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Chapter 1

Thermodynamics and the Phase Diagrams of Block
Copolymers in Electric Fields

M. Schick

Department of Physics Box 351560
University of Washington, Seattle WA 98195-1560, USA

Basic electrostatics and some less familiar thermodynamics is re-
viewed, and useful Claussius-Clapeyron-like equations are derived. They
are applied to predict the form of phase diagrams of two systems. The
first is a bulk system of body-centered-cubic phase which undergoes a
phase transition either to a hexagonal or disordered phase on the applica-
tion of an electric field. The second is a surface film of cylindrical phase
which can be oriented perpendicular to the substrate by the application
of a field.

1.1. Introduction

The genesis of this chapter is my collaboration with David Andelman who
introduced me to interesting problems in which electric fields were applied
to block copolymers, a system with which I was familiar. The first problem
considered was that of a bulk, block copolymer system of body-centered-
cubic (bcc) phase in a field. Because of the accumulation of polarization
charge on the spheres, the free energy of the system increases in an electric
field with respect to that of neighboring phases, like the hexagonal phase
of cylinders. Eventually a phase transition occurs between them. It took
quite a while, and an intensive calculation by Chin-Yet Lin, before the
phase diagram became clear to me. After I understood it, I realized that
by the use of some elementary thermodynamics I could have, and should
have, understand the nature of the phase diagram before I began a difficult
calculation.

When encountering a second problem concerning a polymer film, the
usual form of such systems, I turned again to thermodynamics. I had
been used to surface thermodynamics, but no text had prepared me for the
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“surface excess displacement field”, a concept that threw me at first until
I realized that it was simply another excess surface density like those I had
encountered previously and reviewed in a series of Les Houches lectures.!
Again, the thermodynamics provided the general form of the phase diagram
of the system in question, a cylindrical phase in this case.

A fortuitous element in these studies is that I have had the pleasure of
teaching a junior-level course in Electrostatics and Electrodynamics at the
University of Washington for the last couple of years. This has provided me
the opportunity to understand the subtleties of polarizable systems which
had eluded me when I had first encountered them.

It is in the hope that insights from electrostatics and thermodynamics
will prove as useful, and beautiful, to someone else as they are to me that
I agreed to write this chapter.

1.2. Review of basic electrostatics in polarizable materials

The two equations which determine the electric field E(r) when all charges
are at rest, that is, the regime of electrostatics, are Gauss’ law

V.E= pce—ir), (1.1)

which is always valid, and
VxE(r)=0, (1.2)

which is only valid in the regime of electrostatics. Together, the two equa-
tions are simply a statement of Coulomb’s law for they have the solution

/ dr’pc<r’)|(‘"—” (1.3)

r_rl|33

E(r) = 4meg
which, again, is only valid in electrostatics. The great difficulty with either
Eq. (1.1) or Eq. (1.3) is that the local charge density, p., in a polarizable
medium depends upon the electric field itself so that the equations are
self-consistent ones. The standard way to proceed is to observe that the
largest contribution to the electric field, after any free charges which may
be around, is from the induced dipoles of the medium. Let the local dipole
moment per unit volume be P(r). As one knows the electric field produced
by an electric dipole, one readily shows that the electric field produced by
P(r) is the same as if there were a local bulk charge density

pp(r) = -V -P(r) (1.4)
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and a local surface charge density
op(r) = P(r) - 1, (1.5)

where n is a unit normal to the surface. These charges are said to be
“bound”, as opposed to “free”, hence the subscript b. Note that if the
dipole density, P, were known then the bound charge density, p; could be
obtained from Eq. (1.4). The reverse is not true, however, for p, only gives
us the divergence of P, and a vector field is only completely determined by
its divergence and its curl. We do not know the latter.

