
then test the stability of the n-cycle by a derivative condition:
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Figure 2: The Mandelbrot set.

1 > | f ′
c(w1) · · · f ′

c(wn)| = 2n · |w1 · · ·wn |. Here the points
w1, . . . , wn of the n-cycles are the sequences of successive
zi for different z0. In general, for each c there are several
n-cycles, but at most one is stable.)

Computer approximations of M0 actually yield a set
smaller than M0, and computer approximations of M actually
yield a set larger than M . Extending the duration of the com-
putation seemed to make the two representations converge to
each other and to an increasingly elaborate common limit.
Furthermore, when c is an interior point of M , not too close
to the boundary, it was easily checked that a finite limit cycle
exists: the steps outlined above converge fairly rapidly for c
not too close to the boundary. Those observations led me to
conjecture that M is identical to M0 together with its limits
points, that is, M = cl(M0), the closure of M0.

In terms of its being simple and understandable without
any special preparation, this conjecture is difficult to top. But
after almost twenty years of study, it remains a conjecture.
With the proof of Fermat’s last theorem, the conjecture M =
cl(M0) may have been promoted to illustrating the shortest
distance between a simple idea (in this case, complete with
popular pictures) and deep, unsolved mathematics. (Not so
simple is the usual restatement of this conjecture: that M is
locally connected.)

2.3 Dimensions of self-affine sets

The first tool for quantifying self-similar fractals is dimen-
sion. For a fractal consisting of N pieces, each scaled in all
directions by a factor of r , the dimension D is given by

D = log(N )

log
(

1
r

) .

This is easy to motivate, trivial to compute. Working through
several examples, students soon develop intuition for the vi-
sual signatures of low- and high-dimensional fractals. The
generalization to self-similar fractals having different scal-
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Figure 3: Top: Osculating circles outlining a Jordan curve limit set from inside and outside, Plate 177 of Mandelbrot (1982).
Bottom: Osculating triangles outlining the Koch snowflake curve from inside and outisde, Plate 43 of Mandelbrot (1982).

ings for different pieces is not difficult. For a fractal con-
sisting of N pieces, the i th piece scaled by a factor of ri , the
dimension D is the unique solution of the Moran equation

N∑
i=1

r D
i = 1.

Often this must be solved numerically, but this is not a diffi-
culty given today’s graphing calculators and computer alge-
bra packages.

The simplicity of these calculations leads some people to
believe that calculating dimensions is a simple process. This
is a misperception resulting from the almost exclusive re-
liance on self-similar fractals for examples. The case of self-
affine fractals, where the pieces are scaled by different fac-
tors in different directions, is much more difficult. Although
some special cases are known, no simple variant of the Moran
equation has been found. Kenneth Falconer describes the sit-
uation this way, “Obtaining a dimension formula for general
self-affine sets is an intractable problem.” (Falconer (1990),
129.) By simply changing the scaling factors in one direction,
a completely straightforward exercise becomes tremendously
difficult, perhaps without general solution.

2.4 Limit sets of Kleinian groups

A collection of Möbius transformations of the form z →
(az + b)/(cz + d) defines a group that Poincaré called
Kleinian. With few exceptions, their limit sets S are frac-

tal. For the closely related groups based on geometric in-
versions in a collection C1, C2, . . . , Cn of circles, there is a
well-known algorithm that yields S in the limit. But it con-
verges with excruciating slowness as seen in Plate 173 of
Mandelbrot (1982). For a century, the challenge to obtain a
fast algorithm remained unanswered, but it was met in many
cases in Chapter 18 of Mandelbrot (1982). See also Mandel-
brot (1983). In the case of this construction, fractal geometry
did not open a new mathematical problem, but helped close a
very old one.

In the new algorithm, the limit set of the group of transfor-
mations generated by inversions is specified by covering the
complement of S by a denumerable collection of circles that
osculate S. The circles’ radii decrease rapidly, therefore their
union outlines S very efficiently.

When S is a Jordan curve (as on Plate 177 of Mandelbrot
(1982)), two collections of osculating circles outline S, re-
spectively from the inside and the outside. They are closely
reminiscent of the collection of osculating triangles that out-
line Koch’s snowflake curve from both sides (Figure 3). Be-
cause of this analogy, the osculating construction seems, after
the fact, to be very natural. But the hundred year gap before it
was discovered shows it was not obvious. It came only after
respectful examination of pictures of many special examples.

A particularly striking example is seen in Figure 4, called
“Pharaoh’s breastplate,” Ken Monks’ improved rendering of
Plate 199 of Mandelbrot (1982). A more elaborate version of
this picture appears on the cover of Mandelbrot (1999). This
is the limit set of a group generated by inversion in the six
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Figure 4: Left: Pharaoh’s breastplate. See the color plates. Right: the six circles generating Pharaoh’s breastplate, together
with a few circles of the breastplate for reference.

circles drawn as thin lines on the small accompanying dia-
gram. Here, the basic osculating circles actually belong to
the limit set and do not intersect (each is the limit set of a
Fuchsian subgroup based on three circles). The other oscu-
lating circles follow by all sequences of inversions in the six
generators, meaning that each osculator generates a clan with
its own tartan color.

By inspection, it is easy to see that this group also has three
additional Fuchsian subgroups, each made of four generators
and contributing full circles to the limit set.

Pictures such as Figure 4 are not only aesthetically pleas-
ing, but they breathe new life into the study of Kleinian
groups. Thurston’s work on hyperbolic geometry and
3-manifolds opens up the possibility for limit sets of Kleinian
group actions to play a role in the attempts to classify
3-manifolds. The Hausdorff dimension of these limit sets has
been studied for some time by Bishop, Canary, Jones, Sulli-
van, Tukia, and others. The group G that generates the limit
set gives rise to another invariant, the Poincaré exponent

δ(G) = inf

{
s :

∑
g∈G

exp (−sρ (0, g(0)))

}
< ∞

where ρ is the hyperbolic metric. Under fairly general con-
ditions, the Poincaré exponent of a Kleinian group equals the

Hausdorff dimension of the limit set of the group. See Bishop
& Jones (1997), for example.

This is an active area of research: much remains to be done.

3 “Mathematics is a language”: the
emergence of new concepts

History tells us that the great Josiah Willard Gibbs (1839–
1903) made this remark at a Yale College Faculty meeting
devoted to the reform of foreign language requirements (some
faculty issues never die!). The context may seem undignified
or amusing, but, in fact, Gibbs’s words bring forth a deep
issue. To express subtle scientific ideas, one often needs new
words that are subtler than those of ordinary language.

As background, everyone knows that some great books de-
servedly became classics because they provided, for the first
time, a new language in which personal emotions—that the
reader would feel but not be able to express—could be both
refined and made public. This is not at all a matter of coin-
ing new words for old concepts but of making altogether new
concepts emerge.

Advances in the sciences are assessed in diverse ways, one
of which is the emergence of new scientific concepts. Indeed,
the facile precept that the first step is to observe then measure,
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sounds less compelling when the object of study is an unde-
scribable mess and all the measurements that readily come to
mind disagree or even seem self-contradictory. This is why
the point of passage from prescientific to scientific investiga-
tion is often marked by what Thomas Kuhn called change of
paradigm. Sometimes this includes the appearance of a suit-
able new language, without which observations could not be
made and quantified.

3.1 Fractals are a suitable language for
the study of roughness wherever
it is encountered

Let us ponder the ubiquity of the notion of roughness and its
lateness in becoming formalized. Many sciences arose di-
rectly from the desire to describe and understand some basic
messages the brain receives from the senses. Visual signals
led to the notions of bulk and shape and of brightness and
color. The sense of heavy versus light led to mechanics and
the sense of hot versus cold led to the theory of heat. Other
signals (for example, auditory) require no comment. Proper
measures of mass and size go back to prehistory and temper-
ature, a proper measure of hotness, dates to Galileo.

Against this background, the sense of smooth versus rough
suffered from a level of neglect that is noteworthy though
hardly ever pointed out. Not only does the theory of heat have
no parallel in a theory of roughness, but temperature itself had
no parallel until the advent of fractal geometry. For exam-
ple, in the context of metal fractures, roughness was widely
measured by a root mean square deviation from an interpo-
lating plane. In other words, metallurgists used the same tool
as finance experts used to measure volatility. But this mea-
surement is inconsistent. Indeed, different regions of a pre-
sumably homogeneous fracture emerged as being of different
r.m.s. volatility. The same was the case for different sam-
ples that were carefully prepared and later broken following
precisely identical protocols.

