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ABSTRACT: I consider a model of a bilayer characterized by two
order parameters, one in each leaf. That of the inner leaf represents the
difference in mole fractions of lipids with large spontaneous curvature,
phosphatidylethanolamine (PE), and those with small spontaneous
curvatures, phosphatidylcholine (PC) and phosphatidylserine (PS).
Similarly, the order parameter in the outer leaf represents the
difference in mole fractions of lipids with small spontaneous curvature,
PC, and large curvature, sphingomyelin (SM). Each order parameter is
coupled to the variations in the height of the membrane that is
assumed to be of constant thickness. The couplings are of different
strength. I show that, with reasonable parameters, a microemulsion is
formed in each leaf, and that the two microemulsions are strongly
coupled. Their characteristic size of domains is found to be on the
order of 75 nm. In this picture, rafts consist of regions of SM in the
outer leaf and PC and PS in the inner leaf, floating in a sea of PC in the outer leaf and PE in the inner leaf. I argue that
microemulsions have been observed, but not identified as such, in model systems.

■ INTRODUCTION
According to the raft hypothesis,1,2 the plasma membrane is
heterogeneous, characterized by dynamic domains of the order
of 100 nm that serve as platforms for proteins, enabling them to
aggregate and thereby function efficiently. These platforms are
thought to be important to many cellular processes.3 The
physical basis for the formation of these inhomogeneities is,
however, unclear.
A common assumption is that such domains are the result of

phase separation.4 One of the two coexisting phases is thought
to be rich in saturated lipids and cholesterol. It is denoted
“liquid ordered” (lo). The other phase is assumed to be rich in
unsaturated lipids, and is denoted “liquid disordered” (ld).5

This interpretation is supported by the fact that model
membranes, consisting of cholesterol and relatively equal
amounts of saturated and unsaturated lipids, do undergo
phase separation.6 Applied to the plasma membrane, however,
this assumption is fraught with difficulties. If there were phase
separation, the domains would be expected to coarsen, as they
do in model membranes, until only two macroscopic regions
remained. Further, phase separation has never been observed in
the mammalian plasma membrane. This absence is easily
understood. The phase separation observed in model

membranes is driven by the energetic cost of packing together
the relatively straight saturated acyl chains with unsaturated
chains whose cis double bond causes a kink in them. The outer
leaflet of the plasma membrane is characterized by relatively
equal amounts of saturated lipids, mostly sphingomyelin, and
unsaturated ones. The inner leaflet, however, contains on the
order of 0.05 mole fraction of sphingomyelin,7 the rest being
unsaturated lipids. Hence, phase separation will not occur in
the inner leaf8 and there will be no liquid-ordered phase in it.9

Consequently, there can be no raft that spans the membrane in
this picture.
A related proposal for the formation of rafts is that the

inhomogeneities are critical fluctuations associated with a lo, ld
miscibility transition that takes place at temperatures lower than
biological ones.10 This argument is bolstered by the observation
of phase separation in cell-derived giant plasma membrane
vesicles.11 However, the hypothesis shares the same difficulty
with the one above, that there is so little saturated lipid in the
inner leaflet of the plasma membrane that there can be no
functional raft that spans both leaves.
A completely different idea is that the inhomogeneities are

the manifestation of a microemulsion in the two-dimensional
plasma membrane. Microemulsions in three dimensions are, of
course, well-known, and well-understood due to theoretical
work by Widom12 and others.13 They are structured fluids
characterized not only by a correlation length but also by an
additional length set by the structure. A simple example is a
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system with water as a majority component, and oil as a
minority component, to which a surfactant is added. Such a
system can form a microemulsion consisting of droplets of oil
in water. The size of the droplets is determined by the total
volume of oil enclosed within them and the total area of the
droplets which can be covered by the surfactant in the system.
The distance between droplets is simply related to their size
and the volume fraction of oil. The droplets are dynamic,
responding easily to thermal fluctuations, because their surface
free energy per unit area is reduced to a very small value by the
presence of the surfactant. That the microemulsion is
structured is detected in scattering experiments.
Because a microemulsion is characterized by dynamic

