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Chapter 1

Singular Value Decomposition (SVD) and
Principal Components Analysis (PCA)

The singular value decomposition (SVD) is among the most important matrix factoriza-
tions of the computational era, providing a foundation for nearly all of the data meth-
ods discussed in this book. In particular, the SVD provides a numerically stable matrix
decomposition that can be used for a variety of purposes. We will use the SVD to ob-
tain low-rank approximations to matrices and to perform pseudo-inverses of non-square
matrices to find the least-squares and minimum norm solutions of a matrix system of
equations Ax = b. Another important use of the SVD is in the principal components
analysis (PCA), whereby a large, high-dimensional data set is decomposed into its most
statistically descriptive factors. SVD/PCA has been applied to a tremendous variety of
problems in science and engineering, making it the most generally useful computational
tool after the fast Fourier transform (FFT).

1.1 Overview (Big picture)

Here we introduce the singular value decomposition (SVD) and give an overview of some
of the intuitive motivating examples. Detailed mathematical properties are discussed in
the following sections.

1.1.1 Intuition and applications

In this chapter, we will develop an intuition for how to apply the SVD by demonstrating
its use on a number of motivating examples. These methods will provide a foundation
for many other techniques developed in this book, including classification methods in
Chapter 2, the proper orthogonal decomposition (POD) in Chapter 3, and the dynamic
mode decomposition (DMD) in Chapter 4.

High-dimensionality is a common challenge in processing data from large complex
systems. These systems may involve large measured data sets including audio, image,
or video data. The data may also be generated from a complex physical system, such
as neural recordings from the mammalian cortex, or fluid velocity measurements from
a simulation or experiment. In any case, it is observed that most data from naturally
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4 CHAPTER 1. SINGULAR VALUE DECOMPOSITION

occurring systems exhibits dominant patterns of activity, which may be characterized by
a low-dimensional attractor or manifold [26, 25].

As an example, consider images, which typically contain a large number of measure-
ments (pixels), and are therefore elements of a high-dimensional vector space. However,
most images are highly compressible, meaning that the relevant information may be rep-
resented in a much lower dimensional subspace. The compressibility of images will be
discussed in depth throughout this book. Complex fluid systems, such as the turbulent
wake behind a vehicle or the Earth’s atmosphere also provide compelling examples the
low-dimensional structure underlying a high-dimensional state-space. Although high-
fidelity fluid simulations typically require at least millions or billions of degrees of free-
dom, there are often dominant coherent structures in the flow, such as periodic vortex
shedding behind vehicles or hurricanes in the weather.

The SVD provides a systematic way to determine the dominant patterns underlying a
high-dimensional system, providing a low-rank approximation to high-dimensional data.
This technique is data-driven in that patterns are discovered purely from the data, without
the addition of any expert knowledge or intuition. The SVD may be thought of as a
numerically stable computation that provides a hierarchical representation of the data in
terms of a new coordinate system defined by dominant correlations within the data.

The SVD has many powerful applications beyond dimensionality reduction of high-
dimensional data. It will be useful in computing the pseudo-inverse of non-square matri-
ces, providing solutions to underdetermined or overdetermined matrix equations that are
either minimum norm solutions, or solutions that minimize the sum-squared error. We
will also use the SVD in a principled approach to de-noising data sets. The SVD is also
important to characterize the input and output geometry of a linear map between vector
spaces. These applications will all be explored in this chapter, providing an intuition for
matrices and high-dimensional data.

1.1.2 Definition

Generally, we are interested in analyzing a large data set X:

X =


x1 x2 · · · xm


 . (1.1a)

The columns xk ∈ Cn may be measurements from simulations or experiments. For exam-
ple, columns may represent images that have been reshaped into column vectors with as
many elements as pixels in the image. The column vectors may also represent the state
of a physical system that is evolving in time, such as the fluid velocity at each point in a
discretized simulation or at each measurement location in a wind-tunnel experiment.

The index k is a label indicating the kth distinct set of measurements; for many of the
examples in this book X will consist of a time-series of data, and xk = x(k∆t). Often
the state-dimension n is very large, on the order of millions or billions in the case of fluid
systems. The columns are often called snapshots, and m is the number of snapshots in X.
For many systems n� m, resulting in a tall-skinny matrix, as opposed to a short-fat matrix
when n� m.

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.



1.1. OVERVIEW (BIG PICTURE) 5

The SVD is a unique matrix decomposition that exists for every complex valued matrix
X ∈ Cn×m:

X = UΣV∗ (1.2a)

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices1 and Σ ∈ Cn×m is a matrix with non-
negative entries on the diagonal and zeros off the diagonal. Here ∗ denotes the complex
conjugate transpose2. As we will discover throughout this chapter, the condition that U
and V are unitary is extremely powerful.

The matrix Σ has at most m non-zero elements on the diagonal, and may therefore be

written as Σ =

[
Σ̂
0

]
. Therefore, it is possible to exactly represent X using the reduced SVD:

X = UΣV∗ =
[
Û Û⊥

] [Σ̂
0

]
V∗ = ÛΣ̂V∗. (1.3)

The full and reduced SVD are shown in Fig. 1.1. Here Û⊥ is complementary to Û.
The columns of U are called left singular vectors of X and the columns of V are right

singular vectors. The diagonal elements of Σ̂ ∈ Cm×m are called singular values and the are
ordered from largest to smallest.