To the contrary, as shown in Mandelbrot, Passoja & Paullay
(1984) and confirmed by every later study, the fractal dimen-
sion D, a characteristic of fractals, provides the desired in-
variant measure of roughness. The quantity 3 − D is called
the codimension or Hölder exponent by mathematicians and
now called the roughness exponent by metallurgists.

The role played by exponents must be sketched here. It
is best in this chapter to study surfaces through their inter-
sections by approximating orthogonal planes. Had these
functions been differentiable, they could be studied through
the derivative defined by P ′(t) = limε→0(1/ε)[P(t + ε) −
P(t)]. For fractal functions, however, this limit does not exist
and the local behavior is, instead, studied through the param-
eters of a relation of the form d P ∼ F(t)(dt)α. Here F(t) is
called the prefactor, but the most important parameter is the
exponent α = limε→0{log[P(t + ε) − P(t)]/ log ε}.

There is an adage that, when you own only a hammer, ev-
erything begins to look like a nail. This adage does not apply
to roughness.

3.2 Fractals and multifractals in finance

Versions of the Brownian motion model mentioned in Sec-
tion 2.1 are widely used to model aspects of financial mar-
kets. In fact, and contrary to common belief, the first analysis
of Brownian motion was not advanced in 1905 by Einstein.
In 1900 Bachelier had already developed Brownian motion
to study the stock market.

Despite this historical precedent, successive differences of
real data sampled at equal time intervals reveal even on cur-
sory investigation that Brownian models are very far from be-
ing tolerable. Most visibly, (1) the width of the central band
is not constant, but varies substantially, (2) the excursions
from the central band are so large as to be astronomically
unlikely in the Brownian case, and (3) the excursions are not
independent, but occur in clumps, often when the underlying
band is widest. Figure 5 illustrates these differences.

Ad hoc fixes can account for each of these failures of the
Brownian model, but very rapidly become far too compli-
cated for anybody, especially for courses not addressed to ex-
perts. The fractal/multifractal approach of Mandelbrot (1997)
is much more elegant. It provides a unified way to synthesize
all, and moreover introduces a family of parameterized car-
toon models suitable for student exploration.

Let us dwell on what is happening. Compared with well-
developed standard mathematical finance, the fractal cartoons
are incomparably more satisfactory. But they are far sim-
pler than the first stages of standard finance, so simple that
they have been immediately incorporated into both Fractal
Geometry for Non-Science Students (a course primarily for
humanities students) and Fractal Geometry: Techniques and
Applications (a course for sophomore-junior math and sci-
ence students) at Yale. In effect, students are invited to partic-
ipate in discussions between experts. They are amazed by the
realistic appearance of forgeries made with these cartoons.
Showing the class a collection of real data and forgeries al-
ways produces interesting results. Students disagree, some-
times with great animation, about which are real and which
are forgeries. The inverse problem, finding a cartoon to cre-
ate a forgery of a particular data set, has been a source of
interesting student projects, some quite creative. After study-
ing background in the different visual signatures of long tails
and global dependence, students are amazed at how slight
changes in the cartoon generator can achieve both effects.

The basic construction of the cartoon involves an initiator
and a generator. The process to be iterated consists of replac-
ing each copy of the initiator with an appropriately rescaled
copy of the generator. For a first cartoon, the initiator is the di-
agonal of the unit square, and the generator is the broken line
with vertices (0, 0), (4/9, 2/3), (5/9, 1/3), and (1, 1). Fig-
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Figure 5: Left: differences in successive daily closing prices for four years of EMC data. Right: successive differences of the
same number of steps in one-dimensional Brownian motion.

Figure 6: The initiator, generator, and first iterate of a non-random Brownian motion cartoon.

Figure 7: Left: the 6th iterate of a non-random Brownian cartoon. Right: the 6th iterate of a randomized Brownian cartoon.

ure 6 shows the initiator (left), generator (middle), and first
iteration of the process (right).

To get an appreciation for how quickly the jaggedness of
these cartoons grows, the left side of Figure 7 shows the 6th
iterate of the process.

Self-affinity is guaranteed because it is built into the pro-
cess; each piece is an appropriately scaled version of the
whole. In this case, the scaling ratios have been selected to
satisfy the square root condition of Brownian motion. The
horizontal axis denotes time t , the vertical denotes price x .
The first and third generator segments have t1 = t3 = 4

9
and x1 = x3 = 2

3 ; the middle segment has t2 = 1
9

and x2 = − 1
3 . So for each generator segment we have

|xi | = (ti )1/2.

A cartoon is unifractal if there is a constant H so that for
each generator segment |xi | = (ti )H . If different H are
needed for different segments, the cartoon is multifractal.

The left side of Figure 7 is far too regular to mimic any real
data. But it can be randomized easily by shuffling the order
in which the three pieces of the generator are put into each

scaled copy. The right side of Figure 7 shows the result of
this shuffling, for the sixth stage of the construction.

Instead of the graph itself, it is less common but far bet-
ter to look at the increments. The cartoon sequence we have
produced has jumps at uneven intervals: some at multiples of
1/3n , some at multiples of 1/9n . Because we rarely have
detailed knowledge of the underlying dynamics generating
real data, measurements usually are taken at equal time steps.
To construct a sequence of appropriate increments, we sam-
ple the graph at fixed time intervals and subtract successive
values obtained. Operationally, first make a list of time val-
ues for the sampling, then find the cartoon time values be-
tween which each sample value lies, and linearly interpolate
between the cartoon values to find the sample value at the
sample time.

Figure 8 illustrates how the statistical properties of the dif-
ferences can be modified by making a simple adjustment in
the generator. Fixing the points (0, 0) and (1, 1), we keep
the middle turning points symmetrical: (a, 2

3 ) and (1 − a, 1
3 ),

where a lies in the range 0 < a ≤ 1
2 . All pictures were con-

structed from the tenth generation, hence consist of 310 =
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Figure 8: Generators, cartoons and difference graphs for symmetric cartoons with turning points (a, 2
3 ) and (1 − a, 1

3 ), for
a = 0.333, 0.389, 0.444, 0.456, and 0.467. The same random number seed is used in all graphs.

59,049 intervals. The difference graphs are constructed by
sampling at 1000 equal time steps.

Certainly, correlations are introduced as the point
(4/9, 2/3) is moved to the left. Of course, this is just the
beginning. More detailed study reveals relations between the
Hölder exponents and the slopes of the generator intervals,
and properties of the multifractal measure can be extracted
from the cartoons (Mandelbrot (1997)). The H -exponents
and the f (α) curve are much too technical for Fractal Ge-
ometry for Non-Science Students, but are appropriate topics
for the more mathematically sophisticated Fractal Geometry:
Techniques and Applications. Even for this audience, these
are challenging concepts. Yet these simple cartoons provide
accessible introductions to some of the subtle mathematics of
multifractals.

As a last example, we mention a fascinating theorem
and a visual representation of its meaning. The Yale stu-
dents taking Fractal Geometry for Non-Science Students
in autumn of 1998 followed the development of Figure 9
with passion and helped improve it. The generator in-
crements t represent clock time. Viewed in clock time,
prices sometimes remain quiescent for long periods, and
sometimes change with startling rapidity, perhaps even dis-
continuously. For these cartoons, clock time can be re-
calibrated to uniformize these changes in price variation.
Basically, slow the clock during periods of rapid activ-

ity and speed it during periods of low activity. Students
found the VCR a useful analog. Fast-forward through the
commercials (low activity) and use slow-motion through the
interesting bits (rapid activity).

For the cartoon generators, this is achieved by first find-
ing the unique solution D of |x1|D + · · · + |xn |D = 1,
then defining the trading time generators by Ti = |xi |D .
By changing to trading time, every multifractal price cartoon
can be converted into a unifractal cartoon in multifractal time.
Global dependence and long tails are unpacked in different
ways by converting to trading time. Specifically, global de-
pendence remains in the price vs. trading time record, but the
long tails are absorbed into the multifractal nature of trading
time.

Figure 9 shows a three-dimensional representation of this
conversion. Note how the clock time-trading time curve com-
presses the flat regions and expands the steep regions of the
price-clock time graph. Thus the long tails of the price-clock
time graph are absorbed into the multifractal time measure.
In addition, the dependence of increments is uniformized to
fractional Brownian motion in the price-trading time graph.
That is, the conversion to trading time decomposes long tails
and dependent increments into different aspects of the graph.