domains of a well-determined size, it is natural to ask whether
one could form in the plasma membrane and undergird the
hypothesis of rafts. Presumably, a microemulsion could form in
two dimensions if there were regions with two different
properties, and if the free energy of the boundary between
regions were small compared to thermal energies. The
questions then arise as to what is the nature of the regions
and what is the mechanism driving down the boundary energy.
One suggestion was that the regions were, again, those rich in
saturated lipids on the one hand and those rich in unsaturated
lipids on the other. Further, it was posited that the unsaturated
lipids could reduce the energy per unit length between regions
by orienting their tails at the boundary.14−16 Once again, the
paucity of saturated lipids in the inner leaf of the plasma
membrane vitiates the application of this idea to it.
An alternate hypothesis that can also lead to a microemulsion

is that the two regions are characterized by lipids of rather
different spontaneous curvature. The mechanism that drives
down the energy between them is the coupling of lipid
concentration and membrane shape, i.e., the reduction of the
bending energy of the membrane brought about by a response
of the local membrane curvature to the local spontaneous
curvature of the lipids that comprise it.17,18 This scenario was
considered by Liu et al.19 They estimated that, to account for a
raft of 100 nm, the difference in spontaneous curvature would
have to be 2 orders of magnitude larger than the average
spontaneous curvature estimated from experiment. Therefore,
they concluded this mechanism could not be responsible for
the formation of rafts. I later argued,20 and will argue again
below, that this conclusion is too pessimistic. It was then
noted21,22 that phophatidylethanolamine (PE), which has a
rather large spontaneous curvature, is a major presence in the
inner leaf of the plasma membrane, about 0.5 mole fraction of
phospholipids. As the other major components, phosphatidyl-
choline (PC) and phosphatidylserine (PS), both have small
spontaneous curvatures, one might expect a large coupling
between these lipids and height variations of the membrane. If
this were strong enough to bring about a microemulsion in the
inner leaf of the plasma membrane, then a major problem in
previous theories, i.e., the absence of a raft in the inner leaf,
would have been overcome. How this raft in the inner leaflet
would propagate to the outer leaf was addressed only by the
incorporation of an intrinsic, unspecified coupling between
leaves.
In this paper, I note that the spontaneous curvature of

sphingomyelin (SM) is also rather large compared to the other
major component of the outer leaf, PC. Hence, the outer leaf
would also be expected to couple strongly to variations in the
membrane height. Sphingomyelin makes up about 0.4 mole
fraction of the phospholipids in the outer leaf.7 Thus, an

attractive feature of a theory that posits that rafts are the result
of a microemulsion, one brought about by the coupling of
variations of lipid composition and membrane height, is that
both leaves have significant differences in lipid spontaneous
curvatures. As a consequence, a raft is expected in both leaves.
In this picture, illustrated schematically in Figure 1, the raft

consists of SM in the outer leaf and, opposite it in the inner
leaf, phosphatidylcholine (PC) and phosphatidylserine (PS).
The other region, the “sea” in which the raft floats, is comprised
of PC in the outer leaf and, opposite it in the inner leaf, PE. I
shall also show that the rafts in the inner and outer leaves are
strongly correlated, as can already be intuited from the figure,
so that there is no need to posit an intrinsic coupling between
them.

■ THEORY
I follow the earlier formulations of refs 21 and 23 with
exceptions to be noted explicitly. I define an order parameter
ϕ(r) in the inner leaf of the bilayer which represents the
difference in local mole fractions in that leaf between PE on the
one hand and PC and PS on the other. Similarly, define ψ(r) as
the difference in local mole fraction in the outer leaf between
PC and SM. The free energy of a planar bilayer can then be
written in the usual form23
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Here n is the areal density of lipids, kB is Boltzmann’s constant,
and T is the temperature. Also, Jϕ < Jψ are interaction energies,
with their relative magnitudes reflecting the expectation that
any miscibility transition temperature in the outer leaf would be
greater than one in the inner leaf. No explicit coupling between
order parameters is assumed.
The curvature free energy of the bilayer is taken to be
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2
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Figure 1. Regions rich in SM in the outer leaf and of PC and
negatively charged PS in the inner leaf floating in a sea of PC in the
outer leaflet and PE in the inner leaf. The PC in the inner leaf is not
depicted.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.7b08890
J. Phys. Chem. B XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.jpcb.7b08890


where h(r) is the height of the bilayer from some reference

plane and κ and γ are the bilayer bending modulus and surface

tension, respectively.
Finally, I assume that the difference in compositions in the

inner leaf couples to the membrane curvature with a coupling

strength Γϕ. Similarly, the difference in compositions in the

outer leaflet couples to the curvature with strength Γψ. I assume

implicitly that the membrane is of constant thickness so that

the curvatures of the two leaves are the same locally.

