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Abstract 
 
 
 

 An Examination of the Effects of Deformable Foam Contact Surfaces on Robotic Locomotion 
 
 
 

Jacob Baldassini 
 
 
 

Chair of the Supervisory Committee: 
Professor Samuel A. Burden 

Electrical Engineering 

 

The ability of foam to reduce the impact of terrain irregularities on robotic locomotion was 

studied. A test bed was developed to conduct static experiments to attempt to measure and 

quantify how statically positioned foam feet reacted to changing terrain profiles. The 

average height of the terrain profile was varied linearly by moving a ledge under the foot, 

which, according to our hypothesis, should have resulted in a linear variation of the height 

of the foot. These experiments were repeated for two different ledge heights (3 mm and 

12.8 mmm), two different foot sizes (2 cm and 3 cm cubes), and five different foot 

stiffnesses. Foot behavior approached full linearity as stiffness increased for both foot sizes 

on the 3 mm ledge, but did not approach full linearity for either foot size on the 12.8 mm 

ledge. Although foam feet have desirable properties, their behavior was not consistent 

enough to create a predictive model for their behavior for a given stiffness, size, and ledge 

height. Some insight into a manner for obtaining design curves was obtained, however, and 

other avenues of research appear promising. 

 



4 
 

TABLE OF CONTENTS 

List of Figures ................................................................................................................................. 5	  

List of Tables .................................................................................................................................. 6	  

Chapter 1. Introduction ................................................................................................................... 8	  

Chapter 2. Background ................................................................................................................... 8 

2.1	   Related Work ..................................................................................................................... 8 

2.2	   Motivation .......................................................................................................................... 9	  

Chapter 3. Methodology ............................................................................................................... 11	  

3.1	   Hypothesis ....................................................................................................................... 11	  

3.2	   Experiment Design .......................................................................................................... 14	  

3.3	   Foot Types ....................................................................................................................... 18	  

Chapter 4. Results and Analysis ................................................................................................... 19 

4.1	   Results .............................................................................................................................. 19	  

4.2	   Analysis ........................................................................................................................... 21 

Chapter 5. Applications and Conclusions ..................................................................................... 23	  

Bibliography ................................................................................................................................. 25 

Appendix A ................................................................................................................................... 26	  

Appendix B ................................................................................................................................... 28	  

Appendix C ................................................................................................................................... 36



5 
 

 

LIST OF FIGURES 

 

Figure 1: A Picture of the Robotic Leg ............................................................................. 10	  

Figure 2: Foot Model ........................................................................................................ 12	  

Figure 3: Illustration of Terms .......................................................................................... 13	  

Figure 4: Experimental Testbed ........................................................................................ 15	  

Figure 5: Experiment Setup .............................................................................................. 16  

Figure 6: Steps of the Experiment .................................................................................... 17	  

Figure 7: Revised Experiment Setup ................................................................................ 18	  

Figure 8: Sample Experimental Data ................................................................................ 20	  

Figure 9: Linearity vs. Foam Stiffness (All Conditions) .................................................. 22	  

	  

 

  



6 
 

 

 

LIST OF TABLES 

 

Table 1: Foam Types vs. Firmness ................................................................................... 18	  

Table 2: 3 mm Ledge Data ................................................................................................ 20 

Table 3: 12.8 mm Ledge Data ........................................................................................... 21 

Table 4: Sigmoid Curve Coefficients ............................................................................... 22  



7 
 

 

 

ACKNOWLEDGEMENTS 

 

This work was done under the mentorship of Prof. Samuel Burden. I also want to note the 

helpful discussions and support that Yana Sosnovskaya of the University of Washington 

Department of Electrical Engineering provided.  

This material is based upon work supported by the U. S. Army Research Laboratory and the 

U. S. Army Research Office under contract/grant number W911NF-16-1-0158. 

  



8 
 

Chapter 1.  INTRODUCTION  

Simple organisms can easily move themselves over uneven terrain despite operating 

under constraints that robots do not need to consider, such as avoiding predators, hunting prey, 

and maintaining the ability to heal and reproduce. Despite this, it has proved difficult to create 

robust control strategies for robotic locomotion. Recent research has suggested that in some 

organisms, the structure of the limbs provides inherent resistance to disruption; when 

cockroaches were perturbed while running, they began regaining their original course before 

they could have reacted via neural feedback [5]. These responses were also faster than pure 

reflex actions measured in humans [2]. This research attempts to determine whether a similar 

effect can be obtained for robots by using deformable feet. 

Chapter 2.  BACKGROUND 

2.1   RELATED WORK 

There is precedent for using biologically inspired foot designs in robotic locomotion 

research to improve performance. Many aspects of biological control strategies have been 

incorporated in modern robotic design, like posture, body proportioning, and the use of tails [15]. 

