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de Fı́sica Teórica� de la Materia Condensada, Universidad Autónoma� de Madrid,
E-28049 Madrid, Spain

M. Schick
Department
�

of Physics, Box 351560, University of Washington, Seattle, Washington 98195-1560�
Received
�

26 May 2000;accepted6 July 2000�
We
�

apply self-consistentfield theory � SCFT
	 


to
�

twist grain boundariesof block copolymermelts.
The
�

distribution of monomersthroughoutthe grain boundaryis obtainedas well as the grain
boundary



freeenergyperunit areaasa functionof twist angle.We defineanintermaterialdividing
surface� in order to compareit with minimal surfaceswhich havebeenproposed.Our calculation
shows� that the dividing surfaceis not a minimal one,but the linear stackof dislocationsseemsto
be



a betterrepresentationof it for most anglesthan is Scherk’sfirst surface. © 2000
�

American
Institute
�

of Physics. � S0021-9606
	 �

00
� �

51037-X
� �

I.
�

INTRODUCTION

Bulk
�

equilibrium propertiesof diblock copolymermelts
are� relativelywell understood.1 Incompatibilityof themono-
mers comprisingthe two blocks drives the systemtoward
ordered� structuresin which the numberof contactsbetween
dissimilar
�

monomersis reduced,subject to various con-
straints.� These ordered phases,of which the simplest is
lamellar, are thermodynamicallystablebelow someorder–
disorder
�

transitiontemperature.
When
�

the systemis taken below this temperature,the
lamellarphaseis nucleatedtypically in distinctgrainswhich
differ,
�

onefrom the other,by the orientationof the lamellae
within� them. The interface betweenlamellae of different
grains� constitutesa grainboundary,which canbeconsidered
an� equilibrium structurearising from a constraintthat im-
poses� the different orientationsof the lamellaeof the two
grains.�

Becausethe lamellaeof block copolymerslack any in-
ternal
�

order, their grain boundariesare simpler than those
between



grainsof crystallinesolids.While thelatterarecom-
binations



of five different independentboundaries, the
former canbe decomposedinto only two independentones.
In thekink grainboundary,thenormalsperpendicularto the
lamellae
�

of the two grainsdefinea planewhich is perpen- 
dicular
!

to
�

the planeof the boundary.Kink grain boundaries
have been studied recently both experimentally2–4

"
and�

theoretically.
� 5–7

#
In thetwist grainboundary$ TGB% ,& theplane

defined
�

by thenormalsis parallel to
�

theplaneof thebound-
ary.� The angle, ' ,& betweenthe normals definesthe twist
angle.� The geometryis shown in Fig. 1 where we fix the
convention( we usethroughout:x) is thedirectionperpendicu-
lar
�

to the grain boundaryandy* and� z+ are� in the planeof it;
normalsto the lamellaeof the two grainsareat angles,.- /2

/
with� respectto the y* axis.� Twist grain boundarieshavebeen
the
�

subjectof a thoroughexperimentalstudy,8 but



havere-
ceived( lesstheoreticalattention.

Two different kinds of twist grain boundarieshavebeen
observed.� Thesimplestconsistsof a stackof planes.In each

plane,� the orientationof lamellaediffers slightly from those
in planesaboveandbelow it. Thestructureis periodicalong
the
�

stackingdirection. It is observedfor small twist angles
(
0 132

15°) only. A heuristicmodelfor this boundarywaspro-
posed� by Gido et4 al.8 and� checkedagainsttheir experimental
data,
�

with goodresults.
The
�

otherstructure,observedfor all angles,is quite dif-
ferent: it is doubly

!
periodic.� A surfacewhich displaysthis

double
�

periodicity is Scherk’s first surface,one which is
characterized( by zero mean curvature everywhere.It is
shown� in Fig. 2 for a twist angle 576 0.5

�
rad. This minimal

surface� wasfirst proposedasa modelof theTGB by Thomas
et4 al.9

8
The
�

reasoningis as follows. Supposethat one can
ignore the componentsof the system,the block copolymers
and� the constituentmonomers,A and� B of� the two blocks,
and� focusinsteadon the internal interfaceswhich divide the
A
9

