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ABSTRACT We simulate a simple phenomenological model describing phase behavior in a multicomponent membrane, a

model capable of producing macroscopic phase separation, modulated phases, and microemulsions, all of which have been

discussed in terms of raft phenomena. We show that one effect of thermal fluctuations on the mean-field phase diagram is

that it permits a direct transition between either one of the coexisting liquid phases to a microemulsion. This implies that one

system exhibiting phase separation can be related to a similar system exhibiting the heterogeneities characteristic of a micro-

emulsion. The two systems could differ in their average membrane composition or in the relative compositions of their exoplas-

mic and cytoplasmic leaves. The model provides a unified description of these raft-associated phenomena.

INTRODUCTION

The hypothesis that the plasma membrane is not uniform,

but instead characterized by rafts of saturated lipids and

cholesterol floating in a sea of unsaturated lipids, continues

to be an extremely fruitful one (1) even in the absence of

direct experimental confirmation of such rafts. The experi-

mental situation has been enlivened by the recent observa-

tions of an organized array of small domains in the yeast

plasma membrane (2) and of both macroscopic phase sepa-

ration and modulated phases in yeast vacuoles (3). In addi-

tion, both macroscopic phase separation and modulated

phases have been observed in giant unilamellar vesicles

consisting of quaternary mixtures of phospholipids and

cholesterol (4,5). That rafts could be attributed to macro-

scopic phase separation between saturated and unsaturated

lipids was among the earliest hypotheses about their origin

(6). The possible relevance of modulated phases to biolog-

ical systems has been discussed more recently (7). In addi-

tion, it has been emphasized (8) that any system that can

exhibit modulated phases will also exhibit a microemulsion

(a fluid phase consisting of fluctuating structures of a char-

acteristic size, of a length that is in addition to, and separate

from, the correlation length that characterizes any fluid (9)).

The idea that a microemulsion could be of relevance to the

structure of the plasma membrane had been impeded by the

lack of an obvious line-active agent at the boundary between

regions of saturated and unsaturated lipids. In the plasma

membrane, the latter consist almost entirely of lipids with

one saturated and one unsaturated tail, sometimes denoted

as hybrid lipids. Hirose et al. (7) and Brewster et al. (10)

suggested that such hybrid lipids could serve as a line-active

agent between regions of lipids with saturated tails and adja-

cent regions of lipids with two unsaturated tails, and reduce

the energy of such an interface to zero. Whereas this sugges-

tion might be applicable to in vitro systems that contain

mixtures of these three different kinds of lipids (4), it is

not applicable to the plasma membrane, which contains

few, if any, lipids with two unsaturated tails (11,12). It

was then suggested that hybrid lipids could serve both as

a bulk component of one of the separated regions and as a

line-active agent between the regions of different lipids

(13,14). However, recent experiments show that modulated

phases can be produced in mixtures containing no line-

active hybrid lipids at all (15).

There are other mechanisms (16) that can produce micro-

emulsions that do not rely on the presence of a line-active

agent to reduce to zero the energy per unit length of an inter-

face between adjacent regions of different composition.

These mechanisms decrease the energy per unit area of

the regions by coupling them to some external source,

such as a fluctuation in curvature that favors the presence

of one component in an area of positive curvature and the

other component in an area of negative curvature (17,18).

It was proposed by one of us (8) that it was just this coupling

of membrane height fluctuations and lipid composition that

could be the one at work in the plasma membrane. In partic-

ular, the large difference in spontaneous curvatures between

the phosphatidylserines and the phosphatidylethanolamines

(19), two major components of the cytoplasmic leaf of the

plasma membrane, would seem to provide a large coupling

to membrane height fluctuations and thereby lead to a

microemulsion (20). Because the phase diagram of the

model that we employed previously displays macroscopic

phase separation and modulated phases and a microemul-

sion, it is a particularly useful one to highlight those issues

that would distinguish the different behaviors exhibited by

different systems. It is the purpose of this article to study

and discuss the phase diagram of a somewhat simpler

version of the model, to highlight the unified picture it

brings to the diverse experimental observations.Submitted January 27, 2014, and accepted for publication March 10, 2014.
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THEORETICAL MODEL

Previously, we considered a model bilayer in which two

lipids in the outer leaflet, representing sphingomyelin and

phosphatidylcholine, have a tendency to phase-separate,

whereas two lipids in the inner leaflet, representing PS

(phopshatidylserine) and PE (phosphatidylethanolamine),

have a much weaker tendency to do so. Because PS and

PE lipids are characterized by spontaneous curvatures that

differ greatly (19), we coupled their local concentration

difference to the height fluctuations of the bilayer.