A counterintuitive result that came out from this research is that decreased rigidity can lead to 

increased performance, although this research was performed on a small, insect-inspired 

platform [14]. 

The performance of locomotion control strategies is also known to be highly dependent 

on the interaction of the limbs and terrain [9]. This is especially when considering deformable 

terrain [4] [10], although it was examined in the context of granular media, which does not have 
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the same properties as foam. This paper is, to the author’s knowledge, the first to examine the 

use of deformable foam feet in this context. Deformable feet would fit within the broader 

paradigm of morphological computation [3]- here, correcting for disturbances will be partly 

outsourced from the control strategy to the foot itself. The smoothing effect the feet will have on 

disturbances can also outsource filtering, for cases where the limbs are also being used as sensors 

[8]. Research into decoupling the limbs has shown promise in smoothing trajectory outcomes 

[11], and deformable feet support the application of this result as well, as the effect of foam 

compressing can reduce the sharpness of transitioning between different modes in a gait. 

The mathematical theory describing the deformation of elastic materials is well-known. 

For sufficiently small amounts of applied force, elastic body deformations are well-approximated 

by first order (or linear) deformations [12]. As foam is such a material, this means that if second-

order effects and other sources of error are negligible, foam feet may be modeled as springs. 

2.2   MOTIVATION 

The genesis for this research was contemplating ways to improve the performance of a 

four-legged robot, like a Minitaur or something similar [6], by using foam coatings on its feet. 

We began by considering an individual leg. We chose to use a leg manufactured by Ghost 

Robotics, the manufacturers of the Minitaur, as it could be directly controlled via Arduino.  
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Figure 1: A Picture of the Robotic Leg 

Terms used to calculate the dynamics of this robot are defined as follows: Leg 1 is the leg 

corresponding to motor 1, positioned on the left in figure 1. Leg 2 is the leg corresponding to 

motor 2, positioned on the right in figure 1. Consider the robot standing on the y-axis in the 

Cartesian plane. θ1 and θ2 are, respectively, the angles that leg 1 and leg 2 make with the hip, as 

measured clockwise from the negative y-axis. The position of the foot joint is defined as (xf, yf), 

as its dynamics are as follows: 

𝜃
∆
=
1
2
1 1
1 −1

𝜃'
𝜃(

 

𝑥*+,-
𝑦*+,-

=
0

−𝑙' sin
𝜋
2 − ∆ − l(( − l'( sin((∆)
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𝑥*
𝑦* = cos	  (𝜃) −sin	  (𝜃)

sin	  (𝜃) cos	  (𝜃)
𝑥*+,-
𝑦*+,-

 

We calculated the distance to the foot joint rather than the distance to the foot’s contact 

surface, because the distance from the foot joint to the contact surface of the foot varies based on 

the type of foot being used. 

These kinematics differ from those calculated for an identical leg in [6]. The kinematics 

calculated in that paper are valid in the regime where the leg’s knees (the joints where the leg 1 

and leg 2 segments meet) are above the hip (the joint where both leg 1 segments originate). The 

kinematics we calculated are valid in the regime where 𝜃' > 𝜃(, 𝜃' ∈ − >
(
, 𝜋 , 𝜃( ∈ [−𝜋,

>
(
]; in 

other words, where the knees are below the hip. A MATLAB script to implement these dynamics 

is attached as Appendix A. 

Chapter 3.  METHODOLOGY  

3.1   HYPOTHESIS  

Our hypothesis, based on our reading of [12], is that the use of foam can smooth the effects of 

interacting with discontinuous terrain. Consider dividing the foam into smaller pieces, and 

modeling the pieces as a collection of springs, as follows: 
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Figure 2: Foot Model 

Here, the foot is trying to stand on flat ground, but there are small, surface asperities and 

irregularities. We will call the height of these asperities, with respect to the floor position r, as 

T(r), and we will define the region T is defined over as G. Each spring constant is proportional to 

the cross-sectional area of each piece of foam- we will call the total area A, and the section of 

ground that each piece Gj. Define the height of the lower edge of the foot above the ground as a 

variable h.  
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Figure 3: Illustration of Terms 

When standing on perfectly flat ground (i.e. T = 0), the height of the foot is a constant, 

which we will call 𝑥. For a flat, rigid foot with area A, the height of the bottom of the foot when 

standing on flat ground will be zero. When standing on the gravel, the height will be 𝑚𝑎𝑥𝑟 ∈ 𝐺	  𝑇(𝑟), 

which we will define as Tmax. This means that if a control system for a rigid-footed robot assumes 

the future location of its foot to be flat on the floor, the gravel will cause its actual position to be 

Tmax above the floor, introducing Tmax amount of error. When the foam is added to the foot, on 

flat ground, we can solve for 𝑥 as follows: 