-rich lamellaefrom the B
:

-rich ones.Supposefurther that
one� canignorethefinite thicknessof theseinternalinterfaces
and� approximatethemby a suitablydefinedsurface,the in-
termaterial
�

dividing surface ; IMDS
< =

. In a spaciallyordered
phase,� the areaof this surfaceis extensive,i.e., proportional
to
�

the volume of the system.Under theseassumptions,the
bulk



free energyof the systemshouldbe expressableasthe
energy> of this surface.Minimization of this freeenergyleads
to
�

the surfacewith minimum areasubjectto the constraint
that
�

it separateregionsof certainvolume.This is a surfaceof
constant( meancurvature.In particularfor a symmetricsys-
tem
�

in which the volumesareequal,andthat is the casefor
a� diblock with equal volumesof A

9
and� B

:
monomers,? the

constant( valueof the meancurvatureis zero.Suchsurfaces
are� called minimal surfaces.The choice of the appropriate
minimal? surfacedependsuponboundaryconditionsandex-
pected� symmetries.Scherk’s first surface10 was� chosenin
Ref. 8 for comparisonwith experimentalresultsbecauseit
connects( two setsof parallel planes,the normalsof which
form
@

an angle A . The explicit expressionfor the surfaceis
quiteB simple:
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exp> 2 D
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Theequationdefiningthesurfacepertainsonly in theregions
for
@

which the right-handside is positive.This conditionde-
fines
k

a chessboardlikedomainin the y-z* plane� l as� a conse-
quenceB of which the surface is sometimesreferred to as
‘‘Scherk’s doubly periodic surface’’m . Far from the grain
boundary,



whosecenteris at x) n 0,
�

the natureof the surface
is
o

easily inferred from Eq. p 1q : when x) rtsvu the
�

rhs must

vanish,w and this definesa set of parallel planeswith unit
normal(0,cos(x /2)

/
,sin(y /2)

/
) andspacingD/2.

/
Theperiodof

the
�

IMDS is half that of the lamellar phase,D
E

,& henceour
convention.( Similarly, whenx) z|{ the

�
rhsmustdiverge,and

this
�

defines a set of parallel planes with unit normal
(
0
0,cos(} /2)

/
, ~ sin(� � /2)

/
) andspacingD/2.

/
A
�

different descriptionof the grain boundary,due to
Renn
�

andLubensky,11 is
o

thatof a linearstackof dislocations�
LSD� . The modelof a singledislocationis againa minimal

surface,� the helicoid. The whole structurearisesfrom the
stacking� of infinitely manydislocationsalonga line. In this
case( the dislocationshavevorticity along the y* axis� with a
pitch� D,& and are stackedalong the z+ axis� with a separation
D/
/
(2 sin(� /2)

/
). It was later shown12 that

�
this approachis

actually� equivalent to the descriptionemploying Scherk’s
surface,� up to a cos(� /2)

/
dilation of thex) axis,� theLSD being

more‘‘compressed’’thanScherk’ssurface.
The
�

aboveapproachesarevaluablein providing simple
models? of the grain boundarywhich can be comparedwith
experiment.> They suffer, however,from the approximations
which� are inherentin the approach.Most importantly in the
system� of block copolymers,they ignore the physicalcon-
straints� of incompressibility which causesthe chains to
stretch� in order to fill the available volume. As a conse-
quence,B the IMDS is not a surfaceof constantmeancurva-
ture,
�

a point madecompellinglyby MatsenandBates,13 and�
confirmed( in experiment.14

Thereforewe havestudiedthe twist grain boundaryin
block



copolymer systems using the self-consistentfield
theory
� �

SCFT
	 �

in
o

Fourierspacewhich hasbeensuccessfulin
describing
�

lyotropic phasesof block copolymermelts.15 We
�

follow theapproachof Matsen6
�

who� adaptedit to kink grain
boundaries.



