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We apply self-consistenfield theory (SCFT) to twist grain boundariesof block copolymermelts.
The distribution of monomersthroughoutthe grain boundaryis obtainedas well as the grain
boundaryfree energyper unit areaasa function of twist angle.We defineanintermaterialdividing
surfacein orderto compareit with minimal surfaceswhich have beenproposedOur calculation
showsthat the dividing surfaceis not a minimal one, but the linear stackof dislocationsseemso
be a betterrepresentatiorf it for mostanglesthanis Scherk’sfirst surface. © 2000 American

Ingtitute of Physics. [S0021-960600)51037-X]

I. INTRODUCTION

Bulk equilibrium propertiesof diblock copolymermelts
arerelatively well understood.Incompatibility of the mono-
mers comprisingthe two blocks drives the systemtoward
orderedstructuresn which the numberof contactsbetween
dissimilar monomersis reduced, subject to various con-
straints. These ordered phases,of which the simplestis
lamellar, are thermodynamicallystablebelow someorder
disordertransitiontemperature.

When the systemis taken below this temperaturethe
lamellarphaseis nucleatedypically in distinctgrainswhich
differ, onefrom the other, by the orientationof the lamellae
within them. The interface betweenlamellae of different
grainsconstitutesa grainboundarywhich canbe considered
an equilibrium structurearising from a constraintthat im-
posesthe different orientationsof the lamellae of the two
grains.

Becausethe lamellaeof block copolymerslack any in-
ternal order, their grain boundariesare simpler than those
betweergrainsof crystallinesolids.While thelatterarecom-
binations of five different independentboundaries, the
former canbe decomposedhto only two independenbnes.
In the kink grainboundary the normalsperpendiculato the
lamellaeof the two grainsdefinea planewhich is perpen-
dicular to the planeof the boundary.Kink grain boundaries
have been studied recently both experimentally™ and
theoretically>~’ In thetwist grainboundary(TGB), the plane
definedby the normalsis parallé to the planeof the bound-
ary. The angle, «, betweenthe normals definesthe twist
angle. The geometryis shownin Fig. 1 where we fix the
conventionwe usethroughoutx is the directionperpendicu-
lar to the grain boundaryandy andz arein the planeof it;
normalsto the lamellaeof the two grainsareat angles+ a/2
with respectto they axis. Twist grain boundariedhavebeen
the subjectof a thoroughexperimentalstudy® but havere-
ceivedlesstheoreticalattention.

Two differentkinds of twist grain boundariethavebeen
observedThe simplestconsistsof a stackof planes.In each
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plane,the orientationof lamellaediffers slightly from those
in planesaboveandbelowit. The structureis periodicalong

the stackingdirection. It is observedfor small twist angles
(a<<15°) only. A heuristicmodelfor this boundarywaspro-

posedby Gido et al.® andcheckedagainsttheir experimental
data,with goodresults.

The otherstructure observedor all angles,is quite dif-
ferent: it is doubly periodic. A surfacewhich displaysthis
double periodicity is Scherk’sfirst surface,one which is
characterizedby zero mean curvature everywhere.lIt is
shownin Fig. 2 for a twist angle = 0.5rad. This minimal
surfacewasfirst proposedasa modelof the TGB by Thomas
et al.® The reasoningis as follows. Supposethat one can
ignore the componentof the system,the block copolymers
and the constituentmonomersA and B of the two blocks,
andfocusinsteadon the internalinterfaceswhich divide the
A-rich lamellaefrom the B-rich ones.Supposefurther that
onecanignorethefinite thicknessof theseinternalinterfaces
and approximatethem by a suitably definedsurface the in-
termaterialdividing surface(IMDS). In a spacially ordered
phasethe areaof this surfaceis extensivej.e., proportional
to the volume of the system.Under theseassumptionsthe
bulk free energyof the systemshouldbe expressablasthe
energyof this surface Minimization of this free energyleads
to the surfacewith minimum areasubjectto the constraint
thatit separateegionsof certainvolume.Thisis a surfaceof
constantmeancurvature.In particularfor a symmetricsys-
temin which the volumesare equal,andthatis the casefor
a diblock with equal volumesof A and B monomers,the
constantvalue of the meancurvatureis zero. Suchsurfaces
are called minimal surfaces.The choice of the appropriate
minimal surfacedependaupon boundaryconditionsand ex-
pected symmetries.Scherk’sfirst surfacé® was chosenin
Ref. 8 for comparisonwith experimentalresultsbecauset
connectstwo setsof parallel planes,the normalsof which
form an angle a. The explicit expressiorfor the surfaceis
quite simple:
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FIG. 1. Schematiof a twist grain boundaryin which onelooksdownthe x
axis. As x—», the IMDS approacheshat of the lamellar bulk, shownin
dashedines, while asx— —«, the IMDS approacheshat of the lamellar
bulk shownin solid lines. Normalsto the planesof the bulk lamellaemake
anglesof *+a/2 with respectto the y axis.

