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Self-consistent field theory is applied to a film of cylindrical-forming block copolymer subject to a

surface field which tends to align the cylinders parallel to electrical plates, and to an external electric

field tending to align them perpendicular to the plates. The Maxwell equations and self-consistent

field equations are solved exactly, numerically, in real space. By comparing the free energies of

different configurations, we show that for weak surface fields, the phase of cylinders parallel to the

plates makes a direct transition to a phase in which the cylinders are aligned with the field

throughout the sample. For stronger surface fields, there is an intermediate phase in which cylinders

in the interior of the film, aligned with the field, terminate near the plates. For surface fields which

favor the minority block, there is a boundary layer of hexagonal symmetry at the plates in which the

monomers favored by the surface field occupy a larger area than they would if the cylinders

extended to the surface. © 2006 American Institute of Physics. �DOI: 10.1063/1.2214718�

I. INTRODUCTION

With their ability to self-assemble, block copolymers are

a natural choice of material to be utilized in the fabrication of

devices incorporating periodic arrays.1–4 A major difficulty

with the process, however, is that the system rarely forms a

single domain of such an array, so a desirable long-range

order is absent. Furthermore, preferential interactions be-

tween the blocks and substrate can cause the array to be

aligned in a direction other than the one desired for use.

Alignment of domains can be obtained in several ways, of

which the one of interest to us is the use of an electric

field.4,5 This takes advantage of the fact that the two blocks

in general have different dielectric constants, so that it is

favorable for the array to align itself such that there is as

little induced polarization charge as possible.6 For lamellar-

and cylinder-forming diblocks, this means that a sufficiently

strong field will align the array with lamellas or cylinders

oriented with their long symmetry axis parallel to the applied

field, perpendicular to the electric plates.

If one assumes that the system in zero external electric

field is characterized by layers of cylinders lying parallel to

the substrate and in large external fields is characterized by

all cylinders oriented perpendicular to the field, then one

would like to know both the equilibrium morphology at in-

termediate field strengths and the phase diagram of the sys-

tem. Two possibilities were suggested by Thurn-Albrecht

et al.
4 In the first, the electric field has essentially little effect

on the arrangement of parallel cylinders up to the field

strength at which the perpendicular morphology becomes the

globally stable phase. If this situation is obtained, one ex-

pects that the difference in electrostatic energies of the two

configurations would be Ec
2
Ad0, with A the area of each

plate and d0 the distance between plates. Hence a first-order

transition would take place at a critical electric field Ec such

that Ec�d0
−1/2. In the second scenario, an intermediate phase

is formed, one in which the surface field is sufficiently strong

that a boundary layer near the plates has a different morphol-

ogy than in the rest of the film. As Thurn-Albrecht et al.

reported observing cylinders both in parallel and perpendicu-

lar orientations over a range of field strengths, the implica-

tion was that while the cylinders were oriented perpendicular

to the substrate in most of the film, the boundary layer might

consist of cylinders oriented parallel to the surface. The dif-

ference in electrostatic energies between the perpendicular

phase and this intermediate phase is then not Ec
2
Ad0, but

Ec
2
At, where t is a length characteristic of the thickness of

the boundary layer. Presumably it depends only weakly on

the film thickness d0. Thus one expects that Ec also varies

only weakly with thickness for thick films. Thurn-Albrecht et

al.
4 did indeed find that the critical electric field, beyond

which only the perpendicular phase was observed, was rela-

tively constant for large film thicknesses.

The existence of an intermediate phase is a consequence

of the competition between the surface fields, which prefer a

phase in which the cylinders are parallel to the surface, and

the electric field, which prefers that the cylinders be aligned

with it, perpendicular to the substrate. If the system were

semi-infinite, the intermediate phase would simply be la-

beled a surface phase, one of different symmetry than that of

the bulk, a very common situation.7 Such a phase would be

expected to persist in the case of a finite, thick film. How-

ever, when the film is sufficiently thin, the clear distinction

between bulk and surface properties can no longer be made,

and the two orientations compete throughout the film, result-

ing in the elimination of one of them.

