A FEW DOZEN YARDS upstream from a waterfall, a smooth
flowing stream seems to intuit the coming drop. The water begins
to speed and shudder. Individual rivulets stand out like coarse,
throbbing veins. Mitchell Feigenbaum stands at streamside. He is
sweating slightly in sports coat and corduroys and puffing on a
cigarette. He has been walking with friends, but they have gone
on ahead to the quieter pools upstream. Suddenly, in what might
be a demented high-speed parody of a tennis spectator, he starts
turning his head from side to side. “You can focus on something,
a bit of foam or something. If you move your head fast enough,
you can all of a sudden discern the whole structure of the surface,
and you can feel it in your stomach.” He draws in more smoke
from his cigarette. “But for anyone with a mathematical back-
ground, if you look at this stuff, or you see clouds with all their
puffs on top of puffs, or you stand at a sea wall in a storm, you
know that you really don’t know anything.”

Order in chaos. It was science’s oldest cliché. The idea of
hidden unity and common underlying form in nature had an in-
trinsic appeal, and it had an unfortunate history of inspiring pseu-
doscientists and cranks. When Feigenbaum came to Los Alamos
National Laboratory in 1974, a year shy of his thirtieth birthday,
he knew that if physicists were to make something of the idea
now, they would need a practical framework, a way to turn ideas
into calculations. It was far from obvious how to make a first
approach to the problem.

157
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Feigenbaum was hired by Peter Carruthers, a calm, decep-
tively genial physicist who came from Cornell in 1973 to take over '
the Theoretical Division. His first act was to dismiss a half-dozen
senior scientists—Los Alamos provides its staff with no equivalent
of university tenure—and to replace them with some bright young
researchers of his own choosing. As a scientific manager, he had
strong ambition, but he knew from experience that good science
cannot always be planned.

“If you had set up a committee in the laboratory or in Wash-
ington and said, ‘Turbulence is really in our way, we've got to
understand it, the lack of understanding really destroys our chance
of making progress in a lot of fields,” then, of course, you would
hire a team. You’d get a giant computer. You’d start running big
programs. And you would never get anywhere. Instead we have
this smart guy, sitting quietly—talking to people, to be sure, but
mostly working all by himself.” They had talked about turbulence,
but time passed, and even Carruthers was no longer sure where
Feigenbaum was headed. “I thought he had quit and found a
different problem. Little did I know that this other problem was
the same problem. It seems to have been the issue on which many
different fields of science were stuck—they were stuck on this
aspect of the nonlinear behavior of systems. Now, nobody would
have thought that the right background for this problem was to
know particle physics, to know something about quantum field
theory, and to know that in quantum field theory you have these
structures known as the renormalization group. Nobody knew that
you would need to understand the general theory of stochastic
processes, and also fractal structures.

“Mitchell had the right background. He did the right thing at
the right time, and he did it very well. Nothing partial. He cleaned
out the whole problem.”

Feigenbaum brought to Los Alamos a conviction that his sci-
ence had failed to understand hard problems—nonlinear prob-
lems. Although he had produced almost nothing as a physicist,
he had accumulated an unusual intellectual background. He had
a sharp working knowledge of the most challenging mathematical
analysis, new kinds of computational technique that pushed most
scientists to their limits. He had managed not to purge himself of
some seemingly unscientific ideas from eighteenth-century Ro-
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manticism. He wanted to do science that would be new. He began
by putting aside any thought of understanding real complexity
and instead turned to the simplest nonlinear equations he could
find.

THE MYSTERY OF THE UNIVERSE first announced itself to the
four-year-old Mitchell Feigenbaum through a Silvertone radio sit-
ting in his parents’ living room in the Flatbush section of Brooklyn
soon after the war. He was dizzy with the thought of music arriving
from no tangible cause. The phonograph, on the other hand, he
felt he understood. His grandmother had given him a special dis-
pensation to put on the 78s.

His father was a chemist who worked for the Port of New
York Authority and later for Clairol. His mother taught in the city’s
public schools. Mitchell first decided to become an electrical en-
gineer, a sort of professional known in Brooklyn to make a good
living. Later he realized that what he wanted to know about a
radio was more likely to be found in physics. He was one of a
generation of scientists raised in the outer boroughs of New York
who made their way to brilliant careers via the great public high
schools—in his case, Samuel J. Tilden—and then City College.

Growing up smart in Brooklyn was in some measure a matter
of steering an uneven course between the world of mind and the
world of other people. He was immensely gregarious when very
young, which he regarded as a key to not being beaten up. But
something clicked when he realized he could learn things. He
became more and more detached from his friends. Ordinary con-
versation could not hold his interest. Sometime in his last year of
college, it struck him that he had missed his adolescence, and he
made a deliberate project out of regaining touch with humanity.
He would sit silently in the cafeteria, listening to students chatting
about shaving or food, and gradually he relearned much of the
science of talking to people.

He graduated in 1964 and went on to the Massachusetts In-
stitute of Technology, where he got his doctorate in elementary
particle physics in 1970. Then he spent a fruitless four years at
Cornell and at the Virginia Polytechnic Institute—fruitless, that
is, in terms of the steady publication of work on manageable prob-
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lems that is essential for a young university scientist. Postdocs
were supposed to produce papers. Occasionally an advisor would
ask Feigenbaum what had happened to some problem, and he
would say, “Oh, I understood it.”

Newly installed at Los Alamos, Carruthers, a formidable sci-
entist in his own right, prided himself on his ability to spot talent.
He looked not for intelligence but for a sort of creativity that
seemed to flow from some magic gland. He always remembered
the case of Kenneth Wilson, another soft-spoken Cornell physicist
who seemed to be producing absolutely nothing. Anyone who
talked to Wilson for long realized that he had a deep capacity for
seeing into physics. So the question of Wilson’s tenure became a
subject of serious debate. The physicists willing to gamble on his
unproven potential prevailed—and it was as if a dam burst. Not
one but a flood of papers came forth from Wilson’s desk drawers,
including work that won him the Nobel Prize in 1982.

Wilson’s great contribution to physics, along with work by
two other physicists, Leo Kadanoff and Michael Fisher, was an
important ancestor of chaos theory. These men, working inde-
pendently, were all thinking in different ways about what hap-
pened in phase transitions. They were studying the behavior of
matter near the point where it changes from one state to another—
from liquid to gas, or from unmagnetized to magnetized. As sin-
gular boundaries between two realms of existence, phase transi-
tions tend to be highly nonlinear in their mathematics. The smooth
and predictable behavior of matter in any one phase tends to be
little help in understanding the transitions. A pot of water on the
stove heats up in a regular way until it reaches the boiling point.
But then the change in temperature pauses while something quite
interesting happens at the molecular interface between liquid and
gas.

As Kadanoff viewed the problem in the 1960s, phase transi-
tions pose an intellectual puzzle. Think of a block of metal being
magnetized. As it goes into an ordered state, it must make a de-
cision. The magnet can be oriented one way or the other. It is free
to choose. But each tiny piece of the metal must make the same
choice. How?