Starting from a rough idea of such a representation, this
picture evolved over about a week, through discussions with
the class. Few things have excited the class as much as being
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Figure 9: Converting the price-clock time graph to the price-trading time graph by means of the clock time-trading time graph.

involved, as a group, in the production of a figure to explain
current research in the field.

4 Conclusion
A famous tongue-twister and test in Greek and evolution, due
to E. H. Haeckel, proclaims that “ontogeny recapitulates phy-

logeny.” In plainer English, the early growth of an individual
repeats the evolution of its (his, her) ancestors. As argued
elsewhere in this book (Chapter 3), this used to be the BIG
PICTURE historical justification of old math—not a well-
documented one. But teachers ought to welcome any well-
documented small picture version that happens to come their
way. Fractals deserve to be welcomed.





Chapter 3

Fractals, Graphics, and
Mathematics Education1

Benoit B. Mandelbrot

1 Introduction

The fundamental importance of education has always been
very clear to me and it has been very frustrating, and cer-
tainly not a good thing in itself, that the bulk of my working
life went without the pleasures and the agonies of teaching.
On the other hand, there is every evidence, in my case, that
being sheltered from academic life has often been a neces-
sary condition for the success of my research. An incidental
consequence is that some of the external circumstances that
dominated my life may matter to the story to be told here, and
it will be good to mention them, in due time.

But past frustrations are the last thing to dwell upon in this
book. Watching some ideas of mine straddle the chasm be-
tween the research frontier and the schools overwhelms me
with a feeling of deep accomplishment. Clearly, for better or
worse, I have ceased to be alone in an observation, a belief,
and a hope, that keep being reinforced over the years.

The observation is that fractals—together with chaos, easy
graphics, and the computer—enchant many young people and
make them excited about learning mathematics and physics.
In part, this is because an element of instant gratification
happens to be strongly present in this piece of mathematics
called fractal geometry. The belief is that this excitement can
help make these subjects easier to teach to teenagers and to
beginning college students. This is true even of those stu-
dents who do not feel they will need mathematics and physics
in their professions. This belief leads to a hope—perhaps
megalomaniac—concerning the abyss which has lately sep-
arated the scientific and liberal cultures. It is a cliché, but

1Adapted from a closing invited address delivered at the Seventh Interna-
tional Congress of Mathematics Education (ICME-7), held in 1992 at Laval
University of Quebec City. The text remains self-contained and preserves
some of the original flavor; it repeats some points that were already used
elsewhere in this book but bear emphasis.

one confirmed by my experience, that scientists tend to know
more of music, art, history, and literature, than humanists
know of any science. A related fact is that far more scien-
tists take courses in the humanities than the other way around.
So let me give voice to a strongly held feeling. An element
of instant gratification happens to be strongly present in this
piece of mathematics called fractal geometry. Would it be ex-
travagant to hope that it could help broaden the small band
of those who see mathematics as essential to every educated
citizen, and therefore as having its place among the liberal
arts?

The lost unity of liberal knowledge is not just something
that old folks gather to complain about; it has very real so-
cial consequences. The fact that science is understood by few
people other than the scientists themselves has created a ter-
rible situation. One aspect is a tension between conflict of
interest and stark ignorance: that vital decisions about sci-
ence and technology policy are all too often taken either by
people so closely concerned that they have strong vested in-
terests, or by people who went through the schools with no
math or science. Thus, every country would be far better off
if understanding and appreciation for some significant aspect
of science could become more widespread among its citizens.
This demands a liberal education that includes substantial in-
struction in math.

Fractals prove to have many uses in technical areas of
mathematics and science. However, this will not matter in
this chapter. Besides, if fractals’ usefulness in teaching is
confirmed and proves lasting, this is likely to dwarf all their
other uses.

This chapter shall assume all of you to have a rudimentary
awareness or knowledge of fractals, or will one day become
motivated to acquire this knowledge elsewhere. My offer-
ing is my book, Mandelbrot (1982), but there are many more
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sources at this point. For example, the website

http://classes.yale.edu/math190a/

Fractals/Welcome.html

is a self-contained short course on basic fractal geometry.
I shall take up diverse aspects of a basic and very concrete

question about mathematics education: what should be the
relations—if any—between (a) the overall development of
mathematics in history, (b) the present status of the best and
brightest in mathematics research, and (c) the most effective
ways of teaching the basics of the field?

2 Three mutually antagonistic
approaches to education

By simplifying (strongly but not destructively), one can dis-
tinguish three mutually antagonistic approaches to mathemat-
ical education. The first two are built on a priori doctrine: the
old math, dominated by (a) above, and the new math, dom-
inated by (b). (I shall also mention a transitional approach
between old and new math.) To the contrary, the approach I
welcome would be resolutely pragmatic. It would encourage
educational philosophy to seek points of easiest entry. In this
quest, the questions of how mathematics research began and
of its present state, are totally irrelevant.

To elaborate by a simile loaded in my favor, think of the
task of luring convinced nomads into hard shelter. One could
tempt them into the kinds of shelters that have been built
long ago, in countries that happened to provide a convenient
starting point in the form of caves. One could also try to
tempt them into the best possible shelters, those being built
far away, in highly advanced countries where architecture is
dominated by structurally pure skyscrapers. But both strate-
gies would be most ill-inspired. It is clearly far better to tempt
our nomads by something that interests them spontaneously.
But such happens precisely to be the case with fractals, chaos,
easy graphics, and the computer. Hence, if their effectiveness
becomes confirmed, a working pragmatic approach to mathe-
matics education may actually be at hand. We may no longer
be limited to the old and new math. Let me dwell on them for
a moment.

2.1 The old math approach
to mathematics education

The old math approach to mathematics education saw the
teacher’s task as that of following history. The goal was to
guide the child or young person of today along a simplified
sequence of landmarks in the progress of science throughout
the history of humanity. An extreme form of this approach
prevailed until mid-nineteenth century in Great Britain, the

sole acceptable textbook of geometry being a translation of
Euclid’s Elements.

The folk-psychology behind this approach asserted with a
straight face that the mental evolution of mankind was the
product of historical necessity and that the evolution of an
individual must follow the same sequence. In particular, the
acquisition of concepts by the small child must follow the
same sequence as the acquisition of concepts by humankind.
Piaget taught me that such is indeed the case for concepts
that children must have acquired before they start studying
mathematics.

All this sounds like a version of “ontogeny recapitulates
phylogeny,” but it is safe to say that people had started de-
veloping mathematics well before Euclid. As a matter of
fact, those who edited the Elements were somewhat casual
and left a number of propositions in the form of an archae-
ological site where the latest strata do not completely hide
some tantalizing early ones. To be brief, what we know of
the origin of mathematics is too thin and uncertain to help the
teacher.

Be that as it may, an acknowledged failing of old math
was that the teacher could not conceivably move fast enough
to reach modern topics. For example, the school mathemat-
ics and science taken up between ages 10 and 20 used to be
largely restricted to topics humanity discovered in antiquity.
As might be expected, teachers of old lit heard the same crit-
icism. A curriculum once reserved to Masters of Antiquity
was gradually changed to leave room for the likes of Shake-
speare and of increasingly modern authors; in the USA, it
had to yield room to American Masters, then to multicultural
programs.

2.2 Transitional approaches
to mathematics education

Concerns about old math are an old story. Consider two ex-
amples. In Great Britain, unhappiness with Euclid’s Elements
as a textbook fueled the reforms movement that led in 1871 to
the foundation of the Association for the Improvement of Geo-
metrical Teaching (in 1897 it was renamed the Mathematical
Association). As a student in France around 1940, I heard
about a reform movement that had flourished before 1900. It
motivated Jacques Hadamard (1865–1963), a truly great man,
to help high school instruction by writing Hadamard (1898),
a modern textbook of geometry that stressed the notion of
transformation. I was given a copy and greatly enjoyed it, but
the consensus was that it was far above the heads of those it
hoped to please. In Germany, there was the book by Hilbert
and Cohn–Vossen (1952).

But the 20th century witnessed a gradual collapse of ge-
ometry. Favored topics became arithmetic and number the-
ory; they have ancient roots, are one of the top fields in
today’s mathematical research, and include large portions that
are independent of the messy rest of mathematics. Therefore,
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they are central to many charismatic teachers’ efforts to fire
youngsters’ imaginations towards mathematics.

2.3 The 1960s and the new math approach to
mathematics education

Far bolder than those half-hearted attempts to enrich the
highly endowed students with properly modern topics was the
second broad approach to mathematics education exemplified
by the new math of the 1960s.

