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human/machine interaction example:
assistive robot

respirometry — 48\

Felt, Selinger, Donelan, Remy, PLoS One 2015
Body-in-the-loop: Optimizing device parameters using measures of instantaneous energetic cost

Zhang, Fiers, Witte, Jackson, Poggensee, Atkeson, Collins Science 2017
Human-in-the-loop optimization of exoskeleton assistance during walking




/machine interaction example:
robot teleoperation
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Chiawakum Creek Fire near Lake Wenatchee, WA © Michael Stanford 2015
http://yourshot.nationalgeographic.com/photos/4181903/
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human/machine interaction
IS @ sensorimotor game

Simon Decision and Organization 1972 Gershman, Horvitz, Tenenbaum Science 2015

Theories of Bounded Rationality Computational Rationality: A Converging Paradigm for
Russell, Wefald Artificial Intelligence 1991 Intelligence in Brains, Minds, and Machines

Principles of Metareasoning Papadimitriou, Piliouras ACM SIGecom Exchanges 2018

% o otale 4 . e Game Dynamics as the Meaning of a Game
with “bounded rationality

observation: humans and machines
minimize " interdependent costs
\
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human/ interaction
IS @ sensorimotor game ...

.. S0 what? (why) does it matter ??

S

e,
human sensory inputs ‘%
human motor outputs




standard algorithms may not work ...

optimization game
mxin c(x) mxin c1(x,v) minc,(x,v)
standard algorithms like gradient descent

(stochastic) gradient descent X~ —a, Vo (x,7)

~ —u, V., (x,7)
or sampling can easily converge to

xT ~ P(x;0) maximizers, saddles, cycles,
are guaranteed to converge ©F fail to converge entirely

to (local) minimizers of ¢ E]ré] ?ﬁ
A P S

Chasnov, Ratliff, Mazumdar, Burden UA/I 2019
Ma, Chen, Jin, Flammarion, Jordan PNAS 2019 Convergence analysis for gradient-based learning
Sampling can be faster than optimization in continuous games

x ~—aV,c(x)




definition of “solution” isn’t obvious ...

optimization
Bertsekas 1999 Nonlinear programming A I
_ )
min c (x) ST-

X |
. . . . V |
def: x™ is a minimum if - !
~ |

deviation increases cost

(X

x#+x" = c(x)>c(x")



definition of “solution” isn’t obvious ...

game
Hespanha 2017 Noncooperative game theory
— minc{(x, V) min ¢, (x, V)
X
e minc(x, V) min ¢, (x, V)
X, Xy

def: (x*,v") isa Nash equilibrium if

unilateral deviation increases cost

x#+=x = c(,v)>c (x5, y") player 1 action x
=y =) >0 y)

def: (x*,y") is a (player 1 led) Stackelberg equilibrium if

x* = argmin{c; (x,y") | y* = argmin ¢, (x, v)}
X
def: (x",v")is a consistent conjectural variations eq. if ...




human/ interaction
IS @ sensorimotor game ...

.. (how) can machine influence outcomes?

S

e,
human sensory inputs ‘%
human motor outputs




human/ interaction game

Lillian Ratliff e
UW ECEfaculty ps://dynam.space/study/quadg -
N
-=9% | Ben Chasnov Ben WI" be on the
b | UW ECE PRD candidate) academic JOb market @

* click or touch the diamond
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« N = 20 participants per experiment
e 10 trials of 40 second duration ‘*
e payout = S2 USD

https://dynam.space/study/quadgame.html




: experiment 1 (methods):
|ﬁ| vary machine’s learning rate

human’s cost cy (x, y) machine’s cost ¢y, (x, y)
& 2
V CH 1/4
humandoes \ (*) /  machine does gradient descent
x =777 y=—aV,cy(x,y)

learning rate changes each trial

other details: a € {slow, medium, fast}

- costs are prescribed quadratics and do not change
- machine knows its cost function ¢;; and human action x
- human only knows ¢ (x, y), doesn’t know machine action y



experiment 1 (results, N = 1):
J vary machine’s learning rate

\.a'

human’s cost ¢ (x, y) machine’s cost ¢, (x, y)
humandoes \ (*Y) /  machine does gradient descent
x =777 y=—-aV,cy(x,y)
10 - oo slow « 10 - o o fast o
05 - <
I e ' 3
a > 00 “‘
: : 05 - Nash N § E
-10 1 ' 5 | i | | -10 1 | E | i ' |
-1.0 -0.5 0.0 0.5 10 -1.0 -0.5 0.0 0.5 10



experiment 1 (results, N = 20):