Here we will discuss the simpler system of a symmetric

bilayer consisting of only two components, A and B, and

will consider a free energy that depends on only one order

parameter. Denote fA(R) as the local concentration of the

A component in the outer leaf and fB(R) as the local concen-

tration of the other component in the same leaf. The local

variable of interest is f(R)h [fA(R) – fB(R)]. The free en-

ergy, a functional of f(R), is

F½f" ¼
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where the integral is over the bilayer areaA. The local order

parameter is hf(R)i, the thermodynamic average of f(R).

The chemical potential, m, can be used to set the value of
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to a specified value. For most of this article, we will set the

chemical potential to zero so that there are equal amounts of

the two components in the system. By a rescaling of length

and energy, we can reduce the four parameters ~a, ~b, ~t, and ~n

to two as follows. From the coefficients ~b and ~n, one forms

the length L0 hð~n=~bÞ1=4. Therefore, we define the dimen-

sionless position vector r h R/L0, and take all derivatives

with respect to the dimensionless coordinates. Further, we

define the energy bkBT h L
2
0
~b ¼ ~n=L20, where kB is Boltz-

mann’s constant, T is the temperature, and b is a positive

dimensionless number of the order of unity. Finally, defining

the dimensionless coefficients ah~a=~b and th~t=~bL20, we
arrive at the free energy functional
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There are two parameters in this model. The first, a, when

positive encourages a disordered phase, one in which

hf(r)i ¼ 0 everywhere. When it is negative, it promotes a

nonzero value of hf(r)i. The second parameter, t, when pos-

itive, encourages the system to be spatially uniform. When it

is negative, it promotes a spatially varying system. This free

energy has been studied in several contexts (7,21–23).

Within mean-field theory, in which one simply minimizes

the above free energy with respect to variations in f(r), the

phase diagram is easily calculated (21) and is shown in

Fig. 1 for the system in which there are equal average

concentrations of both lipids. There is a fluid phase that

occurs for t and a positive. It is characterized by a value

of the order parameter that vanishes everywhere, hf(r)i ¼
0. As the coefficient a decreases to zero for t > 0, a contin-

uous transition occurs to a region of coexistence between

two liquids characterized by thermal averages of f(r) that

are uniform and nonzero, hf(r)i ¼ f0. One liquid is rich

in the first component, f0 > 0, and the other is rich in the

second, f0 < 0. The transition occurs at a temperature Tc
along the line given by a(Tc)¼ 0, tR 0. A modulated phase

occurs for values of t that are negative and sufficiently large

in magnitude. Such negative values indicate that it is ener-

getically favorable for the local composition difference to

vary in space. When the system consists of equal amounts

of each component, the modulated phase is a lamellar, or

stripe, phase. The transition to it from the fluid phase is

continuous and occurs along the line a ¼ t
2/4, t % 0. At

the transition, the lamellae are characterized by a wavevec-

tor of magnitude

k
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð+4a=tÞ
p

:

The modulated phase and the two coexisting fluid phases

can all coexist along a triple line which, for values of a

that are negative but not too large, is given by
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Along this line, the lamellar phase is characterized by the

wavevector
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FIGURE 1 Phase diagram of the model calculated within the mean-field

approximation, as a function of the two parameters a and t. (Dashed lines)