In Matlab, the computing the SVD is straightforward:

>>[U,S,V] = svd(X); % Singular Value Decomposition

For non-square matrices X, the reduced SVD may be computed more efficiently using:

>>[Uhat,Shat,V] = svd(X,’econ’); % economy sized SVD

1.1.3 Historical perspective

The SVD has a long and rich history, ranging from early work developing the theoret-
ical foundations to modern work on computational stability and efficiency. There is an
excellent historical review by Stewart [50], which provides context and many important
details. The review focuses on the early theoretical work of Beltrami and Jordan (1873),
Sylvester (1889), Schmidt (1907), and Weyl (1912). It also discusses more recent work, in-
cluding the seminar computational work of Golub and collaborators [20, 19]. In addition,
there are many excellent chapters on the SVD in modern books [52, 2, 33].

1.1.4 Uses in this book and assumptions of the reader

The SVD is the basis for many related techniques in dimensionality reduction used to ob-
tain reduced order models (ROMs). These methods indlude principal components analy-
sis (PCA) in statistics [40, 27, 28], the Karhunen–Loève transform (KLT) [30, 36], empirical
orthogonal functions (EOFs) in climate [37], the proper orthogonal decomposition (POD)

1A square matrix U is unitary if UU∗ = U∗U = I.
2For real-valued matrices, this is the same as the regular transpose XT .

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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1.2.2 Method of Snapshots

It is often impractical to construct the matrix XX⇤ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX⇤ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [40].
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Figure 1.1: Schematic of matrices involved in the full SVD and the reduced SVD.

in fluid dynamics [25], and canonical correlation analysis (CCA) [10]. Although devel-
oped independently in a range of diverse fields, many of these methods only differ in
how the data is collected and pre-processed. There is an excellent discussion about the
relationship between the SVD, the KLT and PCA [17].

The SVD is also widely used in system identification and control theory to obtain
reduced order models that are balanced in the sense that states are hierarchically ordered
in terms of their ability to be observed by measurements and controlled by actuation [39].

For this chapter, we assume that the reader is familiar with linear algebra with some
experience in computation and numerics. For review, there are number of excellent books
on numerical linear algebra, with discussions on the SVD [52, 2, 33].

1.2 Matrix approximation

Perhaps the most useful and defining property of the SVD is that it provides an optimal
low-rank approximation to a matrix X. In fact, the SVD provides a hierarchy of low-
rank approximations, since a rank-r approximation is obtained by keeping the leading r
singular values and vectors, and discarding the rest.

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.



1.2. MATRIX APPROXIMATION 7

Schmidt (of Gram-Schmidt) generalized the SVD to function spaces and developed an
approximation theorem, establishing truncated SVD as the optimal low rank approxima-
tion of the underlying matrix X [47]. Schmidt’s approximation theorem was rediscovered
by Eckart and Young [13], and is sometimes referred to as the Eckart-Young theorem.

Theorem 1 (Eckart-Young [13]) The optimal rank-r approximation to X, in an L2 sense, is
given by the rank-r SVD truncation X̃:

argmin
X̃

‖X− X̃‖2 = ŨΣ̃Ṽ∗. (1.4)

Here, Ũ and Ṽ denote the leading r columns of U and V, and Σ̃ contains the leading r × r
sub-block of Σ.

Here, we establish the notation that a truncated SVD basis (and the resulting approxi-
mated matrix X̃) will be denoted by X̃ = ŨΣ̃Ṽ∗. Because Σ is diagonal, the rank-r SVD
approximation is given by the sum of r distinct rank-1 matrices:

X̃ =
r∑

k=1

σkukv
∗
k = σ1u1v

∗
1 + σ2u2v

∗
2 + · · ·+ σrurv

∗
r . (1.5)

This is the so-called dyadic summation. For a given rank r, there is no better approxima-
tion for X, in the L2 sense, than the truncated SVD approximation X̃.

This is an extremely important property of the SVD, and we will return to it many
times. There are numerous examples of data sets that contain high-dimensional mea-
surements, resulting in a large data matrix X. However, there are often dominant low-
dimensional patterns in the data, and the truncated SVD basis X̃ provides a coordinate
transformation from the high-dimensional measurement space into a low-dimensional
pattern space. This has the benefit of reducing the size and dimension of large data sets,
yielding a tractable basis for visualization and analysis. Finally, many systems considered
in this text are dynamic, and the SVD basis provides a hierarchy of modes that characterize
the observed attractor, on which we may project a low-dimensional dynamical system.