𝑘𝑥 = 𝑚𝑔 → 𝑥 =
𝑚𝑔
𝑘  

When using the model in figure 2, we get the following equation for h: 

𝑘
𝐺I
𝐴 ℎ −

𝑚𝑎𝑥
𝑟 ∈ 𝐺I𝑇 𝑟 = 𝑚𝑔

I
= 𝑘𝑥 
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As we divide the foam into infinitesimally small pieces, this sum becomes a surface 

integral 

𝑘
𝐴 ℎ − 𝑇 𝑟 𝑑𝑟 =

	  

M∈N
𝑘𝑥 

As the foot is stationary, we can simplify the equation as follows:  

𝑘ℎ − 𝑘
𝑇 𝑟
𝐴 𝑑𝑟

	  

M∈N
= 𝑘𝑥 

O M
P
𝑑𝑟	  

M∈N  is simply the average height across T, which we will define as Tavg, so the 

equation becomes 

ℎ = 𝑥 + 𝑇RST 

This means that if a control system for a foam-footed robot assumes the future location of 

its foot to be 𝑥 above the ground, the gravel will cause it to be 𝑥 + Tavg above the floor, 

introducing Tavg amount of error. For a few scattered pieces of gravel, Tavg will be much smaller 

than Tmax, so if our hypothesis is experimentally verifiable, this will mean that foam coverings 

can be used to improve the performance of robotic locomotion control systems. 

3.2   EXPERIMENT DESIGN 
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Figure 4: Experimental Testbed 

We built the framework shown in figure 4 to hold a vertical guide and carriage steady. 

The framework was built out of off-the-shelf 40 mm x 40 mm 80/20 parts, and measures 1 m in 

length, .5 m in width, and 1.04 in height (not counting the height of the guide). To prevent error 

caused by motion of the frame due to the force of the leg’s movements, two 50 lb. bags of sand 

were added to dampen any vibrations. The leg was attached to the carriage and positioned 

relative to a ruler secured to the ground as follows: 
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Figure 5: Experiment Setup 

With the leg attached in this manner, the hip can move up and down along the vertical 

axis, and the foot can move in the x-z plane, as controlled by the Arduino. The leg was powered 

by a BK Precision 9115 power supply producing 16 V and 50 A. Arduino code routines to 

command the leg to stay stationary (as pictured in Figure 5) and to jump up down were written, 

and attached as Appendix C. 

The experiments we ran all followed the same basic form- the leg was lifted in the air, the 

edge of a step was positioned relative to the ruler, the leg was lowered and left to stand freely on 
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its own, and the height of the body above the ground was measured with a Qualsys Oqus 510 

high-speed motion capture camera. We conducted these experiments for two different foot styles 

(2 cm and 3 cm cubes), and two different ledge heights, (3 mm and 12.8 mm). For all 

experiments, the step edge was moved in increments of 1/10 of the cube’s width (either 2 mm or 

3 mm, as appropriate), from right to left, starting with the foot completely off the ledge and 

ending with the foot completely on the ledge. 

 

Figure 6: Steps of the Experiment 

As the area of the ledge under the foot increased linearly with each movement, the height 

of the robot body should increase linearly as well, as predicted by the equations we derived in the 

Hypothesis section. Therefore, the metric we chose to measure the applicability of the model to 

each scenario tested was the coefficient of determination (R2 value), which measures how well 

simple linear regression explains the data. 

We originally attempted to run the experiment using the robotic leg, the combined weight 

of the leg and carriage (2.377 kg) was compressed all the foam feet to such a degree that it 

became immediately apparent that their behavior did not comply with the simple spring model, 
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even in the case of the stiffest foams. To improve the data quality, we replaced the leg with balsa 

wood dowels with the foam feet glued to the bottom. The carriage and dowel combination 

weighed 1.056 kg when a small dowel was used, and 1.087 kg when a large dowel was used. 

 

Figure 7: Revised Experimental Setup 

3.3   FOOT TYPES 

The leg terminates in a square metal prong that is sized to accommodate standard 

McMaster-Carr 2517T32 rubber non-skid tips, which are approximately 2 cm in diameter. We 

chose the foams we used based on their firmness, as follows: 

Foam Type Firmness (PSI) 

35280 .32-.67 
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60280 .55-.65 

80280 .75-.85 

200100 .90-1.05 

300135 1.05-1.50 

Table 1: Foam Type vs. Firmness 

The firmness values given here are per the Polyurethane Foam Association’s 25% 

deflection test [13]. They refer to the force necessary to cause a 25% indentation in the foam at 

the thickness sold. All foam samples used in this experiment were sold in sheets three inches 

thick, and cut to shape using a hot wire foam cutter. 