Somehow, in the process of choosing, the atoms of the metal
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must communicate information to one another. Kadanoff’s insight
was that the communication can be most simply described in
terms of scaling. In effect, he imagined dividing the metal into
boxes. Each box communicates with its immediate neighbors. The
way to describe that communication is the same as the way to
describe the communication of any atom with its neighbors. Hence
the usefulness of scaling: the best way to think of the metal is in
terms of a fractal-like model, with boxes of all different sizes.

Much mathematical analysis, and much experience with real
systems, was needed to establish the power of the scaling idea.
Kadanoff felt that he had taken an unwieldy business and created
a world of extreme beauty and self-containedness. Part of the
beauty lay in its universality. Kadanoff’s idea gave a backbone to
the most striking fact about critical phenomena, namely that these
seemingly unrelated transitions—the boiling of liquids, the mag-
netizing of metals—all follow the same rules.

Then Wilson did the work that brought the whole theory
together under the rubric of renormalization group theory, pro-
viding a powerful way of carrying out real calculations about real
systems. Renormalization had entered physics in the 1940s as a
part of quantum theory that made it possible to calculate inter-
actions of electrons and photons. A problem with such calcula-
tions, as with the calculations Kadanoff and Wilson worried about,
was that some items seemed to require treatment as infinite quan-
tities, a messy and unpleasant business. Renormalizing the system,
in ways devised by Richard Feynman, Julian Schwinger, Freeman
Dyson, and other physicists, got rid of the infinities.

Only much later, in the 1960s, did Wilson dig down to the
underlying basis for renormalization’s success. Like Kadanoff, he
thought about scaling principles. Certain quantities, such as the
mass of a particle, had always been considered fixed—as the mass
of any object in everyday experience is fixed. The renormalization
shortcut succeeded by acting as though a quantity like mass were
not fixed at all. Such quantities seemed to float up or down de-
pending on the scale from which they were viewed. It seemed
absurd. Yet it was an exact analogue of what Benoit Mandelbrot
was realizing about geometrical shapes and the coastline of
England. Their length could not be measured independent of
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scale. There was a kind of relativity in which the position of the
observer, near or far, on the beach or in a satellite, affected the
measurement. As Mandelbrot, too, had seen, the variation across
scales was not arbitrary; it followed rules. Variability in the stan-
dard measures of mass or length meant that a different sort of
quantity was remaining fixed. In the case of fractals, it was the
fractional dimension—a constant that could be calculated and
used as a tool for further calculations. Allowing mass to vary
depending on scale meant that mathematicians could recognize
similarity across scales.

So for the hard work of calculation, Wilson’s renormalization
group theory provided a different route into infinitely dense prob-
lems. Until then the only way to approach highly nonlinear prob-
lems was with a device called perturbation theory. For purposes
of calculation, you assume that the nonlinear problem is reason-
ably close to some solvable, linear problem—just a small pertur-
bation away. You solve the linear problem and perform a
complicated bit of trickery with the leftover part, expanding it
into what are called Feynman diagrams. The more accuracy you
need, the more of these agonizing diagrams you must produce.
With luck, your calculations converge toward a solution. Luck has
a way of vanishing, however, whenever a problem is especially
interesting. Feigenbaum, like every other young particle physicist
in the 1960s, found himself doing endless Feynman diagrams. He
was left with the conviction that perturbation theory was tedious,
nonilluminating, and stupid. So he loved Wilson’s new renor-
malization group theory. By acknowledging self-similarity, it gave
a way of collapsing the complexity, one layer at a time.

In practice the renormalization group was far from foolproof.
It required a good deal of ingenuity to choose just the right cal-
culations to capture the self-similarity. However, it worked well
enough and often enough to inspire some physicists, Feigenbaum
included, to try it on the problem of turbulence. After all, self-
similarity seemed to be the signature of turbulence, fluctuations
upon fluctuations, whorls upon whorls. But what about the onset
of turbulence—the mysterious moment when an orderly system
turned chaotic. There was no evidence that the renormalization
group had anything to say about this transition. There was no
evidence, for example, that the transition obeyed laws of scaling.
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AS A GRADUATE STUDENT at M.L.T., Feigenbaum had an ex-
perience that stayed with him for many years. He was walking
with friends around the Lincoln Reservoir in Boston. He was de-
veloping a habit of taking four- and five-hour walks, attuning him-
self to the panoply of impressions and ideas that would flow
through his mind. On this day he became detached from the group
and walked alone. He passed some picnickers and, as he moved
away, he glanced back every so often, hearing the sounds of their
voices, watching the motions of hands gesticulating or reaching
for food. Suddenly he felt that the tableau had crossed some
threshold into incomprehensibility. The figures were too small to
be made out. The actions seemed disconnected, arbitrary, random.
What faint sounds reached him had lost meaning.

The ceaseless motion and incomprehensible bustle of life.
Feigenbaum recalled the words of Gustav Mahler, describing a
sensation that he tried to capture in the third movement of his
Second Symphony. Like the motions of dancing figures in a bril-
liantly lit ballroom into which you look from the dark night out-
side and from such a distance that the music is inaudible. . . . Life
may appear senseless to you. Feigenbaum was listening to Mahler
and reading Goethe, immersing himself in their high Romantic
attitudes. Inevitably it was Goethe’s Faust he most reveled in,
soaking up its combination of the most passionate ideas about the
world with the most intellectual. Without some Romantic incli-
nations, he surely would have dismissed a sensation like his con-
fusion at the reservoir. After all, why shouldn’t phenomena lose
meaning as they are seen from greater distances? Physical laws
provided a trivial explanation for their shrinking. On second thought
the connection between shrinking and loss of meaning was not
so obvious. Why should it be that as things become small they
also become incomprehensible?

He tried quite seriously to analyze this experience in terms
of the tools of theoretical physics, wondering what he could say
about the brain’s machinery of perception. You see some human
transactions and you make deductions about them. Given the vast
amount of information available to your senses, how does your
decoding apparatus sort it out? Clearly—or almost clearly—the
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brain does not own any direct copies of stuff in the world. There
is no library of forms and ideas against which to compare the
images of perception. Information is stored in a plastic way, al-
lowing fantastic juxtapositions and leaps of imagination. Some
chaos exists out there, and the brain seems to have more flexibility
than classical physics in finding the order in it.

At the same time, Feigenbaum was thinking about color. One
of the minor skirmishes of science in the first years of the nine-
teenth century was a difference of opinion between Newton’s fol-
lowers in England and Goethe in Germany over the nature of color.
To Newtonian physics, Goethe’s ideas were just so much pseu-
doscientific meandering. Goethe refused to view color as a static
quantity, to be measured in a spectrometer and pinned down like
a butterfly to cardboard. He argued that color is a matter of per-
ception. “With light poise and counterpoise, Nature oscillates within
her prescribed limits,” he wrote, “yet thus arise all the varieties
and conditions of the phenomena which are presented to us in
space and time.”

