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ABSTRACT: We consider the phase behavior of a symmetric AB diblock, blended with corresponding A
and B homopolymers, all of equal chain length. Evaluating the phase diagram in mean-field theory at
all compositions of the ternary blend, we find no hexagonal and cubic phases. However, up to three
distinct lamellar phases can coexist, one being symmetric and the other two being asymmetric. For strong
incompatibility, added homopolymer eventually phase separates from the microstructure. For weak
segregation, the symmetric lamellar phase at moderate dilution breaks up into two coexisting lamellar
phases, each asymmetrically swollen by either A or B homopolymer. These phases can be swollen
indefinitely, finally unbinding into the disordered phase. As a consequence, one expects to find lamellar
order at much lower diblock concentrations toward the binary sides of the phase diagram than on the
isopleth.

I. Introduction

The system of symmetric AB diblock copolymer and
A and B homopolymer, all of the same index of polym-
erization, is perhaps the simplest ternary polymer blend
which undergoes microphase separation. Until recently,
little attempt had been made to determine what ordered
phases it displays or to map out its full phase diagram.
Earlier work on this system focused on the phase
coexistence of disordered phases only1,2 or on the
interfacial activity of the diblock assembled between
coexisting unstructured bulk phases.3-5 However, a
recent Monte Carlo study6 obtained a cut through the
full phase diagram along the isopleth, i.e. at equal
concentrations of A and B homopolymer. In addition
to the homogeneous phases, the diagram includes a
disordered, but structured, microemulsion and a lamel-
lar phase, but no phases possessing hexagonal or cubic
symmetry. It is the point of the present paper to show
that, within mean-field theory, the phase diagram has
an unexpectedly rich structure. Although ordered
phases of higher symmetry are unstable in mean-field
theory just as in the simulations, three different lamel-
lar phases exist, one being symmetric and two asym-
metric. The symmetric one consists of roughly equidis-
tant copolymer monolayers, separating A- and B-rich
regions. For a lower overall copolymer concentration,
this phase becomes unstable with respect to the forma-
tion of two coexisting phases of diblock bilayers in a
homopolymer background. The asymmetric lamellar
phases undergo complete unbinding transitions as ho-
mopolymer is added, but the symmetric one does not.
In a complete unbinding transition,7-9 added homo-

polymer swells the lamellae, and the wavelength of the
lamellar phase diverges. In this limit, the system un-
dergoes a transition to the disordered phase. At larger
values of the incompatibility, measured by the Flory-
Huggins parameter ø, the swelling does not increase
without limit. Instead a lamellar phase of finite wave-
length coexists with the disordered phase. This change
of behavior with changing incompatibility can be either
continuous10 or first-order.11 In the latter case, a pre-
unbinding line is expected, analogous to the prewetting
line which accompanies a first-order wetting transi-
tion.12 Matsen demonstrated13 within mean-field theory

that a complete unbinding occurs in the binary AB/A
system at small incompatibility, while at sufficiently
large incompatibility it does not. It was later shown
that the transition between these regimes is first-order,
and the preunbinding line, at which two lamellar phases
of different wavelength coexist, was located.14

In this paper we shall see that the complete unbinding
transition of the lamellar phase of AB bilayers in the
majority A homopolymer remains when their cores are
slightly swollen by minority B homopolymer. However
when a sufficiently large concentration of the latter is
added, it forms the majority component of an asym-
metric lamellar phase with minority A within the cores.
The two asymmetric lamellar phases coexist. Near the
isopleth, a symmetric lamellar phase exists only at
sufficiently large diblock concentrations. As the amount
of diblock is reduced, this phase becomes unstable to
the two asymmetric lamellar phases before it can
unbind. Only these asymmetrically swollen lamellar
phases eventually undergo complete unbinding. This
result is in accord with experimental observations15 that
ordered lamellar phases of bilayers in very asymmetric
mixtures extend to much lower concentrations of diblock
than do lamellar phases of monolayers in symmetric
systems. These observations were very recently ex-
plained within the context of a phenomenological cur-
vature model which also included the effect of the van
der Waals interactions and of thermal fluctuations in
the lamellar phase.16 Our microscopic calculation in-
dicates that the relative stability of bilayer lamellar
phases as compared to monolayer ones persists even
when van der Waals interactions and fluctuations are
negligible.