∫ϕ ψ ϕ ψ= − Γ + Γ ∇ϕ ψF h r h[ , , ] d ( )coupl
2 2

(4)

Because the height variable h(r) enters only quadratically into

the total free energy Ftot[ϕ, ψ, h] = Fplanar[ϕ, ψ] + Fcurv[h] +

Fcoupl[ϕ, ψ, h], it can easily be eliminated. This is conveniently

done in Fourier space in which
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where A is the area of the bilayer, and similarly for ψ(k) and

h(k), with ϕ̅ and ψ̅ being the average values of ϕ(r) and ψ(r)
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to second order in small quantities, one obtains
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The value of h(k) which minimizes Ftot is found to be
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Substituting this into eq 8, one obtains
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The structure factors of interest follow immediately
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where the brackets denote an ensemble average.
As can be seen from m12(k), the coefficient in the free energy

of ϕ(−k)ψ(k) and ψ(−k)ϕ(k), there is now a coupling
between the order parameters of the inner and outer leaves. It
arises because the order parameter of the inner leaf is coupled
to the membrane curvature with a strength proportional to Γϕ,
and the order parameter of the outer leaf is coupled to the same
curvature with a strength proportional to Γψ. Thus, the
membrane couples the two order parameters with a wave-
number-dependent coupling

γ κ γ
Λ =

Γ Γ
+

ϕ ψk
k

k
( )

1 /c

2

2 (12)

Its strength will be obtained below.

■ RESULTS
I shall now estimate the parameters which enter the structure
factors. First, I consider the strength of the coupling between
composition and membrane to be17,19

κ δ κ δΓ = ≈ϕ ϕ ϕ ϕH H
2 (13)

κ δ κ δΓ = ≈ψ ψ ψ ψH H
2 (14)

where κψ and κϕ are the bending modulii of the monolayers and
which, for the purpose of estimation, I approximate as κ/2, one-
half that of the bilayer. As the order parameter ψ was defined as
the difference of mole fractions in the outer leaflet of 1-
palmitoyl, 2-oleoylphosphatidylcholine (POPC) and SM, it is
reasonable to take δHψ as the difference of the spontaneous
curvatures of the lipids weighted by their mole fractions. A
similar statement applies to δHϕ

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.7b08890
J. Phys. Chem. B XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/acs.jpcb.7b08890


δ = −ψH H y H y0,PC,out PC,out 0,SM SM (15)

δ = − −ϕH H y H y H y0,PE PE 0,PS PS 0,PC,in PC,in (16)

where yPC,out is the POPC mole fraction of all phospholipids in
the outer leaf and H0,PC,out is its spontaneous curvature. Note
that the spontaneous curvature of a lipid with a small
headgroup is negative if it is on the outer leaf and is positive
if it is on the inner leaf. Similarly, the spontaneous curvature of
POPC in the outer leaf is of opposite sign from that in the
inner leaf. The spontaneous curvatures, in nm−1, are as
follows:24,25 H0,PC,out = 0.022, H0,SM = −0.134, H0,PE = 0.316,
H0,PS = 0.07, H0,PC,in = −0.022. (The spontaneous curvature
H0,PS is that for DOPS.

25) The mole fractions are7 yPC,out = 0.4,
ySM = 0.4, yPS = 0.3, yPE = 0.5, and yPC,in = 0.15. With these
values, eqs 15 and 16 yield δHψ = 0.062 nm−1 and δHϕ = 0.14
nm−1. For the bilayer bending modulus, I take26 κ = 44kBT =
181 pN nm. Then, from eqs 13 and 14, I obtain Γϕ = 12.7 pN
and Γψ = 5.6 pN. For the energies bϕ and bψ, I take them to be
equal to a value of b = 5kBT = 20 pN nm,27 and for the surface
tension, I use28 γ = 0.02 pN/nm. It should be noted that this
value includes the effect of the cytoskeleton on the tension. The
dimensionless couplings are then

γ

Γ
=ϕ

ϕb( )
19.91/2

(17)

γ

Γ
=ψ

ψb( )
8.91/2

(18)