Chapter 4.  RESULTS AND ANALYSIS 

4.1   RESULTS 

Our experiments on a 3 mm ledge yielded data in the following form: 
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Figure 8: Sample Data 

Here, the orange line represents the behavior predicted by the simple spring model, and 

the blue dots represent the experimental data. All experimental data is attached as Appendix B. 

We ran the experiment for all foam types for both foot sizes and ledge heights, and generated the 

following data: 

 

Foam \ Ledge Height 2 cm cube 3 cm cube 

35280 .8422 .8978 

60280 .8428 .9103 

80280 .8652 .9727 

200100 .9191 .9822 
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300135 .9235 .9917 

 

Table 2: 3 mm Ledge Data 

 

Foam \ Ledge Height 2 cm cube 3 cm cube 

35280 .4326 .5356 

60280 .4456 .6386 

80280 .4761 .7182 

200100 .4877 .7244 

300135 .6176 .7821 

 

Table 3: 12.8 mm Ledge Data 

4.2   ANALYSIS  

Raising the ledge height and reducing the size of the foot both resulted in decreased 

performance. Regardless of the ledge height or foot size, in all cases, increasing foam stiffness 

improved performance. The largest source of error appeared to be the gap between the ledge and 

where the foam first contacted the ground- a good measure for how much this affects 

performance is the ratio between ledge height and foot edge length (𝛼). This larger this value 

was, the worse performance became. For all ledge height and foot size combinations, foot 

performance responded to softening foam as follows:  
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Figure 9: Linearity vs. Foam Stiffness (All Conditions) 

Fitting sigmoid curves of the form R
'VWXY(Z[\)

 to all data sets individually using simple 

least-squares regression, we get the following results (for 𝛼 = .64, this required weighting the 

individual data points to achieve reasonable results): 

 𝑎 𝑏 𝑐 

12.8 mm ledge, 2 cm foot (𝛼 = .64) .6671 .8706 .2107 

12.8 mm ledge, 3 cm foot (𝛼 = .43) .7688 5.7182 -.3417 

3 mm ledge, 2 cm foot (𝛼 = .15) 1.0146 1.0953 .9042 

3 mm ledge, 3 cm foot (𝛼 = .10) 1.0023 3.6489 .0764 
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Table 3: Sigmoid Curve Coefficients 

There is no clear pattern to the constants in these sigmoid curves, so no model to predict 

the response to foam stiffness for a given ledge height and foot size can be created. However, 

sigmoid curve models do fit the data quite well for reasonable 𝛼 values, so for a known foot size 

and terrain irregularity height, this setup could be used to run experiments to find an accurate 

model for how linearity is related to foam stiffness under those specific conditions, which could 

be used as a design curve. 

Chapter 5.  APPLICATIONS AND CONCLUSIONS 

These experiments show that there are circumstances in which foam feet smooth out 

discontinuities in a predictable manner. However, the regime in which this is the case is narrowly 

bounded in terms of foam stiffness, discontinuity size, and foot size. Although there may be 

robots for which foam feet could fall in those regimes, foam feet do not appear to be a useful 

modification for a Minitaur-type robot. 

These experiments only looked at static conditions- foam may behave in a more tractable 

manner in dynamic experiments. Data from such experiments could be used to further the search 

for a way to quantify agility [1]. Such experiments could be conducted on the testbed created for 

this research, using the Arduino code from Appendix C, if a means of consistently altering the 

terrain under a jumping robot could be created. Other possible experiments in dynamic 

conditions could examine how the smoothing effect affects trajectory differentiability [10], 

especially as foam feet would allow for limb decoupling even in situations where there are 

design constraints that make it impossible to modify the limbs where they attach to the body. The 
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testbed also has potential applications for unrelated experiments in areas such as rehabilitation- it 

could be used to test designs for prosthetic feet. 
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APPENDIX A 
 

The following function (A2P.m) takes the angles of a Ghost Robotics leg and determines the 

x-y coordinates of the foot joint (xf, yf) relative to the leg’s hip, for the regime where the knees 

are extended past the hip (as opposed to the dynamics calculated in [7]). 

function [xf,yf]=A2P(theta1,theta2) 
close all 
  
seg1=10; 
seg2=20; 
  
%IMPORTANT: all angles are measured clockwise from the negative y-axis 
  
%theta1 must be between -pi/2 and pi 
if (theta1<-pi/2) | (theta1>pi) 
    error('theta1 must be in [-pi\2,pi]') 
end 
  
%theta2 must be between -pi and pi/2 
if (theta2<-pi) | (theta2>pi/2) 
    error('theta1 must be in [-pi,pi/2]') 
end 
  