II. Phase Diagrams

A. Binary Blend. We employ the Gaussian chain
model to describe the ternary mixture of symmetric AB
diblock blended with A and B homopolymers. The
strength of the local interaction between A and B
monomers is given by the incompatibility ø. All com-
ponents have the same index of polymerization. We
work in the grand canonical ensemble17,18 and solve the
mean-field equations in Fourier space.19 In addition to
lamellar phases, we examine solutions of hexagonal
symmetry, but do not consider hexagonally perforated
lamellar or cubic structures. The phase diagram of theX Abstract published in Advance ACS Abstracts, June 1, 1997.
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binary AB/A limit of the ternary system was calculated
previously14 and is shown in Figure 1. At strong
segregation the lamellar phase (labeled L) can only be
swollen to a certain degree by additional homopolymer
before phase separation occurs to an almost pure
homopolymer phase (denoted A). However, for values
of øN less than øUN ) 11.766, the lamellar phase can
be swollen indefinitely. At the unbinding line, indicated
by dashes in Figure 1, the separation between the
lamellar sheets diverges; i.e. the wavenumber charac-
terizing the lamellar phase vanishes continuously, while
the Fourier coefficients of the copolymer density profile
remain nonzero. The unbinding transition at øUN from
bound to unbound lamellae along the lamellar/disor-
dered phase boundary is a first-order one, with a
preunbinding line which extends to a critical point at
øpuN ) 11.344. Along the preunbinding line, two
lamellar phases coexist, one of densely packed layers
(L) and the other of layers strongly swollen by A
homopolymer (LA). In the strongly swollen LA phase,
copolymer rich bilayers (with the B blocks on the inside)
are separated from each other by homopolymer-rich
regions similar in composition to the A phase at the
unbinding line.
The line of complete unbinding transitions extends

to the Lifshitz critical point at øLN ) 8.0.1 There it
meets a line of continuous transitions from the disor-
dered phase to a lamellar phase of nonzero wavenum-
ber. These transitions are similar to those described
by Leibler,20 in that the amplitude of all Fourier
coefficients of the copolymer density profile vanish
continuously. (See Appendix A for a note on the nature
of this transition.) Only at the Lifshitz point do both
the Fourier amplitudes and the wavenumber of the
lamellar phase vanish simultaneously.
B. Balanced Ternary Blend. The behavior found

on the isopleth, i.e. for equal amounts of A and B
homopolymer in the system, is shown in Figure 2. For
large values of øN (i.e. for øN g ø*N ) 11.222), the
symmetric lamellar phase, L, can only be swollen to a
certain extent before additional homopolymer phase
separates from the microstructure. Since the homopoly-
mers are immiscible for values of øN greater than 2.0,
a three-phase region is formed at which the symmetric
lamellar phase coexists with the A-rich and B-rich