Militantly anti-historical, I viewed the state of mathematics
in the 1960s, and the direction in which it was evolving at
that particular juncture in history, as an intrinsic product of
historical necessity. This is what made it a model at every
level of mathematics education. If the research frontier of the
1960s had not been historically necessary, new math would
have lost much of its gloss or even legitimacy. The evidence,
however, is that the notion of historical necessity as applied to
mathematics (as well as other areas!) is merely an ideological
invention. This issue is important and tackled at length in
Chapter 4 of this volume.

In any event, new math died a while ago, victim of its obvi-
ous failure as an educational theory. The Romans used to say
that “of the dead, one should speak nothing but good.” But
the new math’s unmitigated disaster ought at least teach us
how to avoid a repetition. However, it is well known that fail-
ure is an orphan (while success has many would-be parents),
that is, no responsibility for this historical episode is claimed
by anyone, as of today.

Take for example the French formalists who once flour-
ished under the pen-name of Bourbaki (I shall have much
more to say about them). They nurtured an environment in
which new math became all but inevitable, yet today they
join everyone else in making fun of the outcome, especially
when it hurts their own children or grandchildren. This de-
nial of responsibility is strikingly explicit in a one-hour story
a French radio network devoted to the Bourbaki a few years
ago. (Audio-cassettes may be available from the Société
Mathématique de France.) One hears in it that the Bourbaki
bear no more responsibility than the French man in the street
(failure is indeed an orphan), and that they have never made
a statement in favor of new math. On the other hand, hav-
ing paid attention while suffering through the episode as the
father of two sons, I do not recall their making a statement
against new math, and I certainly recall the mood of that time.

Be that as it may, it is not useful to wax indignant, but im-
portant to draw a lesson for the future. The lesson is that no
frontier mathematics research must again be allowed to dom-
inate mathematics education. At the other unacceptable ex-
treme, needless to say, I see even less merit in the notion that
one can become expert at teaching mathematics or at writing
textbooks, yet know nothing at all about the subject. Quite to
the contrary, the teachers and the writers must know a great
deal about at least some aspects of mathematics.

Fortunately, mathematics is not the conservatives’ ivory
tower. As will be seen in Chapter 4, I see it as a very big
house that offers teachers a rich choice of topics to study and
transmit to students. The serious problem is how to choose
among those topics. My point is that this choice must not be
left to people who have never entered the big house of math-
ematics, nor to the leaders of frontier mathematics research,
nor to those who claim authority to interpret the leaders’ pref-
erences. Of course, you all know already which wing of the
big house I think deserves special consideration. But let me
not rush to talk of fractals, and stop to ask why the big house
deserves to be visited.

3 The purely utilitarian argument for
widespread literacy in mathematics
and science

My own experiences suggest, and all anecdotal reports con-
firm, that traditional mathematics (of the kind described in
the section before last) does marvels when a very charismatic
teacher meets ambitious and mathematically gifted children.
Helping the very gifted and ambitious is an extraordinarily
important task, both for the sake of those individuals and of
the future development of math and science. But (as already
stated) I also believe that math and science literacy must ex-
tend beyond the very gifted pupils.

Unfortunately, as we all know, this belief is not shared
by everyone. How can we help it become more widely ac-
cepted? All too often, I see the need for math and science
literacy referred to exclusively in terms of the needs (already
mentioned) of future math and science teaching and research,
and those of an increasingly technological society. To my
mind, however, this direct utilitarian argument fails on two
accounts: it is not politically effective; and it is not suffi-
ciently ambitious.

First of all, if scientific literacy is valuable and remains
scarce, it has always been hard to explain why the scientif-
ically literate fail (overall) to reap the financial rewards of
valuable scarcity. In fact, scientific migrant workers, like
agricultural ones, keep pouring in from poorer countries.
Recent years were especially unkind to the utilitarian argu-
ment since many engineers and scientists are becoming un-
employed and had to move on to fields that do not require
their specialized training.

Even though this is an international issue, allow me to cen-
ter the following comments on the conditions in the USA. In
its crudest form, very widespread only a few years ago, the
utilitarian argument led many people to compare the United
States unfavorably to countries, including Russia, France, or
Japan, with far more students in math or science. Similarly
unfavorable comparisons concerned foreign language instruc-
tion in the USA to that in other countries. The explanation
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in the case of the languages of Hungary or Holland is obvi-
ous: the Hungarians are not genetically or socially superior to
the Austrians, but the Austrians speak German, a useful lan-
guage, while Hungarian is of no use elsewhere; hence, mul-
tilingual Hungarians receive unquestioned real-life rewards.
Similarly, school programs heavy in compulsory math are
tolerated in France and Japan because they provide unques-
tioned great real-life rewards to those who do well in math.

For example, many jobs in France that require little aca-
demic knowledge to be performed are reserved (by law) for
those who pass a qualifying examination. The exam seeks ob-
jectivity, and ends up being heavy on math. There are many
applicants, the exams are difficult, and the students are moti-
vated to be serious about preparing for them.

Some of these jobs are among the best possible. For ex-
ample, in many French businesses one cannot approach the
top unless one started at the Ecole Polytechnique, the school
I attended. (I first entered Ecole Normale Supérieure, but left
immediately). For a time after Polytechnique was founded
(in 1794), it first selected and judged its students on the broad
and subjective grounds ideally used in today’s America, but
later the criteria for entrance and ranking became increasingly
objective—that is, mathematical. One reason was the justified
fear of nepotism and political pressure, another the skill of
Augustin Cauchy (1789–1857), a very great mathematician
and also a master at exerting self-serving political pressure.

The result was clear at the forty-fifth and fiftieth reunions
of my class at Polytechnique. For a few freshly retired class-
mates a knowledge of science had been essential. But most
had held very powerful positions to general acclaim, yet
hardly remembered what a complex number is—because it
has not much mattered to them. They gave no evidence of an
exceptionally strong love of science. (I do not know what to
make of the number of articles our Alumni Monthly devotes to
the paranormal.) But my classmates could never have reached
those powerful positions without joining the Polytechnique
“club”; to be a wizard at math, at least up to age twenty, was
part of the initiation and a desired source of homogenity.

The United States of America also singles out an activ-
ity that brings monetary rewards and prestige that continue
through a person’s life—independent of the person’s profes-
sion. This activity is sports. In France it is math. For exam-
ple, one of my classmates (Valéry Giscard d’Estaing) became
President of France, his goal since childhood; to help himself
along, he chose to go to a college even more demanding than
MIT.

For a long time France recognized a second path to the top:
a mastery of Greek or Latin writers and philosophers. But
by now this path has been replaced by an obstacle course in
public administration. A competition continues between the
two ways of training for the top, but no one claims that either
mathematics or the obstacle courses is important per se. You
see how little bearing this French model has on the situation
in the USA.

Needless to say, many French people have always com-
plained that their school system demands more math than is
sensible; other French people complain that the teaching of
math is poor. And I heard the same complaints on a trip to
Japan. So my feeling is that the real problem may not involve
embarrassing national comparisons.

4 In praise of widespread literacy
in mathematics and science

Lacking the purely utilitarian argument, what could one con-
ceivably propose to justify more and better math and physics?
When I was young some of my friends were delighted to re-
serve real math to a small elite. But other friends and I envied
the historians, the painters, and the musicians. Their fields
also involved elite training, yet their goals seemed blessed by
the additional virtue of striking raw nerves in other human be-
ings. They were well understood and appreciated by a wide
number of people with comparatively minimal and unprofes-
sional artistic education. To the contrary, the goals of my
community of mathematicians were becoming increasingly
opaque beyond a circle of specialists. Tongue in cheek, my
youthful friends and I dreamt of some extraordinary change
of heart that would induce ordinary people to come closer to
us of their own free will. They should not have to be bribed
by promises of jobs and money, as was the case for the French
adolescents. Who can tell, a popular wish to come closer to us
might even induce them to buy tickets to our performances!

When our demanding dream was challenged as ridiculous
and contrary to history and common sense, we could only
produce one historical period when something like our hopes
had been realized. Our example is best described in the fol-
lowing words of Sir Isaiah Berlin (Berlin 1979):

“Galileo’s method . . . and his naturalism, played a crucial
role in the development of seventeenth-century thought, and
extended far beyond technical philosophy. The impact of
Newton’s ideas was immense: whether they were correctly
understood or not, the entire program of the Enlightenment,
especially in France, was consciously founded on Newton’s
principles and methods, and derived its confidence and its
vast influence from his spectacular achievements. And this,
in due course, transformed—indeed, largely created—some
of the central concepts and directions of modern culture in
the West, moral, political, technological, historical, social—
no sphere of thought or life escaped the consequences of this
cultural mutation. This is true to a lesser extent of Darwin . . . .
Modern theoretical physics cannot, has not, even in its most
general outlines, thus far been successfully rendered in popu-
lar language as Newton’s central doctrines were, for example,
by Voltaire.”