One next separates the total charge density, which appears on the right
hand side of Eq. (1.1), into a density py of free charge, which one controls,
and bound charge, which one does not:

pe=p;+p=p;s—V-P (1.6)

Substituting this into Eq. (1.1) and rearranging we can write Gauss’ law
in the form

V- D(r) = ps(r), (1.7)
where we have defined the displacement field
D =¢E +P. (1.8)

The apparent advantage of this manoeuvre is that the divergence of the
displacement is given only by the free charge. We have buried the bound
charge by our definitions. But this is just so much hand waving and buys
us nothing for at this point we have two equations; the new version of
Gauss’ law, Eq. (1.7) above and the defining equation of electrostatics,
V x E = 0. But neither of the two fields E and D are well defined because
we know only the divergence of one and only the curl of the other. This
impasse should not be a surprise. We said that the problem was difficult
because the charge density, the source of the electric field, depends upon
the electric field itself, and we have not hazarded a guess as to the nature
of this relationship. Doing so relates the dipole density P to the electric
field E. The choice for most materials, including the ones of interest here,
is to make the reasonable assumption that the relation is a linear one; that
is

P= GOXeE; (19)

where the dimensionless number y. is the electric susceptibility. Upon
substitution of this into the defining equation for the displacement, Eq.
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(1.8), one obtains

D= 60(1 + Xe)E7
= ekE, (1.10)

where kK = (1 + x.) is the dielectric constant of the material. The fields
are now well defined. We satisfy the defining equation of electrostatics
V x E =0 by introducing the electric potential, V,

E(r) = -VV (). (1.11)

This leaves only Gauss’s law to be satisfied. Substitution of D = exkE =
—exVV into Eq. (1.7) yields
Ve TR vl S o (1.12)
K Ke€g
where I have allowed for the fact that the dielectric constant can vary
spatially.

Just how the dielectric constant varies spatially is not obvious. Suppose
that there are two distinct monomers, A and B, joined in a diblock copoly-
mer with polymerization index N of which a fraction, f4, is A monomer.
Let the volume of all monomers be v. Then the local volume fraction of
A monomers, ¢4(r), has the average value ¢4 = f4, and the local volume
fraction of B monomers, ¢p(r), has the average value ¢p = 1 — f4. If we
denote the deviations of the local volume fractions from their average values
by dpa(r) and d¢p(r) = —d¢pa(r) respectively, with —fa4 < ddpa < 1 — fa,
then one can write quite generally the local dielectric constant as

k(r) = kafa+ k(1= fa)+ (ka — £B)g(0d4), (1.13)

where k4 and kp are the dielectric constants of the pure A and B systems
respectively. The function g(d¢4) is such that the dielectric constant in Eq.
(1.13) above is greater than unity, and g(—fa) = —fa, g(1 = fa) =1— fa,
which guarantees that K = k4 or kg when the system is pure. Other than
these small restrictions, little can be said about the function g(d¢4). One
obvious choice is simply

9(6¢4) = 04, (1.14)
so that Eq. (1.13) becomes

K(r) = kada(r) + KBPB(T). (1.15)
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It must be emphasized that this is simply a choice, and is not derived
from anything basic. One might employ any of an infinite number of other
possibilities, such as

m(6¢A + fa)

2 )
in which the effect of adding a different monomer would only begin to affect
the dielectric constant in second order in the local volume fraction.

9(8¢a) = —fa +sin® (1.16)

1.3. Basic Thermodynamics

Let us recall the basics of thermodynamics. An excellent book on the
subject is that of Callen.? There are two equations for the energy, U, of a
system consisting of N; molecules of type i in a volume 2. The first is the
Euler form

U=TS+ Z/.L,Ni —pQ, (1.17)

where S is the entropy, 7' the temperature, p the pressure, and p; the
chemical potential of the i’th component. The content of this equation is
that the energy is extensive; that is, if one doubles the volume, the number
of molecules of each component, and the entropy of the system, then one
has also doubled the system energy. The second is the statement of the
first law,

dU =TdS +_ pidN; — pdQ. (1.18)

By differentiating the Euler form directly and comparing the result with
the first law, one obtains the Gibbs-Duhem relation

SdT + " Nidp; — Qdp = 0, (1.19)

or, defining the entropy per unit volume, s = S/, and the number densities

dp = sdT + Z pidu;. (1.20)

K3

It is convenient to introduce the energy per unit volume,

uEU/Q:Ts+Zu,~pi—p, (1.21)
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whose differential is found immediately from the first law, Eq. (1.18),
dU = TdS + ) pidN; — pdQ,
i

= (Ts+Y_ pipi —p)dQ + Q(Tds + > _ pidp;),
= udQ + Qdu, (1.22)
to be
du =Tds +»_ pidp;. (1.23)

Because the temperature is more easily controlled than the entropy, one
introduces the Helmholtz free energy via the Legendre transformation

F=U-TS§,
dF = dU — TdS — SdT,
= —SdT + ) pidN; — pdQ (1.24)

7

or the Helmholtz free energy per unit volume

f=u—Ts,
df = du—Tds — sdT,
= —sdT + Y _ widp;, (1.25)

K2

where Eqgs. (1.18) and (1.23) have been used.