The touchstone of Newton’s theory was his famous experi-
ment with a prism. A prism breaks a beam of white light into a
rainbow of colors, spread across the whole visible spectrum, and
Newton realized that those pure colors must be the elementary
components that add to produce white. Further, with a leap of
insight, he proposed that the colors corresponded to frequencies.
He imagined that some vibrating bodies—corpuscles was the an-
tique word—must be producing colors in proportion to the speed
of the vibrations. Considering how little evidence supported this
notion, it was as unjustifiable as it was brilliant. What is red? To
a physicist, it is light radiating in waves between 620 to 800 bil-
lionths of a meter long. Newton’s optics proved themselves a thou-
sand times over, while Goethe’s treatise on color faded into merciful
obscurity. When Feigenbaum went looking for it, he discovered
that the one copy in Harvard’s libraries had been removed.

He finally did track down a copy, and he found that Goethe
had actually performed an extraordinary set of experiments in his
investigation of colors. Goethe began as Newton had, with a prism.
Newton had held a prism before a light, casting the divided beam
onto a white surface. Goethe held the prism to his eye and looked
through it. He perceived no color at all, neither a rainbow nor
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individual hues. Looking at a clear white surface or a clear blue
sky through the prism produced the same effect: uniformity.

But if a slight spot interrupted the white surface or a cloud
appeared in the sky, then he would see a burst of color. It is “the
interchange of light and shadow,” Goethe concluded, that causes
color. He went on to explore the way people perceive shadows
cast by different sources of colored light. He used candles and
pencils, mirrors and colored glass, moonlight and sunlight, crys-
tals, liquids, and color wheels in a thorough range of experiments.
For example, he lit a candle before a piece of white paper at
twilight and held up a pencil. The shadow in the candlelight was
a brilliant blue. Why? The white paper alone is perceived as white,
either in the declining daylight or in the added light of the warmer
candle. How does a shadow divide the white into a region of blue
and a region of reddish-yellow? Color is “a degree of darkness,”
Goethe argued, “allied to shadow.” Above all, in a more modern
language, color comes from boundary conditions and singularities.

Where Newton was reductionist, Goethe was holistic. Newton
broke light apart and found the most basic physical explanation
for color. Goethe walked through flower gardens and studied
paintings, looking for a grand, all-encompassing explanation.
Newton made his theory of color fit a mathematical scheme for
all of physics. Goethe, fortunately or unfortunately, abhorred
mathematics.

Feigenbaum persuaded himself that Goethe had been right
about color. Goethe’s ideas resemble a facile notion, popular
among psychologists, that makes a distinction between hard phys-
ical reality and the variable subjective perception of it. The colors
we perceive vary from time to time and from person to person—
that much is easy to say. But as Feigenbaum understood them,
Goethe’s ideas had more true science in them. They were hard
and empirical. Over and over again, Goethe emphasized the re-
peatability of his experiments. It was the perception of color, to
Goethe, that was universal and objective. What scientific evidence
was there for a definable real-world quality of redness independent
of our perception?

Feigenbaum found himself asking what sort of mathematical
formalisms might correspond to human perception, particularly
a perception that sifted the messy multiplicity of experience and
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found universal qualities. Redness is not necessarily a particular
bandwidth of light, as the Newtonians would have it. It is a ter-
ritory of a chaotic universe, and the boundaries of that territory
are not so easy to describe—yet our minds find redness with
regular and verifiable consistency. These were the thoughts of a
young physicist, far removed, it seemed, from such problems as
fluid turbulence. Still, to understand how the human mind sorts
through the chaos of perception, surely one would need to un-
derstand how disorder can produce universality.

WHEN FEIGENBAUM BEGAN to think about nonlinearity at Los
Alamos, he realized that his education had taught him nothing
useful. To solve a system of nonlinear differential equations was
impossible, notwithstanding the special examples constructed in
textbooks. Perturbative technique, making successive corrections
to a solvable problem that one hoped would lie somewhere nearby
the real one, seemed foolish. He read through texts on nonlinear
flows and oscillations and decided that little existed to help a
reasonable physicist. His computational equipment consisting solely
of pencil and paper, Feigenbaum decided to start with an analogue
of the simple equation that Robert May studied in the context of
population biology.

It happened to be the equation high school students use in
geometry to graph a parabola. It can be written as y=r{x—x?).
Every value of x produces a value of y, and the resulting curve
expresses the relation of the two numbers for the range of values.
If x (this year’s population) is small, then y (next year’s) is small,
but larger than x; the curve is rising steeply. If x is in the middle
of the range, then y is large. But the parabola levels off and falls,
so that if x is large, then y will be small again. That is what
produces the equivalent of population crashes in ecological mod-
eling, preventing unrealistic unrestrained growth.

For May and then Feigenbaum, the point was to use this
simple calculation not once, but repeated endlessly as a feedback
loop. The output of one calculation was fed back in as input for
the next. To see what happened graphically, the parabola helped
enormously. Pick a starting value along the x axis. Draw a line up
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to where it meets the parabola. Read the resulting value off the y
axis. And start all over with the new value. The sequence bounces
from place to place on the parabola at first, and then, perhaps,
homes in on a stable equilibrium, where x and y are equal and
the value thus does not change.

In spirit, nothing could have been further removed from the
complex calculations of standard physics. Instead of a labyrin-
thine scheme to be solved one time, this was a simple calculation
performed over and over again. The numerical experimenter would
watch, like a chemist peering at a reaction bubbling away inside
a beaker. Here the output was just a string of numbers, and it did
not always converge to a steady final state. It could end up oscil-
lating back and forth between two values. Or as May had explained
to population biologists, it could keep on changing chaotically
as long as anyone cared to watch. The choice among these dif-
ferent possible behaviors depended on the value of the tuning pa-
rameter.

Feigenbaum carried out numerical work of this faintly ex-
perimental sort and, at the same time, tried more traditional the-
oretical ways of analyzing nonlinear functions. Even so, he could
not see the whole picture of what this equation could do. But he
could see that the possibilities were already so complicated that
they would be viciously hard to analyze. He also knew that three
Los Alamos mathematicians—Nicholas Metropolis, Paul Stein,
and Myron Stein—had studied such “maps” in 1971, and now
Paul Stein warned him that the complexity was frightening in-
deed. If this simplest of equations already proved intractable, what
about the far more complicated equations that a scientist would
write down for real systems? Feigenbaum put the whole problem
on the shelf.

In the brief history of chaos, this one innocent-looking equa-
tion provides the most succinct example of how different sorts of
scientists looked at one problem in many different ways. To the
biologists, it was an equation with a message: Simple systems can
do complicated things. To Metropolis, Stein, and Stein, the prob-
lem was to catalogue a collection of topological patterns without
reference to any numerical values. They would begin the feedback
process at a particular point and watch the succeeding values
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bounce from place to place on the parabola. As the values moved
to the right or the left, they wrote down sequences of R’s and L’s.
Pattern number one: R. Pattern number two: RLR. Pattern number
193: RLLLLLRRLL. These sequences had some interesting features
to a mathematician—they always seemed to repeat in the same
special order. But to a physicist they looked obscure and tedious.