Most theoretical work on block copolymers in electric

fields has focused on lamellar-forming phases, as opposed to

cylindrical ones, and on the dynamic mechanisms by which

morphologies could realign, rather than on the equilibriuma�Electronic mail: chimney@u.washington.edu
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morphologies themselves. Such dynamic mechanisms were

the subject of the seminal papers of Amundson et al.,6,8 and

of more recent dynamic density functional calculations.9–11

The form of the equilibrium phases was taken up by Pereira

and Williams12 and by Tsori and Andelman.13 Both groups

considered one intermediate phase in which a single lamella

at the plates remains parallel to them, although surface fields

could conceivably lead to a sequence of intermediate phases

distinguished by the number of lamellas parallel to the sur-

face. Such a discrete increase, or decrease, of the number of

lamellas with applied field would be analogous to the layer-

by-layer growth modes observed in adsorbed films.14 Both

groups presented phase diagrams as functions of applied

electric field and film thickness. Although similar, they differ

in one respect: that of Tsori and Andelman shows the per-

pendicular phase to be favored always at sufficiently large

external fields, which is certainly correct. The effects of sur-

face fields have also been explored.10,11,13 As expected, a

strong surface field favors the formation of an intermediate

phase. The evolution of morphology with external field in a

single lamella has recently been studied by Matsen using

self-consistent field theory.15

As for cylindrical-forming diblocks in an external elec-

tric field, the only published work has again focused on the

mechanisms of morphology realignment. This has been stud-

ied experimentally,16 and also theoretically by dynamical

self-consistent field theory.11,16 The advantage of this tech-

nique is that one follows the dynamics of the system, and

one can clearly see how different the pathways towards an

equilibrium morphology are depending upon the initial con-

figuration. The actual equilibrium morphologies, which are

the focus of our interest, are difficult to achieve, however,

just as they often are in experiment.

Some insight into the expected phase diagram of the

cylinder-forming diblock copolymer system can be garnered

from the behavior of the lamellar-forming ones. In both sys-

tems, surface fields prefer an orientation which is different

from that preferred by the electric field. It should be noted

that this holds irrespective of whether the surface fields pre-

fer one monomer species, A, or the other, B. Thus we should

expect to obtain a phase of cylinders parallel to the surface

when the electric field is weak, a phase of perpendicular

cylinders when the electric field is strong, an intermediate

phase for thick films, and ones subject to large surface fields.

The principal difference between the cylinder- and lamellar-

forming systems will be in the symmetry of the surface

phase. Similarly the principal difference between cylinder

formers adsorbed on a substrate that prefers the minority

monomer, A, and those adsorbed on a surface preferring the

majority monomer, B, will be in the specific morphology of

the surface phase. Otherwise the general form of the phase

diagrams of these systems is expected to be similar due to

the identity of the underlying physics.

In this paper, we study a cylinder-forming block copoly-

mer system in external electric fields and examine the mor-

phology and phase behavior in the presence of surface fields

which prefer the minority monomer. In Sec. II, we first show

that some general features of the surface phase diagram in

the electric-field–chemical-potential plane are easily dis-

cerned from basic thermodynamics, and without detailed cal-

culation. However, thermodynamics does not tell us the na-

ture of the intermediate phases, while specific calculation

does. We then turn to self-consistent field theory and solve

exactly the self-consistent equations and the Maxwell equa-

tions in the manner used by us previously for a bulk phase.17

Subsequently, the same idea has been employed with a dif-

ferent technical implementation in other systems.15,18 As a

consequence of solving the Maxwell equations exactly, we

do not assume, as in Refs. 10, 11, and 16 that the effect of

the electric field is weak, that is, that the fractional variation

of the dielectric constant throughout the morphology is

small.19 Our results are presented in Sec. III. For weak sur-

face fields, or thin films, there is no intermediate phase, and

we find the first of the scenarios suggested by Thurn-

Albrecht et al.
4 The phase of parallel cylinders transforms

directly to one of perpendicular cylinders. These cylinders

are, of course, affected in their structure by the presence of

the substrate surface fields, but a cross section parallel to the

substrate confirms the hexagonal order, even very close to

the substrate.

For stronger surface fields or thicker films, we find an

intermediate phase in which a layer adjacent to the plates has

a different morphology than that of the field-aligned cylin-

ders in the rest of the film. The morphology is not one of

cylinders parallel to the plates but has the same hexagonal

symmetry as a cross section of the field-aligned cylinders.