When the system, which consists of a polarizable material, is in the
presence of an electric field, the differential contribution to the energy per
unit volume is shown in any standard text, such as Griffiths,? to be E - dD
so that Eq. (1.23) becomes

du(r) =Tds + Y pidp; + E(r) - dD. (1.26)
i
For linear dielectrics, the electrostatic contribution to the energy per unit
volume is
EZ
uelec(r) = £ D) (r) . (127)

One now observes that while the above is useful if one controls the
free charge, changes of which are related to changes in the displacement,
dD, via Eq. (1.7), more often one controls the voltage. Changes in the
voltage are directly related to changes in the electric field, dE. Hence it



January 1, 2008 10:44 World Scientific Review Volume - 9in x 6in yoavchapter

Thermodynamics and the Phase Diagrams of Block Copolymers in Electric Fields 7

is convenient to make a Legendre transformation both with respect to the
entropy, as before, but also with respect to the displacement, to produce
a thermodynamic potential which is a function of temperature and electric
field,

f(r)=u—-Ts—E(r) -D(r), (1.28)
df(r) = —sdT + Y _ pidp; — D(r) - dE. (1.29)

Essentially one is now including the battery in the system, and the last
term is the decrease in internal energy per unit volume of the battery due
to the work it must do to keep the voltage on the plates constant. The net
contribution to the free energy per unit volume of the whole system, which
includes the increase in energy of the material and decrease in energy of
the battery, is

_ KegE?(r)

fetee(r) = — 9

= —7])(")2' B(x), (1.30)
It should be noted that in the case in which the electric and displacement
fields vary over the sample, as they do in the cases of interest here, the free
energy density of Eq. (1.28) must be averaged over the sample. Similarly,
the change in free energy that one wants is the change in free energy, aver-
aged over the sample, when the voltage on the capacitor plates is changed
from V to V 4+dV, or equivalently, when the electric field between the plates
is changed from Ey to Ey + dEy where

dE,(r)
P dr.

where the brackets denote a spatial average and £ is the distance between
the plates of area A which are perpendicular to the z axis. The amount by
which the spatially averaged free energy density changes due to the change
in ﬁeld, dEO is —DodEo with

_av 1
dEy = = =<dE >= Z/ (1.31)

_<DJdE>

Dy = 1.32
0 <dE>’ (3)

so that
df = —sdT' + ) _ pidp; — DodE, (1.33)

where df is the change in the spatially averaged free energy density. I have
assumed that the system is isotropic so that the averaged displacement is in
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the z direction as is Eg. For a system of a single species of block copolymer
the number of which is fixed, as will be considered below, this becomes

df = —sdT — D()dE(]. (134)
The electrostatic contribution to the spatially averaged free energy den-

sity from the linear dielectric can now be written

DyEy

felec = 9 (1.35)

Now let us consider the coexistence of two phases. They must be at the
same temperature T and are between the same capacitor plates and so are
subject to the same Ey. Hence the Helmholtz free energy per unit volume
is the same in each phase. Let one phase be denoted a and the other b.
Consider one point, (T, Eg) on the coexistence curve. The free energies
of the two phases are equal, f,(T, Eo) = fo(T, Eo). If we move along the
coexistence curve to a point (T + dT, Eg + dEy), the free energies of the
two phases are again equal. Thus the changes in free energies

dfa = —8,dT — DO,adE07
dfy = —spdT — Do ydEp,

are equal. If we subtract them, we obtain the Claussius-Clapeyron equation
for the slope of the phase boundary
dE As
0 -_ = (1.36)
dr AD,
where As = sq — 83, and ADg = Do q — Do .
This equation will play an important role in our analysis. It is convenient
to recast it slightly. In the polymer system, temperatures usually enter via
the dimensionless Flory parameter

xN =¢/T, (1.37)

where ¢ is a constant. Further we introduce dimensionless electric and
displacement fields