First we will introducethe particularimplemen-
tation
�

of the theory which is useful in this case.We then
present� resultsfor the TGB obtainedwithin this framework
and� comparethemwith Scherk’sfirst surfaceand the LSD.
We
�

concludewith a brief discussion.

II. THEORY

We
�

consideran incompressiblemelt of n� AB diblock
copolymers( eachcomposedof N

�
segments� of volume1/� 0

� ;
the
�

volume of the systemis V � nN� /
/ �

0
� . The polymersare

modeled as Gaussianrandom walks with statistical step
length
�

a� . The naturallengthscaleof the problemis the end-
to-end
�

meandistance,aN� 1/2. To describethe incompatibility
between



A and B monomersthe standardFlory–Huggins
parameter,� � ,& is introduced;the product � N

�
sets� the units of

energy> andtemperature.
We
�

utilize the SCFTmethodexpressedin Fourierspace
as� in Ref.15,a methodsuitedto thestudyof periodicphases.
A systemcontaininga twist grainboundary,however,is only
periodic� in the coordinatesy* and� z+ ,& but not in x) . In order to
circumvent( this difficulty, we adopt the samestrategyem-
ployed� by Matsenin his studyof thekink grainboundary:6

�
to
�

express> thedesiredsystemasoneperiodicin all threedirec-
tions
�

in the limit in which oneperiodbecomesinfinite. We
therefore
�

considerthe systemshownin Fig. 3 which, in ad-
dition
�

to beingperiodicin y* and� z+ is periodicin x) with� period�
. We imposea reflection symmetryaroundx) �v� /2,

/
i.e.,

FIG. 1. Schematicof a twist grainboundaryin which onelooksdownthex�
axis. As x� ��� , the IMDS approachesthat of the lamellar bulk, shownin
dashedlines, while as x� ����� , the IMDS approachesthat of the lamellar
bulk
�

shownin solid lines.Normalsto the planesof the bulk lamellaemake
anglesof � � /2

¡
with respectto the y¢ axis.

FIG.
£

2. Scherk’sfirst surfaceis shownfor a twist angleof ¤¦¥ 0.5 and a
scaleD

§ ¨
1.

5526 J. Chem. Phys., Vol. 113, No. 13, 1 October 2000 D. Duque and M. Schick

Downloaded 28 Oct 2002 to 128.95.93.192. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



(
0
x) ,& y* )

© ª
(
0 «v¬

x) ,& y* )
©
. The desiredgrain boundaryfree energy

per� unit area,­ ,& of the original systemis obtainedfrom the
free
@

energy,F
®

(
0 ¯

)
©
, of our systemaccordingto

°²±
lim³µ´·¶¹¸ F º¼»²½¿¾ Fb

À ÁÃÂ
V

,& Ä 2Å
where� the bulk free energyFb

À Æ lim ÇµÈ·É F(
0 Ê

)
©
, andthe area

of� thegrainboundaryis V/
/ Ë

. As thenaturalunit of areaper
polymer� is V/

/
naN� 1/2,& the naturalunit of the grain boundary

free
@

energyis k
Ì

BTnaN
Í 1/2/

/
V. Thusthe boundaryfree energy

can( be written

ÎÐÏ V

k
Ì

B
Ñ TnaN
Í 1/2 Ò²Ó lim

�ÔÖÕØ× F Ù¼Ú²Û¿Ü Fb
À

k
Ì

B
Ñ Tn
Í Ý

aN� 1/2. Þ 3ß à
As
�

the systemis now periodic in all directions,we can
expand> all functionsof position into a complete,orthonor-
mal, setof eigenfunctions,f

á
lmn
â ,& of theLaplacianoperator,15

eigenfunctions> which explicitly expressthe symmetriesof
the
�

system.It is clearthat it is invariantundera rotationof ã
about� the x) axis,� i.e., under(x) ,& y* ,& z+ )© ä (

0
x) ,& å y* ,& æ z+ )© . It is also

invariantunderrotationsof ç about� the y* and� z+ axes.� There-
fore thesystemis invariantwith respectto thechangein sign
of� anytwo of thecoordinates.Theseconsiderations,together
with� theimposedreflectionsymmetryaroundx) èvé /2,