cog (2m/D){cog a/2)y+sin(al2)z}]
cog (2m/D){coq al2)y—sinal2)z}]"
D

The equationdefiningthe surfacepertainsonly in theregions
for which the right-handsideis positive. This condition de-
fines a chessboardlikelomainin the y-z plane (as a conse-
quenceof which the surfaceis sometimesreferredto as
“Scherk’s doubly periodic surface”). Far from the grain
boundary whosecenteris at x= 0, the natureof the surface
is easily inferred from Eq. (1): whenx— —o the rhs must
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FIG. 2. Scherk’sfirst surfaceis shownfor a twist angleof «=0.5anda
scaleD=1.
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vanish, and this definesa set of parallel planeswith unit
normal(0,cos@/2),sin(a/2)) andspacingD/2. The periodof
the IMDS is half that of the lamellar phase,D, henceour
convention Similarly, whenx— oo the rhs mustdiverge,and
this defines a set of parallel planes with unit normal
(0,cos@/2),—sin(«/2)) andspacingD/2.

A different descriptionof the grain boundary,due to
RennandLubensky'! is thatof a linear stackof dislocations
(LSD). The modelof a singledislocationis againa minimal
surface,the helicoid. The whole structurearisesfrom the
stackingof infinitely manydislocationsalonga line. In this
casethe dislocationshave vorticity alongthey axis with a
pitch D, and are stackedalong the z axis with a separation
D/(2sin(a/2)). It was later showrt? that this approachis
actually equivalentto the descriptionemploying Scherk’s
surfaceupto acos(/2) dilation of the x axis,the LSD being
more “compressed”than Scherk’ssurface.

The aboveapproachesre valuablein providing simple
modelsof the grain boundarywhich can be comparedwith
experiment.They suffer, however,from the approximations
which areinherentin the approachMost importantlyin the
systemof block copolymers,they ignore the physical con-
straints of incompressibility which causesthe chains to
stretchin order to fill the available volume. As a conse-
quencethe IMDS is not a surfaceof constantmeancurva-
ture, a point madecompellingly by Matsenand Bates™ and
confirmedin experiment

Thereforewe have studiedthe twist grain boundaryin
block copolymer systems using the self-consistentfield
theory(SCFT) in Fourierspacewhich hasbeensuccessfuin
describinglyotropic phase®f block copolymermelts!® We
follow the approactof Matseff who adaptedt to kink grain
boundariesFirst we will introducethe particularimplemen-
tation of the theory which is useful in this case.We then
presentresultsfor the TGB obtainedwithin this framework
and comparethemwith Scherk’sfirst surfaceandthe LSD.
We concludewith a brief discussion.

II. THEORY

We consideran incompressiblemelt of n AB diblock
copolymerseachcomposedf N segmentf volume 1/pg;
the volume of the systemis V=nN/py. The polymersare
modeled as Gaussianrandom walks with statistical step
lengtha. The naturallengthscaleof the problemis the end-
to-endmeandistanceaN*2. To describethe incompatibility
betweenA and B monomersthe standardFlory—Huggins
parametery;, is introduced;the productyN setsthe units of
energyandtemperature.