%theta1 must be larger than theta2 
if (theta1<theta2) 
    error('theta1 must be larger than theta2') 
end 
  
thetabar=(theta1+theta2)/2; 
dtheta=(theta1-theta2)/2; 
  
%find position of leg1 knee 
xk1=-seg1*sin(dtheta); 
yk1=-seg1*sin(pi/2-dtheta); 
  
%find position of leg2 knee 
xk2=-xk1; 
yk2=yk1; 
  
%find position of foot 
xf=0; 
yf=yk1-sqrt(seg2^2-xk1^2); 
  
%rotate counterclockwise 
rotmat=[cos(thetabar) -sin(thetabar); sin(thetabar) cos(thetabar)]; 
pointmat=[xk1 xk2 xf; yk1 yk2 yf]; 
rotpointmat=rotmat*pointmat; 
xk1=-rotpointmat(1,1); 
xk2=-rotpointmat(1,2); 
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xf=-rotpointmat(1,3); 
yk1=rotpointmat(2,1); 
yk2=rotpointmat(2,2); 
yf=rotpointmat(2,3); 
  
%plot position of leg 
figure(1) 
hold on 
plot([0 xk2],[0 yk2],'b') 
plot([0 xk1],[0 yk1],'r') 
plot([xk2 xf],[yk2 yf],'b') 
plot([xk1 xf],[yk1 yf],'r') 
legend('leg 1','leg 2') 
axis equal 
title(['Foot position= (' num2str(xf) ', ' num2str(yf) ')']) 
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APPENDIX B 
 

The data I collected is attached here in the form of the code used to plot it: 

close all 
  
% 2 cm cube, small ledge, 300135 foam 
x1=21.6:.2:23.6; 
y1=-[414.06 414.44 415.13 416.34 416.79 418.17 419.13 420.24 422.52 425.55 
428.18]; 
y1=y1+428.18; 
scale1=y1(1)-y1(end); 
y1=3*y1/scale1; 
figure(1) 
hold on 
plot(x1,y1,'o') 
plot([21 21.6 23.6 24],[3 3 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('2 cm cube, 300135 foam') 
lm=fitlm(x1,y1); 
Rsq1=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq1)]) 
  
% 2 cm cube, small ledge, 200100 foam 
x2=21.6:.2:23.6; 
% y2=-[353.11 353.24 353.64 354.28 354.83 355.62 355.93 357.56 359.25 361.25 
367.38]; 
% y2=y2+367.38; 
y2=-[342.24 342.62 342.80 343.73 344.49 345.49 346.55 347.90 349.45 350.97 
354.62]; 
y2=y2+354.62; 
scale2=y2(1)-y2(end); 
y2=3*y2/scale2; 
figure(2) 
hold on 
plot(x2,y2,'o') 
plot([21 21.6 23.6 24],[3 3 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 200100 foam') 
lm=fitlm(x2,y2); 
Rsq2=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq2)]) 
  
% 2 cm cube, small ledge, 80280 foam 
x3=21.3:.2:23.3; 
y3=-[424.62 425.45 425.90 426.83 427.87 428.28 429.42 430.14 432.94 436.77 
440.53]; 
y3=y3+440.53; 
scale3=y3(1)-y3(end); 
y3=12.8*y3/scale3; 
figure(3) 
hold on 
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plot(x3,y3,'o') 
plot([21 21.3 23.3 24],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('2 cm cube, 80280 foam') 
lm=fitlm(x3,y3); 
Rsq3=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq3)]) 
  
% 2 cm cube, small ledge, 60280 foam 
x4=21.5:.2:23.5; 
y4=-[433.53 433.70 434.18 435.05 435.74 436.87 437.70 439.36 441.12 443.81 
449.96]; 
y4=y4+449.96; 
scale4=y4(1)-y4(end); 
y4=3*y4/scale4; 
figure(4) 
hold on 
plot(x4,y4,'o') 
plot([21 21.5 23.5 24],[3 3 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('2 cm cube, 60280 foam') 
lm=fitlm(x4,y4); 
Rsq4=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq4)]) 
  
% 2 cm cube, small ledge, 35280 foam 
x5=21.6:.2:23.6; 
y5=-[345.93 346.18 346.83 347.42 348.21 349.04 349.52 350.93 352.66 354.59 
360.14]; 
y5=y5+360.14; 
scale5=y5(1)-y5(end); 
y5=3*y5/scale5; 
figure(5) 
hold on 
plot(x5,y5,'o') 
plot([21 21.6 23.6 24],[3 3 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('2 cm cube, 35280 foam') 
lm=fitlm(x5,y5); 
Rsq5=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq5)]) 