No one realized it then, but Lorenz had looked at the same
equation in 1964, as a metaphor for a deep question about climate.
The question was so deep that almost no one had thought to ask
it before: Does a climate exist? That is, does the earth’s weather
have a long-term average? Most meteorologists, then as now, took
the answer for granted. Surely any measurable behavior, no matter
how it fluctuates, must have an average. Yet on reflection, it is far
from obvious. As Lorenz pointed out, the average weather for the
last 12,000 years has been notably different than the average for
the previous 12,000, when most of North America was covered
by ice. Was there one climate that changed to another for some
physical reason? Or is there an even longer-term climate within
which those periods were just fluctuations? Or is it possible that
a system like the weather may never converge to an average?

Lorenz asked a second question. Suppose you could actually
write down the complete set of equations that govern the weather.
In other words, suppose you had God’s own code. Could you then
use the equations to calculate average statistics for temperature or
rainfall? If the equations were linear, the answer would be an easy
yes. But they are nonlinear. Since God has not made the actual
equations available, Lorenz instead examined the quadratic dif-
ference equation. _

Like May, Lorenz first examined what happened as the equa-
tion was iterated, given some parameter. With low parameters he
saw the equation reaching a stable fixed point. There, certainly,
the system produced a “climate” in the most trivial sense possi-
ble—the “weather” never changed. With higher parameters he
saw the possibility of oscillation between two points, and there,
too, the system converged to a simple average. But beyond a certain
point, Lorenz saw that chaos ensues. Since he was thinking about
climate, he asked not only whether continual feedback would
produce periodic behavior, but also what the average output would
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be. And he recognized that the answer was that the average, too,
fluctuated unstably. When the parameter value was changed ever
so slightly, the average might change dramatically. By analogy,
the earth’s climate might never settle reliably into an equilibrium
with average long-term behavior.

As a mathematics paper, Lorenz’s climate work would have
been a failure—he proved nothing in the axiomatic sense. As a
physics paper, too, it was seriously flawed, because he could not
justify using such a simple equation to draw conclusions about
the earth’s climate. Lorenz knew what he was saying, though. “The
writer feels that this resemblance is no mere accident, but that the
difference equation captures much of the mathematics, even if not
the physics, of the transitions from one regime of flow to another,
and, indeed, of the whole phenomenon of instability.” Even twenty
years later, no one could understand what intuition justified such
a bold claim, published in Tellus, a Swedish meteorology journal.
(“Tellus! Nobody reads Tellus,” a physicist exclaimed bitterly.)
Lorenz was coming to understand ever more deeply the peculiar
possibilities of chaotic systems—more deeply than he could ex-
press in the language of meteorology.

As he continued to explore the changing masks of dynamical
systems, Lorenz realized that systems slightly more complicated
than the quadratic map could produce other kinds of unexpected
patterns. Hiding within a particular system could be more than
one stable solution. An observer might see one kind of behavior
over a very long time, yet a completely different kind of behavior
could be just as natural for the system. Such a system is called
intransitive. It can stay in one equilibrium or the other, but not
both. Only a kick from outside can force it to change states. In a
trivial way, a standard pendulum clock is an intransitive system.
A steady flow of energy comes in from a wind-up spring or a
battery through an escapement mechanism. A steady flow of en-
ergy is drained out by friction. The obvious equilibrium state is
a regular swinging motion. If a passerby bumps the clock, the
pendulum might speed up or slow down from the momentary jolt
but will quickly return to its equilibrium. But the clock has a
second equilibrium as well—a second valid solution to its equa-
tions of motion—and that is the state in which the pendulum is
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hanging straight down and not moving. A less trivial intransitive
system—perhaps with several distinct regions of utterly different
behavior—could be climate itself.

Climatologists who use global computer models to simulate
the long-term behavior of the earth’s atmosphere and oceans have
known for several years that their models allow at least one dra-
matically different equilibrium. During the entire geological past,
this alternative climate has never existed, but it could be an equally
valid solution to the system of equations governing the earth. It
is what some climatologists call the White Earth climate: an earth
whose continents are covered by snow and whose oceans are
covered by ice. A glaciated earth would reflect seventy percent of
the incoming solar radiation and so would stay extremely cold.
The lowest layer of the atmosphere, the troposphere, would be
much thinner. The storms that would blow across the frozen sur-
face would be much smaller than the storms we know. In general,
the climate would be less hospitable to life as we know it. Com-
puter models have such a strong tendency to fall into the White
Earth equilibrium that climatologists find themselves wondering
why it has never come about. It may simply be a matter of chance.

To push the earth’s climate into the glaciated state would
require a huge kick from some external source. But Lorenz de-
scribed vet another plausible kind of behavior called “almost-
intransitivity.”” An almost-intransitive system displays one sort of
average behavior for a very long time, fluctuating within certain
bounds. Then, for no reason whatsoever, it shifts into a different
sort of behavior, still fluctuating but producing a different average.
The people who design computer models are aware of Lorenz’s
discovery, but they try at all costs to avoid almost-intransitivity.
It is too unpredictable. Their natural bias is to make models with
a strong tendency to return to the equilibrium we measure every
day on the real planet. Then, to explain large changes in climate,
they look for external causes—changes in the earth’s orbit around
the sun, for example. Yet it takes no great imagination for a cli-
matologist to see that almost-intransitivity might well explain why
the earth’s climate has drifted in and out of long Ice Ages at
mysterious, irregular intervals. If so, no physical cause need be
found for the timing. The Ice Ages may simply be a byproduct of
chaos.
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LIKE A GUN cOLLECTOR wistfully recalling the Colt .45 in the
era of automatic weaponry, the modern scientist nurses a certain
nostalgia for the HP-65 hand-held calculator. In the few years of
its supremacy, this machine changed many scientists’ working
habits forever. For Feigenbaum, it was the bridge between pencil-
and-paper and a style of working with computers that had not yet
been conceived.

He knew nothing of Lorenz, but in the summer of 1975, at a
gathering in Aspen, Colorado, he heard Steve Smale talk about
some of the mathematical qualities of the same quadratic differ-
ence equation. Smale seemed to think that there were some in-
teresting open questions about the exact point at which the mapping
changes from periodic to chaotic. As always, Smale had a sharp
instinct for questions worth exploring. Feigenbaum decided to
look into it once more. With his calculator he began to use a
combination of analytic algebra and numerical exploration to piece
together an understanding of the quadratic map, concentrating on
the boundary region between order and chaos.

Metaphorically—but only metaphorically—he knew that this
region was like the mysterious boundary between smooth flow
and turbulence in a fluid. It was the region that Robert May had
called to the attention of population biologists who had previously
failed to notice the possibility of any but orderly cycles in changing
animal populations. En route to chaos in this region was a cascade
of period-doublings, the splitting of two-cycles into four-cycles,
four-cycles into eight-cycles, and so on. These splittings made a
afascinating pattern. They were the points at which a slight change
in fecundity, for example, might lead a population of gypsy moths
to change from a four-year cycle to an eight-year cycle. Feigen-
baum decided to begin by calculating the exact parameter values
that produced the splittings.