. €nv 1/2
E,=E, ( 0 ”) , (1.38)

R v 1/2
DO = DO < P > , (139)
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where v, = Nv is the volume per polymer chain. In terms of these dimen-
sionless quantities, the Claussius-Clapeyron equation becomes
dEo _ Up A(S/kB) EO

=2 22 . 1.40
d(xN) xN AD, 2xN (1.40)

1.4. Electric Field Induced Bulk Phase Transition

I want to consider now an interesting situation in which the application
of an external field brings about a phase transition. In particular, I will
consider a block copolymer system in which the architecture is such that
at low temperatures the system is in the body-centered-cubic state. Thus
its free energy is lower, inter alia, than that of the disordered phase or the
hexagonal, cylindrical phase. However, as an electric field is turned on, its
free energy increases relative to that of these two phases and, at some value
of the electric field, a first-order transition occurs. This is less obvious than
one might expect, so let me go through the argument. The contribution to
the free energy from the electric field is that of Eq. (1.35) foa = —DoFEo/2.
As T said above, FEjy is fixed by the voltage, so we have to evaluate Dy in
the various phases. This quantity was defined above and is repeated here
< D(r)dE(r) >
<6E(r)>
< D(r)d0E(r) >

<D(r) >+ W— <D(r) >|, (1.42)

where §E(r) is a small electric field whose spatial average is a small change
in voltage divided by the distance between plates. In the disordered phase,
this evaluation is simple because there are no correlations. Thus the square
bracket above vanishes and

Do = (1.41)

Dy, 4is = < D(r) >= €9 < K(r)E(r) >,
=€ < K(r) >< E(r) >,
= eokoEo, (1.43)

where kg is the spatial average of the dielectric constant. In an hexagonal
phase oriented with the normals to the cylinder axes perpendicular to the
field, the displacement Dy takes the same value. This follows from the fact
that the electric field must be uniform inside and outside the cylinders,
and in fact, takes the same value Ey. If one thinks of a sharp boundary
between inside and outside the cylinders, then the basic equation VxE = 0
ensures that the components of the fields on either side of this boundary
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are the same, in accord with the above. As the field is constant, there is no
correlation between the displacement and the electric field or the dielectric
constant and the field, so one finds that

Dy, eyt = Do,gis = €okoEo. (1.44)

The above argument also applies to a lamellar phase in which the lamellae
are aligned so that the normals to the planes are perpendicular to the field.
For an arbitrary arrangement, or for the bcc arrangement in particular, the
average value of the displacement Dy differs from the above value as the
correlations, the square bracket in Eq. (1.42), are non-zero.

That Dy should, in general be smaller, than its value in the disordered,
hexagonal, and lamellar phases can be understood as follows. In asking
for an average of the displacement, we are asking for a average of the
dielectric constant. In a conductor, all mobile charges move to the surface
of the conductor. There is maximum separation of charge, and the dielectric
constant is infinite. If the media were not polarizable at all, there would be
no separation of charge so that the electric susceptibility would vanish and
the dielectric constant would be unity. Polarizable materials are between
these two extremes. In the lamellar and hexagonal phases, the separation
of the polarization charge is as large as it can be, appearing on the surfaces
of the dielectric facing the capacitor plates, and the dielectric constant is
ko > 1. In the bce phase, much of the polarization charge is confined to the
surfaces of the spheres so that the separation of charge is reduced. Hence
one expects that the dielectric constant is less than that of the lamellar
and hexagonal phases. The conclusion of this reasoning is easily verified in
perturbation theory.*

A simple example of the reduction brought about when the polarization
charge can not separate maximally is provided by the case of a lamellar
phase where there equal amounts of monomers A and B.5 As noted above, if
the lamellae are oriented so that the normals to the planes are perpendicular
to the field, then the electric field is the same in all layers. There are no
correlations so that Dy =< D(r) > and takes the maximum value

KA+ KB

DO,paru,llel = €0

where I have assumed a strong segregation limit for simplicity. If the lamel-
lae are oriented with their normals parallel to the field, then, it follows from
Gauss’ law in the absence of free charge that the displacement is the same
in each layer, so again there are no spatial correlations and Dy =< D(r) >.
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The electric fields do differ, of course, E4 = D/k4, Ep = D/kp. Then the
average electric field,