 

close all 
  
% 3 cm cube, small ledge, 300135 foam 
x1=[20 20.4:.1:23.4  24]; 
y1=-[804.33 804.33 804.78 805.03 805.20 805.93 806.73 807.53 807.67 807.91... 
    808.68 809.37 810.20 810.52 811.11 811.84 812.78 813.47 813.92 814.38... 
    815.11 815.49 816.22 816.95 817.82 818.17 818.86 819.49 820.29 820.88...  
    822.09 823.52 823.52]; 
y1=y1+823.52; 
scale1=y1(1)-y1(end); 
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y1=3*y1/scale1; 
x1=20.4:.3:23.4; 
y1=y1([2 5 8 11 14 17 20 23 26 29 32]); 
figure(1) 
hold on 
plot(x1,y1,'o') 
plot([20 20.4 23.4 24],[3 3 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 300135 foam') 
lm=fitlm(x1,y1); 
Rsq1=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq1)]) 
  
% 3 cm cube, small ledge, 200100 foam 
x2=[20.5:.3:23.5]; 
y2=-[383.56 384.08 385.56 386.91 388.43 389.57 391.08 393.67 395.19 397.43 
399.81]; 
y2=y2+399.81; 
scale2=y2(1)-y2(end); 
y2=3*y2/scale2; 
figure(2) 
hold on 
plot(x2,y2,'o') 
plot([20 20.5 23.5 24],[3 3 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 200100 foam') 
lm=fitlm(x2,y2); 
Rsq2=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq2)]) 
  
  
% 3 cm cube, small ledge, 80280 foam 
x3=[20.3:.3:23.3]; 
y3=-[399.71 400.92 402.02 403.23 405.09 406.71 408.68 410.44 413.27 415.75 
419.21]; 
y3=y3+419.21; 
scale3=y3(1)-y3(end); 
y3=3*y3/scale3; 
figure(3) 
hold on 
plot(x3,y3,'o') 
plot([20 20.3 23.3 24],[3 3 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 80280 foam') 
lm=fitlm(x3,y3); 
Rsq3=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq3)]) 
  
  
% 3 cm cube, small ledge, 60280 foam 
x4=19.8:.3:22.8; 
y4=-[392.08 392.26 393.12 393.64 394.85 395.95 397.81 399.81 401.26 404.09 
408.78]; 
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y4=y4+408.78; 
scale4=y4(1)-y4(end); 
y4=3*y4/scale4; 
figure(4) 
hold on 
plot(x4,y4,'o') 
plot([19 19.8 22.8 23.5],[3 3 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 60280 foam') 
lm=fitlm(x4,y4); 
Rsq4=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq4)]) 
  
  
% 3 cm cube, small ledge, 35280 foam 
x5=19.8:.3:22.8; 
y5=-[407.20 407.33 407.75 408.54 409.54 410.23 412.23 413.99 415.93 418.48 
422.76]; 
y5=y5+422.76; 
scale5=y5(1)-y5(end); 
y5=3*y5/scale5; 
figure(5) 
hold on 
plot(x5,y5,'o') 
plot([19 19.8 22.8 23.5],[3 3 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 35280 foam') 
lm=fitlm(x5,y5); 
Rsq5=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq5)]) 

 

close all 
  
% 2 cm cube, tall ledge, 300135 foam 
x1=21.3:.2:23.3; 
y1=-[303.60 304.70 305.63 306.84 308.18 310.25 312.70 314.53 316.73 336.38 
368.71]; 
y1=y1+368.71; 
scale1=y1(1)-y1(end); 
y1=12.8*y1/scale1; 
figure(1) 
hold on 
plot(x1,y1,'o') 
plot([21 21.3 23.3 24],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 300135 foam') 
lm=fitlm(x1,y1); 
Rsq1=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq1)]) 
  
% 2 cm cube, tall ledge, 200100 foam 
x2=21.4:.2:23.4; 
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y2=-[296.33 296.67 296.88 297.91 299.01 300.29 302.39 304.15 306.46 310.63 
356.62]; 
y2=y2+356.62; 
scale2=y2(1)-y2(end); 
y2=12.8*y2/scale2; 
figure(2) 
hold on 
plot(x2,y2,'o') 
plot([21 21.4 23.4 24],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('2 cm cube, 200100 foam') 
lm=fitlm(x2,y2); 
Rsq2=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq2)]) 
  
% 2 cm cube, tall ledge, 80280 foam 
x3=21.3:.2:23.3; 
y3=-[379.11 379.28 379.60 380.94 381.87 382.80 383.87 385.49 387.98 395.57 
441.05]; 
y3=y3+441.05; 
scale3=y3(1)-y3(end); 
y3=12.8*y3/scale3; 
figure(3) 
hold on 
plot(x3,y3,'o') 
plot([21 21.3 23.3 24],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('2 cm cube, 80280 foam') 
lm=fitlm(x3,y3); 
Rsq3=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq3)]) 
  