Voltaire was, of course, the most celebrated French writer
of the eighteenth century and mention of his name brings to
mind a fact that is instructive but little known, especially out-
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side France: it concerns the first translation of Newton into
French, which appeared in Voltaire’s time. Feminists, lis-
ten: the translator was Gabrielle Émilie le Tonnelier de Bre-
teuil, marquise du Châtelet-Lomont (1706–49). Madame du
Châtelet was a pillar of High Society: her salon was among
the most brilliant in Paris.

In addition, the XVIIIth century left us the letters that
the great Leonhard Euler (1707–83) wrote to “a German
princess” on topics of mathematics. Thus a significantly
broad scientific literacy was welcomed and conspicuously
present in a century when it hardly seemed to matter.

5 Contrasts between two patterns
for hard scientific knowledge:
Astronomy and history

Why is there such an outrageous difference between activities
that appeal to many (like serious history), and those which
only appeal to specialists? To try and explain this contrast, let
me sketch yet another bit of history, comparing knowledge
patterned after astronomy and history.

The Ancient Greeks and the medieval scholastics saw a
perfect contrast between two extremes: the purity and per-
fection of the Heaven, and the hopeless imperfection of the
Earth. Pure meant subject to rational laws which involve
simple rules yet allow excellent predictions of the motion
of planets and stars. Many civilizations and individuals be-
lieve that their lives are written up in full detail in a book
and hence can in theory be predicted and cannot be changed.
But many others (including Ancient Greeks) thought oth-
erwise. They expected almost everything on Earth to be
a thorough mess. This allowed events that were in them-
selves insignificant to have unpredictable and overwhelming
consequences—a rationalization for magic and spells. This
sensitive dependence became a favorite theme of many writ-
ers; Benjamin Franklin’s Poor Richard’s Almanac (published
in 1757), retells an ancient ditty as follows:

“A little neglect may breed mischief.
For lack of a nail, the shoe was lost;
for lack of a shoe, the horse was lost;
for lack of a horse, the rider was lost;
for lack of a rider, the message was lost;
for lack of a message, the battle was lost;
for lack of a battle, the war was lost;
for lack of a war, the kingdom was lost;
and all because of one horseshoe nail.”

From this perspective, it seems to me that belief in astrol-
ogy, and the hopes that continue to be invested today in di-
verse would-be sciences, all express a natural desire to escape
the terrestrial confusion of human events and emotions by

putting them into correspondence with the pure predictabil-
ity of the stars.

The beautiful separation between pure and impure (con-
fused) lasted until Galileo. He destroyed it by creating a
terrestrial mechanics that obeyed the same laws as celestial
mechanics; he also discovered that the surface of the Sun is
covered with spots and hence is imperfect. His extension
of the domain of order opened the route to Newton and to
science. His extension of the domain of disorder made our
vision of the universe more realistic, but for a long time it
removed the Sun’s surface from the reach of quantitative sci-
ence.

After Galileo, knowledge was free from the Greeks’ dis-
tinction between Heaven and Earth, but it continued to distin-
guish between several levels of knowledge. At one end was
hard knowledge, a science of order patterned after astronomy.
At the other end, is soft knowledge patterned after history, i.e.,
the study of human and social behavior. (In German, the word
Wissenschaft stands for both knowledge and science; this may
be one of several bad reasons why the English and the French
often use science as a substitute for knowledge.)

Let me at this point confess to you the envy I experienced
as a young man, when watching the hold on minds that is the
privilege of psychology and sociology, and of my youthful
dreams of seeing some part of hard science somehow suc-
ceed in achieving a similar hold. Until a few decades ago, the
nature of science made this an idle dream. Human beings (not
all, to be sure, but enough of them) view history, psychology,
and sociology as alive (unless they had been smothered by
mathematical modeling). Astronomy is not viewed as alive;
the Sun and the Moon are superhuman because of their regu-
larity, therefore gods. In the same spirit, many students view
math as cold and dry, something wholly separate from any
spontaneous concern, not worth thinking about unless they
are compelled. Scientists and engineers must know the rules
that govern the motions of planets. But these rules have lim-
ited appeal to ordinary humans because they have nothing to
do with history or the messy, everyday life, in which, let me
repeat, the lack of a nail can lose a horse (a battle, a war, and
even a kingdom) or a bride.

6 A new kind of science:
Chaos and fractals

Now we are ready for my main point. In recent years the
sharp contrast between astronomy and history has collapsed.
We witness the coming together, not of a new species of sci-
ence; nor even (to continue in taxonomic terms) a new genus
or family, but a much more profound change. Towards the
end of the 19th century, a seed was sowed by Poincaré and
Hadamard; but practically no one paid attention, and the seed
failed to develop until recently. It is only since the 1960s
that the study of true disorder and complexity has come onto
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Figure 1: Two close-up views of parts of the Mandelbrot set.

the scene. Two key words are chaos and fractals, but I shall
keep to fractals. Again and again my work has revealed cases
where simplicity breeds a complication that seems incredibly
lifelike.

The crux of the matter is a geometric object that I first saw
in 1979, took very seriously, and worked hard to describe in
1980. It has been named the Mandelbrot set. It starts with a
formula so simple that no one could possibly have expected
so much from it. You program this silly little formula into
your trusty personal computer or workstation, and suddenly
everything breaks loose. Astronomy described simple rules
and simple effects, while history described complicated rules
and complicated effects. Fractal geometry has revealed sim-
ple rules and complicated effects. The complication one sees
is not only most extraordinary but is also spontaneously at-
tractive, and often breathtakingly beautiful. See Figure 1.
Besides, you may change the formula by what seems a tiny
amount, and the complication is replaced by something alto-
gether different, but equally beautiful.

The effect is absolutely like an uncanny form of white
magic. I shall never forget the first time I experienced it. I
ran the program over and over again and just could not let
it go. I was a visiting professor at Harvard at the time and
interest in my pictures immediately proved contagious. As
the bug spread, I began to be stopped in the halls by people
who wanted to hear the latest news. In due time, the Scien-
tific American of April 1985 published a story that spread the
news beyond Harvard.

The bug spread to tens, hundreds, and thousands of people.
I started getting calls from people who said they loved those
pictures so much that they simply had to understand them;
where could they find out about the multiplication of com-
plex numbers? Other people wrote to tell me that they found
my pictures frightening. Soon the bug spread from adults to
children, and then (how often does this happen?) from the
kids to teachers and to parents.

Lovable! Frightening! One expects these words to be ap-
plied to live, warm bodies, not to mere geometric shapes.
Would you have expected kids to go to you, their teachers,

and ask you to explain a mathematical picture? And be eager
enough to volunteer to learn more and better algebra? Would
you expect strangers to stop me in a store downtown, because
they just have to find out what a complex number is?

Next, let me remind you that the new math fiasco started
when a committee of my elders, including some of my
friends, all very distinguished and full of goodwill, figured
out among themselves that it was best to start by teaching
small kids the notions that famous professors living in the
1950s viewed as being fundamental, and therefore simple.
They wanted grade schoolers to be taught the abstract idea
of a set. For example, a box containing five nails was given
a new name: it became a set of five nails. As it happened,
hardly anyone was dying to know about five-nail sets.

On the other hand, the initial spread of fractals among stu-
dents and ordinary people was neither planned nor supported
by any committee or corporation, least of all by IBM, which
supported my scientific work but had no interest in its graphic
or popular aspects. This spread was one of the most truly
spontaneous events I ever heard of or witnessed. People could
not wait to understand and master the white magic and find
out about those crazy Mandelbrot sets. The five-nail set was
rejected as cold and dry. The Mandelbrot set was welcomed
almost as if it were alive. Everything suggests that its study
can become a part of liberal knowledge!

Chaotic dynamics meets the same response. There is no
fun in watching a classical pendulum beat away relentlessly,
but the motion of a pendulum made of two hinged sticks is
endlessly fascinating. I believe that this contrast reveals a ba-
sic truth that every scientist knows or suspects, but few would
concede. The only trace of historical necessity in the evolu-
tion of science may be that its grand strategy is to begin with
questions that are not necessarily the most exciting, but are
simple enough to be tackled at a given time.

