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We study spatially ordered phases in a rod-coil diblock copolymer melt. In the weak segregation
limit, we solve the self-consistent field equations by a partial numerical evaluation of the single chain
partition function. In the strong segregation limit, we resort to a brush-like approximation. The
structural asymmetry of the blocks has a pronounced influence on the phase diagram. We find that
the only stable morphologies are those in which the coils are on the convex side of the rod-coil
interface. The results are compared to experiment.
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I. INTRODUCTION

The self-assembly of diblock copolymers has attracted a great deal of interest for basic, theoretical reasons as well as
technological ones. The chemical joining of two distinct homopolymers into a diblock copolymer prevents macrophase
separation of the two pieces, and leads instead to the appearance of spatially ordered structures. The particular
periodic superstructure which forms balances the free energy costs of the interfaces between unlike blocks, which
favors long wavelength periodic units, and the entropy loss due to chain stretching, which favors shorter ones [?].

In many practical applications the blocks of the copolymer are characterized by some degree of structural asymmetry.
For example, a flexible block may be chosen as it contributes to the composite material a resistance to fracture, and
may be joined to a more rigid portion which contributes tensile strength [?] or possesses favorable dielectric properties.
The orientational order and electrical conductance of a constituent block can be exploited in optical [?] and electrical
devices [?7,7].

The influence of the stiffness on the phase behavior of binary homopolymer blends has attracted much theoretical
interest [?,7,7,7] but there is much less work on copolymer systems and their spatially ordered phases. In the strong
segregation limit, Semenov and Vasilenko [?] examined such phases of a rod-coil system with strong, anisotropic
interactions. Assuming that the rods are strictly aligned in the direction normal to the lamellae, they predict a
transition from a monolayer to a bilayer lamellar phase. Halperin [?] investigated the transition between a smectic
A structure, in which the rods are aligned perpendicular to the layers, and a smectic C, in which they are tilted. A
phase of disk-like micelles is also found to be stable [?]. In the weak segregation limit, only spatially uniform phases
of diblocks had been examined [?] until recently. Matsen [?] has now studied the effect on the diblock lamellar
phases of varying stiffness, while Netz and Schick [?] have examined the result of introducing anisotropic interactions
between the semi-flexible blocks, and also of subjecting them to external fields. Only lamellar structures have been
investigated, however.

In this paper we highlight the influence of the disparity of stiffness between blocks on microphase separation by
consideration of rod-coil copolymers. Anisotropic interactions between rods are ignored so that the effect of their
stiffness is manifest only in a reduction in their entropy and via a local incompressibility constraint. We apply
self-consistent field theory, but in contrast to Refs. [?,?], we calculate single chain partition functions via partial
enumeration [?]. The scheme is formulated for arbitrary architecture, but applied to the rod-coil system in the weak
segregation limit. The results are compared to the phase diagram in the strong segregation limit and to experiment.

II. NUMERICAL SELF CONSISTENT FIELD THEORY
The partition function of an incompressible system comprising n AB copolymers can be written in the form:
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where 1/p, denotes the segmental volume, V4p the mutual, segmental interaction between dissimilar blocks, and
‘P[r] the probability distribution characterizing the non-interacting, single chain conformations. We do not include
anisotropic interactions. The dimensionless monomer density takes the form:
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where the sum runs over all A-monomersin copolymer «. A similar expression holds for (%B(r). Employing a Hubbard-
Stratonovich transformation, we rewrite the many chain partition function in terms of a single particle problem in
external, fluctuating fields Wy, and Wg:
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where the free energy functional is defined by:
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and @ denotes the single chain partition function in the fields W, and Wg:
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The leading contribution to the partition function (?7?) stems from those values ¢4, wa and wp of the collective
variables ® 4, W4 and Wg which extremize the free energy functional, and the mean-field approximation consists of
retaining only this contribution. The values are determined by the self-consistent equations:
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The mean field approximation reduces the original problem of mutually interacting chains to one of a single chain in
a static, external field which is determined self-consistently. Composition fluctuations are neglected, but the coupling
between chain conformations and composition is not. In order to study the self assembly into different morphologies,
we expand the fields and densities which occur in the above equations in a complete set of orthonormal functions
[?] {frx} which possess the symmetry of the phase being considered; ¢a = >, darfr, wa = > ,warfr, and
wp =), wBkfi-