% 2 cm cube, tall ledge, 60280 foam 
x4=21.2:.2:23.2; 
y4=-[322.42 322.52 323.14 323.87 325.04 326.32 327.94 330.14 333.07 334.45 
389.77]; 
y4=y4+389.77; 
scale4=y4(1)-y4(end); 
y4=12.8*y4/scale4; 
figure(4) 
hold on 
plot(x4,y4,'o') 
plot([20 21.2 23.2 24],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 60280 foam') 
lm=fitlm(x4,y4); 
Rsq4=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq4)]) 
  
% 2 cm cube, tall ledge, 35280 foam 
x5=21.5:.2:23.5; 
y5=-[312.91 313.59 314.18 314.39 315.35 316.21 317.08 318.73 320.80 327.90 
379.28]; 
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y5=y5+379.28; 
scale5=y5(1)-y5(end); 
y5=12.8*y5/scale5; 
figure(5) 
hold on 
plot(x5,y5,'o') 
plot([21 21.5 23.5 24],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('2 cm cube, 35280 foam') 
lm=fitlm(x5,y5); 
Rsq5=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq5)]) 

 

close all 
  
% 3 cm cube, tall ledge, 300135 foam 
x1=20.1:.3:23.1; 
y1=-[334.62 335.35 337.38 340.87 344.00 346.80 350.28 354.11 359.35 368.70 
399.33]; 
y1=y1+399.33; 
scale1=y1(1)-y1(end); 
y1=12.8*y1/scale1; 
figure(1) 
hold on 
plot(x1,y1,'o') 
plot([19 20.1 23.1 24],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 300135 foam') 
lm=fitlm(x1,y1); 
Rsq1=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq1)]) 
  
% 3 cm cube, tall ledge, 200100 foam 
x2=20:.3:23; 
y2=-[340.56 340.93 342.49 344.87 346.83 349.76 352.49 356.90 362.18 371.18 
404.19]; 
y2=y2+404.19; 
scale2=y2(1)-y2(end); 
y2=12.8*y2/scale2; 
figure(2) 
hold on 
plot(x2,y2,'o') 
plot([19 20 23 24],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 200100 foam') 
lm=fitlm(x2,y2); 
Rsq2=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq2)]) 
  
% 3 cm cube, tall ledge, 80280 foam 
x3=19.8:.3:22.8; 
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y3=-[359.56 360.38 361.42 363.90 366.21 368.59 371.25 374.87 379.11 402.61 
426.38]; 
y3=y3+426.38; 
scale3=y3(1)-y3(end); 
y3=12.8*y3/scale3; 
figure(3) 
hold on 
plot(x3,y3,'o') 
plot([19 19.8 22.8 24],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 80280 foam') 
lm=fitlm(x3,y3); 
Rsq3=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq3)]) 
  
% 3 cm cube, tall ledge, 60280 foam 
x4=19.6:.3:22.6; 
y4=-[362.31 362.59 362.66 363.97 366.28 369.70 371.56 375.46 379.32 387.46 
426.80]; 
y4=y4+426.80; 
scale4=y4(1)-y4(end); 
y4=12.8*y4/scale4; 
figure(4) 
hold on 
plot(x4,y4,'o') 
plot([19 19.6 22.6 23],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('3 cm cube, 60280 foam') 
lm=fitlm(x4,y4); 
Rsq4=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq4)]) 
  
% 3 cm cube, tall ledge, 35280 foam 
x5=19.5:.3:22.5; 
y5=-[356.25 356.80 357.66 358.97 360.52 362.04 363.94 366.83 370.04 375.21 
423.24]; 
y5=y5+423.24; 
scale5=y5(1)-y5(end); 
y5=12.8*y5/scale5; 
figure(5) 
hold on 
plot(x5,y5,'o') 
plot([19 19.5 22.5 23],[12.8 12.8 0 0]) 
xlabel('displacement in cm') 
ylabel('height in mm') 
title('2 cm cube, 35280 foam') 
lm=fitlm(x5,y5); 
Rsq5=lm.Rsquared.Ordinary; 
legend(['R-squared= ' num2str(Rsq5)]) 