E vary machine’s learning rate

human’s cost cy (x, y) machine’s cost ¢, (x, y)
humandoes \ (*”) /  machine does gradient descent
x = ?7? y=—-aV,cy(x,y)
human o2 438K __ findings:

action / - increasing machine’s
X Nash learning rate shifts
e outcome from Nash to
BT B Do S equilibrium
n;i:::;:e 0o // * human cannot (only) be
VA P _____Nash doing gradient descent!
R " (learning rates do not

slow medium fast
machine learning rate « change stationary points)




experiment 2 (methods):

E internal models / conjectures

since cost is quadratic, machine’s best-response is linear,
y = Ly (x—xy) x, = xcoord of M’s global min

similarly, natural to hypothesize human responds linearly,

x = Ly(y—vy) v, = ycoordof H’s global min

what if machine estimates /. ;?

what if machine uses this
internal model / conjecture
to “outsmart” the human?

myin{cM(X,y) | x =~ Ly(y —yu)}

if human responds similarly,

machine action Y

N\

lp
Pe
p
%

human action X

iterating converges to consistent conjectural variations eq.



- experiment 2 (results, N = 20):
‘*") internal models / conjectures

finding: iterating to “outsmart” ... 0.0
Ay =Ly —xy)  ~x=Li0 -y s -
Sy =Lt eo-x) 2o~ P o-vi) L
> > .
Sy =Lgle—xy)  Sx=LE0 =) —— .
.. converges to consistent conjectures D ration k

1_

=
S human 03+CCVE .
LS action 0.2 ]
o 0- X ‘
c
% machine 04 CE.VE -
e action
0.2
E—l y |

0 50 100
human action x time (sec)



experiment 3 (methods):

E machine manipulation

now suppose the machine wants a specific outcome,
e.g. its global minimum (x,;, Vi)

then it can implement a perturbed linear strategy,
y = (Ly+2)(x — xp)

wait for the interaction to converge
(to reverse Stackelberg equilibrium),

lim (x(2), y(£)) = (xp, V)

and use this data to descend cost
gradient in strategy space,

N
c

machine actio

human action X

LM = — VLMCM



experiment 3 (results, N = 20):
machine manipulation

finding: 10
* machine can “coerce” human 0.8 -
to play any desired equilibrium  L;, 96 )
using data-driven algorithm, 0471 = === Ly

A

0.2 -

LM = — VLMCM 0.0

1 (x5, ) human 02 T

X 0.2 1

machine
e Vi) action

0.2 1

machine action Y

0 50 100
human action X time (sec)




human/machine sensorimotor game:

assistive robot
. —

does assistance optimization converge?
B, —— ————— —————" . —
if so, to what equilibrium?
R A G | A e —
can the assistive device decide?
N S = I SN —

(how) can we converge to /1’s minimum?

Zhang, Fiers, Witte, Jackson, Poggensee, Atkeson, Collins Science 2017
Human-in-the-loop optimization of exoskeleton assistance during walking




thank you!

sburden@uw.edu
http://faculty.uw.edu/sburden
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NSF M3X CAREER #2045014:
Human/Machine Collaborative
Learning and Control of
Contact-Rich Dynamics
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NSF CPS Medium #1836819: “ ¥+

Certifiable reinforcement learning
for cyber-physical systems

findings:
- when H and M play a game
- the outcome is never the same
- there are so many ways
- to outsmart with plays
- that | can’t recall all their names ...
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