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ABSTRACT

Humans, interacting with cyber–physical systems (CPS), formulate beliefs about the system’s dynamics. It is
natural to expect that human operators, tasked with teleoperation, use these beliefs to control the remote robot.
For tracking tasks in the resulting human–cyber–physical system (HCPS), theory suggests that human operators
can achieve exponential tracking (in stable systems) without state estimation provided they possess an accurate
model of the system’s dynamics. This internalized inverse model, however, renders a portion of the system
state unobservable to the human operator—the zero dynamics. Prior work shows humans can track through
observable linear dynamics, thus we focus on nonlinear dynamics rendered unobservable through tracking control.
We propose experiments to assess the human operator’s ability to learn and invert such models, and distinguish
this behavior from that achieved by pure feedback control.

Keywords: human-cyber-physical system (HCPS), internal model, dynamic inverse model, sensorimotor learn-
ing and control, mixed-initiative system, autonomous intervention

1. INTRODUCTION

Human interaction with the physical world is increasingly mediated by automation. Factory workers facilitate and
monitor repetitive manufacturing tasks executed by robots to ensure process safety and product quality. Captains
of air and watercraft oversee autopilot systems and intervene to compensate for unexpected equipment failures
or environmental disturbances. Doctors perform minimally–invasive surgeries via compact but high–precision
endoscopic robots. Drivers rely on lanekeeping assistance and automated braking during highway driving, and
will soon relinquish control and allow the vehicles to drive themselves. The proliferation of these human–cyber–
physical systems (HCPS) raises new questions regarding safety and reliability of the closed–loop behavior arising
from humans embedded amid automation. How does a human learn to control a complex dynamical system?
What is the appropriate mathematical representation of the learned behavior? Is the representation stable, or
does it vary across time or task?

Several scientific disciplines have direct bearing on learning of complex motor actions, including motor control
and neuromechanics. However, our goals as engineers differ in key ways from those of scientists. First, we require
a system–level description of closed–loop interaction between humans and automation. Exceptions notwithstand-
ing,1–3 most scientific research in this area targets a reductionist description of subsystems isolated in function
(sensory processing vs. motor action) or scale (individual neurons vs. entire limbs) without considering whole–
body integration in service of a specified task. Second, we are ultimately concerned with accurately predicting
the phenomenology of humans interacting with autonomy, rather than characterizing the behavior from first
principles. If a model provides quantitative predictions that enable design of reliable semiautonomous systems,
it is irrelevant to the engineer whether the model is faithful to the human’s neurophysiology. For instance, in
the context of flight control, data–driven quasi–linear continuous–time models with delay have been known for
five decades to provide adequate description of closed–loop pilot behavior.4 Thus, although such models do not
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necessarily estimate true human sensorimotor delay,5 and there are neurobiologically–plausible alternatives to
the continuous feedback control hypothesis,6 the quasi–linear models nevertheless prove useful in engineering
applications.

To enable systematic engineering of human/automation sensorimotor loops, we require validated predictive
dynamical models for motor control. Human behavioral repertoire is so rich that we must inevitably limit both
the complexity of models and scope of their applicability. Since decades of work has focused on observable linear
dynamics,4,7–9 we address nonlinear dynamics rendered unobservable through tracking control. Building on our
prior work,10 we hypothesize that in applications of interest the human operator learns to invert automation
dynamics by directly translating from desired task to required control input.

Hypothesis: humans learn and invert dynamic models to control cyber-physical systems.

This inverse modeling framework is illustrated in Figure 1.

Mu y (a) unknown model M transforms u to y

M̃ ỹ (b) estimated model M̃ transforms u to ỹ

M̃−1 ydũd (c) inverse model M̃−1 transforms yd to ũd

M ỹd (d) actual output ỹd approximates desired yd

Figure 1. Inverse modeling framework for human sensorimotor learning and control in teleoperation.
(a) A forward model M , initially unknown to the human oeprator, transforms input u to output y.

(b) With experience, the human estimates a model M̃ that transforms input u to predicted output ỹ.

(c) Inverting the estimated model yields M̃−1 that transforms desired output yd to predicted desired input ũd.
(d) Applying the prediction ũd to the original model M yields output ỹd that approximates yd.

As the fidelity of the model estimate improves
(
M̃ →M

)
the actual output converges to the desired (ỹd → yd).