The lesson for the educator is obvious. Motivate the stu-
dents by that which is fascinating, and hope that the re-
sulting enthusiasm will create sufficient momentum to move
them through material that must be studied but is less widely
viewed as fun.
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7 Just beyond the easy fractals lurk
overwhelming challenges

This last word, “fun,” deserves amplification. The widely per-
ceived difficulty of mathematics is a reason for criticism by
the outsider. But for the insider it is a source of pride, and
mathematics is not viewed as real unless it is difficult. In that
sense, fractal geometry is as real as can be, but with a few
uncommon wrinkles.

The first uncommon wrinkle has already been mentioned:
hardly any other chapter of mathematics can boast that even
to the outsider its first steps are fun.

Pushing beyond the first steps, a few additional ones led
me (and soon led others beyond counting) to stunning obser-
vations that the eye tells us must be true, but the mind tells us
must be proven.

A second uncommon wrinkle of fractal geometry is that
those observations are often both simple and new; at least,
they are very new within recent memory. Hardly any other
chapter of mathematics can boast of simple and new observa-
tions worth making. Therefore, fractal geometry has provided
multitudes with the awareness that the field of mathematics is
alive.

A third uncommon wrinkle of fractal geometry is that, next
to simple and new observations that were easy to prove, sev-
eral revealed themselves beyond the power of the exception-
ally skilled mathematicians who tackled them. Thus, some
of my earliest observations about the Mandelbrot set remain
open. Furthermore, no one knows the dimensions of self-
affine sets beyond the simplest. In physics, turbulence and
fractal aggregates remain mysterious. The thrills of fron-
tier life can be enjoyed right next to the thriving settlements.
Hardly any other chapter of mathematics can boast of so
many simple but intractable conjectures.

A fourth wrinkle concerns the easy beginnings of fractal
geometry. Thanks to intense exposure, it is quite true that
much about fractals appears obvious today. But yesterday the
opposite view was held by everyone. My writings have—
perhaps with excessive verve—blamed mathematicians for
having boxed themselves and everyone else in an intellec-
tual environment where constructions now viewed as proto-
fractal were once viewed as pathological and anything but
obvious. This intellectual environment was proud of having
broken the connections between mathematics and physics.
Today there is a growing consensus that the continuity of the
links between mathematics and physics is obvious, but the
statements ring false in the mouths of those who denied and
destroyed this continuity; they sound better in the mouths of
those who rebuilt it.

To conclude this section, fractals may be unrepresentative.
This is not a drawback but rather a very great strength from
the viewpoint of education. If it is true that “math was never
like that,” it is also true that “this is more lifelike than any
other branch of math.”

8 The computer is the teacher’s best
friend in communicating the
meaning of rigor

One passionate objection to the computer as the point of en-
try into real mathematics is the following: if the young re-
place solving traditional problems by computer games, they
will never be able to understand the fundamental notion of
mathematical rigor. This fear is based on an obvious chain of
associations: the computer started as a tool of applied mathe-
matics, applied mathematicians spurn rigor, the friend of my
enemies is my enemy, therefore, the computer is the enemy
of rigor.

With equal passion I think that the precise contrary is true:
rain or shine, the computer is rigor’s only true friend. True, a
child can play forever with a ready-made program that draws
Mandelbrot sets and never understand rigor, nor learn much
of any value. But neither does the child who always does
his mathematical homework with access to the teacher’s an-
swer book. On the contrary, the notion of rigor is of the
essence for anyone who has been motivated to write a com-
puter program—even a short one—from scratch.

When I was a student a non-rigorous proof did not scream
look out at me and I soon realized that even my excellent
teachers occasionally failed to notice clearcut errors in my
papers. In the case of a computer program, on the con-
trary, being rigorous is not simply an esthetic requirement;
in most cases, a non-rigorous program fails completely, and
the slightest departure from absolute rigor makes it scream
“Error!” at the programmer. No wonder that the birth of the
computer was assisted by logicians and not mainstream math-
ematicians. (This topic is discussed in Mandelbrot 1993a.) It
is true that, on occasion, a nonrigorous program generates
meaningless typography or graphics, or—worse—sensible-
looking output that happens to be wrong. But those rare
examples only prove that programming requires no less care
than does traditional proof.

Moreover, the computer programmer soon learns that a
program that works on one computer, with its operating
system, will not work on another. He will swear at the dis-
crepancies, but I cannot imagine a better illustration of the
changeability and arbitrariness of axiomatic systems.

Many other concepts used to be subtle and controversial
before the computer made them become clear. Thus, com-
puter graphics refreshes a distinction between fact and proof,
one that many mathematicians prefer not to acknowledge but
that Archimedes described wonderfully in these words: “Cer-
tain things first became clear to me by a mechanical method,
although they had to be demonstrated by geometry afterwards
because their investigation by the said mechanical method did
not furnish an actual demonstration. But it is of course easier,
when the method has previously given us some knowledge of
the questions, to supply the proof than it is to find it without



28 Chapter 3. Fractals, Graphics, and Mathematics Education

any previous knowledge. This is a reason why, in the case of
the theorems that the volumes of a cone and a pyramid are
one-third of the volumes of the cylinder and prism (respec-
tively) having the same base and equal height, the proofs of
which Eudoxus was the first to discover, no small share of
the credit should be given to Democritus who was the first to
state the fact, though without proof.”

The first two sentences might easily have been written
in our time by someone describing renascent experimental
mathematics, but Archimedes lived from 287 to 212 BC,
Democritus from 460 to 370 BC and Eudoxus from 408 to
355 BC. (Don’t let your eyes glaze over at the names of these
Ancient heroes. This chapter is almost over.)

When a child (and why not an adult?) becomes tired of
seeing chaos and fractal games as white magic and draws up
a list of observations he wants to really understand, he goes
beyond playing the role of Democritus and on to playing the
role of Eudoxus. Moreover, anyone’s list of observations is
bound to include several that are obviously mutually contra-
dictory, stressing the need for a referee. Is there a better way

of communicating another role for rigor and a role for further
experimentation?

9 Conclusion

As was obvious all along, I am a working scientist fascinated
by history and education, but totally ignorant of the literature
of educational philosophy. I hope that some of my thoughts
will be useful, but many must be commonplace or otherwise
deserve to be credited to someone. One area where I claim no
perverse originality is the historical assertions: they are doc-
umented facts, not anecdotes made up to justify a conclusion.

Now to conclude. The best is to quote myself and to ask
once again: Is it extravagant to hope that, starting with this
piece of mathematics called fractal geometry, we could help
broaden the small band of those who see mathematics as es-
sential? That band ought to include every educated citizen
and therefore to have mathematics take its place among the
liberal arts. A statement of hope is the best place to close.



Chapter 4

Mathematics and Society in the 20th Century1

Benoit B. Mandelbrot

Mathematics education and research are two separate crafts,
but—for practical as well as intellectual reasons—it is best if
they know each other. In particular, it is very important for
mathematics educators to have a broad and balanced view of
the way research mathematicians perceive their craft. They
must realize that the perception has kept changing through-
out history and never as sharply as in the 20th century. This
chapter’s goal is to recount a few highly significant features
of the strife that came in the preceding hundred years. Mathe-
matics ended that century in great spirit and in a state of great
vigor, renewed collegiality and marvelous diversity.

But in the 1960s and 1970s, the representatives of the pro-
fession described the flow of 20th century mathematics as
that of a single majestic river whose irresistible course was
not touched by historical accident but had been preordained
by inner logic. It necessarily proceeded inevitably and inex-
orably towards increasingly general, structural, or fundamen-
tal notions—which happened to be increasingly abstract. In
the spirit of “the end of history,” the descriptions never re-
ferred to the past or the messiness of Earth.

The majestic flow in question was unflinchingly under-
stood to be leaving aside many people (including myself), and
innumerable topics that concern either the foundations (logic)
or the applications. We were told that much of what looks like
mathematics is not really mathematics, even though the dis-
tinction may not be obvious to the outsider.

The position I am about to describe is starkly different. I
believe and I hope to convince you that mathematics is not the
conservatives’ ivory tower. It is a very big house on a rolling
terrain, with many doors, windows open to many horizons
and bridges to many other houses.

1Adapted from an invited address “What will remain of 20th century for-
mal science” at the Europeäisches Forum 1992, held in Alpbach, Austria.
This text remains self-contained and preserves some of its original flavor, in
part by repeating some points that were already made elsewhere in this book
but bear emphasis.