However, the distribution of monomers is altered so that the

monomer favored by the surface field occupies a larger sur-

face area than it would had the cylinders extended to the

surface.

We conclude with a brief discussion and comparison of

our results with experiment. In particular, we find, in agree-

ment with experiment in the presence of strong surface

fields, that the phase boundary between the perpendicular

phase and the intermediate phase is a weak function of film

thickness for large thicknesses. Along this locus of first-order

transitions, the perpendicular and intermediate phases coex-

ist. However, as we just noted, the boundary layer of the

intermediate phase does not consist of cylinders parallel to

the substrate. Thus parallel cylinders do not exist in either

phase, and one would not observe in equilibrium, along this

particular phase boundary, the coexistence of cylinders in

both parallel and perpendicular orientations.

II. THEORY

A. Thermodynamics

Because we are dealing with a surface film, we consider

the excess free energy per unit area, or surface free energy

per unit area, �, defined as follows. Let Ftot be the total free

energy of the system of volume �=d0A such that the free

energy per unit volume,

fb � lim
�→�

Ftot

�
, �1�

is the Legendre transform of the energy per unit volume, eb,

with respect to the entropy density sb, number density �b, and

displacement field, i.e.,
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fb = eb − sbT − �b� − Db · E , �2�

with Db and E the volume-averaged displacement and elec-

tric fields. Then the excess free energy per unit area, �, is

� � lim
A→�

Ftot − fb�

A
, �3�

with the differential

d� = − ssdT − �sd� − DsdEext. �4�

Here ss is the excess entropy per unit area, �s is the excess

number of particles per unit area, and Eext is the externally

applied field which is equal to the spatially averaged electric

field.17 The quantity Ds is the magnitude of the surface con-

tribution to the displacement field, or surface excess dis-

placement field

Ds � lim
A→�

1

A
� �D�r� − Db�r��d3r , �5�

where Db�r� is the displacement field in the bulk cylindrical

phase. The surface excess displacement field is in the x di-

rection, normal to the plates.

From this differential, one easily finds a Claussius-

Clapeyron equation pertaining to the surface phases. If one

plots the phase diagram at fixed temperature in the electric-

field–chemical-potential plane, then the slope of the bound-

ary between surface phases, dEext /d�, is given by

dEext

d�
= −

��s

�Ds

, �6�

where ��s and �Ds are the differences in the excess surface

densities and displacement fields in the two phases. At zero

external field, there is an infinite number of parallel phases

distinguished by the integer number of layers of cylinders

and a perpendicular phase in which the cylinders are perpen-

dicular to the substrate. The transitions between all phases

are generally first order; those between the perpendicular and

parallel phases are first order due to the difference in sym-

metry between them; those between different parallel phases

are generally first order because an additional layer of paral-

lel cylinders cannot be added in a continuous manner. As one

turns on the electric field, the phase space of the perpendicu-

lar phase will increase, and that of the parallel phases will

decrease. It is clear that the spatially averaged polarization

will be smaller in the parallel phases than in the perpendicu-

lar phase, and so the displacement field will decrease discon-

tinuously on entering a parallel phase from a perpendicular

phase, and will increase discontinuously when leaving a par-

allel phase. Further, the surface density is presumably a

monotonically increasing function of the chemical potential.

Hence we expect from Eq. �6� to find the infinite number of

parallel phases to be enclosed by phase boundaries which, if

no other phases are encountered, will be in the shape of

wickets. The legs of each wicket meet the Eext=0 axis per-

pendicularly, because �Ds=0 in the absence of a field. The

top of each wicket is locally horizontal, and the field at

which it occurs defines the critical field at which that parallel

phase disappears. In the region of phase space in which an

intermediate phase appears, the Claussius-Clapeyron equa-

tion can be applied to the phase boundaries between it and

the parallel phases, and between it and the perpendicular

phase to obtain useful information relating the surface den-

sities and displacement fields in the coexisting phases. It can

also be applied, of course, to the lamellar-forming

systems.12,13

Another useful result,

Ds = −
��

�Eext

, �7�

follows from the differential equation �4�. We note that,

whereas that component of the bulk, spatially averaged, dis-

placement which is along the direction of the external field

must be positive,20 that same component of the excess sur-

face displacement need not be. In fact, as we expect that the

presence of the surface can only disrupt the perfect align-

ment of the cylinders with the electric field, at least near the

surfaces, we anticipate that Ds will be negative. It follows

from Eq. �7� that the excess free energy per unit area will

increase with increasing electric field. This contrasts with the

behavior of the total free energy Ftot and free energy per unit

volume, fb, which decrease with increasing external field.