First-order transitions; (solid lines) continuous transitions. The region of

macroscopic phase separation is denoted a two-phase coexistence. A modu-

lated phase appears for t¼ 0. (Dash-dot line) Lifshitz line. To the right of it,

the fluid is an ordinary one; to the left of it, the fluid is a microemulsion.
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Because the triple line is a line of first-order transitions,

there is a Clausius-Clapeyron-like equation that relates

coexisting Phases I and II. This relation, derived in the

Appendix, is

da

dt
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¼ +
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'
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'

II
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'
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where hfðrÞ2i denotes the spatial average over the mem-

brane of the thermal average hf(r)2i. Let us take Phase I

to be the stripe phase, and Phase II to be either of the liquid

phases with f0 s 0. In the uniform liquid phase

hfðrÞ2iIIzf2
0 is large, and larger than hfðrÞ2iI in the stripe

phase, whereas h ðVfðrÞÞ2iII is quite small, smaller than

h ðVfðrÞÞ2iI in the stripe phase. Hence, from Eq. 3, the slope

da/dt is positive, as shown.

The fluid phase can be further divided into an ordinary

fluid and a fluid that is a microemulsion. They are distin-

guished by the location of the peak in the structure function

SðkÞhhfðkÞfð+kÞi + hfðkÞihfð+kÞi;

where f(k) is the Fourier transform of f(r). It is given by

SðkÞ
Sð0Þ ¼ a

aþ tk2 þ k4
:

In the ordinary fluid, for which t R 0, this function has a

peak at k ¼ 0, whereas in the microemulsion, for which

t % 0, the peak occurs at k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð+t=2Þ
p

. The line t ¼
0 at which the peak in S(k) first moves away from zero is

denoted the Lifshitz line. A similar distinction can be

made between ordinary liquids and liquids that are microe-

mulsions. Thus the Lifshitz line extends into the liquid

region of the phase diagram. The phase diagram in mean-

field theory is shown in Fig. 1. The point a ¼ 0, t ¼ 0 at

which the phase boundaries meet is denoted the Lifshitz

point. We note that, within mean-field theory, the region

of two-liquid phase coexistence is bounded by regions of

a modulated phase and an ordinary fluid. This implies

that if one took a system exhibiting macroscopic phase

separation, and changed its parameters a or t a small amount

by some means, one could produce a system that exhibited

a modulated phase or an ordinary fluid, but not a

microemulsion.

The effect of thermal fluctuations is relatively mild on

some aspects of this phase diagram. For example, it is

well known that the continuous transition from the fluid to

the region of two-phase coexistence is reduced in tempera-

ture. Their effect on the modulated phase depends upon the

size of the system, and is severe in the thermodynamic limit

of an infinite number of lipids, N, in an infinite area,A, with

a finite area per lipid A/N. The long-range smectic order of

the stripe phase is destroyed, just as is the smectic order

of an array of two-dimensional sheets in a three-dimensional

system (24). Even the orientational, nematic, order is de-

stroyed (25). What remains is a phase in which the orienta-

tional correlations remain long-ranged in that they decay

like a power law, rather than exponentially. Whether or

not this phase coexists along a triple line with the two fluids

characterized by f0 > 0 and f0 < 0 (i.e., whether the

Lifshitz point remains) is not known (26–28).

In a finite-size system, such as a plasma membrane, one

expects to see clear remnants of modulated phases even

if their long-ranged order is weakened. We have explored

the effects of thermal fluctuations in a finite system by

following the evolution of the system according to the Lan-

gevin equation

vf

vt
¼ +

2

afþ f3 + tV
2fþ V

2
#

V
2f
$3

þ
ffiffiffiffiffiffiffiffi

2=b
p

x; (4)

hxðr; tÞxðr0; t0Þi ¼ dðt + t
0Þdðr + r

0Þ: (5)

The system is discretized into 128 . 128 points. We calcu-

late the structure function, locate its maximum S(qmax,a) for

a fixed t and vary a. The maximum of S(qmax,a) as a func-

tion of a indicates the phase boundary. The phase diagram

we obtain is shown in Fig. 2. Because of the finite size of

the system, the location of transitions to the phase with

very long modulations must be obtained by extrapolation.