In the end, it was the slowness of the calculator that led him
to a discovery that August. It took ages—minutes, in fact—to
calculate the exact parameter value of each period-doubling. The
higher up the chain he went, the longer it took. With a fast com-
puter, and with a printout, Feigenbaum might have observed no
pattern. But he had to write the numbers down by hand, and then
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he had to think about them while he was waiting, and then, to
save time, he had to guess where the next answer would be.

Yet all in an instant he saw that he did not have to guess.
There was an unexpected regularity hidden in this system: the
numbers were converging geometrically, the way a line of identical
telephone poles converges toward the horizon in a perspective
drawing. If you know how big to make any two telephone poles,
you know all the rest; the ratio of the second to the first will also
be the ratio of the third to the second, and so on. The period-
doublings were not just coming faster and faster, but they were
coming faster and faster at a constant rate.

Why should this be so? Ordinarily, the presence of geometric
convergence suggests that something, somewhere, is repeating it-
self on different scales. But if there was a scaling pattern inside
this equation, no one had ever seen it. Feigenbaum calculated the
ratio of convergence to the finest precision possible on his ma-
chine—three decimal places—and came up with a number, 4.669.
Did this particular ratio mean anything? Feigenbaum did what
anyone would do who cared about numbers. He spent the rest of
the day trying to fit the number to all the standard constants—,
e, and so forth. It was a variant of none.

0ddly, Robert May realized later that he, too, had seen this
geometric convergence. But he forgot it as quickly as he noted it.
From May’s perspective in ecology, it was a numerical peculiarity
and nothing more. In the real-world systems he was considering,
systems of animal populations or even economic models, the in-
evitable noise would overwhelm any detail that precise. The very
messiness that had led him so far stopped him at the crucial point.
May was excited by the gross behavior of the equation. He never
imagined that the numerical details would prove important.

Feigenbaum knew what he had, because geometric conver-
gence meant that something in this equation was scaling, and he
knew that scaling was important. All of renormalization theory
depended on it. In an apparently unruly system, scaling meant
that some quality was being preserved while everything else
changed. Some regularity lay beneath the turbulent surface of the
equation. But where? It was hard to see what to do next.

Summer turns rapidly to autumn in the rarefied Los Alamos
air, and October had nearly ended when Feigenbaum was struck
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by an odd thought. He knew that Metropolis, Stein, and Stein had
looked at other equations as well and had found that certain pat-
terns carried over from one sort of function to another. The same
combinations of R’s and L’s appeared, and they appeared in the
same order. One function had involved the sine of a number, a
twist that made Feigenbaum’s carefully worked-out approach to
the parabola equation irrelevant. He would have to start over. So
he took his HP-65 again and began to compute the period-doublings
for x,,, = r sin 7 x,. Calculating a trigonometric function made
the process that much slower, and Feigenbaum wondered whether,
as with the simpler version of the equation, he would be able to
use a shortcut. Sure enough, scanning the numbers, he realized
that they were again converging geometrically. It was simply a
matter of calculating the convergence rate for this new equation.
Again, his precision was limited, but he got a result to three dec-
imal places: 4.669.

It was the same number. Incredibly, this trigonometric func-
tion was not just displaying a consistent, geometric regularity. It
was displaying a regularity that was numerically identical to that
of a much simpler function. No mathematical or physical theory
existed to explain why two equations so different in form and
meaning should lead to the same result.

Feigenbaum called Paul Stein. Stein was not prepared to be-
lieve the coincidence on such scanty evidence. The precision was
low, after all. Nevertheless, Feigenbaum also called his parents in
New Jersey to tell them he had stumbled across something pro-
found. He told his mother it was going to make him famous. Then
he started trying other functions, anything he could think of that
went through a sequence of bifurcations on the way to disorder.
Every one produced the same number.

Feigenbaum had played with numbers all his life. When he
was a teen-ager he knew how to calculate logarithms and sines
that most people would look up in tables. But he had never learned
to use any computer bigger than his hand calculator—and in this
he was typical of physicists and mathematicians, who tended to
disdain the mechanistic thinking that computer work implied.
Now, though, it was time. He asked a colleague to teach him For-
tran, and, by the end of the day, for a variety of functions, he had
calculated his constant to five decimal places, 4.66920. That night
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he read about double precision in the manual, and the next day
he got as far as 4.6692016090—enough precision to convince Stein.
Feigenbaum wasn’t quite sure he had convinced himself, though.
He had set out to look for regularity—that was what understanding
mathematics meant—but he had also set out knowing that particu-
lar kinds of equations, just like particular physical systems, behave
in special, characteristic ways. These equations were simple, after
all. Feigenbaum understood the quadratic equation, he understood
the sine equation—the mathematics was trivial. Yet something in
the heart of these very different equations, repeating over and
over again, created a single number. He had stumbled upon some-
thing: perhaps just a curiosity; perhaps a new law of nature.
Imagine that a prehistoric zoologist decides that some things
are heavier than other things—they have some abstract quality he
calls weight—and he wants to investigate this idea scientifically.
He has never actually measured weight, but he thinks he has some
understanding of the idea. He looks at big snakes and little snakes,
big bears and little bears, and he guesses that the weight of these
animals might have some relationship to their size. He builds a
scale and starts weighing snakes. To his astonishment, every snake
weighs the same. To his consternation, every bear weighs the
same, too. And to his further amazement, bears weigh the same
as snakes. They all weigh 4.6692016090. Clearly weight is not
what he supposed. The whole concept requires rethinking.
Rolling streams, swinging pendulums, electronic oscilla-
tors—many physical systems went through a transition on the
way to chaos, and those transitions had remained too complicated
for analysis. These were all systems whose mechanics seemed
perfectly well understood. Physicists knew all the right equations;
yet moving from the equations to an understanding of global, long-
term behavior seemed impossible. Unfortunately, equations for
fluids, even pendulums, were far more challenging than the simple
one-dimensional logistic map. But Feigenbaum’s discovery im-
plied that those equations were beside the point. They were ir-
relevant. When order emerged, it suddenly seemed to have forgotten
what the original equation was. Quadratic or trigonometric, the
result was the same. “The whole tradition of physics is that you
isolate the mechanisms and then all the rest flows,” he said. “That’s
completely falling apart. Here you know the right equations but
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they’re just not helpful. You add up all the microscopic pieces
and you find that you cannot extend them to the long term. They’re
not what’s important in the problem. It completely changes what
it means to know something.”

Although the connection between numerics and physics was
faint, Feigenbaum had found evidence that he needed to work out
a new way of calculating complex nonlinear problems. So far, all
available techniques had depended on the details of the functions.
If the function was a sine function, Feigenbaum’s carefully worked-
out calculations were sine calculations. His discovery of univer-
sality meant that all those techniques would have to be thrown
out. The regularity had nothing to do with sines. It had nothing
to do with parabolas. It had nothing to do with any particular
function. But why? It was frustrating. Nature had pulled back a
curtain for an instant and offered a glimpse of unexpected order.
What else was behind that curtain?