B. Self-consistent field theory

The method we employ has been described previously17

for a bulk system and simply needs known modifications for

the case of a surface film.21 Thus its presentation here can be

brief. We consider a melt of n A-B diblock copolymer chains,

each of polymerization index N=NA+NB. The mole fraction

of the A monomers is fA=NA /N. We also assume that the

Kuhn lengths of the A and B components are identical, a

length denoted a. The system is confined between identical

plates, a distance d0 apart, each of area A, which exert a

surface field, h�r�, preferentially on one block with respect to

the other. The plates are normal to the x axis, and the applied

field is along the positive direction. The fraction of the vol-

ume occupied by polymer is denoted �0�r�, and is unity in

the film except near the plates where it falls to zero.

Self-consistent field theory leads to a free energy F,

which is a functional of unknown fields WA, WB, and 	, and

the unknown electric potential V�r�, and a function of tem-

perature T, volume � and area A. In an ensemble in which

the external electric potential V0 is held fixed,20 the free en-

ergy can be written as

F�WA,WB,	,V;T,�,A�

nkBT

= − ln Q�WA,WB� +
1

�
� dr�
N�A�B − WA�A

− WB�B − h�r�N��A − �B� − 	��0 − �A − �B�

−
��0��r�

2nkBT
��V�r��2� , �8�

where �0 is the vacuum permittivity, kB is Boltzmann’s con-

stant, and �A�r� and �B�r� are the local volume fractions of

A and B monomers. The function Q�WA ,WB� is the partition
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function of a single polymer chain subject to the fields WA�r�
and WB�r�, as is given below. The field 	�r� is a Lagrange

multiplier that enforces locally the incompressibility con-

straint, �A�r�+�B�r�=�0. The dependence on temperature

T comes from the usual Flory interaction parameter 
 which

to a good approximation is inversely proportional to T. Fi-

nally the local dielectric constant is ��r�. A constitutive re-

lation between this local dielectric constant and the local

volume fractions, �A�r� and �B�r�, must be specified. We

have chosen, as previously,17 that the local dielectric constant

be given by its local average. Here that choice is expressed

as

��r� = �0��A�A�r� + �B�B�r�� + 1 − �0, �9�

where �A and �B are the dielectric constants of the pure A

and B homopolymer phases, respectively. Note that near the

plates, the dielectric constant approaches unity. We stress

that while this choice is clearly correct in the limiting cases

of the pure systems and in the weak segregation limit, it is

simply a choice. While there are theories of the constitutive

relation appropriate for dilute gases and for critical fluids,

little is known of the detailed relation for dense, solid, mul-

ticomponent systems. Hence that of Eq. �9�, which has the

virtue of being both reasonable and simple, has been com-

monly employed.10,11,15–18

The requirement that the free energy functional be an

extremum with respect to variation of the electric potential

V�r�, WA�r�, WB�r�, and 	�r�, and of the volume fractions

�A�r� and �B�r� at constant temperature, or 
N, leads to the

following set of equations:

0 = � · ��0��r� � V�r�� , �10�

wA�r� = 
N
B�r� + ��r� − h�r�N

−
��0

2nkBT
�0�r��A��V�r��2, �11�

wB�r� = 
N
A�r� + ��r� + h�r�N

−
��0

2nkBT
�0�r��B��V�r��2, �12�

�0�r� = 
A�r� + 
B�r� , �13�


A�r� = −
�

Q

�Q

�wA�r�
, �14�


B�r� = −
�

Q

�Q

�wB�r�
. �15�

The functions WA, WB, 	, �A, and �B, which satisfy these

equations, are denoted by lower case letters, wA, wB, �, 
A,

and 
B, respectively. The first of these equations is simply

Gauss law for a system with no free charge. The free energy

within the self-consistent field approximation, Fscf, is ob-

tained by substitution of these functions into the free energy

of Eq. �8�,

Fscf�V0,T,�,A� = F�wA,wB,�,V;T,�,A� , �16�

or

Fscf

nkBT
= − ln Q�wA,wB� −

1

�
� dr�
N
A�r�
B�r�

+ ��r��0�r� +
��0

2nkBT
�1 − �0�r����V�r��2� .