This paper concerns experimental validation of the inverse modeling framework proposed in10 and illustrated
in Figure 1. After reviewing the mathematical background in Section 2, we describe a sequence of experimental
assays in Section 3 designed to test predictions from the inverse modeling framework and its plausible alternatives.
Results from these experiments are given in Section 4 We conclude in Section 5 with a discussion of the results
and our plans for future work.

2. BACKGROUND: DYNAMIC INVERSE MODELS IN HCPS

For completeness, in this section we recapitulate some of the mathematical developments from [10, Sec. 2].
Specifically, we begin in Section 2.1 by providing the mathematical framework for inverse modeling, and continue
in Section 2.2 by discussing properties of inverse models that have important implications for experiment design.

2.1 Dynamic forward and inverse models

2.1.1 Forward model

We closely follow the development in [10, Sec. 2.1] (which, in turn, follows in [11, Ch. 9]). Consider a single–input,
single–output system in control–affine form,

ẋ = f(x) + g(x)u,

y = h(x),
(1)



where x ∈ Rn, f, g ∈ Cr(Rn,Rn), h ∈ Cr(Rn,R), and r ∈ N.

Suppose that (1) has strict relative degree γ ∈ N at x0 ∈ Rn [11, Def. 9.1]. Then (cf. [11, Sec. 9.2]) there
exists a local diffeomorphism Φ ∈ Cr(X,Φ(X)) of the form

Φ(x) =


h(x)
Lfh(x)

...

Lγ−1f h(x)

ζ(x)

 (2)

where ζ ∈ Cr(X,Rn−γ) and L`fh denotes the `–th Lie derivative of h along f [11, Sec. 9.1], and X ⊂ Rn is a
neighborhood containing x0. Pushing the dynamics in (1) forward via Φ, we obtain the normal form

ξ̇1
...

ξ̇γ−1
ξ̇γ
ζ̇

 =


ξ̇2
...
ξγ

b(ξ, ζ) + a(ξ, ζ)u
q(ξ, ζ)

 , (3)

where ξ ∈ Rγ , b(ξ, ζ) =
(
Lγfh

) (
Φ−1(ξ, ζ)

)
, a(ξ, ζ) =

(
LgL

γ−1
f h

) (
Φ−1(ξ, ζ)

)
, and q : Φ(X)→ Rn−γ . Note that

the input u only affects the states ζ indirectly, through their dynamic coupling with ξ via ζ̇ = q(ξ, ζ).

Consider the zero dynamics manifold∗

Z =
{
x ∈ X | ∀` ∈ {0, . . . , γ − 1} : L`f (x) = 0

}
(4)

with associated zero dynamics
∀ζ ∈ Z : ζ̇ = q(0, ζ). (5)

If x0 is an equilibrium point of the undriven dynamics in (1), i.e. f(x0) = 0, then (ξ0, ζ0) = Φ(x0) is an
equilibrium of the undriven dynamics in (1) since[

b(ξ0, ζ0)
q(ξ0, ζ0)

]
= DΦ(x0)f(x0) = 0; (6)

note that necessarily

ξ0 =


h(x0)

0
...
0

 . (7)

Following [11, Def. 9.10], we say that (1) is locally exponentially minimum phase at x0 if specDζq(ξ0, ζ0) ⊂ Co−,
i.e. if ζ0 is a locally exponentially stable equilibrium of the dynamics

ζ̇ = q(ξ0, ζ) (8)

obtained by fixing ξ at the equilibrium ξ0.

∗The neighborhood X ⊂ Rn of x0 must be chosen sufficiently small to ensure Z is a smooth manifold.



2.1.2 Tracking

Suppose the goal is to design a control input u : R → R such that the output tracks a desired reference
yd ∈ Cr(R,R) and its derivatives up to order r from a given initial time t0 ∈ R. Restricting for simplicity to
inputs that are continuously differentiable, U = C1(R,R), (1) admits a flow φ : R × R × Rn × U → Rn that
satisfies

∀t, s ∈ R, x ∈ Rn, u ∈ U : φ(t, s, x, u) = x+

∫ t

s

[f(φ(τ, s, x, u)) + g(φ(τ, s, x, u))u(τ)] dτ. (9)

Thus for exact tracking we seek an initial state xd ∈ Rn and input ud ∈ U such that

∀t ≥ t0, ` ∈ {0, . . . , r} :
d`

dt`
h ◦ φ(t, t0, xd, ud) =

d`

dt`
yd(t). (10)