/
leadto

the
�

choiceof functions

f
á

lmn
â ê x) ,& y* ,& z+ ë¿ì

cí l
â cí mî cí nï cos( ð lkñ xò x) ó cos( ô mkõ yö y* ÷ cos( ø nk� zù z+ ú ,&

if
o

l
ñ

is
o

even,

cí l
â cí mî cí nï sin� û lkñ xò x) ü sin� ý mkõ yö y* þ sin� ÿ nk� zù z+ � ,&

if l
ñ

is odd, �
4�

where� k
Ì

xò ��� /
/ �

,& k
Ì

yö � 2
\ �

cos(( 	 /2)
/

/D
E

,& and k
Ì

zù
 2 � sin(� � /2)
/

/D. Again D is the bulk lamellarperiod.

It shouldbeclearfrom Fig. 1 thatthenaturalcoordinates
in which to express the periodicity of the system are
(
0
y* /
/
D
E

)
©
cos(
 /2)

/ �
(
0
z+ // DE )

©
sin(� /2)

/
. Indeed Scherk’s surface,

Eq.
� �

1� ,& is expressedin them. Translatingan expansionin
those
�

coordinatesinto an expansionin x,) y,& and z+ ,& onesees
that
�

the parity of mõ and� n� above� must be the same.Finally
the
�

cí l
â are� determinedby orthonormality:

1

V
f
á

lmn
â � r� fá l

â �
mî � nï ��� r� d

!
r ��� ll

â ���
mmî  "! nnï # . $ 5� %

Thuscí 0
� & 1 andcí i ')( for i

* +
0.
�

This completesthe specifi-
cation( of the basisfunctions.

One
,

might think it necessaryto impose an additional
invariance: that the calculated free energy of the grain
boundary



with twist angle -/.�0 /2
/

be identical to that with
angle� 13254 because,



afteran interchangeof y* and� z+ ,& theone

boundary



is identicalto theother.However,thegrainbound-
ary� free energywe calculatealreadydisplaysthe symmetry6

(
0 7

)
© 8:9

(
0 ;=<?>

)
©

without further restriction of the basis
functions.
@

This can be seenfrom the fact that under @/ACBD?E ,& the wave vector componentsk
Ì

yö and� k
Ì

zù interchange.
Thusaninterchangeof thecoordinatesy* and� z+ and� a relabel-
ling
�

of the dummy indices mõ and� n� suffices� to make the
expressions> for the freeenergiesof the two grainboundaries
identical.

We
�

expand all functions of position in terms of the
above� basisfunctions.Of coursetheinfinite setmustbetrun-
cated( in a numericalcalculation,andour computerresources
imposea maximumslightly below400functions.Theresults
presented� below areobtainedfor the choiceof 5 valuesfor
mõ ,& 5 for n� ,& and15 for l

ñ
as� theresultsaremoresensitiveto the

numberF of componentsin thex) direction
�

thanin y* or� z+ . To be
consistent( with this choice,we take the correspondingbulk
lamellar
�

phaseto be that obtainedfrom five Fouriercompo-
nents.F

We
�

have chosen G N
� H

15, an intermediatevalue for
which� an intermaterialdividing surfaceis well delineated,
but



not so sharpas to requirea largenumberof basisfunc-
tions
�

to describe.A value of I:J 5
�

aN� 1/2 is
o

sufficient typi-
cally( for the free energy to becomeinsensitiveto further
increasesin this parameter.With our 375basisfunctions,our
resultsK for the free energyat L/M�N /2

/
areaccurateto within

1%. Larger values of O N
�

would� require additional basis
functions.Smaller valuesof P N

�
,& nearerthe order disorder

transition
�

temperatureof Q N
� R

10.49,causeperiodic modu-
lations
�

of the dividing surfaceto appearwhich extendaway
from
@

the grain boundary.This behavior,similar to that re-
ported� for thekink grainboundary,5,6

#
is likely to bestrongly

modified by fluctuation effects which are absent in the
SCFT.
	