We utilize the SCFT methodexpressedn Fourierspace
asin Ref. 15, amethodsuitedto the studyof periodicphases.
A systemcontainingatwist grainboundary however is only
periodicin the coordinatesy andz, but notin x. In orderto
circumventthis difficulty, we adoptthe samestrategyem-
ployedby Matsenin his studyof thekink grainboundary? to
expresshe desiredsystemasoneperiodicin all threedirec-
tionsin the limit in which one period becomesnfinite. We
thereforeconsiderthe systemshownin Fig. 3 which, in ad-
dition to beingperiodicin y andzis periodicin x with period
A. We imposea reflection symmetryaroundx=A/2, i.e.,
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FIG. 3. Schematioof the system,periodicin all threedirections,on which
we performour calculationsThe original systemof interestis recoverecbn
letting A increasewithout limit.

(x,y)—(A—x,y). The desiredgrain boundaryfree energy
perunit area,l’, of the original systemis obtainedfrom the
free energy,F(A), of our systemaccordingto

I'= lim [F(A)—Fb]%, (2

A—o

wherethe bulk free energyF,=lim,_,.. F(A), andthe area
of the grainboundaryis V/A. Asthe naturalunit of areaper
polymeris V/naNY?, the naturalunit of the grain boundary
free energyis ksTnaNY%/V. Thusthe boundaryfree energy
canbe written

_ =i F(A)-F, A 3
Y= kgTnaNT? _A'inx kgTn aN? ®

As the systemis now periodicin all directions,we can
expandall functionsof positioninto a complete,orthonor-
mal, setof eigenfunctionsf,,, of the Laplacianoperatort®
eigenfunctionswhich explicitly expressthe symmetriesof
thesystemlt is clearthatit is invariantunderarotationof =
aboutthe x axis, i.e., under(x,y,z) —(x,—y,—2). It is also
invariantunderrotationsof 7 aboutthey andz axes.There-
fore the systemis invariantwith respecto the changen sign
of anytwo of the coordinatesTheseconsiderationgogether
with theimposedreflectionsymmetryaroundx=A/2, leadto
the choiceof functions

CiCmCy cog1k,x) cogmkyy) cognk,z),

if | is even,
fimn(XY, 2= ¢ ¢ e sin(lko) sinmk,y) sin(nk,2),
if 1 is odd,
(4)
where  k,=w/A, ky=2m cos@/2)/D, and k,

=2 sin(a/2)/D. Again D is the bulk lamellar period.
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It shouldbe clearfrom Fig. 1 thatthe naturalcoordinates
in which to expressthe periodicity of the system are
(y/D)cos@/2)*(z/D)sin(a/2). Indeed Scherk’s surface,
Eqg. (1), is expressedn them. Translatingan expansionin
thosecoordinatesnto an expansionin X, y, and z, one sees
that the parity of m and n abovemust be the same.Finally
the ¢, aredeterminedoy orthonormality:

1
vf f|mn(r)f|rmrnr(r)dr:5||r5mmr5nnr. (5)

Thuscy=1 andc;=v?2 for i >0. This completeghe specifi-
cationof the basisfunctions.

One might think it necessaryto impose an additional
invariance: that the calculated free energy of the grain
boundarywith twist angle a< /2 be identical to that with
anglem— « becauseafteraninterchangef y andz, theone
boundaryis identicalto the other.However,the grainbound-
ary free energywe calculatealreadydisplaysthe symmetry
I'(a)=I'(7—a) without further restriction of the basis
functions. This can be seenfrom the fact that undera— =
—a, the wave vector componentsk, and k, interchange.
Thusaninterchangeof the coordinatesy andz andarelabel-
ling of the dummy indices m and n sufficesto make the
expressiongor the free energieof the two grainboundaries
identical.