�17�

The nature of the particular system being described by

self-consistent field theory is specified by the partition func-

tion of a representative member of the entities which com-

prise the system, in this case, block copolymers. Therefore

Q�wA ,wB�=	drq�r ,1� /k, where q�r ,s� satisfies the modified

diffusion equation

�q

�s
=

1

6
Na2�2q − wA�r�q if 0 � s � fA, �18�

and

�q

�s
=

1

6
Na2�2q − wB�r�q if fA � s � 1, �19�

with the initial condition q�r ,0�=1, and k is a volume of no

consequence here.

The total density profile, �0�r�, and the surface field,

h�r�, must still be specified. We follow Ref. 21 and choose

�0�r� =
1

2 �1 − cos��x/���, 0 � x � � ,

=1, � � x � d0 − �

=
1

2 �1 − cos���d0 − x�/��� , d0 − � � x � d0, �20�

and

h�r� = ��aN1/2/���1 + cos��x/���, 0 � x � � ,

=0 � � x � d0 − � ,

=��aN1/2/���1 + cos���d0 − x�/��� , d0 − � � x � d0,

�21�

where � is a small distance given below and � is the strength

of the surface field. A positive value of � causes the surface

of the system to prefer the A component.

Because of the three-dimensional nature of the problem,

we have chosen to solve the self-consistent equations in real

space, following the pseudospectral method of Rasmussen

et al.
22–24 We have taken a grid which is 192�32�64 in the

x ,y ,z directions, respectively. The length � is chosen to be

sufficiently small to ensure that it does not affect phase be-

havior. It is discussed further below. In examining the phase

of cylinders parallel to the plates, whose axes are in the z

direction, we have investigated several arrangements of the

cylinders and varied the distances between them, both in the

x and y directions, to ensure that we have found the mini-

mum free energy configuration.
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III. RESULTS

The parameter space of our system is large, as its state is

specified by five variables, the choice of which is not unique.

They are the temperature or equivalently 
N, the applied

electric field Eext, the chemical potential � or the film thick-

ness d0, the surface field strength �N, and the copolymer

architecture fA. In order to demonstrate the various mor-

phologies, we have chosen to fix 
N=18 and the architecture

at fA=0.29 which corresponds to the fraction of methyl

methacrylate in the poly-�methyl methacrylate� �PMMA�/
polystyrene �PS� diblocks used by Thurn-Albrect et al.