D 1 1
<E>:E0:—<—+—>, (1.46)
260 \ kA KB
so that
2KAK
DO,series = ﬁEOEO; (147)

which is easily seen to be less than the maximum value Dg porauzer of Eq.
(1.45). The conclusion of this argument is that the average displacement in
the bee phase is less than that in either the disordered or hexagonal phases.
Hence the dielectric contribution to the free energy, fo = —DoEg/2, will
not be such a large negative number, and the difference of free energies be-
tween these phases will decrease. For a sufficiently strong field, a transition
will occur, as noted earlier.

We can now determine the general nature of the phase diagram of this
system in the electric field, temperature plane as follows. We have chosen
an architecture such that for £ = 0 and T = 0, the bcc phase is the stable
one. As the temperature is increased at zero field, the system undergoes
a first-order transition to the disordered phase at some temperature, or
equivalently, some value of the Flory temperature, xN(E = 0). At zero
electric field, the difference in displacements between the bee and disordered
phases is zero, of course, but the difference in their entropies is non-zero.
The Claussius-Clapeyron Eq. (1.40) tells us that the slope of the boundary
between these two phases in the E, T plane, dEj /d(xN), becomes infinite
as the E = 0 axis is approached. For non-zero electric fields, there is a
non-zero difference in displacement fields between the two phases. Further
we have argued above that the value of displacement field is larger in the
disordered phase than in the bce phase. The entropy density is also larger
in the disordered phase than in the bce phase. Hence As and ADq are of
the same sign. Therefore the Claussius-Clapeyron Eq. (1.40) says that the
slope of the boundary, dEy/d(xN), will be positive.

The behavior of the boundary between bec and hexagonal phases is also
easily understood. At zero temperature and zero field, the bce phase was
chosen to be the phase of lowest energy. As the electric field increases,
the system eventually make a first-order transition to the hexagonal phase.
The slope of the boundary between these phases is zero, from Eq. (1.40),
as 1/xN = 0. To determine the slope of this boundary at non-zero temper-
atures, we need to know the sign of the difference of entropy densities. We
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recall from mean field theory that, on lowering the temperature, the system
passes from the disordered phase to the bce phase to the hexagonal phase.
Hence the entropy of the bee phase is greater than that of the hexagonal
phase. But the displacement is less in the bce phase than in the hexagonal
phase. Thus the signs of As and AD, are opposite, and Eq. (1.40) predicts
a negative slope.

The range of temperature over which the bcc is stable decreases as the
electric field increases, and finally vanishes at a triple point, at which the
disordered, bce, and hexagonal phases coexist. For larger fields, the disor-
dered and hexagonal phases can coexist. As the entropy densities of these
two phases differ but their electric displacements do not, the Claussius-
Clapeyron Eq. (1.40) tells us that the slope of the boundary between them
is infinite.

We now know what the phase diagram should look like in the electric
field, temperature plane. The rest is simply calculation. An example of the
result of such a calculation® for the architecture f4 = 0.1 is shown in Fig.
1.1. Because application of the electric field lowers the Im3m symmetry of
the bee phase to R3m, the region of this phase is so labeled in the figure.

1.5. Basic Surface Thermodynamics

We now consider a system of volume 2 which is bounded by a surface
of area A. For the moment, the electric field is zero. It is convenient to
separate the total energy, Uy, entropy, Siot, etc. into bulk and surface
pieces. One does this by defining the bulk densities

. Ut
=1 1.4
w = Jim =g (149
stIM1&“ (1.49)
Q=0 ’
and surface excess densities
o Ugor = Quy
=g (1.5
_ 1 Sttt —Qsyp
5= lim = (1.51)
Then the total energy, entropy, and so on have the form
Uior = Qup + Aug + ...+, (152)

=Up+Us + ..., (1.53)
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where the terms not written out correspond to edge terms, point terms,
etc. which will be ignored.