Rather than solving the single chain problem analytically [?,7], we evaluate the single chain partition function Q
numerically [?], employing a representative sample of p single chain conformations which obey the distribution P.
Giving each polymer conformation a weight

W, = exp {— Z (wA,k ka(rc,iA)/N +wa i ka(rc,ig)/N) } (7

we obtain the following expressions for the partition function and the A-monomer density:
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A similar expression obtains for ¢p. The resulting set of nonlinear equations is solved by a Newton-Raphson-like
method.

This scheme is applicable to arbitrary chain architectures, and can use conformational data extracted from ex-
periments or simulations as input. We apply it to rod-coil diblock copolymers consisting of N = 50 segments, of
which fN segments are modeled as a rigid rod of length foN with & = 1, and the remaining (1 — f)N segments
as connected via Gaussian springs of length @ = 1. The segmental interaction is taken to be of the simple form
Vap(r—r') = 8(r — r')x/po. In order to evaluate the single chain partition function we employ up to 200,000 single



chain conformations and up to 32 basis functions. This is sufficient to determine the phase boundaries in the weak
segregation limit, as presented in Fig. ??. In agreement with previous calculations [?] employing the random phase
approximation, the ordered phase is more stable than in coil-coil diblock copolymers, and the phase diagram is slightly
asymmetric in the copolymer composition f. Most notably, only phases in which the coils are on the convex side
of the rod-coil interface are found to be thermodynamically stable. This result emphasizes the importance of the
conformational entropy of the flexible component which is increased when the coil occupies the larger space on the
convex side of the interface.

III. STRONG SEGREGATION THEORY

At higher incompatibility, the chain stretching and the sharpening of the interfaces require an increase in the
number of chain conformations and basis functions to be used in the above procedure, which eventually exceeds our
computational facilities. In the strong segregation limit, we resort to a brush-like approximation [?,?] to determine
the phase boundaries. In the limit of large incompatibility, the interface between the rod-rich and coil-rich regions
is much smaller than the spatial extension R of the unit cell, and the free energy is determined by a competition of
the interfacial free energy Finter and the stretching cost Fions of the coil-like portion. We assume that the rigid part
of the copolymer fills the space without free energy costs [?], and neglect the translational entropy of the junctions
between rod and coil at the interface [?], and the entropy associated with the distribution of chain ends [?]. The free
energy contribution per chain can be cast in the form:
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where the surface tension is vkpT, and the constants ¢; and ¢ characterize the different morphologies. On approx-
imation of the hexagonal or cubic unit cells by cylindrical or spherical ones of radius R [?], one obtains for these
constants the values compiled in table ?7. Minimization of the free energy with respect to the unit cell size R yields
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The strong stretching assumption is valid as long as the chains are not completely extended. Therefore the condition
Ropt € N or (7/N) < 1 must be fullfilled. The free energies of the different morphologies are presented in Fig. 2.

Since cylindrical and spherical unit cells cannot fill space [?], the above result is a lower bound for the free energy
of the non-lamellar phases. The ratios of the free energy of the normal (coil inside) hexagonal and cubic phase to the
lamellar phase are independent of composition, f, and are 2!'/3 and 2.7'/3 respectively. Therefore, we do not expect
these phases to become stable in the strong segregation limit. Furthermore the lower bound of the free energy of
the inverted (coil outside) hexagonal phase is always lower than the free energy of the lamellar phase which would
indicate that the lamellar phase is never stable in this limit. However an upper bound of the free energy of the
hexagonal phases can be obtained [?] using concentric, hexagonal cylinders for the rod- and coil-rich region. As for
flexible copolymers, this increases the free energy by about a factor (10/9)1/3. Comparison of this upper bound with
the free energy of the lamellar phase indicates that the lamellar phase does become stable for f > 0.765 and large
incompatibilities.