The phase space of the fluid phase, both ordinary and micro-

emulsion, has increased from that obtained from mean-field

theory. A major difference between the phase diagrams is

that there is now a direct transition from the microemulsion

to the two coexisting fluid phases, a transition that occurs

when t < 0. This transition could be continuous. But if it

were, then on approaching the transition, we would observe

one of two possible behaviors: Either the peak in the

FIGURE 2 Phase diagram of the model including fluctuations as a func-

tion of the two parameters a and t. (Dashed lines) First-order transitions;

(solid lines) continuous transitions. Phase boundaries within the boxed

region are extrapolations from the regions outside. The parameter b has

been set to 4.0. (Dash-dot line) Lifshitz line. (Dots a–c) Systems whose

representative configurations are shown in Fig. 3.

Biophysical Journal 106(9) 1979–1985

A Unified Picture of Rafts 1981



structure function would shift from nonzero to zero wave-

vector and the peak would diverge, or the peak at nonzero

wavevector would remain but a second peak at zero wave-

vector would arise with the structure function diverging

there. We observe neither behavior, but instead an abrupt

shift in the peak in the structure factor as the phase boundary

is crossed. This is what would be expected if the transition is

a first-order one and the line of transitions a locus of three-

phase coexistence between the microemulsion and the two

liquid phases. Because the transition is first-order, Eq. 3

can be applied to it. Once again, the positive slope we obtain

is in agreement with the microemulsion being characterized

by large variations in the order parameter, i.e., a large value

of h ðVfðrÞÞ2i, but a small value of hfðrÞ2i, while the coex-
isting liquid phases are characterized by smaller variations

in the concentration difference f(r) about a larger average

value. This direct, first-order, transition from microemulsion

to liquid is in agreement with the phase behavior of a micro-

scopic model of a two-dimensional ternary system with a

line-active agent (26), and shows that this behavior is to

be expected in systems producing a microemulsion by

means other than a line-active agent. It is also in agreement

with results of a similar model in three dimensions (28).

A representative configuration is shown in Fig. 3 a of the

modulated, stripe, phase. The location of the system is a ¼
0.5 and t ¼ +2.6, and is shown by a dot in Fig. 2. The scale

bar shows the characteristic size of the lamellae, 2p
ffiffiffiffiffiffiffiffiffiffiffi

+2=t
p

.

If we identify this size with that brought about by the

coupling of fluctuations in the bilayer and its composition,

a characteristic size of ~100 nm (8), then we have simulated

a system on the order of a micron. Fig. 3 b shows a represen-

tative configuration for a system at a ¼ 0.5, t ¼ +2.0 in the

microemulsion phase. Its location is also shown in Fig. 2.

The droplets of regions with hf(r)i > 0 and hf(r)i <
0 are clear. Again the characteristic scale is shown. A repre-

sentative configuration is shown in Fig. 3 c for a system in

the normal fluid phase with a¼ 0.5, t¼ 0.5, a location indi-

cated in Fig. 2. There are still droplets in which hf(r)i has
fluctuated to positive or negative values, but the magnitude

of hf(r)i, which corresponds to the magnitude of the differ-

ence in concentration in the fluctuation, is smaller. It is

easily appreciated from a comparison of Fig. 3, b and c,

that the distinction between the microemulsion and ordinary

fluid is an arbitrary one because there is no singularity in the

free energy in passing from one to the other. We have adop-

ted the experimentally accessible criterion that the microe-

mulsion is distinguished by the peak in the structure

function being at a nonzero value.

In systems where there is considerably more of one lipid

component than of the other, the modulated phase is a

hexagonal one. We put the system into this phase by adjust-

ing the parameters a and t and utilizing a sufficiently large

chemical potential. A representative configuration of this

phase is shown in Fig. 4 a for the system at a ¼ 0,

t ¼ +5.5. At the same chemical potential and a, and at a

value of t z +5.4, the hexagonal phase melts to a microe-

mulsion via a first-order transition. There is a discontinuity

in hfðrÞi. A representative configuration of the microemul-

sion at the same chemical potential but larger value of

t z +5.3 is shown in Fig. 4 b. It is noteworthy that the

contrast between the background and the amplitude of fluc-

tuating droplets in this microemulsion is not as great as in

Fig. 3 b, the case in which there are equal amounts of the

components and the nearby modulated phase is striped.