4 This

leaves three parameters whose effects can be explored. We

have chosen to vary Eext and d0 and have examined two

surface field strengths, �N=0.2, and 0.5. To understand

whether these surface fields are weak or strong, the surface

energy of n polymers subject to these fields, Usu, can be

compared with the electrostatic field energy of these poly-

mers in volume �. The former of these energies is Usu

=nkBTN�, while in the bulk cylindrical phase, the latter is

Uel=�0�0Eext
2 � /2, where

�0 = �AfA + �B�1 − fA� �22�

is the average dielectric constant of the system. Thus we

consider the ratio

Uel

Usu

=
�0�0Eext

2 �

2kBT�Nn
,

=
�0Eext

2

2�NE2 ,

=
�0Ê0

2

2�N
, �23�

where we have introduced the convenient scale of electric

field,

E � 
 kBTn

�0�
�1/2

, �24�

and the value of the external field in these units, Ê0

�Eext /E. At typical temperatures, T�430 K, and for a typi-

cal volume per polymer chain of 100 nm3, this unit of elec-

tric field is E�82V/�m. At experimental temperatures

around 160 °C the dielectric constants appropriate to the

PMMA-PS copolymer, with PMMA being the A block and

PS the B block, are4,25,26 �A=6.0 and �B=2.5, from which

�0�3.52. Thus Uel /Usu�1.8Ê0
2 /�N. At external fields of

order of tens of volts per micron, the surface field energies

we consider are comparable to the electrostatic energies and

are therefore smaller than the rather large surface fields27 of

the experiments of Xu et al.
16

We first consider the system with surface fields of �N

=0.5. We have calculated, for a given thickness d0, the ex-

cess free energies of various parallel, perpendicular, and in-

termediate phases. That with the lowest excess free energy is

the equilibrium one. Rather than plot the excess free energy

� directly versus applied field, we note from Eq. �3� and the

fact that the electrostatic contribution to the bulk free energy

of the cylindrical phase is simply −�0�0Eext
2 /2 that for deter-

mining the globally stable phase we can equally well plot the

dimensionless surface free energy

fn�Ê0� �
Ftot

nkBT
+

1

2
�0Ê0

2. �25�

The derivative of this function with respect to the dimension-

less external field Ê0 can be found from Eq. �7� to be the

negative of the dimensionless excess displacement field

D̂s �
Ds

d0�0E
,

=−
�fn�Ê0�

�Ê0

. �26�

In Fig 1 we show the excess free energy fn for several

phases as a function of the dimensionless external electric

field for a thickness d0=7.5N1/2a. First we note, as antici-

pated, that the surface free energy increases with external

field, indicating that the surface contribution to the displace-

ment is, in fact, negative, i.e., in the opposite direction of the

applied field. Secondly, we see that at this thickness, the

stable morphology at small external fields is one with five

layers of cylinders parallel to the plates. As the field is in-

creased, a first-order transition occurs to a mixed state in

which the surface contribution to the displacement field is

less negative. At sufficiently large fields, there is a second

transition to the state in which all cylinders are parallel to the

external field. The excess displacement field is even less

negative, but is not zero due to the distortion of the cylinders

near the plates. By repeating such calculations as a function

of thickness, we obtain the phase diagram shown in Fig. 2.

Because the film thickness is a smooth function of the

chemical potential, this diagram reflects much of what was

anticipated earlier in our discussion of the phase diagram as

a function of electric field and chemical potential. Note that

for films of sufficient thickness to accommodate more than

two layers of parallel cylinders, the surface field is suffi-

ciently strong to impose a surface ordered layer which results

in the existence of an intermediate phase. At higher fields,

FIG. 1. Dimensionless excess surface free energy fn �Eq. �25�� as a function

of applied field Ê0 for thickness d0=7.5N1/2a. The value of 
N=18, and the
surface field is �N=0.5. The free energy of the perpendicular phase is
shown with a solid line, that of the intermediate phase with a dashed-dotted
line, and that of the parallel phase of five layers is shown with a dotted line.

034902-5 Alignment by an electric field of a cylindrical phase J. Chem. Phys. 125, 034902 �2006�

Downloaded 24 Jul 2006 to 128.95.93.192. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



this surface ordered layer becomes too costly and disappears,

resulting in the perpendicular phase. As anticipated, the elec-

tric field which brings about this latter transition varies rela-

tively weakly with film thickness. For sufficiently thin films,

the surface ordered layer can not be maintained, leading to

the elimination of the intermediate phase.

In determining the phase boundary between the perpen-

dicular and intermediate phases, and between the perpen-

dicular and the cylindrical phase with two parallel layers, we

have set the characteristic length � of the surface field to a

constant value of 3N1/2a /16. It is not difficult to see from

Eqs. �20� and �21� that if � is to equal an integer number n of

grid points, of which there are 192 in the x direction, then the

thickness d0 /N1/2a must take the discrete values of 36/n.

These discrete points are shown in Fig. 2 where they are

connected by a spline fit, shown as dotted to guide the eye.

In contrast to the relatively smooth variation with thickness

of the electric field at the transition from the perpendicular

phase, that at the transition from the parallel phase varies

rapidly with thickness. Hence the discrete values of thickness

imposed by a constant � is restrictive. Further, the behavior

of this critical field with thickness has already been antici-

pated from our discussion of the thermodynamics of the tran-

sition. For these transitions, therefore, we chose � to be a

constant fraction of film thickness, � /d0=1/32. It is readily

seen, again from Eqs. �20� and �21� that this choice permits

the film thickness d0 /N1/2a to vary continuously. We have

compared the two values of the critical fields obtained from

these two different choices of � at the discrete values of d0

=36/n permitted by a constant � and found essentially no

difference.