 

xf=[.495 .6 .8 .975 1.275]; 
y2s=[.8422 .8428 .8652 .9191 .9235]; 
y2t=[.4326 .4456 .4761 .4877 .6176]; 
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y3s=[.8978 .9103 .9727 .9822 .9917]; 
y3t=[.5356 .6386 .7182 .7244 .7821]; 
  
x=.4:.0001:1.3; 
fit3t=.7688./(1+exp(-5.7182*(x-.3417))); 
fit2s=1.0146./(1+exp(-1.0953*(x+.9042))); 
fit3s=1.0023./(1+exp(-3.6489*(x+.0764))); 
fit2t=.6671./(1+exp(-.8706*(x+.2107))); 
  
figure(1) 
hold on 
plot(xf,y3s,'o-') 
plot(xf,y2s,'o-') 
plot(xf,y3t,'o-') 
plot(xf,y2t,'o-') 
xlabel('foam stiffness (PSI @25% deflection)') 
ylabel('R^2 value') 
plot(x,fit2s,'k--') 
plot(x,fit2t,'k--') 
plot(x,fit3s,'k--') 
plot(x,fit3t,'k--') 
legend('3 cm cubes, small ledge','2 cm cubes, small ledge','3 cm cubes, tall 
ledge','2 cm cubes, tall ledge', 'best fit lines') 
title('Linearity vs. Foam Stiffness') 
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APPENDIX C 
 

The Arduino routines to make the leg stand (PositionerFinal) and jump (JumperFinal) are 

attached here: 

POSITIONERFINAL 

#include <Motor.h> 
 
const uint8_t outPin[] = {PA1, PB10}; 
const uint8_t inPin[] = {PB2, PB0}; 
const float motZeros[] = {4.719, 6.102}; 
const int NMOT = 2; 
BlCon34 M[NMOT]; 
 
void controlLoop() { 
  for (int i=0; i<NMOT; ++i) 
    M[i].update(); 
} 
 
void debug() { 
  for (int i=0; i<NMOT; ++i) 
    Serial1 << _FLOAT(M[i].getPosition(),4) << "\t"; 
  for (int i=0; i<NMOT; ++i) { 
    M[i].setTorqueEstParams(0.0954, 0.186, 16); 
    Serial1 << _FLOAT(M[i].getTorque(),4) << "\t"; 
//    Serial1 << _FLOAT(M[i].getOpenLoop(),4) << "\t"; 
//    Serial1 << _FLOAT(M[i].update(),2) << "\t"; 
} 
  Serial1 << "\n"; 
} 
 
void setup() { 
  Serial1.begin(115200); 
 
  Motor::updateRate = 1000; 
  Motor::velSmooth = 0.95; 
  BlCon34::useEXTI = true; 
  for (int i=0; i<NMOT; ++i) 
    M[i].init(outPin[i], inPin[i], motZeros[i], -1); 
 
  attachTimerInterrupt(0, controlLoop, 1000); 
  attachTimerInterrupt(1, debug, 50); 
 
  for (int i=0; i<NMOT; ++i) { 
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    M[i].enable(true); 
  } 
   
  delay(100); 
} 
     
void loop() { 
   
  delay(1000); 
    for (int i=0; i<NMOT; ++i) { 
    M[i].setGain(0.3); 
 //   M[i].setPosition(1); 
  } 
  M[0].setPosition(.2); 
  M[1].setPosition(.2); 
} 
 

JUMPERFINAL 

#include <Motor.h> 
 
const uint8_t outPin[] = {PA1, PB10}; 
const uint8_t inPin[] = {PB2, PB0}; 
const float motZeros[] = {4.719, 6.102}; 
const int NMOT = 2; 
BlCon34 M[NMOT]; 
 
void controlLoop() { 
  for (int i=0; i<NMOT; ++i) 
    M[i].update(); 
} 
 
void debug() { 
  for (int i=0; i<NMOT; ++i) 
    Serial1 << _FLOAT(M[i].getPosition(),4) << "\t"; 
  for (int i=0; i<NMOT; ++i) { 
    M[i].setTorqueEstParams(0.0954, 0.186, 16); 
    Serial1 << _FLOAT(M[i].getTorque(),4) << "\t"; 
//    Serial1 << _FLOAT(M[i].getOpenLoop(),4) << "\t"; 
    Serial1 << _FLOAT(M[i].update(),2) << "\t"; 
} 
  Serial1 << "\n"; 
} 
 
void setup() { 
  Serial1.begin(115200); 
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  Motor::updateRate = 1000; 
  Motor::velSmooth = 0.95; 
  BlCon34::useEXTI = true; 
  for (int i=0; i<NMOT; ++i) 
    M[i].init(outPin[i], inPin[i], motZeros[i], -1); 
 
  attachTimerInterrupt(0, controlLoop, 1000); 
  attachTimerInterrupt(1, debug, 50); 
 
  for (int i=0; i<NMOT; ++i) { 
    M[i].enable(true); 
  } 
   
  delay(100); 
} 
     
void loop() { 
   
  delay(250); 
    for (int i=0; i<NMOT; ++i) { 
    M[i].setGain(0.5); 
    M[i].setPosition(.5); 
  } 
    delay(500); 
    for (int i=0; i<NMOT; ++i) { 
    M[i].setGain(0.5); 
    M[i].setPosition(2.5); 
  } 
   
} 