It need not be the Queen of Court Etiquette in Science look-
ing down on most of her subjects from an ivory tower up on
a high hill. It deserves to be the beloved Queen of all the
Scientists’ Hearts, and of the Soul of Science, the only non-
contrived link that could prevent various parts from scattering
away from one another.

Compared to the conservative view of mathematics, mine
is far broader and far more strongly linked to other human
activities. It is also a more diverse and lively subject. In par-
ticular, it is attractive to persons who are not professional re-
search mathematicians, a category that includes students and
most teachers of mathematics. My strong opinions represent
a minority view, but one that is increasingly widely shared
and I have no doubt will prevail.

In any event, my interpretations and opinions are nei-
ther capricious nor based on idle rumor or anecdote, but on
widely ranging reading, active and uninterrupted participa-
tion in events that occurred in the USA and France over fifty
years, and reports by an uncle who was a prominent mathe-
matician in Paris and Houston and participated in the imme-
diately preceding thirty-five year period.

I see mathematical science as a very broad enterprise that
shelters many diverse topics, ranging from the very concrete
to the very abstract. This view is well represented by a simile
I heard used by Hermann Weyl (1885–1955). He compared
mathematics to the delta of a great river, one made of many
streams: they may vary in their width and the speed of the
flow through them; nevertheless, all are always a part of the
system, and no individual stream is permanently the most im-
portant. This simile represented the mood of mathematics
close to the year 1900—and also, for that matter, its mood
near the year 1800. More importantly, mathematics has been
changing so fast for a decade or so that I feel that Weyl’s sim-
ile became applicable again in the year 2000.

But the resemblances between these snapshots taken cen-
turies apart certainly do not imply that mathematics is un-
changing, something outside ordinary history. In mathemat-
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ics, as in every other aspect of human life, the 20th century
gave us an example of something starkly different: a rocky
history and continuing conflict. Mathematics was not ruled
by its own determinism; it did not evolve separately from ev-
ery other aspect of human knowing and feeling; it has on the
contrary been profoundly affected by endless external vicis-
situdes.

The words profoundly affected by must not be misunder-
stood as meaning enslaved by. Of all the triumphs of hu-
manity, the discovery and the development of mathematics is
perhaps the greatest kind. A field’s importance to the overall
human experience is necessarily reflected by the role that in-
ternal logic has upon its development; nevertheless, strife has
been present in mathematics since the Ancient Greeks. We
shall see this when this story ends by mentioning the long-
standing conflict between the traditions of Plato, the ideo-
logue, and Archimedes, the experienced scientist. Like every
individual human activity, mathematics very much partici-
pates in general history, politics, demography, and technol-
ogy, and it is heavily influenced by the idiosyncrasies of a
few key people. Let me give some examples from this cen-
tury.

Around 1920, a group of Polish mathematicians collected
around a very forceful man named Waclaw Sierpinski (1882–
1969). They chose to concentrate on a field that was not prac-
ticed much in the reigning intellectual capitals, and founded
a very abstract new branch often called Polish mathematics.
They proudly proclaimed that their goal involved national
politics: they did not want the newly reestablished Poland
to become a mathematical satellite of Paris or Göttingen. I
know that Providence is credited with working in mysterious
ways. Yet, would anyone claim that Polish nationalism after
more than a century of partition had anything to do with the
historical determinism of mathematics? Polish mathematics
became an important force pushing towards abstraction at all
cost. Yet, by a bitter irony, some of the notions it originated
failed to become important in mathematics, but eventually be-
came important to physics—through fractal geometry.

My second example concerns Godfrey Harold Hardy
(1877–1947), a strong person as well as a strong and highly
inventive mind. The Poles had no strong native physics to
contend with, but British mathematics of Hardy’s youth was
dominated by a form of mathematical physics that was ex-
traordinarily effective (the Heaviside Calculus differentiated
discontinuous functions!) but had little concern with conti-
nental rigor. During World War I, Hardy was an outspoken
pacifist who recoiled from the practical uses of this old British
mathematics. During another War, he wrote (Hardy (1940)),
an impassioned account of his ideal of pure mathematics. For
him, good mathematics could have no bad application—for
the simple reason that it could have no application of any sort.
By another bitter irony, his best example of total inapplicabil-
ity turned out, in due time, to be essential to a problem he
would have loathed: cryptography.

A three-page review of Hardy (1940) in the famous weekly
Nature by the Nobel-winning chemist Frederick Soddy be-
gins “This is a slight book. From such cloistral clowning
the world sickens . . . ‘Imaginary’ universes are so much more
beautiful than this stupidly constructed ‘real’ one, accord-
ing to the author . . . Most scientists, however, still believe
that . . . the real universe . . . is not stupidly constructed.” But
nothing can break the appeal of a tract that discriminates be-
tween the good and the bad without hesitation. Hardy’s book
remains in print and continues to this day to enchant some
of the young. But would anyone claim that Hardy’s militant
anti-nationalism had anything to do with the historical deter-
minism of mathematics?

From ideology, let us move on to demography. The 1910s
were very cruel to French mathematics. First, Henri Poincaré
(1854–1912) died prematurely on the operating table, then
millions of young people died in trench warfare, and finally—
perhaps worst of all—millions returned broken in health or
spirit to a country that did not dare make heavy demands on
them. As a result, the young postwar French mathematicians
of the 1920s found that the only available teachers were men
who had already been ill or old in 1914 and so did not go
to war. Some have written movingly about the hardship of
training without the usual parental supervision from slightly
older advisors, and (as may have been expected) this hardship
contributed to the emergence of several very strong personal-
ities. In any event, the France of the late 1920s and the 1930s
gave rise to an extremist movement calling itself Bourbaki.
But would anyone claim that a demographic unbalance in a
country with a long and glorious mathematical tradition has
anything to do with the historical determinism of mathemat-
ics?

André Weil (1906–1994), now acknowledged as the mind
behind Bourbaki, observed late in life that in his prime years,
mathematics was little influenced by physics. Was that a nat-
ural feature of the preordained development of mathematics?
Or could it be that Weil’s views were set even before a visit to
Göttingen in the 1920s? David Hilbert’s dream Mathematics
Institute there had three parts: a very pure one that Weil wor-
shipped, one on numerical methods and one on mathematical
physics. In the latter part, Max Born and Werner Heisenberg
were in the process of creating quantum mechanics—but Weil
apparently did not notice.

From demography, let us move to another form of ide-
ology. Soviet anti-semitism treated Jewish mathematicians
harshly; Jewish physicists, less so. Hence a number of very
gifted mathematicians transferred to physics institutes, where
they were welcome. Their move contributed greatly to the
formation of the current very rigorous form of mathematical
physics. Would anyone claim that Soviet ethnic politics have
anything to do with the historical determinism of mathemat-
ics?

No one would claim that the specific historical determin-
ism of mathematics only reflected the intellectual moods and
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fashions that rule society at large. But it happens that a very
unusual mood prevailed early in this century, particularly in
the 1920s. One especially visible and durable effect was the
invention of the International Style in architecture, with its
heavy emphasis on structure. In Finland, the very unusual
small country where this style was born, modern architecture
merged smoothly into what came before it, without discon-
tinuity and without heavy dogmatism. But modern architec-
ture became dogmatic in Germany with the Bauhaus and in
France with Le Corbusier (1887–1965). The latter built few
houses but made many sketches (for example, his proposed
ideal improvement of Paris evokes the worst present suburbs
of Moscow). When I was young, Le Corbusier was billed as
a great intellect to whom modern architecture owed its intel-
lectual legitimacy. Indeed, he wrote a great deal, but I find
little in his writings beyond sophomoric trash. It may be that
Bauhaus was useful, even commercially inevitable at a cer-
tain stage of the technology and economics of raising large
buildings, but no one ever convinced me that they were an
inevitable intellectual wave of the future.

Think also of physics. Having confirmed existence of the
atom in the 1900s, it went on to focus increasingly on the
search for the most fundamental structural components of
matter, increasingly tiny ones. Biology took this path later.

How was mathematics affected by the above-mentioned
politics, demographics, and general intellectual moods? I
view them all as responsible for the fact that near the mid-
dle of our century mathematics behaved in ways totally at
variance with its mood today and its mood in 1900 or 1800.