We expandall functions of position in terms of the
abovebasisfunctions.Of coursetheinfinite setmustbe trun-
catedin a numericalcalculation,andour computerresources
imposea maximumslightly below400functions.Theresults
presentedelow are obtainedfor the choiceof 5 valuesfor
m, 5 for n, and15for | astheresultsaremoresensitiveto the
numberof components$n thex directionthanin y or z. To be
consistentwith this choice,we take the correspondingoulk
lamellar phaseto be that obtainedfrom five Fouriercompo-
nents.

We have chosen yN=15, an intermediatevalue for
which an intermaterialdividing surfaceis well delineated,
but not so sharpasto requirea large numberof basisfunc-
tions to describe.A value of A~5aN? is sufficient typi-
cally for the free energyto becomeinsensitiveto further
increasedn this parameterWith our 375basisfunctions,our
resultsfor the free energyat o= /2 are accurateto within
1%. Larger values of yN would require additional basis
functions. Smallervaluesof yN, nearerthe order disorder
transitiontemperatureof yN=10.49, causeperiodic modu-
lations of the dividing surfaceto appeawhich extendaway
from the grain boundary.This behavior,similar to that re-
portedfor the kink grain boundary>® is likely to be strongly
modified by fluctuation effects which are absentin the
SCFT.

lll. RESULTS

In Fig. 4 we show resultsfor the twist angle a=0.4
~22.9°. We haveplotted, for severalvaluesof x, contours
of constantorder parameterthe differencebetweenthe vol-
ume fractions of the two monomers.In thesegray scale
plots, the maximumabsolutevalue of the orderparameteis
0.88.Figure 4(a) showsa slice atinfinitely largex, thatis, a
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FIG. 4. Slicesthroughthe grain boundaryshowingthe monomerdistribu-
tion at different distancesia) In the limit of x—o, i.e., the bulk, (b) x
=0.2aNY?, and (c) x=0, i.e., at the grain boundaryitself. In thesegray
scaleplots, the maximumabsolutevalue of the order parameteis 0.88.

crosssectionthroughthe bulk system Figures4(b) and4(c)
showslicesat the valuesof x=0.2aN?, and0, thatis, atthe
grain boundaryitself.

We would like to comparethe distributionof monomers
obtainedin our solutionwith Scherk’sfirst surfacewhich is
amodelfor theintermaterialdividing surface Oneway to do
this is to calculatewithin our solutionthe value of the order
parameter,5¢(r)=¢a(r)—3, a the points rg defined by
Scherk’ssurface.The value of §¢(rg) vanishesasx— * o
becausescherk’ssurfaceandthe intermaterialdividing sur-
face of our solution,definedby 6¢(r;) =0, coincidein that
limit. A convenientmeasureof the similarity of the two di-
viding surfacestherefore,canbe definedby computing

|sEf dr [¢a(r)=(L/2)128(r=r9).

A measurel g for the LSD can be definedin the same
manner.

A secondmeansto comparethe surfacess to calculate
the volume of the regionwhich is enclosedetweerthe two
surfacesto be compared.This is easyto implementby a
Monte Carlointegrationtechniquen which pointsof the unit
cell aretakenat randomand checkedto determinewhether
thetwo surfacesagree or not, in the assignmenof the point
to the A-rich region. Therelevantquantityis (8V)A/VNY?a,
the fraction of the volume 8V for which thereis disagree-
ment, normalizedby the areaof the grain boundaryV/A.
The factor N2a ensureghat this measurewhich we denote
lg, is dimensionless.

Thesetwo measureare plottedin Fig. 5. Theyindicate
that the LSD is a better representatiorof the intermaterial
dividing surfaceover almostthe entire rangeof twist angles
except,perhapsguite closeto #/2. As the angledecreases,
both measuresendto the samelimit, of course[Recallthe
only difference betweenthe two surfacesis a dilation of
cos(@/2).]