Equivalently, using the smooth function norm [12, Ch. 2.1] we may write (10) as∥∥∥h ◦ φ(t0,xd,ud) − yd∥∥∥
Cr([t0,∞))

= 0, (11)

where φ(t0,xd,ud) ∈ Cr(R,Rn) is obtained from φ by restricting its last three arguments to (t0, xd, ud). It is
possible to achieve exact tracking for the dynamical model only if the initial state xd can be prepared precisely.
In a more general setting, the goal may instead be to design a state feedback law ud ∈ C1(X,R) that achieves
exponential tracking wherein there exists a neighborhood C ⊂ Rn of x0 and a rate c > 0 such that

∀t ≥ t0, x ∈ C, yd ∈ Y :
∥∥∥h ◦ φ(t0,x,ud) − yd∥∥∥

Cr(t)
≤ e−c(t−t0) ‖x− x0‖ (12)

for any desired output yd ∈ Y ⊂ Cr(R,R). As we will see in the next section, some states may not contribute to
the output or its derivatives up to order r. In that case, our goal may be to achieve bounded exponential tracking,
i.e. ensure the state x remains bounded while exponential tracking (12) is achieved.

2.1.3 Inverse model

If (1) has strict relative degree, then the function a is bounded away from zero on Φ(X), hence if the full state
were observable we could apply the feedback–linearizing state feedback

u(v, ξ, ζ) =
1

a(ξ, ζ)
(v − b(ξ, ζ)) (13)

to obtain dγ

dtγ ξ1 = ξ̇γ = v, where v ∈ R is a new input. Note that h(x) ≡ ξ1, hence this feedback renders the
states ζ unobservable. It is straightforward to verify that with ε(t, x) = h(x)− yd(t) denoting the tracking error,
and with zγ denoting the γ–th derivative of the function z with respect to time, the input

v(t, x) = yγd (t)− αγ−1εγ−1(t, x)− αγ−2εγ−2(t, x)− · · · − α0ε(t, x) (14)

results in exponential tracking for yd and its first γ derivatives† so long as the polynomial sγ + αγ−1s
γ−1 +

· · · + α1s
1 + α0 is Hurwitz and the unobserved states ζ remain close enough to ζ0 to ensure (ξ, ζ) ∈ X for all

time t ≥ t0 (cf. [11, Remark 1 to Theorem 9.14]). It will be helpful in what follows to note that v contains
a feedforward term involving the γ–th derivative of the desired output (yγd ) and a feedback term involving γ
derivatives of the tracking error (ε, ε1, . . . , εγ−1).

We were lead in the preceding paragraph to consider conditions that will ensure ζ remains near ζ0 under the
feedback (14). Applying the feedback in (14), we obtain a cascaded system governing the closed–loop dynamics[

ξ̇

ζ̇

]
=

[
A(ξ − η(t))
q(ξ, ζ)

]
=: F (t, ξ, ζ) (15)

†Note that if the system (1) has strict relative degree γ then it is (i) trivial to track more than γ derivatives of the
output and (ii) impossible to track fewer than γ derivatives using a continuously differentiable input (unless the desired
output happens to be γ times continuously differentiable). Therefore in what follows we will assume tracking is desired
for r = γ derivatives.
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Figure 2. Block diagram illustration of dynamic inverse model in (13) and (14), adapted from [11, Fig. 9.3]. The desired
output yd and its derivatives are transformed into coordinates ξ, which are in turn used to determine the states ζ via the
zero dynamics ζ̇ = q(ξ, ζ). The input signal is a combination of the (state–dependent) feedforward inverting input and
error feedback.

where the vector η(t) ∈ Rγ is defined by

η(t) =
[
yd(t) ẏd(t) · · · yγ−1d (t)

]>
, (16)

F ∈ C1(R × Rγ × Rn−γ ,Rγ × Rn−γ) is the closed–loop vector field, and the matrix A ∈ Rγ×γ is in control–
companion form,

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · −αγ−1

 , (17)

and hence specA ⊂ Co− by assumption. If we assume further that (1) is locally exponentially minimum phase at
x0, then specDζq(ξ0, ζ0) ⊂ Co−. Computing the Jacobian derivative of F with respect to ξ and ζ we obtain

DF (ξ, ζ) =

[
A 0

Dξq(ξ, ζ) Dζq(ξ, ζ)

]
; (18)

since F is C1 there exists an open ball C ⊂ Rn containing (ξ0, ζ0) for which:

• ξ̇ = A(ξ − z(t)) is infinitesimally contracting [13, Definition 1] (since specA ⊂ Co−);

• ζ̇ = q(ξ, ζ) is infinitesimally contracting when x is viewed as a parameter [13, §2] (since specDζq(ξ0, ζ0) ⊂
Co− and DF is continuous); and

• Dξq(ξ, ζ) is bounded (since DF is continuous).