disordered phases. For values of øN less than ø*N,
there is no longer three-phase coexistence between
ordered and disordered phases but rather between three
ordered lamellar phases. They are the symmetric one,
L, an A-rich lamellar phase LA, and a B-rich lamellar
phase LB. In the LA phase, thick slabs resembling the
disordered A phase in composition alternate periodically
with bilayers rich in B tails. At the unbinding line
(denoted in Figure 2 with dashes), the spatial period of
this structure diverges, and the LA phase undergoes
complete unbinding into the A-rich disordered phase.
Similarly the LB phase unbinds into the B-rich disor-
dered phase. At copolymer concentrations less than
that of three-phase coexistence but greater than that
of the unbinding transition, the two asymmetric lamel-
lar, ordered phases coexist, just as for lower concentra-
tions the two asymmetric disordered phases coexist. The
three-phase region between lamellar phases LA, LB, and
L persists for ø*N > øN > øTN. It ends at a tricritical
point, øTN ) 10.627. For øN less than this, the two
asymmetric lamellar phases merge along a line of
critical points at which they form the symmetric lamel-
lar phase. We have numerical difficulties in following
this consolute line, but it is reasonable to presume that
it extends to the Lifshitz multicritical point1,2 at øMN )
6.0. At this point the following critical lines meet: the
above-mentioned consolute line of lamellar phases; the
consolute line of disordered phases; two lines of Lifshitz
points which originate on the binary side1 and which
separate the sheets of Leibler transitions from the
sheets of complete unbinding transitions; two lines of
critical-end points at which the sheets of complete
unbinding transitions intersect the first-order sheet
separating A-rich and B-rich phases.
C. Full Ternary Phase Diagrams. We can now

construct the full ternary phase diagrams at all values
of øN. To clarify the behavior, we present a sequence

Figure 1. Calculated phase diagram for the binary homopoly-
mer/diblock system. The incompatibility parameter øN is
shown vs the copolymer volume fraction φ. The disordered
homopolymer phase is denoted A, the dense lamellar phase
L, and the swollen bilayer phase LA. The preunbinding critical
point and the Lifshitz point are shown with dots. The unbind-
ing line is dashed, while Leibler’s line of continuous transitions
is shown solid. The arrow indicates the location of the first-
order unbinding transition, øUN.

Figure 2. Calculated phase diagram for the balanced sys-
tem, containing equal amount of A and B homopolymer.
The notation is the same as that of Figure 1. The one-phase
disordered region is denoted “dis”. The consolute line of the
asymmetric bilayer phases LA and LB, shown dotted, is
schematic. The arrows indicate the locations of the un-
binding transition, ø*N and of the multicritical Lifshitz point,
øMN.
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of schematic drawings (not to scale) in Figure 3, whereas
the results of the numerical computation are given in
Figures 4-6.
At large incompatibilities, Figure 3a and Figure 4,

there are only three phases: the dense lamellar phase,
and the A- and B-rich disordered phases. They can
coexist. Note the very low miscibility of the pure
homopolymers in Figure 4.

When øN is decreased to a value slightly below that
of the unbinding transition on the binary side, øUN >
øN > øpuN, as in Figure 3b and Figure 5, the addition
of B homopolymer to the binary AB/A system not only
extends the unbinding transition into the interior of the
three-component diagram but also extends the preun-
binding region in which the symmetric lamellar phase
coexists with the asymmetric A-rich lamellar phase.
Note that the repeat distance of the LA phase, coexisting
with the dense L phase, increases with the amount of
B homopolymer added. Three-phase coexistence is still
between the symmetric lamellar and A-rich and B-rich
disordered phases as long as øN is larger than a certain
value ø*N.
At this value ø*N ) 11.222, Figure 3c, the nature of

the three-phase coexistence changes. For values of øN
less than ø*N, (cf. Figure 3d and Figure 6), three-phase
coexistence is between a dense lamellar phase L and
two asymmetrically swollen bilayer phases (LA and LB).
Adjacent to the three-phase triangle are two-phase
regions along which different lamellar phases coexist.

Figure 3. Schematic drawings of the left-hand side of the full
ternary phase diagram for various values of øN. Two-phase
regions are indicated by tie-lines, and three-phase triangles
are shown in black.

Figure 4. Calculated phase diagram for øN ) 12.5, above the
unbinding transition on the binary side.

Figure 5. Calculated phase diagram for øN ) 11.5. The
lamellar phase unbinds along the binary sides, but not on the
isopleth.