The first law for the total system, which in the absence of the surface
had been given by Eq. (1.18), now reads

AUsor = TdSyor + Y, pidNisor — pdS2 + dA, (1.54)
where ¢ is the surface tension. If we write
dUtot = dUb + dUS, (155)
use
dU, = TdSy + Y _ pidNi — pdQ, (1.56)

(3

and decompose Sy and Nj op as in Eq. (1.53), we obtain

dU, =TdS, + > puidNi s + odA. (1.57)

As the excess surface free energy is extensive,
Uy =TSs+ Y _ pilNis+ oA (1.58)
i

Just as in the bulk case it was convenient to define an energy per unit
volume, here we define an excess energy per unit area

Us
s = V) ].
Uy = (1.59)
_ Ss Ni,s
=T+ ;uz =t (1.60)
= Tss + Z HiTi, s + 0, (161)
i
whose differential is easily found, from Eq. (1.57), to be
dugs = T'dss + Zuidni,s. (1.62)
i

In the presence of an electric field, the system develops a displacement
field Dyt and we define a bulk average displacement field, < Dy > and
surface displacement field D, according to

<Dy >= lim D@
b T Q500 Q

: (1.63)

D,(t) = / (Dyor(t, 2)— < Dy >)dz, (1.64)
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where t is the position vector in the plane of the film.
The differential of the surface excess energy now contains a contribution
from the electrostatic interactions

dus = Tds, + » _ pidni s + E(t) - dD,. (1.65)

2

We again introduce a Legendre transform

9s(t) = us — 55T — Z pini,s — E(t) - Dy(t), (1.66)
=o —E(t)- D:(t), (1.67)
dgs(t) = —s,dT — > n; sdp; — Dy(t) - dE. (1.68)

As in the bulk case, we must average this free energy over the film to
produce gs =< gs(t) > with a differential

dgs = —s,dT — Zni,sd,ui — D, odEy, (1.69)
B

where D, ¢ is an average over the film completely analogous to its definition

in bulk, Eq. (1.41),

< D(s)éE(s) >
<6E(s) > '’

where now the average is over the position vector s. The field D; g is the

surface excess displacement.
For a one component system, the above differential reduces to

Ds,O = (170)

dgs = —55dT — nsdp — D 0dEeqy. (1.71)

From this, one again derives a Claussius-Clapeyron equation by noting that
as one moves along a boundary of coexistence between phases a and b, the
change in free energy, g, must be the same in either phase. Hence if one
plots the phase diagram at fixed temperature in the electric field, chemical
potential plane, the slope of the boundary is given by

dE eyt _ Ang
d,U, B ADS,O‘

(1.72)

1.6. Electric Field Induced Surface Phase Transition

The system of interest is one of technical application. One makes a cylin-
drical phase of block copolymer. Because the substrate invariably prefers
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one block over the other, the cylinders will lie flat, parallel to the sub-
strate. For technological applications, one would like the cylinders to be
aligned perpendicular to the substrate. One way to do this is to apply a
field perpendicular to the substrate. As we saw earlier, the electrostatic
contribution to the free energy will be larger, negative, if the cylinder axes
are parallel to the field. Eventually this electrostatic energy will outweigh
any surface contribution to the system and a surface transition will take
place. In fact this simple argument makes a prediction: because the gain
in electrostatic free energy if the cylinders align is on the order of E2dyA,
with dy and A the film thickness and area respectively, and because the
surface energy gained when the cylinders lie flat is a constant independent
of the field or thickness, a transition should occur when E2dy A attains some
critical, constant value. Thus the value of the electric field at the transition
is expected to vary as