Perhaps this is because the fluctuations in the microemul-

sion near the hexagonal phase are not expected to be as great

FIGURE 3 Representative configurations from different phases of the

system. The parameter b is set to 4. (a) The location of the system is a ¼
0.5 and t ¼ +2.6, and the system is in the stripe phase. (b) The location

of this system is a ¼ 0.5, t ¼ +2.0. The system is a microemulsion. (c)

a ¼ 0.5 and t ¼ 0.5. The system is an ordinary fluid. These three systems

are indicated in the phase diagram of Fig. 2. (Bar, lower-left corner) Char-

acteristic size 2p
ffiffiffiffiffiffiffiffiffiffiffi

+2=t
p

.
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as those in the microemulsion near the stripe phase. This is

reflected in the fact that, in mean-field theory, the transition

from the stripe phase with equal amounts of components to

microemulsion is a continuous one, whereas that from the

hexagonal phase to microemulsion is first-order.

DISCUSSION

We have considered the effect of fluctuations on a particu-

larly simple model for the behavior of multicomponent

membranes. It depends essentially on two parameters: the

first, a, is a measure of whether thermal energies at biolog-

ical temperatures are greater or lesser than the interaction

energies between components. Therefore it determines

whether the system will be ordered or disordered. The sec-

ond parameter, t, determines whether the order will be ex-

pressed as macroscopic separation of two uniform phases,

liquid-ordered and liquid-disordered, or as one modulated

phase. Similarly, it determines whether the disorder will

be expressed as an ordinary uniform fluid or as a microemul-

sion. Both of these parameters depend, of course, upon the

membrane composition. For example, the effect of changing

the parameter a at a relatively fixed t might, in our inter-

pretation, be well illustrated by the experiments carried

out in vitro by Konyakhina et al. (4). They observed

that whereas the ternary system of DSPC/DOPC/Chol

(distearoylphosphatidylcholine/dioleoylphosphatidylcholine/

cholesterol) exhibits macroscopic phase separation at 23/C
(29,30), that of (DSPC/POPC 1-palmitoyl, 2-oleoylphos-

phatidylcholine)/Chol) does not (30). To determine the

pathway between these two systems, they examined the

system consisting of the four components DSPC, DOPC,

POPC, and cholesterol, and varied the relative concentra-

tions of DOPC and POPC in the mixture. They found that

the system did not pass directly from a uniform fluid phase

to a macroscopically phase-separated one, but instead it

passed from the uniform fluid to a modulated phase and

from there to the macroscopically separated phases. An

increase in the amount of DOPC relative to that of POPC

raises the transition temperature of phase separation because

the former is more disordered than the latter. The effect is

equivalent to lowering the actual temperature with respect

to the transition temperature or, in our model, to decreasing

the value of the parameter a. As illustrated in Fig. 5, the

sequence of phases observed experimentally is exactly

that expected if the system were characterized by a negative

value of t. What mechanism brings about this negative

value, however, remains an open question to which a few

answers have been proposed. These include the presence

of a line-active agent, the coupling of composition fluctua-

tions to those in the height of the membrane itself, or to

its thickness (4,7,8,10,13,14,20,31,32). Irrespective of the

mechanism, from the scenario above, we would conclude

that the phase appearing to be uniform in the experiment

is a microemulsion.

Our results show that one effect of thermal fluctuations is

to bring about the possibility that a system exhibiting a

macroscopic phase separation into two liquids can, by a

small change in its parameters a or t, now exhibit a micro-

emulsion instead. What might bring about such a change?

We note that the parameters a and t are expected to depend

FIGURE 4 Representative configurations from different phases of the

system that contains more of one component that the other. The parameter

b and m are set to 2/3 and 7, respectively. (a) The location of the system is

a ¼ 0.0 and t ¼ +5.5, and the system is in the hexagonal phase. (b) The

location of this system is a¼ 0.0, t¼+5.3. The system is a microemulsion.