Lastly, I need aϕ and aψ which are given in eqs 6 and 7. The
quantity 2Jψ is equal to the critical miscibility temperature of
the outer leaf, which I take to be 300 K. This is reasonable
judging from critical temperatures of symmetric bilayers.6 For
2Jϕ, the miscibility temperature of the inner leaf, I take 200 K.21

From the mole fractions given above, I obtain for the average
order parameters ψ̅ = 0 and ϕ̅ = 0.05. With a density of lipids of
n = 2 nm−2 and a temperature of T = 310 K, I obtain aψ = 0.13
pN/nm and aϕ = 1.48 pN/nm.
At the above temperature and with these parameters, I find

that the fluid phase is stable. The normalized structure function
S11(k)/S11(0) of the inner-leaf order parameter, S22(k)/S22(0)
of the outer-leaf order parameter, and the cross correlation
S12(k)/S11(0) are shown in Figures 2, 3, and 4, respectively.
They are plotted as a function of the dimensionless wave vector
q ≡ k(κ/γ)1/2. They all display a peak at k(κ/γ)1/2 ≈ 4 which
corresponds to a wavelength λ = 2π/k of 150 nm. These
response functions show that this fluid system is characterized
by structure, and is most susceptible to perturbations with a
nonzero wave vector. Thus, it is a microemulsion.
The order-parameter order-parameter correlation functions

⟨ϕ(r)ϕ(0)⟩ − (ϕ̅)2 and ⟨ψ(r)ψ(0)⟩ − (ψ̅)2 are simply the two-
dimensional Fourier transforms of S11(k) and S22(k). In general,
they behave at large distances like

ξ
π λ

−r
r

r
exp( / )

cos(2 / )2 (19)

and are characterized by two lengths: the correlation length ξ
and the wavelength λ. If ξ is considerably larger than λ, then
one would see variations in the composition in both leaves of
size on the order of λ/2 ≈ 75 nm. If the correlation length is
much smaller than λ, such oscillations would not be observed in
a lipid-only system. (The correlation length is minimum at the

disorder line.29) Even if ξ < λ, the peaks in the structure
functions at nonzero wave vector would still reveal the
microemulsion nature of the fluid.

Figure 2. Structure function S11(q)/S11(0) plotted as a function of the
dimensionless wave vector q = (κ/γ)1/2k.

Figure 3. Structure function S22(q)/S22(0) plotted as a function of the
dimensionless wave vector q = (κ/γ)1/2k.

Figure 4. Structure function S12(q)/S11(0) plotted as a function of the
dimensionless wave vector q = (κ/γ)1/2k.
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The pair correlation functions g11(r) and g22(r) are directly
proportional to the two-dimensional Fourier transforms of
S11(k) and S22(k). From the structure factors given above for
the system under discussion, I obtain the transforms shown in
Figures 5 and 6. One sees from these transforms that each leaf

is a microemulsion with a wavelength λ ≈ 100 nm and a
correlation length which is longer than that so that oscillations
are clearly seen. I note that λ/2 ≈ 50 nm obtained from the
correlation function is smaller than that estimated solely from
the position of the peak in the structure function, 75 nm.
However, again, this size is certainly that of the putative size of
rafts.
I now turn to the strength of the coupling between

inhomogeneous regions in the two leaves which, from eq 12,
can be written

κ
Λ =

Γ Γ
+

ϕ ψ q
q1c

2

2
(20)

with q = k(κ/γ)1/2. From Figures 2, 3, and 4, the value of the
dimensionless wave vector q at the peak of the structure factors
is about 4, so that the factor q2/(1 + q2) is almost unity. Using

this and the forms for Γϕ and Γψ from eqs 13 and 14, I obtain
the expression

κ δ κ δ κδ δ
Λ ≈ ≈ϕ ϕ ψ ψ ϕ ψ

⎡
⎣
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which shows the coupling between the order parameters of the
two leaves as the geometric mean of the couplings of each order
parameter to its respective leaf. Evaluating this coupling with
the parameters above, I obtain Λc ≈ 0.39 pN/nm = 0.09kBT/
nm2. This is almost an order of magnitude larger than the
coupling between domains calculated from models based on
phase separation,30,31 and measured in symmetric model
membranes that do undergo phase separation.32