We next present density profiles of the various phases for

a distance between plates of d0=7.5aN1/2. When the applied

field is zero, the stable phase is that shown in Fig. 3 which

we denote as having five parallel layers. The cut is in the xy

�x for vertical and y for horizontal� plane, a cut normal to the

plane of the plates. The gray scale shows the volume fraction

of A monomer from 0.0 �lightest� to 1.0 �darkest� in four bins

of width of 0.25. The A block is favored by the surface field

of strength �N=0.5. The distortion of the cylinders at the

surface is clear. A cut in the yz plane, parallel to the plates

�not shown�, confirms that these are indeed cylinders with

axis along the z direction.

With an applied field of sufficient strength, the interme-

diate state becomes globally stable. A cut in the xy plane is

shown in Fig. 4 for a value Ê0=0.49. Most of the film thick-

ness is occupied by cylinders which are perpendicular to the

plates, and a cut in the yz plane halfway between the plates

�not shown� confirms that the cylinders are in a hexagonal

array. It might be expected from Fig. 4 that, adjacent to the

surface, one would find a distorted layer of cylinders, just as

in Fig. 3. That this is not the case is shown by a cut through

the intermediate phase in a yz plane very near the surface

FIG. 3. Density profile in the xy plane of the parallel phase with five layers
of cylinders. The thickness is d0 /N1/2a=7.5, and the applied field is zero.
The gray scale shows the volume fraction of A monomer from 0.0 �lightest�
to 1.0 �darkest� in four bins of width of 0.25.

FIG. 4. Density profile in the xy plane of the intermediate phase. The thick-

ness is d0 /N1/2a=7.5 and the applied field is now Ê0=0.49.

FIG. 2. Phase diagram as a function of electric field Ê0 and thickness
d0 /N1/2a. The value of 
N=18, and the surface field is �N=0.5. Parallel
phases are denoted by a roman numeral corresponding to the number of
cylinders in the film. The intermediate and perpendicular phases are marked
“Intermed”, and “Perp”, respectively. Discrete calculated points on the
boundary between perpendicular and intermediate phases are shown by solid
dots. The dotted line is a spline fit to them.
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�Fig. 5�. One sees instead that there is a hexagonal array,

such that the surface-favored A monomers occupy most of

the surface layer. Clearly the hexagonal arrangement on the

surface derives from the hexagonal, perpendicular, arrange-

ment of cylinders in most of the film. Comparison of a se-

quence of yz cuts confirms that the symmetry axes of the

upright cylinders in this intermediate phase coincide with the

symmetry axes of the hexagonal array at the surface, i.e., the

A-rich cores of the cylinders stand directly above the B-rich

centers of the surface pattern. That the A monomers near the

surface are located outside of the cylinders, thereby occupy-

ing a larger area in the unit cell, is clearly an effect due to the

surface field. Because the A monomers are the minority com-

ponent, fA=0.29, this configuration cannot extend too far

into the film.

For larger values of the electric field, the perpendicular

phase is attained. Figure 6 shows the density profile in the xy

plane at a field of Ê0=0.78. One clearly sees the distortion of

the cylinders produced by the surface.

We next show, in Fig. 7, the phase diagram for the

weaker surface field of strength �N=0.2. Again, we chose

�=3N1/2a /16. One sees that the weaker surface field can no

longer impose a surface morphology which differs from, yet

coexists with, that of the remainder of the film, even for ones

sufficiently thick to accommodate seven parallel layers. Thus

there is no intermediate phase. Instead, with increasing ex-

ternal field, transitions from all cylindrical phases shown, up

to seven parallel layers, are directly to the perpendicular

phase. The maximum critical fields of the transition between

parallel and perpendicular phases vary as 1/
d0, as expected.

This behavior is shown in the inset. The six maximum criti-

cal fields are shown by the open triangles which fall on a

straight line in this plot.

IV. DISCUSSION

We have applied self-consistent field theory to a planar

film of cylindrical-forming block copolymers. The plates be-

tween which the film is adsorbed prefer the minority A com-

ponent. In the absence of an electric field, this causes the

morphology to be that of cylinders whose axes are parallel to

that of the plates. We have studied the equilibrium phase

diagram in the presence of an applied electric field which

tends to align the cylinders perpendicular to the plates and

have solved the Maxwell equations without approximation.

The behavior as a function of field and film thickness is, for

the most part, similar to that of lamellar-forming diblocks.