B, ~ dl%' (1.73)
0

We consider the phase diagram at constant temperature in the field,
chemical potential plane. As the thickness of the film is expected to be a
monotonic function of the chemical potential, we can consider the phase
diagram equivalently in the field, thickness plane. At zero electric field,
as one increases the film thickness, one encounters surface phases corre-
sponding to m layers of cylinders lying parallel to the substrate within the
film, with m increasing by an integer as one passes from one phase to the
next. In between these surface phases there is one in which the cylinders
are perpendicular to the substrate.” It is clear that as one turns on the
electric field, the phase space of the perpendicular phase increases, and
that of the parallel phases decreases. Furthermore, the displacement field
D, is expected, by identical arguments to those given above for the bulk
case, to be less than that in the perpendicular phase. Hence as one in-
creases the thickness, D, will decrease on going from the perpendicular
phase into one of the parallel phases, and will increase as the parallel phase
is left and the perpendicular phase re-entered. As the excess surface den-
sity, ns increases monotonically as the chemical potential or the thickness
is increased, the Claussius-Clapeyron Eq. (1.72) tells us that the slope of
the boundary between a parallel phase and the surrounding perpendicular
phase will be positive as one enters the parallel phase and negative as one
exits it. Thus one expects a phase diagram to appear as a series of wickets,
with the region inside each wicket labeled by the number of parallel layers
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in it. Furthermore, these wickets must approach the £ = 0 axis perpen-
dicularly. This follows from the fact that, at £ = 0, there is no difference
in the displacement of the two phases, while there is a non-zero difference
in surface densities. Thus the Claussius-Clapeyron equation predicts that
the slopes of the phase boundaries are infinite. Finally, Eq. (1.73) predicts
that the height of these wickets will decrease with thickness. Again, all that
remains is a calculation, but the form of the results is anticipated. Such a
result is shown in Fig. 1.2. The inset shows that the peaks of the wickets
do indeed decrease as 1/ d[l)/ 2,

Thus far we have considered phases in which cylinders are aligned ei-
ther parallel or perpendicular to the substrate. There is one more phase
to consider. If the interaction with the substrate is strong, then one would
expect that any cylinders that were perpendicular to the substrate in most
of the film would be cut off before they reached the substrate itself so that
the latter could be covered with the monomer that it preferred. Such a
phase is called an intermediate phase and was discussed in the context of
films of lamellar-forming diblocks by Pereira and Williams® and Tsori and
Andelman.® A phase diagram for such a system is shown in Fig. 1.3. One
anticipates that the slope of the boundary between intermediate and per-
pendicular phases is negative because the effect of surface fields becomes
less important as the film becomes thicker. One also knows that the dis-
placement is smaller in the intermediate phase than in the perpendicular
phase because the cylinders are cut off and there is less separation of charge.
The negative slope of the phase boundary and the Claussius-Clapeyron Eq.
(1.72) tells me that as the perpendicular phase has the larger displacement,
it must also have the larger thickness. That is, the very narrow coexis-
tence region in Fig. 1.3 between perpendicular and intermediate phases,
one whose finite thickness is too small to be seen in the figure, has tie lines
which have a positive slope. This is something which would not have oc-
curred to me, and is an example in which information that one can intuit
can be combined with thermodynamic relations to obtain answers to ques-
tions one would not even have thought to ask. That is very good indeed!

Acknowledgment

I wish to thank David Andelman for introducing me to these problems,
and for many years of very enjoyable collaboration. Many thanks are owed
to my former student Chin-Yet Lin for his spirited and successful pursuit
of these problems. Lastly, the support of the U.S.-Israel Binational Sci-



January 1, 2008 10:44 World Scientific Review Volume - 9in x 6in yoavchapter

Thermodynamics and the Phase Diagrams of Block Copolymers in Electric Fields 17

ence Foundation (BSF) under Grant 287/02 and of the National Science
Foundation under Grant No. DMR-0503752 is gratefully acknowledged.



January 1, 2008 10:44

18
3
2
o
(i
1
0
Fig. 1.1.

World Scientific Review Volume - 9in x 6in

M. Schick

Dis
Hexagonal

Calculated phase diagram of a diblock copolymer in the presence of an ex-
ternal electric field. Tt is shown as a function of the dimensionless electric field Fy and
the dimensionless Flory parameter x N assumed to be inversely proportional to temper-
ature. The fraction of A block in the copolymer is 0.1. For details, see Lin, Schick, and
Andelman.
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Fig. 1.2. Calculated surface phase diagram of a diblock copolymer adsorbed on a surface
in the presence of an external electric field. It is shown at constant temperature as a
function of the dimensionless electric field E‘o and the dimensionless thickness do/N 1/24
with a the identical Kuhn lengths of the A and B components. Parallel phases are
denoted by a roman numeral corresponding to the number of cylinders in the film. The
perpendicular phase is marked “Perp”. For details, see Lin and Schick.?
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Fig. 1.3. Phase diagram as a function of dimensionless electric field Eo and thickness
do/N'/?q for the same system as that in Fig. 1.2 but with a stronger surface field. The
new intermediate phase is labeled “Intermed.” For details, see Lin and Schick.?
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