This enables us to infer (by [13, Theorem 3] or [14, §3.8.3]) that the cascaded system in (15) is infinitesimally
contracting on C with some contraction rate c > 0. Therefore we conclude (by [13, Theorem 1] or [14, Theorem 2])
that for any reference yd ∈ Y where

Y = {y ∈ Cγ(R,R) | ‖y‖Cγ <∞, ∀t ∈ R : (η(t), ζ0) ∈ C} , (19)



all trajectories initialized in C remain in C for all time and achieve exponential tracking,

∀t ≥ t0, (ξ, ζ) ∈ C, yd ∈ Y :
∥∥∥h ◦ φ̃(t0,(ξ,ζ),ud) − yd∥∥∥

Cr(t)
≤ e−c(t−t0) ‖(ξ, ζ)− (η(0), ζ0)‖ , (20)

where φ̃ is the flow in the (ξ, ζ) coordinates, ud combines the feedback–linearizing state feedback (13) with
the exponential tracking feedback (14) determined by yd, and η(t) is given by (16). We summarize the above
observations as follows.

Theorem 1 (exponential tracking with a stable model pair) [10, Thm. 1]. If the forward model (1)
has strict relative degree γ ∈ N and is exponentially stable and exponentially minimum phase at an equilibrium
f(x0) = 0 then there exists an open ball C ⊂ Rn containing x0 and a rate c > 0 such that the time–varying
feedforward input obtained by applying (13) and (14) along the trajectory initalized from (ξ0, ζ0) achieves
bounded exponential tracking (12) at rate c for any desired output yd ∈ Y and its first γ derivatives.

2.2 Properties of the dynamic inverse model

In this section we summarize properties of the dynamic inverse model derived in the preceding section; these
were previously reported in [10, Sec. 2.2, 4.1].

It is a well–known fact that system states can be rendered unobservable through feedback [15, §8.1].16 When-
ever the relative degree of (1) is strictly smaller than the dimension of the state, the derivations in Section 2.1
show that dynamic inverse models always render some states unobservable.

Property (inverting input renders system state unobservable). As noted in [11, §9.2.2], the inverting
feedback in (13) renders the states ζ unobservable.

This seems to be an undesirable system property, particularly since the input ud obtained by combining (13), (14)
is apparently state–dependent. However, under the assumption that both the original forward model (1) and
the closed–loop inverse model (15) are locally exponentially stable (at x0 and (ξ0, ζ0) = Φ(x0), respectively),
Theorem 1 [10, Thm. 1] shows that the inverse model does not need access to the actual system’s state to achieve
bounded exponential tracking. By exploiting the existence of a neighborhood C of the equilibrium (ξ0, ζ0)
wherein the closed–loop dynamics (15) are infinitesimally contractive, we obtain an alternate route to bounded
tracking than that provided by [11, Theorem 9.14], where global conditions were imposed on the closed–loop
dynamics of the unobserved states ζ̇ = q(ξ, ζ). This implies that, once a human operator has learned the full
system dynamics through exploratory interactions, it is possible for them to implement the inverse model in (13)
without estimating the full system state online—they can simply estimate the task–relevant portion of the state
(ξ) and maintain a virtual (internal) copy of the unobservable portion of the state (ζ).

When (1) has strict relative degree, the derivations in Section 2.1 directly demonstrate that the input that
achieves exact tracking for a given desired output is uniquely determined.

Property (feedforward input is unique). As noted in [11, §9.2.3], the feedforward input in (14) is unique.