III.
�

RESULTS

In Fig. 4 we show results for the twist angle S/T 0.4
�

U 22.9°
\

. We haveplotted, for severalvaluesof x) ,& contours
of� constantorderparameter,the differencebetweenthe vol-
umeV fractions of the two monomers.In thesegray scale
plots,� the maximumabsolutevalueof the orderparameteris
0.88.
�

Figure4W a� X shows� a slice at infinitely largex) ,& that is, a

FIG. 3. Schematicof the system,periodic in all threedirections,on which
we performour calculations.Theoriginal systemof interestis recoveredon
letting Y increase

Z
without limit.
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cross( sectionthroughthe bulk system.Figures4\ b
 ] and� 4̂ c( _
show� slicesat thevaluesof x) ` 0.2

�
aN� 1/2,& and0, that is, at the

grain� boundaryitself.
We
�

would like to comparethedistributionof monomers
obtained� in our solutionwith Scherk’sfirst surface,which is
a� modelfor theintermaterialdividing surface.Oneway to do
this
�

is to calculatewithin our solutionthe valueof the order
parameter,� acb (

0
r)
© d?e

A
f (0 r)

© g 1
2
h ,& at the points rS

i defined
�

by
Scherk’s
	

surface.The valueof jck (
0
rl S
i )© vanishesas x) mon:p

because



Scherk’ssurfaceandthe intermaterialdividing sur-
faceof our solution,definedby qcr (

0
rI)
© s

0,
�

coincidein that
limit.
�

A convenientmeasureof the similarity of the two di-
vidingw surfaces,therefore,canbe definedby computing

IS
i t d

!
r uwv A x ry{z}| 1/2~�� 2

" ���
r � rS

i � .
A
�

measureI
�

LSD
� for

@
the LSD can be defined in the same

manner.?
A secondmeansto comparethe surfacesis to calculate

the
�

volumeof the regionwhich is enclosedbetweenthe two
surfaces� to be compared.This is easy to implementby a
Monte
�

Carlointegrationtechniquein which pointsof theunit
cell( are takenat randomand checkedto determinewhether
the
�

two surfacesagree,or not, in theassignmentof thepoint
to
�

theA-rich region.Therelevantquantityis ( � V)
© �

/
/
VN1/2a� ,&

the
�

fraction of the volume � V for
@

which there is disagree-
ment, normalizedby the areaof the grain boundaryV/

/ �
.

The factorN
� 1/2a� ensures> that this measure,which we denote

IS
i � ,& is dimensionless.

These
�

two measuresareplottedin Fig. 5. They indicate
that
�

the LSD is a better representationof the intermaterial
dividing
�

surfaceover almostthe entirerangeof twist angles
except,> perhaps,quite closeto � /2.

/
As the angledecreases,

both



measurestendto the samelimit, of course.� Recall
�

the
only� difference betweenthe two surfacesis a dilation of
cos(( � /2)

/
. �

The
�

grainboundaryfreeenergyasa functionof thetwist
angle� is shownin Fig. 6. The circlesshowthe resultsof our
calculation.( For valuesof the twist angle greaterthan 0.5
radi, our resultsare accurateto within 5%, improving to-
wards� 1% as they approach� /2.

/
The dashedline hasbeen

drawn
�

through thesevalues and extrapolatedto zero. We
havealsoincludedseveralotherpointsfor smallervaluesof� . Thenumberof basisfunctionsemployedis insufficientfor
the
�

grain boundaryfree energyto haveconvergedto within

5%.
�

Nevertheless,we haveincludedthemasthey appearto
indicate that the behaviorof the free energyas the angle
approaches� zeromay not be linear, the behaviorexpectedif,
at� very low densities,dislocationsrepeloneanother.12 It

<
has

been



argued,however,thatat very low densities,dislocations
attract� oneanother.16

One
,

notes that the grain boundary free energiesare
ratherK small: that of the grain boundarywith twist angleof� /2
/

is, at the sameincompatibility, � N
�

,& somewhatlessthan
half the energyof the boundarywith tilt angleof � /2.

