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Motivation



Motivation Reduction Robustness Applications Interaction Hybrid Dynamics Rhythmic Behaviors

Dynamic interaction involves intermittent contact

Nao humanoid robot

video courtesy of Aldeberan Robotics, http://www.aldebaran-robotics.com/en/
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Contact yields a hybrid dynamical system

Combinatorial # of discrete modes,
each generally possessing nonlinear dynamics
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Focus on rhythmic behaviors

Animals utilize rhythmic behaviors for locomotion & manipulation
Grillner, Science 1985

Represented by periodic orbits in hybrid dynamical system
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Motivation Reduction Robustness Applications Interaction Hybrid Dynamics Rhythmic Behaviors

Focus on locomotion

Note that locomotion is self-manipulation
Johnson, Haynes, & Koditschek, IROS 2012
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Motivation Reduction Robustness Applications

Overview of this talk

Motivation
interaction with environment involves intermittent contact

Reduction
low-dimension subsystem appears near hybrid periodic orbit

Robustness
simultaneous hybrid transitions yield robust stability

Applications
identification of neuromechanical control architecture in animals
design and optimization of gaits and maneuvers for robots
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Motivation Reduction Robustness Applications Poincaré Map Exact Reduction Approximate Reduction

Example (vertical hopper)
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Hybrid dynamical system
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Trajectory for a hybrid dynamical system
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Periodic orbit γ for a hybrid dynamical system
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Assumptions on hybrid periodic orbit γ

Assumption (transversality)

periodic orbit γ passes transversely through each guard Gj

Assumption (dwell time)

∃ε > 0 : periodic orbit γ spends at least ε time units in each domain Dj
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Poincaré map for periodic orbit γ

smooth dynamical system hybrid dynamical system

Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

The Poincaré map P is smooth in a neighborhood of ξ.
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Poincaré map for periodic orbit γ

smooth dynamical system hybrid dynamical system

Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)
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Rank of Poincaré map P with fixed point P (ξ) = ξ

smooth dynamical system hybrid dynamical system

rankDP (ξ) = dimD − 1
Hirsch and Smale 1974

rankDP (ξ) ≤ minj dimDj−1
Wendel and Ames 2010
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Example (rank-deficient Poincaré map)

If A ∈ Rn×n is nilpotent (i.e. An = 0n×n), then rankDPn = 0.
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Exact model reduction near hybrid periodic orbit γ

Theorem (Burden, Revzen, Sastry CDC 2011)

Let n = minj dimDj . If rankDPn = r near ξ, then trajectories starting
near γ contract to a collection of hybrid-invariant (r + 1)−dimensional
submanifolds Mj ⊂ Dj in finite time.
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Example (exact model reduction in vertical hopper)

Numerically linearizing Poincaré map P on ground,
we find DP (ξ) has eigenvalues ' −0.25± 0.70j,

therefore DP 2 is constant rank near ξ.

Theorem =⇒ dynamics collapse to 1-DOF hopper

Interpretation: unilateral (Lagrangian) constraint
appears after one “hop”
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Example (exact model reduction in vertical hopper)

Numerically linearizing Poincaré map P on ground,
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Example (rankDP n generically non-constant)

P (R2)

P 2(R2)

P (x, y) = (x2, x)

DP (x, y) =

(
2x 0
1 0

)
=⇒ rankDP = 1

DP 2(x, y) =

(
4x3 0
2x 0

)
=⇒ rankDP 2(x, y) =

{
0, x = y = 0
1, else

Note that P contracts arbitrarily rapidly since DP (0, 0) is nilpotent:
for all ε > 0 there exists δ > 0 and ‖·‖ε such that
‖(x, y)‖ < δ =⇒ ‖P (x, y)‖ < ε ‖(x, y)‖ε
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Approximate model reduction near hybrid periodic orbit γ

Theorem (Burden, Revzen, Sastry (in preparation))

If rankDPn(ξ) = r and specDP (ξ) ⊂ B1(0) ⊂ C, then for any ε > 0
trajectories starting sufficiently near γ contract exponentially fast with rate
ε to a collection of (r + 1)−dimensional submanifolds Mj ⊂ Dj .
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Example (deadbeat control of vertical hopper)

There exists a deadbeat control for vertical hopper,
i.e. smooth actuator feedback law a(x, y, ẋ, ẏ) such that

hopper exactly tracks periodic orbit after one “hop”

Carver, Cowen, & Guckenheimer, Chaos 2009

However, this is sensitive to parameter values:
perturbing parameters k, `0,m, µ, b yields rankDP = 2

Theorem =⇒ hopper contracts to orbit at rate
bounded by size of parameter perturbation
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Example (deadbeat control of vertical hopper)

There exists a deadbeat control for vertical hopper,
i.e. smooth actuator feedback law a(x, y, ẋ, ẏ) such that
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Simultaneous hybrid transitions

Empirically, simultaneous limb touchdown typical for animal gaits
Golubitsky et al. Nature 1999

(Consequently) also typical for polyped robot gaits
Saranli et al. IJRR 2001; Kim et al. IJRR 2006; Hoover et al. IROS 2008
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Assumptions on simultaneous hybrid transitions

φ(t, x)

ẋ = F (x)

σ
S1

S2

D

x

Assumption (transversality)

n = dimD transition surfaces {Sj}n1 intersect transversely at σ ∈ D.

Assumption (piecewise smooth vector field)

All points where F is discontinuous or nonsmooth are contained in
⋃

j Sj .
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ẋ = F (x)

σ
S1

S2

D

x

Assumption (transversality)

n = dimD transition surfaces {Sj}n1 intersect transversely at σ ∈ D.