(Bar, lower-left corner) Characteristic size.

FIGURE 5 Phase diagram of Fig. 2 shown with a phase trajectory

that passes from a fluid to a modulated phase to phase separation as the

parameter a is decreased. The fluid in which the trajectory begins is a

microemulsion.
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not only on the average membrane composition, but also on

the difference of the composition of the two leaves. For

example, it is known experimentally (33,34) and theoreti-

cally (35,36) that whereas a symmetric bilayer may display

phase separation, an asymmetric bilayer in which one of its

leaves is replaced by another with little tendency to separate,

may not. In terms of our parameters, the symmetric system

may be characterized by a more-negative value of a than the

asymmetric one. Furthermore if, in the asymmetric bilayer,

the PE were predominantly in one leaf, we would expect the

coupling to height fluctuations to be stronger in the asym-

metric bilayer than in the symmetric one (20). Thus, the

asymmetric bilayer would be characterized by a larger value

of a and a smaller and perhaps more-negative value of t than

the symmetric bilayer. From the phase diagram of Fig. 2, we

may speculate that the reason that yeast vacuoles display

both modulated phases and coexisting uniform phases (3),

whereas yeast plasma membranes exhibit only ordered net-

works that may be modulated phases (2), is because the

bilayers of the former are symmetric whereas that of the

latter are not, just as mammalian plasma membrane bilayers

are not. To our knowledge, the relative compositions of the

two leaves of these yeast membranes are not known. Taking

this one step further, we may speculate that the difference in

composition of mammalian plasma membrane is greater

than that in yeast plasma membrane so that the value of a

is even more positive. Consequently the mammalian plasma

membrane does not exhibit modulated phases, but is disor-

dered. In this picture, the disordered phase would most

likely be a microemulsion.

In summary, the model we have explored illustrates how

differences in bilayer composition could lead to three

behaviors exhibited in biological membranes and provides

a unified description of them: phase separation in yeast

vacuoles (3); modulated phases in yeast vacuoles and

plasma membrane (2); and heterogeneous raft behavior in

mammalian plasma membrane that, from our model, we

would assign to a microemulsion.

APPENDIX

We consider the free energy that results from minimizing F[f] of Eq. 2 to

be a function of the area A and the three intensive fields T, a, and t:

F ¼ F (T, a, t, A). Its differential is given by

dF ¼ vF
vT

dT þ vF
va

daþ vF
vt

dt þ vF
vA

dA

¼ +SdT þ kBT
&

fðrÞ2
'

daþ kBT
&

ðVfðrÞÞ2
'

dt þ sdA;

where the brackets denote an average over the area of the ensemble average.

The entropy is S and the surface free energy is s. We consider a system at

constant area and temperature. Two phases, I and II, which coexist, do so at

the same values of a and t. Therefore their free energies F are equal. Now

consider a point 1 along the coexistence curve at a and t and a nearby point,

2, at a þ da and t þ dt. Because the free energies of the two phases are

equal at point 1 and are also equal at point 2, the change in free energy

from 1 to 2 is the same whether one goes along coexistence in Phase I or

in Phase II. Equating the changes in free energies evaluated traversing coex-

istence in Phase I and in Phase II, we obtain

&

fðrÞ2
'

I
daþ

&

ðVfðrÞÞ2
'

I
dt ¼

&

fðrÞ2
'

II
daþ

&

ðVfðrÞÞ2
'

II
dt:

In the limit of infinitesimal changes, this yields Eq. 3,

da

dt

1

coex

¼ +
&

ðVfðrÞÞ2
'

I
+
&

ðVfðrÞÞ2
'

II
&

fðrÞ2
'

I
+
&

fðrÞ2
'

II

: (6)

REMARKS

After the submission of our article, we learned that a Monte Carlo simula-

tion of a lipid bilayer, with composition explicitly coupled to curvature, also

indicates a direct transition from the microemulsion to the two liquid

phases, in agreement with the results we have presented here (S. Sadeghi,

M. Müller, and R. C. L. Vink, personal communication).
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