Furthermore, under the hypotheses of Theorem 1, all inputs will converge to the feedforward input at an ex-
ponential rate.‡ This is a valuable property from the experimentalist’s perspective. In particular, uniqueness
implies that our central hypothesis from Section 1—that humans learn to invert model dynamics—can be di-
rectly tested separately from questions concerning how forward or inverse models are learned, represented, or
deployed to perform a particular task. Moreover, unlike the study of sensorimotor learning and control involving
the person’s own body, in the control of cyber–physical systems the experimentalist has access to high–fidelity
(or, in the case of simulations like those employed in this paper, exact) models of the system’s dynamics. Thus,
if the desired trajectory is provided to the operator by the experimentalist, then the inverse modeling framework
provides an exact prediction for the human’s (asymptotic) input.

‡Since the dynamics are infinitesimally contractive, all trajectories converge to one another at an exponential rate.



3. EXPERIMENT DESIGN

3.1 Acquisition of forward and inverse models

3.1.1 Linear forward model with relative degree 1

This section contains the simplest dynamic forward model,

ẋ = f(x) + g(x)u = u,

y = h(x) = x,
(21)

which has strict relative degree 1 (one). This system is already in the normal form derived in Section 2.1, i.e.
the change–of–coordinates in (2) is the identity function, Φ = idR, whence ξ = x. Therefore, given a desired
output yd ∈ C1(R,R), the corresponding feedforward input is simply the derivative of the output: ud = y′d.

3.1.2 Linear forward model with relative degree 1, second–order zero dynamics

This section contains one of the simplest dynamic forward models with zero dynamics,

ẋ = f(x) + g(x)u =

 0
x3

−c1(x1 − x2)− c2x3

+

 1
0
0

u,
y = h(x) =

x1 + x2
2

.

(22)

To transform into the normal form in (2), we compute Lie derivatives of the output with respect to f and g:

Lfh(x) = Dh(x)f(x) =
[

1 1 0
]  0

x3
ẋ3

 = x3,

Lgh(x) = Dh(x)f(x) =
[

1 1 0
]  1

0
0

 = 1;

(23)

since Dhf ≡ 1 6= 0, the system has strict relative degree 1.

Letting ξ = h(x) = 1
2 (x1 + x2) and choosing ζ = x2, ζ̇ = x3 to complete the change–of–coordinates, we find

ξ̇ =
1

2
(ζ̇ + u), ζ̈ = −2c1(ξ − ζ)− c2ζ̇; (24)

this relative–degree–1 system has second–order zero dynamics.

Furthermore, the system is exponentially minimum phase for any c1, c2 > 0 since, for a fixed ξ, the zero
dynamics are those of a linear spring–mass with setpoint ξ and stiffness 2c1, subject to viscous damping c2.

3.2 Comparison with pure feedback control

3.2.1 Nonlinear forward model with relative degree 1

This section contains the simplest nonlinear dynamic forward model,

ẋ = f(x) + g(x)u = u,

y = h(x) = sig(x),
(25)

where sig : [0, 1]→ [0, 1] is a smooth monotonically increasing nonlinear transformation (i.e. a sigmoid like that
shown in Figure 3). So long as sig ∈ C1, the system has strict relative degree 1 (one); we chose the following
specific algebraic form for sig and its inverse gis = sig−1:

∀y ∈ [−.5,+.5] : sig(y) =
1

2 tan−1 2
tan−1 4y; (26)
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Figure 3. Sigmoidal output nonlinearities employed in nonlinear forward model with relative degree 1 (Section 3.2.1):
dashed line indicates linear output; solid blue line (shallow slope at y = 0) indicates the function sig; solid red line (steep
slope at y = 0) indicates the inverse function gis = sig−1.

∀y ∈ [−.5,+.5] : gis(y) =
1

4
tan

([
2 tan−1 2

]
y
)
. (27)

This system is not in the normal form derived in Section 2.1, i.e. the change–of–coordinates in (2) is not the
identity function. However, if the desired output yd ∈ C1(R, [0, 1]) presented to (21) is transformed into sig ◦yd
before being presentated to (25), the feedforward inputs in both cases are simply the derivative of the original
output: ud = y′d.

3.3 Experiment Instantiation

We propose an experimental assay to test the hypothesis that humans learn forward and inverse models in
a human-cyber-physical interaction. We instantiate the above models (Section 3) in a simple path-following
video game. Participants perform a SISO trajectory-tracking task (Figure 4), moving 1-DOF slider to guide a
cursor (y, purple circle) along a prescribed trajectory (yd, orange path). The sequence of trajectories comprises
sigmoidal steps (cubic spline interpolation) of two different amplitudes (20% and 40% display height) presented in
alternating upwards and downwards transitions. Subjects themselves initiate each trial (an individual sigmoidal
step iteration), re-centering the input device between presentations. Trials conclude once the user has maintained
the cursor to within one cursor radius of the final desired output value for a duration of 1 sec. Trials in which
the input reaches an extrema of the input device or the output exceeds the bounds of the display area are
immediately terminated (and excluded from analysis) and subsequently repeated.