■ DISCUSSION

I have shown that, by considering rafts in the plasma membrane
to be the manifestation of a microemulsion brought about by
the coupling of variations in composition and membrane
height, one solves several problems that confront an
explanation based on phase separation. First, and perhaps
most important, is that rafts in both leaves occur quite naturally
because both leaves contain lipids whose spontaneous
curvatures differ considerably. This is in contrast to the paucity
of lipids in the inner leaf of the plasma membrane that are to
bring about phase separation. Thus, rather than thinking of
“rafts” and “sea” as regions of lo and ld, or saturated and
unsaturated lipids, I suggest that one should rather think of
regions of lipids with large spontaneous curvature, SM on the
outer leaf, PE on the inner leaf, and other regions of lipids with
small spontaneous curvature, PC on the outer leaf, PC and PS
on the inner leaf. Second, in contrast to scenarios involving
phase separation, it is obvious here how the rafts in the two
leaves are coupled. Further, I have shown that they are coupled
more strongly than in phase-separated model membranes.
Therefore, the model makes a testable prediction that regions
rich in PE in the inner leaf of the plasma membrane should be
anticorrelated with regions rich in SM in the outer leaf. Such
correlations in the plasma membrane have not been probed as
of yet. Third, and again in contrast to scenarios based on phase
separation, the microemulsion picture provides a natural size
for the inhomogeneities. It is not difficult to see from the form
of the structure factors of eq 11 that, if the two leaves were not
coupled, then the structure factors S11 and S22 would have their
maxima at dimensionless wave vectors

γ

γ

* ≈
Γ

* ≈
Γ

ϕ
ϕ

ϕ

ψ
ψ

ψ

⎛
⎝
⎜⎜

⎞
⎠
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⎞
⎠
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q
b

q
b

2 1/4

2 1/4

(22)

From eqs 17 and 18, one obtains qϕ* ≈ 4.5 and qψ* ≈ 3.0. Given
that the coupling between leaves is nonzero, the maximum in
the structure functions will be shifted, but as seen from Figures
2, 3, and 4, the value at which the maxima in the structure
functions occur is q* ≈ 4, comparable to the geometric mean
(qϕ*qψ*)

1/2. The value q* = 4 implies a natural size of the
inhomogeneities

Figure 5. Two-dimensional Fourier transform, ft11(r), of S11(k)/S11(0)
shown in Figure 2, plotted here as a function of r, the distance from
the origin in units of (κ/γ)1/2 = 95 nm. It is proportional to the pair
correlation function g11(r).

Figure 6. Two-dimensional Fourier transform, ft22(r), of S22(k)/S22(0)
shown in Figure 3, plotted here as a function of r, the distance from
the origin in units of (κ/γ)1/2 = 95 nm. It is proportional to the pair
correlation function g22(r).
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λ π κ
γ

* =
*

=
⎛
⎝⎜

⎞
⎠⎟ q2

1
75 nm

1/2

(23)

which is somewhat larger than that obtained from the Fourier
transforms themselves, about 50 nm. I utilize eqs 13 and 14 and
write κϕ = (κ + δκ)/2, κψ = (κ − δκ)/2 to express the couplings
Γϕ = δHϕκϕ, Γψ = δHψκψ. I also take bψ = bϕ = b. Then, the
natural length scale can be written

λ π
γδ δ

* =
ψ ϕ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟b

H H2
2

1/4

(24)

with corrections of order (δκ/κ)2. It is interesting that the
bending modulus has dropped out of this length scale even
though it is clearly of importance both for the length scale of
the membrane and for the strength of the coupling of the
compositions to the membrane. Liu et al.19 arrived at essentially
the above result for the characteristic wave vector k* = q*(σ/
κ)1/2 and estimated a raft size as 2π/k*, rather than half this,
and took the spontaneous curvature to be that of the average
spontaneous curvature of a vesicle. They estimated this from
experiment to be of order δH ≈ 10−3/nm. A value of the
surface tension an order of magnitude smaller than that given
above was utilized. They found, therefore, that the typical size,
2π/k*, was orders of magnitude larger than 100 nm and
therefore concluded that this mechanism was not at work in the
plasma membrane. If one uses instead the larger tension of ref
28 that includes the effect of the cytoskeleton, and takes the
characteristic size to be π/k*, then one obtains, even with so
small a spontaneous curvature of δH = 10−3/nm, a character-
istic size of 500 nm. Given that using the position of the peak in
the structure function overestimates the characteristic wave-
length, and given uncertainties in the parameters and the
calculation, such as the lack of the effect of fluctuations,33 this
value does not seem to provide a definite negative result for the
applicability of the mechanism. More importantly, although the
average spontaneous curvature of the vesicle might be on the
order of inverse microns, the local spontaneous curvature can

certainly be larger, as used above, and produce undulations in
the membrane about its average shape.34,35