/ 6
�

Per-
haps
�

this shouldnot be too surprising.In the approximation
notedearlierof treatingthe intermaterialdividing surfaceas
a� surfaceof constantmeancurvature,with an energygiven
by



theHelfrich freeenergy,17 the
�

grainboundaryfreeenergy
would� be identically zero.18

FIG. 4. Slicesthroughthe grain boundaryshowingthe monomerdistribu-
tion
�

at different distances:� a� In
�

the limit of x� �)� , i.e., the bulk, � b� � x�� 0.2aN1/2, and   c¡ x� ¢ 0, i.e., at the grain boundaryitself. In thesegray
scaleplots, the maximumabsolutevalueof the orderparameteris 0.88.

FIG. 5. Measuresof the similarity betweenthe intermaterialdividing sur-
facedefinedby our calculationandthatof Scherk’sfirst surface£ diamonds,
joined
¤

by solid line¥ and that definedby the linear stack of dislocations¦
squares,dottedline§ . Exceptneartwist anglesof ¨ /2,

¡
the latter is a better

representation.©

FIG.
£

6. Free energy per unit area, ª , of the twist grain boundaryas a
function of twist angle « . The circlesshowour results,the dashedline is a
fit to them ¬ extrapolatedto ­¯® 0° taking

�
into accountonly data for ±²

0.5. Also shown are the approximatefree energieswe have calculated
from theexpressionsin Ref.12 for Scherk’sfirst surface³ solid liné andthe
linear array of dislocations µ dotted line¶ which include only bendingand
compressionenergies.
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The freeenergyof a systemwith a twist grainboundary
was� calculatedpreviouslyby Gido andThomas.19 They ap-
plied� a versionof the self-consistentfield to a brushof infi-
nitelyF stretchedchains anchoredto a given saddle-shaped
surface,� and also carried out an independentcalculation
based



on the work of Wang and Safran.17 However, they
reportK their resultsin termsof the extensivefree energyper
chain( in the region of Scherk’s surface. This is not a
uniquelyV definedquantity,nor is it the thermodynamicgrain
boundary



freeenergyperunit areawhichwehavecalculated,
so� direct comparisonsareprecluded.

We
�

have chosento compareour resultswith thoseof
KamienandLubensky.12 We

�
emphasizethat the two calcu-

lations
�

are ratherdifferent in principle. In the approachwe
have
�

employed,the free energyof the block copolymersys-
tem
�

is calculateddirectly, assumingnothing other than the
applicability� of self-consistentfield theory.In particular,we
do
�

not employ elasticity theory, or assumethat displace-
ments? from a referencesystemwithout a grain boundaryare
small,� etc. In contrast,that of Ref. 12 assumesthat the bulk
system� can be adequatelydescribedas a seriesof surfaces,
and� the energyof this systemof surfacescan be expanded
assuming� small displacements.A further difficulty which
arises� when applying the calculationof Ref. 12 to a block
copolymer( systemis that the volumeson either side of the
surfaces� are undifferentiated,whereasin the block copoly-
mer system,thesevolumesare filled with different

!
mono-

mers.Thus the symmetryof the systemconsideredby Ka-
mien? and Lubenskyis not the sameas that of ours. As a
consequence,( there are more elastic constantsin an elastic
description
�

of a block copolymerlamellarphasethanthetwo
utilizedV by them in their descriptionof liquid crystalline
smectics.� 20

Having acknowledgedthesecaveatsí ,& we calculatethe
bending



and compressioncontributionsto the free energies
of� Scherk’sfirst surfaceand of a LSD surfaceas given in
Ref.
�

12. As noted in the Introduction,a numberof param-
eters> neededto evaluatethesefree energiesare unknown,
being



inputs to the phenomenologicaltheory.However,we
can( provide someof thesevaluesfrom our work. Thus we
calculate( the lamellar spacingto be D

E ·
1.5155aN� 1/2,& and

the
�

dimensionlesscompressionmodulusto be B ¸ 3.01.
ß

The
dimensionless
�

bending modulus is unknown but can be
estimated> 21 to

�
be ¹»º 0.115.