WHEN INSPIRATION CAME, it was in the form of a picture, a
mental image of two small wavy forms and one big one. That was
all—a bright, sharp image etched in his mind, no more, perhaps,
than the visible top of a vast iceberg of mental processing that had
taken place below the waterline of consciousness. It had to do
with scaling, and it gave Feigenbaum the path he needed.

He was studying attractors. The steady equilibrium reached
by his mappings is a fixed point that attracts all others—no matter
what the starting “population,” it will bounce steadily in toward
the attractor. Then, with the first period-doubling, the attractor
splits in two, like a dividing cell. At first, these two points are
practically together; then, as the parameter rises, they float apart.
Then another period-doubling: each point of the attractor divides
again, at the same moment. Feigenbaum’s number let him predict
when the period-doublings would occur. Now he discovered that
he could also predict the precise values of each point on this
ever-more-complicated attractor—two points, four points, eight
peints . . . He could predict the actual populations reached in the
year-to-year oscillations. There was yet another geometric con-
vergence. These numbers, too, obeyed a law of scaling.

Feigenbaum was exploring a forgotten middle ground be-
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ZEROING IN ON CHAOS. A simple equation, repeated many times over:
Mitchell Feigenbaum focused on straightforward functions, taking one
number as input and producing another as output. For animal popula-
tions, a function might express the relationship between this year’s pop-
ulation and next year’s.

One way to visualize such functions is to make a graph, plotting
input on the horizontal axis and output on the vertical axis. For each
possible input, x, there is just one output, y, and these form a shape
represented by the heavy line.

Then, to represent the long-term behavior of the system, Feigenbaum
drew a trajectory that started with some arbitrary x. Because each y was
then fed back into the same function as new input, he could use a sort
of schematic shortcut: The trajectory would bounce off the 45-degree line,
the line where x equals y.

For an ecologist, the most obvious sort of function for population
growth is linear—the Malthusian scenario of steady, limitless growth by
a fixed percentage each year (left). More realistic functions formed an
arch, sending the population back downward when it became too high.
Hlustrated is the “logistic map,” a perfect parabola, defined by the func-
tion y =rx(1-x), where the value of r, from 0 to 4, determines the par-
abola’s steepness. But Feigenbaum discovered that it did not matter precisely
what sort of arch he used; the details of the equation were beside the
point. What mattered was that the function should have a “hump.”

The behavior depended sensitively, though, on the steepness—the
degree of nonlinearity, or what Robert May called “boom-and-bustiness.”
Too shallow a function would produce extinction: Any starting popu-
lation would lead eventually to zero. Increasing the steepness produced
the steady equilibrium that a traditional ecologist would expect; that
point, drawing in all trajectories, was a one-dimensional “attractor.”

Beyond a certain point, a bifurcation produced an oscillating pop-
ulation with period two. Then more period-doublings would occur, and
finally (bottom right) the trajectory would refuse to settle down at all.

Such images were a starting point for Feigenbaum when he tried to
construct a theory. He began thinking in terms of recursion: functions of
functions, and functions of functions of functions, and so on; maps with
two humps, and then four. ...
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tween mathematics and physics. His work was hard to classify.
It was not mathematics; he was not proving anything. He was
studying numbers, yes, but numbers are to a mathematician what
bags of coins are to an investment banker: nominally the stuff of
his profession, but actually too gritty and particular to waste time
on. Ideas are the real currency of mathematicians. Feigenbaum
was carrying out a program in physics, and, strange as it seemed,
it was almost a kind of experimental physics.

Numbers and functions were his object of study, instead of
mesons and quarks. They had trajectories and orbits. He needed
to inquire into their behavior. He needed—in a phrase that later
became a cliché of the new science—to create intuition. His ac-
celerator and his cloud chamber were the computer. Along with
his theory, he was building a methodology. Ordinarily a computer
user would construct a problem, feed it in, and wait for the ma-
chine to calculate its solution—one problem, one solution. Fei-
genbaum and the chaos researchers who followed needed more.
They needed to do what Lorenz had done, to create miniature
universes and observe their evolution. Then they could change
this feature or that and observe the changed paths that would
result. They were armed with the new conviction, after all, that
tiny changes in certain features could lead to remarkable changes
in overall behavior.

Feigenbaum quickly discovered how ill-suited the computer
facilities of Los Alamos were for the style of computing he wanted
to develop. Despite enormous resources, far greater than at most
universities, Los Alamos had few terminals capable of displaying
graphs and pictures, and those few were in the Weapons Division.
Feigenbaum wanted to take numbers and plot them as points on
a map. He had to resort to the most primitive method conceivable:
long rolls of printout paper with lines made by printing rows of
spaces followed by an asterisk or a plus sign. The official policy
at Los Alamos held that one big computer was worth far more
than many little computers—a policy that went with the one prob-
lem, one solution tradition. Little computers were discouraged.
Furthermore, any division’s purchase of a computer would have
to meet stringent government guidelines and a formal review. Only
later, with the budgetary complicity of the Theoretical Division,
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did Feigenbaum become the recipient of a $20,000 ‘‘desktop cal-
culator.” Then he could change his equations and pictures on the
run, tweaking them and tuning them, playing the computer like
a musical instrument. For now, the only terminals capable of
serious graphics were in high-security areas—behind the fence,
in local parlance. Feigenbaum had to use a terminal hooked up
by telephone lines to a central computer. The reality of working
in such an arrangement made it hard to appreciate the raw power
of the computer at the other end of the line. Even the simplest
tasks took minutes. To edit a line of a program meant pressing
Return and waiting while the terminal hummed incessantly and
the central computer played its electronic round robin with other
users across the laboratory.

While he was computing, he was thinking. What new math-
ematics could produce the multiple scaling patterns he was ob-
serving? Something about these functions must be recursive, he
realized, self-referential, the behavior of one guided by the be-
havior of another hidden inside it. The wavy image that had come
to him in a moment of inspiration expressed something about the
way one function could be scaled to match another. He applied
the mathematics of renormalization group theory, with its use of
scaling to collapse infinities into manageable quantities. In the
spring of 1976 he entered a mode of existence more intense than
any he had lived through. He would concentrate as if in a trance,
programming furiously, scribbling with his pencil, programming
again. He could not call C division for help, because that would
mean signing off the computer to use the telephone, and recon-
nection was chancy. He could not stop for more than five minutes’
thought, because the computer would automatically disconnect
his line. Every so often the computer would go down anyway,
leaving him shaking with adrenalin. He worked for two months
without pause. His functional day was twenty-two hours. He would
try to go to sleep in a kind of buzz, and awaken two hours later
with his thoughts exactly where he had left them. His diet was
strictly coffee. (Even when healthy and at peace, Feigenbaum sub-
sisted exclusively on the reddest possible meat, coffee, and red
wine. His friends speculated that he must be getting his vitamins
from cigarettes.)
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In the end, a doctor called it off. He prescribed a modest
regimen of Valium and an enforced vacation. But by then Feigen-
baum had created a universal theory.