Figure 6. Calculated phase diagram for øN ) 11.0. Three-
phase coexistence between the symmetric lamellar, L and two
disordered phases, A and B, has been replaced by one between
the symmetric lamellar and two asymmetric lamellar phases,
LA and LB. The region of three-phase coexistence is shaded.
Extrapolated phase boundaries are shown with dashes.
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The regions of L + LA and L + LB coexistence are clearly
seen to be preunbinding regions. Note in particular the
coexistence of two asymmetric, swollen lamellar phases,
below the base of the three-phase triangle.
As øN is reduced still further, three-phase coexistence

vanishes at a tricritical point at øTN ) 10.629. At
smaller incompatibilities, the two asymmetric lamellar
phases merge continuously at a consolute line. For
values of øN < 10.49, we encounter an order/disorder
transition at high copolymer concentration. This tran-
sition, first described by Leibler20 for the pure diblock
melt, appears from our numerical solutions to be
continuous at all compositions. As shown in Appendix
A, the Landau free energy contains no third-order
invariant in the order parameter which becomes critical
at the microphase transition. This is due to the fact
that the copolymer is symmetric, f ) 1/2, in the system
which we examine. As there is no third-order invariant,
there is no necessity for the transition to be first order,
although it could be were the fourth-order invariant to
be negative. Our numerical results indicate that this
is not the case. As a result there is an entire sheet of
continuous transitions separating the disordered phase
from a lamellar phase of nonzero wave vector.
As the incompatibility is reduced even more, the

disordered region extends further down the binary sides
to lower diblock concentrations. A lamellar phase
remains on the binary side and unbinds into the A-rich
disordered phase at still lower compositions. At øN )
øLN ) 8.0, Figure 3e, the lamellar phase just detaches
from the binary side, and the sheet of Leibler transitions
meets the sheet of complete unbinding transitions there
at a Lifshitz point.1
At still smaller values of øN, the stability region of

the lamellar phase detaches completely from the binary
sides, forming an island in the center of the phase
diagram (Figure 3f). At the multicritical Lifshitz point,
øMN ) 6.0, this island vanishes, leaving just the
coexistence region of the immiscible, disordered ho-
mopolymer phases.

III. Discussion
To discuss this phase behavior, it is useful to consider

the interactions between the internal interfaces in the
lamellar phase. The cost of creating an interface
increases with the magnitude of the density difference
across it. In a lamellar phase, there is an overall
attraction between neighboring layers, since the pres-
ence of the adjacent interfaces prevents the density
difference across each one from attaining the value
across an isolated interface. As the density difference
across the interfaces increases with the degree of
segregation, this attraction grows with øN. At short
distances, an elastic repulsion due to the compression
of the copolymers forming the layer stabilizes the
lamellae at a nonzero separation.
For large values of øN, the attraction is strong enough

to outweigh the entropic penalty of phase separation:
It is more favorable for added homopolymer to phase
separate from a dense lamellar phase than to swell it.
The same mechanism prevents the formation of a
symmetrically swollen phase on the isopleth for øN e
ø*N: in a symmetrically swollen lamellar phase, each
pair of interfaces is well separated, whereas in the
bilayer phases LA and LB, only every second pair of
interfaces is separated, while the interfaces forming
each bilayer are close to each other. The binding energy
gained hereby compensates the entropy loss of phase
separation.

This instability of the symmetric lamellar phase to
the asymmetric ones, clearly seen in Figure 6, is in good
agreement with experimental observations in ternary
systems containing short-chain amphiphiles.15 The
major difference between our Figure 6 and experiment
is that a disordered microemulsion phase is found to be
stable in the region in which mean-field theory predicts
a metastable ordered phase. The reason for this dis-
crepancy is that our mean-field calculation ignores
fluctuations which favor the disordered microemulsion
phase.21
There are several other effects of fluctuations which