�
The only unknown which re-

mains is the size of the ‘‘core region,’’ which providesa
cutoff( to the otherwisedivergentintegralsfor the compres-
sion� free energyestimatedin Ref. 12. This canbe estimated
from
@

the slope of the dotted line in Fig. 6. We obtain,
thereby,
�

a value of ¼ 0.191
�

aN� 1/2,& i.e., 25% of the IMDS
spacing� D/2.

/
Of course,there is no reasonthat this core

regionK shouldnot dependon ½ ,& but were we to obtain the
size� of the core from our data at eachvalue of the twist
angle,� theresultwould simply bea mappingof theresultsof
Ref. 12 to ours, and no independentcomparisonwould be
possible.� Using theseparameters,we haveevaluatedthe free
energy> given in Ref. 12 of the appropriateScherk’ssurface
and� of the linear superpositionof dislocations.Theseare
shown� in Fig. 6 as solid anddottedlines, respectively.The
LSD
¾

hasa freeenergycloserto our resultthandoesScherk’s

surface,� just as it is closerto our intermaterialdividing sur-
face.Both approximationsunderestimatethe grain boundary
free
@

energyof theblock copolymersystemby a factorwhich
increases
o

with twist angle,andis about2 at ¿/À�Á /2.
/

IV.
�

CONCLUSIONS AND OUTLOOK

We
�

have applied self-consistentfield theory to twist
grain� boundariesin block copolymermelts.Our calculation
is
o

more direct than earlier onesand providesgreaterinfor-
mation? concerningthe monomer densitiesthroughout the
volume.w It alsoexpressesthe grain boundaryfree energyin
terms
�

of thedirectly measurablevolumeperchainandradius
of� gyration as opposedto elastic modulii of internal inter-
faces.
@

The boundaryfree energywasobtainedasa function
of� twist angle,andfoundto bequitesmall;smallerthankink
grain� boundariesof the sameangleandincompatibility.

We
�

havecomparedour resultsto previousphenomeno-
logical
�

calculationsto show that the intermaterialdividing
surface� is not given by either Scherk’sfirst surfaceor the
linear stackof dislocations,but that, of the two, the latter is
a� better representationover most twist anglesexceptnearÂ /2.
/

We
�

commentbriefly on the other type of twist grain
boundary



which hasbeenobservedat small twist angles,8 the
�

one� consisting of a stack of lamellae which are twisted
slightly� andremaincontinuous.We havenot investigatedit
is becausewe failed to find anappropriateperiodicboundary
condition( which doesnot contribute to the excesssurface
free
@

energy.Although it is possibleto calculatethecontribu-
tion
�

to the excesssurface free energy of any choice of
boundary



condition and then to subtract it from the total
excess,> leaving the desiredgrain boundaryfree energy,the
procedure� is tedious.However,simple examinationof this
boundary



leadsto theconclusionthatthegrainboundaryfree
energy> must be approximatelytwice that of a kink grain
boundary.



This is becausethe lamellaewithin the boundary
and� thosefar from it meetin whatapproximatesa kink grain
boundary.

 Ã

Figure 4 of Ref. 8 showsthis nicely.Ä The free
energy> of a kink grain boundarygrowsas Å 3

Æ
for small kink

angle� Ç .5,6
#

Of
,

coursewe do not know the relation between
the
�

angle, È ,& of this ‘‘effective’’ kink grainboundaryandthe
twist
�

angle É . Nonetheless,if we assumethat the relation is
linear,
�

then the twist grain boundaryenergywould grow asÊ 3
Æ

for
@

small twist anglesand would be favoredover those
we� havemodeledhere,which would in fact be metastable
but



long lived astheir energyis small.This is in accordwith
the
�

experimentalresult that both forms of boundaryareob-
served� at small twist angles.But at largeranglessuchgrain
boundaries



would be disfavoredcomparedto thoseconsid-
ered> in this article. This is in accordwith the fact that they
are� not seenexperimentally.
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