This atypical mathematics is conveniently denoted by the
name it took in France, but the current that gave rise to Bour-
baki also affected many countries other than Britain, France
and Poland. It strongly affected the USA, with a little-known
wrinkle. One might have expected a brash new industrial
giant to favor applications, but in terms of mathematical re-
search the precise contrary was true. In Europe, the 19th cen-
tury had created wide-ranging establishments against which
Bourbaki could revolt. In the USA, before the arrival of
refugees from Stalin and Hitler, research mathematics was
dominated by aristocrats and anarchists, hence was very pure
(as well as outstanding on its terms). Bourbaki did not reach
the outlying countries Sweden and Finland, and there were
strong counteracting forces in Germany and Russia. In the
1960s, when Bourbaki was its strongest, it benefited from an-
other extraneous event: Sputnik created a period of unprece-
dented economic growth in Academia, with minimal social
pressure on the sciences, and greatly increased the number
of math PhDs, including many Bourbaki products. The math
departments’ balance was overwhelmed by them.

To sum up, Bourbaki found roots by selecting one of the
many components of the mathematics of 1875–1925, gath-
ered strength during the second quarter of our century (the
period to which the above examples refer), and took power
around 1950. During the third quarter of the century it ex-

erted an extraordinary degree of control. There was no dis-
order in mathematics, but the field was narrowed down to a
truly extraordinary extent. At one time it seemed to reduce to
little more than algebraic topology; at a later time, to number
theory and algebraic geometry. These are extremely impor-
tant fields, to be sure, but concentration on a single field was
quite contrary to the historical tradition that I have already
mentioned and that had led Hermann Weyl to the image of
the delta of the Nile. Mathematics seemed to have reduced
itself to basically a single stream at any given time. This hap-
pened to be the cliché description that Herman Weyl (in a
contrasting image) applied to physics.

The Bourbaki, as has already been implied, never paid
attention to the historical accidents that contributed to their
birth; they felt themselves to be the necessary and inevitable
response to the call of history. Today, however, this call seems
forgotten, and there is wide consensus that, like new math,
“Bourbaki is dead.”

Who killed Bourbaki? Throughout its heyday, my friend
Mark Kac (1914–84) and many other open-minded math-
ematicians argued, in vehement speeches and articles, that
Bourbaki had misread mere accidents for the arrow of his-
tory. But such negative criticism invariably lacked bite, and
it had no effect. My own partisan opinion is that Bour-
baki’s fate was typical of many ideologies outside science.
The founders could only insure their immediate succession;
gradually, the ideological fervor weakened and the movement
continued largely by force of habit. The resulting weakening
was gradual and not obvious. But everyone noticed when
the movement was knocked down by yet another event that
had nothing to do with the historical determinism in mathe-
matics. This event was something I view as a return to sanity,
namely the rebirth of experimental mathematics that followed
(slowly, as we shall see) the advent of the modern computer.

From where did the computer come? From the mathemat-
ical sciences understood in a broad sense. What relation is
there between the advent of the computer and mathematics
as narrowly reinterpreted by Bourbaki? None whatsoever.
The computer arose from the convergence of two fields that
surely belong to mathematics but were spurned by Bourbaki,
namely, logic and differential equations. We all know that one
must never rewrite history as it might have proceeded if two
crucial events had chanced to occur in the reverse order. But
in this instance the temptation is strong to air the following
conviction. Had an earlier arrival of the computer saved ex-
perimental mathematics from falling into a century of decline,
Bourbaki might have never seemed to anyone to be an un-
avoidable development. Let me elaborate on the computer’s
roots.

Surprisingly, while Foundations of Analysis was (for a
while) the overall title of their treatises, the Bourbaki had
only contempt for the logical foundations of mathematics, as
in the work of Kurt Gödel (1906–78) and Alan Turing (1912–
54). In the 1930s, Turing had phrased his model of a logical
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system in terms of an idealized computer. His Turing ma-
chine had a very great influence on the thinking of those who
developed the actual hardware.

However, the man who made the computer into a reality
was John von Neumann (1903–57). He was not only a math-
ematician, but also a physicist and an economist, and his great
breadth of interests came to include a passion to find ways to
predict the weather.

Thus the computer was born in the 1940s from a strange
combination of abstract logic and the desire to control Na-
ture. Eventually, the computer changed mathematics in a very
profound fashion. But for a very long time, core mathemati-
cians felt totally unconcerned, and viewed it with revulsion.
Because of his work on the computer, von Neumann ceased
to be accepted as a mathematician and in 1955 he decided to
resign from the Princeton Institute for Advanced Study. (He
died before his planned move to California.)

The year 1955 was also the date of publication of Fermi,
Pasta & Ulam (1955), a text that appeared only in a Los
Alamos report but was widely read and viewed as an early
masterpiece of experimental mathematics before it was actu-
ally printed in Fermi (1965) (pp 977–988) and then in Ulam
(1974) (pp 490–501). A comment by Stanislaw Ulam (1909–
1984) informs us that the initiative for using the computer
to assist mathematical research had come from Enrico Fermi
(1901–1954), who was of course a physicist, not a mathe-
matician. And Ulam asserts that “Mathematics is not really
an observational science and not even an experimental one.
Nevertheless, computations were useful in establishing some
rather curious facts about simple mathematical objects.” Sur-
prised, I reached for a more positive statement in the autobi-
ography, Ulam (1976), but found nothing worth quoting.

How did experimental mathematics fare during the 25
years after 1955? That period happens to end in the year
of publication of Mandelbrot (1980), and coincided with the
heyday of Bourbaki. In a near-perfect first approximation,
it saw no experimental mathematics at all. Not only was
the lead of von Neumann and Fermi not followed by mathe-
maticians, but their disinterest for the computer was carefully
considered, not caused by ignorance. For example, when I
was new at IBM, which I joined in 1958, opportunities to use
computers were knowingly and systematically offered to ev-
ery mathematician with a good name who could be coaxed
into the building. Not one of them paid attention to the offer.
Interest in experiment did not spread to at least some mathe-
maticians until my work started attracting wide attention.

In understanding the process of discovery, the slowness of
the acceptance of the computer brings up forcibly a very old
issue: the respective contributions of the tool and of its user.
Galileo wrote a whole book complaining bitterly about those
who belittled him by claiming that his discovery of sunspots
was only due to his having lived during the telescope revolu-

tion. In fact, telescopes were widespread but useless before
one reached Galileo’s steady hand and good eye. For con-
trast, consider the chapter of mathematics called the global
theory of iteration of rational functions, to which the Mandel-
brot set belongs. Pierre Fatou (1878–1929) and Gaston Julia
(1893–1978) are—quite rightly—praised for developing this
chapter, and no one would dream of belittling their contribu-
tions as being due to their having lived during the age of Paul
Montel (1876–1975). Montel was the mathematician who,
in 1912, discovered Fatou’s and Julia’s key tool, called the
normal families of functions. Soon afterwards he was called
into the Army, leaving behind Fatou (who was a cripple) and
Julia (who had come back from the trenches as a wounded
war hero). After World War I, Montel looked after the theory
of iteration as his baby. Today, in the noise that accompa-
nies changes in mathematics, those who use the computer are
treated like a Galileo and not like a Montel. That is, critics are
found to belittle their work as solely due to their living in the
computer age. If it were so, experimental mathematics would
have thrived after von Neumann and Fermi; the preceding re-
marks show that it did not.

Let me summarize, make a general comment, and con-
clude. One cannot disregard the lessons of history, contrary
to the belief of those who argued that the pure mathematics
of the mid-20th century was preordained by destiny. Its birth
in the 1920s was influenced by Polish and English ideology,
a demographic catastrophe in France, and the general intel-
lectual mood of the day; its success was hastened by a long
spurt of economic growth, and its demise was hastened by a
mere technological development. None of these events was
influenced by mathematics, none was preordained, and none
acted immediately. In any event, von Neumann’s and Fermi’s
lead was not followed by other mathematicians.

To conclude, “What will remain of 20th century mathemat-
ics?” There can be no short and truthful answer, because at
this point of its history, mathematics is in healthy and con-
structive turmoil. Once again, the Bourbaki utopia flourished
when every science was experiencing unprecedented growth
and minimal social pressure. It seemed that any would-be
peer group could organize itself and prosper with no hin-
drance from other, equally self-interested peer groups. But
today the sciences face scarcity and strong pressure to jus-
tify both their size and their goals, and everyone bemoans
the absence of generalists capable of representing more than
a few groups. How the effects of the resulting intractabil-
ities and pressures will combine with the internal logic of
mathematics, of the computer and also of today’s mathemat-
ical physics— that thriving no man’s land between theorem
proving and observation of nature—is simply beyond predic-
tion. Fortunately for the teachers of mathematics, they are
not asked to predict, but it is best for them to know the past,
if only to avoid being drawn to repeating its deep errors.
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