Thegrainboundaryfree energyasa function of the twist
angleis shownin Fig. 6. The circlesshowthe resultsof our
calculation. For valuesof the twist angle greaterthan 0.5
radi, our resultsare accurateto within 5%, improving to-
wards 1% as they approachn/2. The dashedine hasbeen
drawn through thesevalues and extrapolatedto zero. We
havealsoincludedseveralotherpointsfor smallervaluesof
a. Thenumberof basisfunctionsemployeds insufficientfor
the grain boundaryfree energyto haveconvergedo within
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FIG. 5. Measuref the similarity betweenthe intermaterialdividing sur-
facedefinedby our calculationandthat of Scherk’sfirst surface(diamonds,
joined by solid line) and that definedby the linear stack of dislocations
(squaresdottedline). Exceptneartwist anglesof /2, the latter is a better
representation.

5%. Neverthelesswe haveincludedthemasthey appearto
indicate that the behavior of the free energy as the angle
approachegeromay not be linear, the behaviorexpectedf,
at very low densitiesdislocationsrepeloneanother'? It has
beenarguedhoweverthatatvery low densitiesdislocations
attractone anothert®

One notes that the grain boundary free energiesare
rathersmall: that of the grain boundarywith twist angle of
72 is, at the sameincompatibility, yN, somewhatessthan
half the energyof the boundarywith tilt angleof /2.8 Per-
hapsthis shouldnot be too surprising.In the approximation
notedearlierof treatingthe intermaterialdividing surfaceas
a surfaceof constantmeancurvature,with an energygiven
by the Helfrich free energy*’ the grain boundaryfree energy
would be identically zero!®
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FIG. 6. Free energy per unit area, y, of the twist grain boundaryas a
function of twist angle a. The circlesshowour results,the dashedine is a
fit to them (extrapolatedto «=0) taking into accountonly data for «

>0.5. Also shown are the approximatefree energieswe have calculated
from the expressionén Ref. 12 for Scherk’sfirst surface(solid line) andthe
linear array of dislocations(dotted line) which include only bendingand
compressiorenergies.
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Thefree energyof a systemwith a twist grainboundary
was calculatedpreviouslyby Gido and Thomas'® They ap-
plied a versionof the self-consistenfield to a brushof infi-
nitely stretchedchains anchoredto a given saddle-shaped
surface, and also carried out an independentcalculation
basedon the work of Wang and Safran’ However, they
reporttheir resultsin termsof the extensivefree energyper
chain in the region of Scherk’s surface. This is not a
uniquelydefinedquantity,nor is it the thermodynamigrain
boundaryfree energyperunit areawhich we havecalculated,
so direct comparisongsre precluded.

We have chosento compareour resultswith those of
Kamien and Lubensky'? We emphasizehat the two calcu-
lations are ratherdifferent in principle. In the approachwe
haveemployed the free energyof the block copolymersys-
tem is calculateddirectly, assumingnothing other than the
applicability of self-consistenfield theory.In particular,we
do not employ elasticity theory, or assumethat displace-
mentsfrom a referencesystemwithout a grain boundaryare
small, etc. In contrastthat of Ref. 12 assumeshat the bulk
systemcan be adequatelydescribedas a seriesof surfaces,
and the energyof this systemof surfacescan be expanded
assumingsmall displacementsA further difficulty which
ariseswhen applying the calculationof Ref. 12 to a block
copolymersystemis that the volumeson either side of the
surfacesare undifferentiated whereasin the block copoly-
mer system,thesevolumesare filled with different mono-
mers. Thus the symmetryof the systemconsideredy Ka-
mien and Lubenskyis not the sameas that of ours. As a
consequencehere are more elastic constantsin an elastic
descriptionof a block copolymerlamellarphasehanthetwo
utilized by them in their descriptionof liquid crystalline
smectics®