UNIVERSALITY MADE THE DIFFERENCE between beautiful and
useful. Mathematicians, beyond a certain point, care little whether
they are providing a technique for calculation. Physicists, beyond
a certain point, need numbers. Universality offered the hope that
by solving an easy problem physicists could solve much harder
problems. The answers would be the same. Further, by placing
his theory in the framework of the renormalization group, Fei-
genbaum gave it a clothing that physicists would recognize as a
tool for calculating, almost something standard.

But what made universality useful also made it hard for phys-
icists to believe. Universality meant that different systems would
behave identically. Of course, Feigenbaum was only studying sim-
ple numerical functions. But he believed that his theory expressed
a natural law about systems at the point of transition between
orderly and turbulent. Everyone knew that turbulence meant a
continuous spectrum of different frequencies, and everyone had
wondered where the different frequencies came from. Suddenly
you could see the frequencies coming in sequentially. The phys-
ical implication was that real-world systems would behave in the
same, recognizable way, and that furthermore it would be meas-
urably the same. Feigenbaum’s universality was not just quali-
tative, it was quantitative; not just structural, but metrical. It
extended not just to patterns, but to precise numbers. To a phys-
icist, that strained credulity.

Years later Feigenbaum still kept in a desk drawer, where he
could get at them quickly, his rejection letters. By then he had all
the recognition he needed. His Los Alamos work had won him
prizes and awards that brought prestige and money. But it still
rankled that editors of the top academic journals had deemed his
work unfit for publication for two years after he began submitting
it. The notion of a scientific breakthrough so original and unex-
pected that it cannot be published seems a slightly tarnished myth.
Modern science, with its vast flow of information and its impartial
system of peer review, is not supposed to be a matter of taste. One
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editor who sent back a Feigenbaum manuscript recognized years
later that he had rejected a paper that was a turning point for the
field; yet he still argued that the paper had been unsuited to his
journal’s audience of applied mathematicians. In the meantime,
even without publication, Feigenbaum’s breakthrough became a
superheated piece of news in certain circles of mathematics and
physics. The kernel of theory was disseminated the way most
science is now disseminated—through lectures and preprints.
Feigenbaum described his work at conferences, and requests
for photocopies of his papers came in by the score and then by the
hundred.

MODERN ECONOMICS RELIES HEAVILY on the efficient market
theory. Knowledge is assumed to flow freely from place to place.
The people making important decisions are supposed to have
access to more or less the same body of information. Of course,
pockets of ignorance or inside information remain here and there,
but on the whole, once knowledge is public, economists assume
that it is known everywhere. Historians of science often take for
granted an efficient market theory of their own. When a discovery
is made, when an idea is expressed, it is assumed to become the
common property of the scientific world. Each discovery and each
new insight builds on the last. Science rises like a building, brick
by brick. Intellectual chronicles can be, for all practical purposes,
linear.

That view of science works best when a well-defined disci-
pline awaits the resolution of a well-defined problem. No one
misunderstood the discovery of the molecular structure of DNA,
for example. But the history of ideas is not always so neat. As
nonlinear science arose in odd corners of different disciplines,
the flow of ideas failed to follow the standard logic of historians.
The emergence of chaos as an entity unto itself was a story not
only of new theories and new discoveries, but also of the belated
understanding of old ideas. Many pieces of the puzzle had been
seen long before—by Poincaré, by Maxwell, even by Einstein—
and then forgotten. Many new pieces were understood at first only
by a few insiders. A mathematical discovery was understood by
mathematicians, a physics discovery by physicists, a meteorolog-
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ical discovery by no one. The way ideas spread became as im-
portant as the way they originated.

Each scientist had a private constellation of intellectual par-
ents. Each had his own picture of the landscape of ideas, and each
picture was limited in its own way. Knowledge was imperfect.
Scientists were biased by the customs of their disciplines or by
the accidental paths of their own educations. The scientific world
can be surprisingly finite. No committee of scientists pushed his-
tory into a new channel—a handful of individuals did it, with
individual perceptions and individual goals.

Afterwards, a consensus began to take shape about which
innovations and which contributions had been most influential.
But the consensus involved a certain element of revisionism. In
the heat of discovery, particularly during the late 1970s, no two
physicists, no two mathematicians understood chaos in exactly
the same way. A scientist accustomed to classical systems without
friction or dissipation would place himself in a lineage descending
from Russians like A. N. Kolmogorov and V. I. Arnold. A mathe-
matician accustomed to classical dynamical systems would en-
vision a line from Poincaré to Birkhoff to Levinson to Smale. Later,
a mathematician’s constellation might center on Smale, Gucken-
heimer, and Ruelle. Or it might emphasize a computationally in-
clined set of forebears associated with Los Alamos: Ulam,
Metropolis, Stein. A theoretical physicist might think of Ruelle,
Lorenz, Rossler, and Yorke. A biologist would think of Smale,
Guckenheimer, May, and Yorke. The possible combinations were
endless. A scientist working with materials—a geologist or a seis-
mologist—would credit the direct influence of Mandelbrot; a the-
oretical physicist would barely acknowledge knowing the name.

Feigenbaum’s role would become a special source of conten-
tion. Much later, when he was riding a crest of semicelebrity,
some physicists went out of their way to cite other people who
had been working on the same problem at the same time, give or
take a few years. Some accused him of focusing too narrowly on
a small piece of the broad spectrum of chaotic behavior. “Feigen-
baumology” was overrated, a physicist might say—a beautiful
piece of work, to be sure, but not as broadly influential as Yorke’s
work, for example. In 1984, Feigenbaum was invited to address
the Nobel Symposium in Sweden, and there the controversy swirled.
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Benoit Mandelbrot gave a wickedly pointed talk that listeners later
described as his “antifeigenbaum lecture.” Somehow Mandelbrot
had exhumed a twenty-year-old paper on period-doubling by a
Finnish mathematician named Myrberg, and he kept describing
the Feigenbaum sequences as ‘“Myrberg sequences.”

But Feigenbaum had discovered universality and created a
theory to explain it. That was the pivot on which the new science
swung. Unable to publish such an astonishing and counterintui-
tive result, he spread the word in a series of lectures at a New
Hampshire conference in August 1976, an international mathe-
matics meeting at Los Alamos in September, a set of talks at Brown
University in November. The discovery and the theory met sur-
prise, disbelief, and excitement. The more a scientist had thought
about nonlinearity, the more he felt the force of Feigenbaum’s
universality. One put it simply: “It was a very happy and shocking
discovery that there were structures in nonlinear systems that are
always the same if you looked at them the right way.” Some
physicists picked up not just the ideas but also the techniques.
Playing with these maps—just playing—gave them chills. With
their own calculators, they could experience the surprise and sat-
isfaction that had kept Feigenbaum going at Los Alamos. And they
refined the theory. Hearing his talk at the Institute for Advanced
Study in Princeton, Predrag Cvitanovié, a particle physicist, helped
Feigenbaum simplify his theory and extend its universality. But
all the while, Cvitanovi¢ pretended it was just a pastime; he could
not bring himself to admit to his colleagues what he was doing.