4. EXPERIMENTAL RESULTS

4.1 Are human responses consistent with the model–inversion framework?

Towards testing whether human subjects learn the linear first-order forward model (Section 3.1), subjects (N=4)
were presented a block of low amplitude step trajectories followed immediately by a block of high amplitude
steps, each block consisting of 20 iterations. Subjects tended to undershoot the reference output trajectory
in the sigmoidal transition. Nonetheless, the interquartile range (calculated across subjects) encompasses the
reference trajectory for both amplitudes and for both upward and downward transitions (Figure 5, first and
second columns). The symmetry of tracking responses in the step-up and step-down conditions motivates a
pooled analysis of the data.

For the first-order forward model, the model-inversion hypothesis prescribes the feedforward input, ud, be
equal to the derivative of the reference input, y′d (Section 3.1.1). For the sigmoidal reference trajectory, this



Do humans acquire forward and inverse models? Can we distinguish model-inversion from
model-free feedback control?
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Figure 4. (A) Experiment instantiation (Section 3.3): Subjects move a 1-DOF slider to guide a cursor along a sequence
of sigmoidal paths. (B) Assessing model acquisition (Section 3.1): Block diagrams for the forward models and predicted
output (black dashed) for sigmoidal input (gold). (C) Comparing model-inversion and model-free feedback control (Sec-
tion 3.2): Applying a static nonlinearity at the output does not affect the prediction from the model–inversion hypothesis
but does affect the prediction from a pure feedback controller.

input is zero during the initial and final plateau and parabolic in the sigmoidal transition (Figure 5). Though
human inputs are similar to the model–inversion predictions, there are notable differences. Both at the initiation
and termination of the parabolic input regime, human operators exhibit a smooth transition whereas the model-
predicted feedforward input requires an abrupt change in slider velocity. Despite the difference between empirical
and model-predicted inputs, human subjects arrived at an input trajectory which sufficiently achieved the task,
and moreover, this input trajectory was consistent across individuals. We fit P- and PD-control models (gains fit
using linear regression to mean empirical errors and inputs; P-control kp = 3.248; PD-control kp = 3.289, kd =
−0.113) and simulate these pure feedback policies for the sigmoidal reference trajectories (Figure 5); P- and
PD-feedback models furnish qualitatively similar controllers. These best-fit feedback controllers fail to capture
the empirically observed tracking response, lagging noticeably behind measured outputs. Interestingly, empirical
inputs fall between the best fit model-free feedback simulation and the model-inversion prediction.

In the subsequent assay, subjects perform the task under the forward model detailed in Section 3.1.2, linear
dynamics with relative degree 1 and second-order zero dynamics. The model-predicted feedforward input is
similar to that described for the linear first-order forward model above, prescribing zero input at the initial plateau
followed by a parabolic input during the sigmoidal step. However, settling at the terminal plateau requires a
negative input (Figure 6, bottom row); the model simulates the cursor towing a hidden mass subject to a spring
force and viscous drag, and thus, an opposing input at the goal is required to arrest motion. Subjects performed
this task for small amplitude transitions (20 replicates). Again, subjects achieved reasonably good output tracking
performance; the reference output trajectory nearly lies within the interquartile range throughout. But as in the
previous assay, humans produce smoother input trajectories than the model–inversion hypothesis dictates.