will also alter the results obtained by mean-field theory.
One knows that they introduce a repulsive interaction
between bilayers,22 causing them to unbind more easily
than in mean-field theory. However, the orientational
order of the lamellae cannot be sustained when the
lamellar spacing exceeds the persistence length of the
bilayer,23 with the consequence that the unbinding
transition is expected to be pre-empted by a first-order
transition to a disordered, but structured, sponge
phase.24,25 It is also known that the continuous transi-
tion from the disordered phase to the lamellar phase of
nonzero wavenumber is driven first-order by fluctua-
tions.26,27 Finally, fluctuations can eliminate the entire
coexistence region between asymmetric lamellar phases
because the difference in energy between them and the
symmetric lamellar phase is so small. (See Appendix
B.) This is almost certainly the case in the simulation
of relatively short-chain polymers.6 Nonetheless one
expects to observe in ternary polymer blends asym-
metric lamellar phases which are stable to much smaller
diblock concentrations than are symmetric ones.
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Appendix A: Continuous Nature of the Leibler
Transition
The order parameter which becomes critical at the

order/disorder transition is the difference between the
local density difference of A and B monomers and the
average value of this difference. We let 〈...〉 denote
thermal averages, and subscripts HA, CA, and A denote
A-homopolymer, A-copolymer and total A-monomer
density, respectively. Then the local order parameter
is

For f ) 1/2, this order parameter is odd under inter-
change of the labels A and B, indicating the absence of
any odd power of η from the Landau expansion of the
free energy. Thus there is no neccessity for the transi-
tion to be first order. This does not rule out a negative
coefficient of a fourth-order invariant, which would drive
the transition first-order, but our numerical results do
not support such a scenario.

Appendix B: Numerical Procedure
We employ an expansion in basis functions,19 utilizing

up to 40 of them, in order to solve the mean-field
equations.18 We consider only ordered phases of shee-

η ) [φA - 〈φA〉] - [φB - 〈φB〉]

) [(φHA - 〈φHA〉) + (φCA - f〈φC〉)] -
[(φHB - 〈φHB〉) + (φCB - (1 - f)〈φC〉)]
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tlike lamellae or of hexagonally-arranged cylinders. We
do not find the hexagonal phase stable anywhere,
although it comes close to being stable near the unbind-
ing line. We do not consider hexagonally-perforated
lamellar phases as their region of stability is probably
small,13 and its presence would not be expected to have
a major effect on the phase diagram. We also make no
attempt to include form fluctuations, such as undulation
or peristaltic modes. We assume the melt to be incom-
pressible, so that there are only two independent
densities (which we take to be the two homopolymer
densities φA and φB), and two corresponding chemical
potentials.
As pointed out elsewhere,14,18 calculations in the

strongly swollen lamellar regime are difficult. Although
the value of the free energy is slowly varying, the
wavelength, and therefore the composition, depends
extremely sensitively on the value of µA and µB. For
example, the relative difference of fugacities, exp(âµ),
corresponding to the base of the three-phase triangle
and to the unbinding line in Figure 6 is less than 5.0 ×
10-5. Similarly, the minimum of the free energy of
strongly swollen phases is very broad and shallow as a
function of the wavelength l. Thus phases with very
different periods and compositions are almost equal in
free energy. It was therefore impossible to calculate the
phase boundaries of strongly swollen phases exactly.
They are indicated in in Figure 6 by dashed lines. The
composition of the disordered phases does not depend
strongly on the values of µA and µB, however, so that it
was possible to establish the unbinding line by locating
the position of the divergence of l as function of µ and
then determining the composition of the corresponding
disordered phase. We were not able to determine the
location of the consolute line between LA and LB because
the lamellae are very swollen close to the Lifshitz
multicritical point. Therefore the density profile is far

from sinusoidal and requires an exceedingly large
number of basis functions to be well represented despite
the weak segregation. The consolute line curve shown
dotted in Figure 2 is only schematic, being based on our
best understanding of its location.
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