Among mathematicians, too, a reserved attitude prevailed,
largely because Feigenbaum did not provide a rigorous proof. In-
deed, not until 1979 did proof come on mathematicians’ terms,
in work by Oscar E. Lanford III. Feigenbaum often recalled pre-
senting his theory to a distinguished audience at the Los Alamos
meeting in September. He had barely begun to describe the work
when the eminent mathematician Mark Kac rose to ask: “Sir, do
you mean to offer numerics or a proof?”

More than the one and less than the other, Feigenbaum re-
plied.

“Is it what any reasonable man would call a proof?”

Feigenbaum said that the listeners would have to judge for
themselves. After he was done speaking, he polled Kac, who re-
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sponded, with a sardonically trilled r: “Yes, that’s indeed a rea-
sonable man’s proof. The details can be left to the r-r-rigorous
mathematicians.”

A movement had begun, and the discovery of universality
spurred it forward. In the summer of 1977, two physicists, Joseph
Ford and Giulio Casati, organized the first conference on a science
called chaos. It was held in a gracious villa in Como, Italy, a tiny
city at the southern foot of the lake of the same name, a stunningly
deep blue catchbasin for the melting snow from the Italian Alps.
One hundred people came—mostly physicists, but also curious
scientists from other fields. “Mitch had seen universality and found
out how it scaled and worked out a way of getting to chaos that
was intuitively appealing,” Ford said. “It was the first time we
had a clear model that everybody could understand.

“And it was one of those things whose time had come. In
disciplines from astronomy to zoology, people were doing the
same things, publishing in their narrow disciplinary journals, just
totally unaware that the other people were around. They thought
they were by themselves, and they were regarded as a bit eccentric
in their own areas. They had exhausted the simple questions you
could ask and begun to worry about phenomena that were a bit
more complicated. And these people were just weepingly grateful
to find out that everybody else was there, too.”

LATER, FEIGENBAUM LIVED in a bare space, a bed in one room,
a computer in another, and, in the third, three black electronic
towers for playing his solidly Germanic record collection. His one
experiment in home furnishing, the purchase of an expensive
marble coffee table while he was in Italy, had ended in failure;
he received a parcel of marble chips. Piles of papers and books
lined the walls. He talked rapidly, his long hair, gray now mixed
with brown, sweeping back from his forehead. “Something dra-
matic happened in the twenties. For no good reason physicists
stumbled upon an essentially correct description of the world
around them—Dbecause the theory of quantum mechanics is in
some sense essentially correct. It tells you how you can take dirt
and make computers from it. It’s the way we’ve learned to ma-
nipulate our universe. It’s the way chemicals are made and plastics
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and what not. One knows how to compute with it. It’s an extrav-
agantly good theory—except at some level it doesn’t make good
sense.

“Some part of the imagery is missing. If you ask what the
equations really mean and what is the description of the world
according to this theory, it’s not a description that entails your
intuition of the world. You can’t think of a particle moving as
though it has a trajectory. You’re not allowed to visualize it that
way. If you start asking more and more subtle questions—what
does this theory tell you the world looks like?—in the end it’s so
far out of your normal way of picturing things that you run into
all sorts of conflicts. Now maybe that’s the way the world really
is. But you don’t really know that there isn’t another way of as-
sembling all this information that doesn’t demand so radical a
departure from the way in which you intuit things.

“There’s a fundamental presumption in physics that the way
you understand the world is that you keep isolating its ingredients
until you understand the stuff that you think is truly fundamental.
Then you presume that the other things you don’t understand are
details. The assumption is that there are a small number of prin-
ciples that you can discern by looking at things in their pure
state—this is the true analytic notion—and then somehow you
put these together in more complicated ways when you want to
solve more dirty problems. If you can.

“In the end, to understand you have to change gears. You
have to reassemble how you conceive of the important things that
are going on. You could have tried to simulate a model fluid system
on a computer. It’s just beginning to be possible. But it would
have been a waste of effort, because what really happens has
nothing to do with a fluid or a particular equation. It's a general
description of what happens in a large variety of systems when
things work on themselves again and again. It requires a different
way of thinking about the problem.

“When you look at this room—you see junk sitting over there
and a person sitting over here and doors over there—you’re sup-
posed to take the elementary principles of matter and write down
the wave functions to describe them. Well, this is not a feasible
thought. Maybe God could do it, but no analytic thought exists
for understanding such a problem.
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“It’s not an academic question any more to ask what’s going
to happen to a cloud. People very much want to know-—and that
means there’s money available for it. That problem is very much
within the realm of physics and it’s a problem very much of the
same caliber. You’re looking at something complicated, and the
present way of solving it is to try to look at as many points as you
can, enough stuff to say where the cloud is, where the warm air
is, what its velocity is, and so forth. Then you stick it into the
biggest machine you can afford and you try to get an estimate of
what it’s going to do next. But this is not very realistic.”

He stubbed out one cigarette and lit another. “One has to look
for different ways. One has to look for scaling structures—how
do big details relate to little details. You look at fluid disturbances,
complicated structures in which the complexity has come about
by a persistent process. At some level they don’t care very much
what the size of the process is—it could be the size of a pea or
the size of a basketball. The process doesn’t care where it is, and
moreover it doesn’t care how long it’s been going. The only things
that can ever be universal, in a sense, are scaling things.

“In a way, art is a theory about the way the world looks to
human beings. It’s abundantly obvious that one doesn’t know the
world around us in detail. What artists have accomplished is
realizing that there’s only a small amount of stuff that’s important,
and then seeing what it was. So they can do some of my research
for me. When you look at early stuff of Van Gogh there are zillions
of details that are put into it, there’s always an immense amount
of information in his paintings. It obviously occurred to him, what
is the irreducible amount of this stuff that you have to put in. Or
you can study the horizons in Dutch ink drawings from around
1600, with tiny trees and cows that look very real. If you look
closely, the trees have sort of leafy boundaries, but it doesn’t work
if that’s all it is—there are also, sticking in it, little pieces of
twiglike stuff. There’s a definite interplay between the softer tex-
tures and the things with more definite lines. Somehow the com-
bination gives the correct perception. With Ruysdael and Turner,
if you look at the way they construct complicated water, it is
clearly done in an iterative way. There’s some level of stuff, and
then stuff painted on top of that, and then corrections to that.
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Turbulent fluids for those painters is always something with a
scale idea in it.

“I truly do want to know how to describe clouds. But to say
there’s a piece over here with that much density, and next to it a
piece with this much density—to accumulate that much detailed
information, I think is wrong. It’s certainly not how a human being
perceives those things, and it’s not how an artist perceives them.
Somewhere the business of writing down partial differential equa-
tions is not to have done the work on the problem.

“Somehow the wondrous promise of the earth is that there
are things beautiful in it, things wondrous and alluring, and by
virtue of your trade you want to understand them.” He put the
cigarette down. Smoke rose from the ashtray, first in a thin column
and then (with a nod to universality) in broken tendrils that swirled
upward to the ceiling.