4.2 Are human responses distinguishable from model–free responses?

Alternative to the model-inversion hypothesis, humans might not learn the inverse model, relying instead on a
model-free feedback policy. And for some high-gain feedback policies, the model-free inputs may be indistin-
guishable from those predicted under a model–inversion assumption. We propose a follow-up to the first assay
aimed at discriminating these two strategies. We select a forward–model condition under which participants
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feedforward input are drawn in gold; purple lines and fill indicate the operator average and interquartile range (4 subjects).
The same reference was presented monotone increasing (“up”, first column) and decreasing (“down”, second column,
direction flipped to facilitate comparison with “up”) at two different magnitudes (20% and 40% display height); since
no significant difference was detected between the presentations, we consider the pooled data in our final analyses (third
column). In blue, we simulate responses for the best fit P- and PD-feedback controllers (parameters fit from the mean
empirical input). Traces in the top row are baseline adjusted (by subtracting mean from 0 sec to 1 sec) to facilitate
comparison between reference magnitudes.

successfully tracked the task trajectories, presumably via model inversion. In a subsequent assay, we repeat
these trials with the same forward model, however, we apply a static nonlinear transformation to both the cursor
position (the output, y) and the task trajectory (the desired output, yd). Being that the underlying dynamics
of the forward model are identical, and presuming that humans can invert the output nonlinearity, the model–
inversion hypothesis predicts the same inputs for both the original assay (Section 3.1.1) and the transformed
presentation (Section 3.2.1). In contrast, since the output tracking error ε is similarly nonlinearly transformed,
a model-free feedback policy predicts different inputs for the output-transformed condition.

As in Section 4.1 and Figure 5, subjects tracked an assay of output reference trajectories comprising two blocks
(low- and high-amplitude steps with 20 iterations per block) for models with the sig and gis output nonlinearities
((26) and (27)). Remarkably, subjects perform better in these tasks and empirical outputs agree more closely
with model–prediced inputs as compared to the strictly linear case (Figure 5), regardless of which nonlinearity
is appended to the forward model. The model-free feedback policies fit in Section 4.1 do a poor job predicting
the output tracking performance. Again, empirical inputs are intermediate to the model–inversion and model–
free predictions. It is unsurprising that the sig nonlinearity yields improved output tracking performance; the
nonlinearity mimics the shape of the reference output, hastening the cursor through the sigmoid and minimizing
output deviations at the plateaus. That subjects performed similarly for the gis–transformed input (surprisingly)
supports the model–inversion hypothesis.

5. DISCUSSION: OUTLOOK FOR PREDICTIONS IN HCPS

The experimental results reported in Figures 5 and 6 provide mixed support for our central hypothesis, namely,
that humans learn and invert dynamic models to control cyber–physical systems. With the simplest linear
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Figure 6. (left) Results from linear forward model with relative degree 1, second–order zero dynamics (Section 3.1.2).
(middle and right) Results from nonlinear forward model with relative degree 1 (Section 3.2.1). Note that the nonlinear
output transformation has been inverted to facilitate comparison. The middle plot shows the result with the nonlinearity
sig (26), while the right depicts the result with the inverse nonlinearity gis = sig−1 (27). Both nonlinearities are illustrated
in Figure 3. See Figure 5 caption for details about the plotting conventions; the same axis limits are employed to facilitate
comparison with Figure 5.

model with relative degree 1 (Section 3.1.1, Figure 5), the interquartile distribution of operator outputs contains
the prescribed references, but the predicted input does not lie within the interquartile distribution of operator
inputs; when second–order zero dynamics are added (Section 3.1.2, Figure 6 left), the errors are exacerbated.
However, adding a static nonlinearity to the simplest model (Section 3.2.1) results in much tighter tracking, and
the predicted input is subsumed within the interquartile distribution of operator inputs (Figure 6, middle and
right). Most provocatively, this result holds regardless of whether the increasing (sig (26)) or decreasing (gis (27))
nonlinearity from Figure 3 is employed. Furthermore, pure feedback appears to be inadequate to explain the
results we observe in Figure 6.

Across forward model conditions and reference trajectories, subjects generated smooth inputs whereas the
model–inversion prediction demands an abrupt acceleration at the beginning of the sigmoidal region and an
abrupt cessation at the terminal plateau. The observed smoothness may reflect a biomechanical limitation,
that human users have difficulty actuating the slider with discontinuous velocities. It has been demonstrated
for unconstrained, volitional reaching tasks that human subjects minimize the magnitude-squared of jerk of the
hand trajectory, minimizing deviations in acceleration and yielding smooth velocities.17 This constraint may
suggest that operators cannot implement the feedforward input for these trajectories, but this does not preclude
that humans have learned the forward model.

Though promising, these results indicate that further experimental work is needed to determine when (or
whether) the model inversion framework proposed in10 (and summarized in Section 2) can be relied on to predict
human behavior in robot teleoperation. In future work, we will conduct assays involving a wider variety of
references, system models, and nonlinearities.
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