Having acknowledgedthese caveats, we calculatethe
bendingand compressiorcontributionsto the free energies
of Scherk’sfirst surfaceand of a LSD surfaceas given in
Ref. 12. As notedin the Introduction,a numberof param-
etersneededto evaluatethesefree energiesare unknown,
being inputsto the phenomenologicalheory. However,we
can provide someof thesevaluesfrom our work. Thus we
calculatethe lamellar spacingto be D=1.5155aN'?, and
the dimensionlesgompressiormodulusto be B=3.01. The
dimensionlessbending modulus is unknown but can be
estimated’ to be k~0.115. The only unknown which re-
mainsis the size of the “core region,” which providesa
cutoff to the otherwisedivergentintegralsfor the compres-
sion free energyestimatedn Ref. 12. This canbe estimated
from the slope of the dotted line in Fig. 6. We obtain,
thereby, a value of ~0.192aN'?, i.e., 25% of the IMDS
spacingD/2. Of course,thereis no reasonthat this core
region should not dependon «, but were we to obtain the
size of the core from our data at eachvalue of the twist
angle,theresultwould simply be a mappingof the resultsof
Ref. 12 to ours, and no independentomparisonwould be
possible Usingtheseparametersye haveevaluatedhe free
energygivenin Ref. 12 of the appropriateScherk’ssurface
and of the linear superpositionof dislocations.Theseare
shownin Fig. 6 as solid and dottedlines, respectively.The
LSD hasa free energycloserto our resultthandoesScherk’s
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surface just asit is closerto our intermaterialdividing sur-
face.Both approximationsinderestimat¢he grain boundary
free energyof the block copolymersystemby a factorwhich

increasewith twist angle,andis about2 at a= /2.

IV. CONCLUSIONS AND OUTLOOK

We have applied self-consistentfield theory to twist
grain boundariesn block copolymermelts. Our calculation
is more direct than earlier onesand providesgreaterinfor-
mation concerningthe monomer densitiesthroughoutthe
volume. It alsoexpresseshe grain boundaryfree energyin
termsof the directly measurable@olumeperchainandradius
of gyration as opposedto elastic modulii of internal inter-
faces.The boundaryfree energywas obtainedas a function
of twist angle,andfoundto be quite small; smallerthankink
grain boundarieof the sameangleandincompatibility.

We havecomparedour resultsto previousphenomeno-
logical calculationsto show that the intermaterialdividing
surfaceis not given by either Scherk’sfirst surfaceor the
linear stackof dislocations but that, of the two, the latter is
a better representatiorover most twist anglesexceptnear
7l2.

We commentbriefly on the other type of twist grain
boundarywhich hasbeenobservedat smalltwist angles® the
one consisting of a stack of lamellae which are twisted
slightly and remaincontinuous We havenot investigatedt
is becausave failed to find anappropriatgeriodicboundary
condition which doesnot contributeto the excesssurface
free energy.Althoughit is possibleto calculatethe contribu-
tion to the excesssurface free energy of any choice of
boundary condition and then to subtractit from the total
excessJeaving the desiredgrain boundaryfree energy,the
procedureis tedious.However, simple examinationof this
boundaryleadsto the conclusiorthatthe grainboundaryfree
energy must be approximatelytwice that of a kink grain
boundary.This is becausehe lamellaewithin the boundary
andthosefar from it meetin whatapproximates kink grain
boundary.(Figure 4 of Ref. 8 showsthis nicely) The free
energyof a kink grain boundarygrowsas ¢° for small kink
angle 6.>° Of coursewe do not know the relation between
theangle, 6, of this “effective” kink grainboundaryandthe
twist angle @. Nonethelessif we assumehat the relationis
linear, thenthe twist grain boundaryenergywould grow as
o for small twist anglesand would be favored over those
we have modeledhere, which would in fact be metastable
butlong lived astheir energyis small. This is in accordwith
the experimentakesultthat both forms of boundaryare ob-
servedat small twist angles.But at largeranglessuchgrain
boundariesvould be disfavoredcomparedto thoseconsid-
eredin this article. This is in accordwith the fact that they
are not seenexperimentally.
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