Assumption (piecewise smooth vector field)

All points where F is discontinuous or nonsmooth are contained in
⋃

j Sj .

Sam Burden Reduction & Robustness via Contact Dec 14, 2012 24



Motivation Reduction Robustness Applications Simultaneous Transitions Normal Form Robust Stability

Assumptions on simultaneous hybrid transitions

φ(t, x)

D+1

ẋ = F (x)

D(−1,+1)

D(+1,−1)D−1

σ

U ⊂ D

h

h(U) ⊂ R2
S1

S2

U

D R2

ẏ = Dh (F ) (y)

x

N1

N2h(x)

h(φ(t, x))

Assumption (no sliding modes)

For q ∈ {−1,+1}n, let Fq = lim
y→0
y∈Dq

Dh (F ) (y) and assume Fq ∈ IntD+1.

Theorem (Fillipov 1988)

The flow φ is well-defined and continuous in a neighborhood of σ.
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ẋ = F (x)

D(−1,+1)

D(+1,−1)D−1

σ

U ⊂ D

h

h(U) ⊂ R2
S1

S2

U

D R2
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Normal form for simultaneous hybrid transitions

γ

φ(t, x)

F(−1,+1)

F(+1,−1)
F−1

F+1

D+1D(−1,+1)

D(+1,−1)D−1

ψ(x)
ω

−ω

x

T

G

R

D

R : G→ T continuous, ψ : T → G obtained by integrating flow φ.

With ω := 1√
n
1, let Π := I − ωωT be orthogonal projection onto kerωT .
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Sufficient condition for stability

γ

φ(t, x)

F(−1,+1)

F(+1,−1)
F−1

F+1

D+1D(−1,+1)

D(+1,−1)D−1

ψ(x)
ω

−ω

x

T

G

R

D

Theorem (Burden, Revzen, Koditschek, Sastry (in preparation))

ΠFq ∈ IntD−q for all q 6= ±1 =⇒ ∃c ∈ (0, 1) : ‖Πψ(x)‖ < c ‖Πx‖.

If R Lipschitz with constant 1/c and R(ω) = −ω then γ exp. stable.
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Identify neuromechanical control architecture in animals

Revzen et al. (in review) 2012
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Mechanical self-stabilization vs. neural feedback
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Mechanical self-stabilization vs. neural feedback
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Identify neuromechanical control architecture in animals

Identification problem

arg min
z∈Dj

ε (z, {ηi})

• ∇ε undefined on Gj ⊂ Dj

global optimization needed

Identification on
⋃

j Mj

arg min
z∈Mj

ε (z, {ηi})

• ∇ε defined on Gj ∩Mj

first-order methods apply

Burden et al. SysID 2012; Burden et al. SICB 2013

Sam Burden Reduction & Robustness via Contact Dec 14, 2012 31



Motivation Reduction Robustness Applications System Identification Gait Design

Identify neuromechanical control architecture in animals

Identification problem

arg min
z∈Dj

ε (z, {ηi})

• ∇ε undefined on Gj ⊂ Dj

global optimization needed

Identification on
⋃

j Mj

arg min
z∈Mj

ε (z, {ηi})

• ∇ε defined on Gj ∩Mj

first-order methods apply

Burden et al. SysID 2012; Burden et al. SICB 2013

Sam Burden Reduction & Robustness via Contact Dec 14, 2012 31



Motivation Reduction Robustness Applications System Identification Gait Design

Identify neuromechanical control architecture in animals

Identification problem

arg min
z∈Dj

ε (z, {ηi})

• ∇ε undefined on Gj ⊂ Dj

global optimization needed

Identification on
⋃

j Mj

arg min
z∈Mj

ε (z, {ηi})

• ∇ε defined on Gj ∩Mj

first-order methods apply

Burden et al. SysID 2012; Burden et al. SICB 2013

Sam Burden Reduction & Robustness via Contact Dec 14, 2012 31



Motivation Reduction Robustness Applications System Identification Gait Design

Identify neuromechanical control architecture in animals

Identification problem

arg min
z∈Dj

ε (z, {ηi})

• ∇ε undefined on Gj ⊂ Dj

global optimization needed

Identification on
⋃

j Mj

arg min
z∈Mj

ε (z, {ηi})

• ∇ε defined on Gj ∩Mj

first-order methods apply

Burden et al. SysID 2012; Burden et al. SICB 2013

Sam Burden Reduction & Robustness via Contact Dec 14, 2012 31



Motivation Reduction Robustness Applications System Identification Gait Design

Design and optimize gaits and maneuvers for robots

RHex robot

video courtesy of KodLab, http://kodlab.seas.upenn.edu/
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Motivation Reduction Robustness Applications System Identification Gait Design

Exploit hybrid transitions for robust stability of gaits

smooth leg coordination

θ1

θ2

T 2 = S1 × S1

hybrid leg coordination

θ1

θ2

T 2 = S1 × S1

Burden et al. (in preparation)
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T 2 = S1 × S1

hybrid leg coordination

θ1

θ2

T 2 = S1 × S1

Burden et al. (in preparation)
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Motivation Reduction Robustness Applications

Discussion & Questions — Thanks for your time!

Reduction

Hybrid dynamics generically reduce dimensionality near a periodic orbit.

Robustness

Simultaneous hybrid transitions can lend robust stability to a periodic orbit.

Collaborators

• Prof. Shankar Sastry

• Prof. Dan Koditschek

• Prof. Shai Revzen

• Prof. Robert Full

• Prof. Henrik Ohlsson

• Prof. Aaron Hoover

• Talia Moore

• Justin Starr

• Mike Choi
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