As argued above, this is because the underlying physics, that

of the competition between bulk and surface phases, is the

same. In particular, for weak surface fields or thin films, the

surface field cannot impose a surface morphology which dif-

fers from the rest of the film, so that there is no intermediate

phase. The first-order transition with increasing electric field

from the phase of parallel cylinders to that of perpendicular

cylinders is direct. However, for stronger surface fields and

thicker films, an intermediate phase does appear, one which

is characterized by a boundary layer near the plates.

The nature of this boundary layer is very different for

cylinder-forming diblocks than for lamellar-forming ones for

which this layer is simply a modulated lamella. We consid-

ered different possibilities for this boundary layer. Because

of the experimental report of a signal indicating the presence

of both perpendicular and parallel cylinders,4 we considered

whether a layer near the plates might consist of parallel cyl-

inders, but found that it did not. In retrospect, this is not

difficult to understand. First, the perpendicular cylinders

FIG. 5. Density profile of the intermediate phase shown here in a yz plane
very close to the plates.

FIG. 6. Density profile of the perpendicular phase in the xy plane. The

thickness is d0 /N1/2a=7.5 and the applied field is now Ê0=0.78.

FIG. 7. Phase diagram as a function of electric field Ê0 and thickness
d0 /N1/2a for a surface field �N=0.2 and 
N=18. Inset shows as open tri-
angles six calculated maximum electric field values at the transition from

parallel to perpendicular phases plotted vs 1/d0
1/2.
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aligned with the field could not connect in a simple periodic

manner with cylinders aligned parallel to the plates as the

two arrays would be incommensurate. Thus one of the two

arrays would have to be distorted, with a concomitant in-

crease of free energy. Second, the substrate does not favor

parallel cylinders per se, rather it favors one monomer over

the other, the minority A monomer in our case. In zero elec-

tric field, parallel cylinders are favored over perpendicular

ones because the area of A monomers presented to the plates

is larger in the former than in the latter. The ratio of areas is

Apar /Aperp�1/ fA
1/2�1. In a nonzero field which favors the

intermediate phase, however, the area presented to the plates

by parallel cylinders is less than that presented in the con-

figuration of hexagonal symmetry which we obtained and

which is shown in Fig. 5. In this case the ratio of areas is

Apar /Aint� fA
1/2 / �1− fA��1. We also note that this particular

pattern of the surface layer derives from the fact that the

minority A component is favored by the surface. Were the B

component favored, as is the case in the system of Xu et

al.,16 one would expect the minority core of the cylinders to

extend all the way to the plates over a range of surface fields,

something which could be technologically useful. Only for

very strong fields would the plates be essentially covered by

the majority B component which would require the interior

of the cylinders containing the A component to be truncated

near the surface. This observation is in agreement with the

dynamic self-consistent field theory results as seen in Fig.

11�b� of Xu et al.
16 and Fig. 5 of Lyakhova et al.

11

We have found a transition from the intermediate phase

to the perpendicular phase for which the electric field needed

to bring about the transition varies only weakly with film

thickness. It would seem that this could be identified with the

transition observed by Thurn-Albrecht et al.
4 There are, how-

ever, two difficulties with this interpretation. The first is that

the electric field values at the transition are, in our calcula-

tion, larger than those observed in experiment. Further, the

strength of the surface field in our calculation is weaker than

that estimated in experiment. Were we to calculate critical

electric fields for the stronger substrate fields of experiment,

we would obtain even larger values as the critical electric

field is expected to increase as the square root of the surface

field. This comparison is reminiscent of that between

calculated15,17 and experimental25 electric field values for the

transition from a body-centered-cubic phase to a cylindrical

phase in which the former were also much larger than the

latter. Explanations for this have been proposed18,26 which

may resolve this difficulty. Even so, there remains the fact

that, in the calculated intermediate phase, there are no cylin-

ders in the parallel orientation. Therefore one would not ob-

serve in equilibrium the existence of both parallel and per-

pendicular cylinders along the phase coexistence of the

intermediate and perpendicular phases. The resolution of this

difficulty may be that, as the system cools from the disor-

dered into the ordered phase, cylinders are nucleated near the

plates in a configuration parallel to them while the major part

of the film nucleates cylinders aligned with the electric field.

Rearrangement of cylinders near the plates into that bound-

ary layer which we predict to be the equilibrium one would

presumably be a very slow process. If the boundary layer did

not attain its equilibrium configuration, the experimental sig-

nal which detects both orientations of cylinders could be

understood.
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