Thus far we have assumed that the rigid part of the copolymer packs space without free energy costs. In the lamellar
and inverted hexagonal morphology, this is always possible by tilting the rods parallel to the rod-coil interface. The
degree of alignment is characterized by the ratio of the size of the unit cell, Rop¢, to the rod length, fNb. A convenient
measure of this ratio is the parameter [?]
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which is defined so as to be explicitly independent of the rod fraction f. Since the chains are not completely extended
£ < 1. In the hexagonal phase, the rods are aligned predominantly along the cylinder axis, and the angle between
the rods and this axis is of the order of k. In the lamellar phase the rods are aligned predominantly parallel to the
lamellae, and the angle between the rods and the normal to the lamellae differs from 7 /2 by the order of k. As & is so
small, the rod-like parts are strongly oriented. In the cubic phase of spherical micelles, the size of the rod-rich spheres
must be larger than the rod length, so that 2f1/3Ropt > fNb. This yields the following condition for the stability of
the cubic phase with respect to the hexagonal:
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Since k < 1 this condition for the stability of the cubic phase can only be met for very small values of f.

If our model included anisotropic interactions, which can be modeled by a quadrupolar Maier-Saupe form [?,7],
we would expect the stability region of the cubic phase to be reduced markedly or even to vanish completely, due
to pronounced problems in packing rods into spheres. The effect of such interactions on the transition between the
lamellar and the hexagonal phase is less clear. Such interactions would decrease the orientational entropy, which in
the absence of such interactions is larger in the lamellar phase than in the hexagonal. They would also increase the
surface tension. Both these effects tend to stabilize the hexagonal phase with respect to the lamellar.

IV. DISCUSSION

The extreme conformational asymmetry in rod-coil diblock copolymers has a pronounced influence on the phase
behavior of these composite materials. Both the numerical self-consistent field theory in the weak segregation limit
and the strong segregation theory at high incompatibilities predict that only morphologies in which the coils are on
the convex side of the interface are thermodynamically stable. Differences in the phase behavior of this system and
that of structurally symmetric coil-coil copolymers stem mainly from the lack of entropy in the rigid rod.

The phase behavior we have obtained is in qualitative agreement with recent experiments by Stupp [?] and
coworkers, who observed hexagonal and lamellar phases in thin films of rod-coil diblock molecules by TEM. These
experiments on films find the transition between the hexagonal and the lamellar phase to occur at lower rod contents
f than do we for bulk. Besides effects of preferential absorption of one component to the surface of the film, and the
neglect of anisotropic interaction in our model, this shift in the composition at the transition might be qualitatively
accounted for by a simple packing argument. If the film thickness D is smaller than the rod length fNb, the size of
the unit cell of the hexagonal phase must be minimized with the constraint 4fR? > (fNb)?— D? = R2, . This yields
for the ratio of the free energies of the hexagonal and lamellar phase
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where # = D/Nb denotes the film thickness in units of the rod length. This ratio is shown in Fig. ?? for different

values of film thickness z and £ = 0.01. As one increases the film thickness, the transition between the hexagonal and
lamellar phase is shifted to larger fractions of the rod, f. This effect is observed in experiment [?].

(13)
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TABLE I. Coefficients in the strong stretching approximation eqn. (9). for the different morphologies



FIG. 1. Mean field phase diagram of a rod-coil copolymer melt in the weak segregation limit, using the numerical
evaluation of the single chain partition function. a = b = 1.



FIG. 2. Free energies in the strong stretching approximation. Note that the free energies of the lamellar,
hexagonal and cubic phase are proportional. Packing constraints for the cubic phase are not taken into account.



FIG. 3. Influence of a confined geometry: ratio of the free energy of the HEX I phase and the LAM phase for
z = D/Nb=0.2,0.4,0.6, and 0.8, K = 0.01. The solid lines are upper and lower bounds to the free energy of
the bulk HEX I phase. The arrow indicates the composition beyond which a bulk lamellar phase might become
stable.