Lastly, I turn to the question of whether microemulsions
have ever been observed in experiment on membranes. I will
now argue that they have been observed but never identified as
such. It is useful to recall that, if the coupling between
composition and curvature were sufficiently strong, the system
would exhibit modulated phases, such as stripes of the two
different regions, or a hexagonal array of one domain embedded
in the other.23,34,35 These phases are characterized by weak
long-range order in which the correlation functions decay, not
exponentially with distance as they do in a liquid but rather as
power laws.33 Microemulsions can be thought of as the phase
which results when these modulated phases melt. A few
examples of such melted modulated phases have appeared in
the literature. Some of the clearest examples appear in
symmetric membranes comprised of a quaternary mixture of
dioleoylphosphatidylcholine (DOPC), distearoylphosphatidyl-
choline (DSPC), POPC, and cholesterol.36,37 In particular,
Figure 2B, D, and E of ref 36 and Figures 2F, G, J, and K and 4
of ref 37 are clear examples of microemulsions. That from ref
36 is reproduced here as Figure 7. They are identified in the
references, however, as modulated phases and to be within a
two-phase region. I believe that both statements are incorrect,
and that they are examples of microemulsions; disordered
structured fluids that are single phases. Other examples appear
in symmetric GUVs of diphytanoylphosphatidylcholine,
dipalmitoylphosphatidylcholine (DPPC), and cholesterol,
shown here in Figure 8, and those of DOPC, DPPC,
cholesterol, and fatty acids, Figure 2b of ref 38.
One observes in several of these micrographs that the

morphologies indicate the energy per unit length between
regions is very small. This is, again, characteristic of a
microemulsion in two dimensions in which the energy per
unit length between regions is of the order of a thermal energy
per characteristic wavelength, λ*. In contrast, the line tension
between coexisting phases is of the order of a thermal energy
per a few molecular lengths.

Figure 7. GUV patterns from four-component mixtures of DSPC, POPC, DOPC, and cholesterol as POPC is increasingly replaced by DOPC in
going from A to F. I believe B, D, and E are microemulsions. Figure reproduced with permission from ref 36.
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■ CONCLUSIONS
I believe that microemulsions have been observed in symmetric
model membranes. It would be of interest to determine
whether the mechanism that brings them about is the coupling
between membrane height and composition variations17,18

discussed here. This could be done by varying the parameters
that determine the natural length scale, eq 24. For example, the
parameter b = bϕ = bψ, the coefficient of the square gradient
terms in the free energy, eq 1, is expected to decrease with
increasing temperature. Hence, all other things being equal, the
theory predicts that the characteristic size of the microemulsion
regions should decrease with increasing temperature. That is, as
the temperature increases, the energy cost of variations in the
composition decreases; hence, one should make more such
variations which implies that the characteristic length decreases.
Similarly, if one increases the surface tension of the membrane,
making it more taut, then the energy cost of a long-wavelength
variation in membrane height increases, so that one should
make fewer such variations and the characteristic length
decreases. This is reflected in eq 24. One could also determine
whether the domains are out of registry, as predicted by this
theory for symmetric membranes.
Further, it should be observed that in all of the model

systems noted above the characteristic wavelengths are larger
than those expected in the plasma membrane. This may be due
to a small surface tension of the model membranes that lack the
cytoskeleton of the plasma membrane. An additional factor is
that the differences in spontaneous curvatures of the lipids
utilized, all PCs, are relatively small. It would be very interesting
to study model membranes with ternary mixtures of
cholesterol, PC, and PE for one would expect, in that system,
the characteristic wavelengths to be appreciably smaller. If the
characteristic lengths were too small to be observed optically,
X-ray or neutron scattering experiments might well be able to
observe the characteristic peak in the structure function at
nonzero wave vector that is characteristic of microemulsions.
Such observations of microemulsions in symmetric model

membranes make their occurrence in the asymmetric plasma
membrane plausible. As I have argued, this occurrence would

provide the natural length scale for domains in both leaves, and
a strong coupling between them.
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