1.2.1 Truncation

The truncated SVD is illustrated in Fig. 1.2, with Ũ, Σ̃ and Ṽ denoting the truncated
matrices. If X does not have full row rank, then some of the singular values in Σ̂ may be
zero, and the truncated SVD may still be exact. However, in general, for truncation values
r that are smaller than the row rank of X, the truncated SVD only approximates X:

X ≈ ŨΣ̃Ṽ∗. (1.6)

There are numerous choices for the truncation rank r, and they are discussed in Sec. 1.7.
If we choose the truncation value to be the rank of X, so that Σ̂rem is zero and Σ̃ contains
non-zero singular values, then we may refer to Ũ, Σ̃, Ṽ as Û1, Σ̂1, V̂1.

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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Figure 1.2: Schematic of truncated SVD. The subscript ‘rem’ denotes the remainder of Û, Σ̂
or V after truncation.

1.2.2 Example: Image compression

We demonstrate the idea of matrix approximation with a simple example: image com-
pression. A recurring theme throughout this book is that large data sets often contain
underlying patterns that facilitate low-rank representations. Natural images present a
simple and intuitive example of this inherent compressibility. A grayscale image may be
thought of as a real-valued matrix X ∈ Rn×m, where n and m are the number of pixels in
the vertical and horizontal direction, respectively3. Depending on the basis of represen-
tation (pixel-space, Fourier frequency domain, SVD transform coordinates), images may
have very compact approximations.

Consider the image of Mordecai the snow dog in Fig. 1.3. This image has 2000× 1500
pixels. It is possible to take the SVD of this image and plot the diagonal singular values,
as in Fig. 1.4. Figure 1.3 shows the approximate matrix X̃ for various truncation values
r. By r = 100, the reconstructed image is quite accurate, and the singular values account
for almost 80% of the image variance. The SVD truncation results in a compression of
the original image, since only the first 100 columns of U and V, along with the first 100
diagonal elements of Σ, must be stored.

First, we load the image of the dog and compute the SVD, as in Code 1.1. Next, we
compute the approximate matrix using the truncated SVD for various ranks (r = 5, 20,

3It is not uncommon for image size to be specified as horizontal by vertical, i.e. XT ∈ Rm×n, although
we stick with vertical by horizontal to be consistent with generic matrix notation.

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.



1.2. MATRIX APPROXIMATION 9

and 100) in Code 1.2. Finally, we plot the singular values and cumulative energy in Fig. 1.4
using Code 1.3.

Code 1.1: Load image and take the SVD.
A=imread(’../DATA/dog.jpg’);
X=double(rgb2gray(A)); % convert RBG to gray, 256 bit to double.
nx = size(X,1); ny = size(X,2);

Original r = 5, 0.57% storage

r = 20, 2.33% storage r = 100, 11.67% storage

Figure 1.3: Image compression of Mordecai the snow dog, truncating the SVD at various
ranks r. Original image resolution is 2000× 1500. Generated by Codes 1.1 & 1.2.

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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Figure 1.4: Singular values σr (a) and cumulative energy contained in the first r modes
(b). Generated by Code 1.3.

[U,S,V] = svd(X);

figure, subplot(2,2,1)
imagesc(X), axis off, colormap gray
title(’Original’)

Code 1.2: Approximate image using truncated SVD for r = 5, 20 and 100. (Fig. 1.3)
plotind = 2;
for r=[5 20 100]; % truncation value

Xapprox = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’; % approximate image
subplot(2,2,plotind), plotind = plotind + 1;
imagesc(Xapprox), axis off
title([’r=’,num2str(r,’%d’),’, ’,num2str(100*r*(nx+ny)/(nx*ny),’

%2.2f’),’% storage’]);
end
set(gcf,’Position’,[100 100 550 400])

Code 1.3: Plot the singular values and cumulative energy. (Fig. 1.4)
figure, subplot(1,2,1)
semilogy(diag(S),’k’,’LineWidth’,1.2), grid on
xlabel(’r’)
ylabel(’Singular value, \sigma_r’)
xlim([-50 1550])
subplot(1,2,2)
plot(cumsum(diag(S))/sum(diag(S)),’k’,’LineWidth’,1.2), grid on
xlabel(’r’)
ylabel(’Cumulative Energy’)
xlim([-50 1550])
ylim([0 1.1])
set(gcf,’Position’,[100 100 550 240])

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.



1.3. MATHEMATICAL PROPERTIES AND MANIPULATIONS 11

1.3 Mathematical properties and manipulations

Here we describe important mathematical properties of the SVD including geometric in-
terpretations of the unitary matrices U and V as well as a discussion of the SVD in terms
of dominant correlations in the data X. The relationship between the SVD and correla-
tions in the data will be explored more in Sec. 1.5 on Principal Components Analysis.

1.3.1 Interpretation as dominant correlations

The SVD is closely related to an eigenvalue problem involving the correlation matrices
XX∗ and X∗X, shown in Fig. 1.5. If we plug in Eq. 1.3 to the row-wise correlation matrix
XX∗ and the column-wise correlation matrix X∗X, we find:

XX∗ = U

[
Σ̂
0

]
V∗V

[
Σ̂ 0

]
U∗ = U

[
Σ̂

2
0

0 0

]
U∗ (1.7a)

X∗X = V
[
Σ̂ 0

]
U∗U

[
Σ̂
0

]
V∗ = VΣ̂

2
V∗. (1.7b)

Therefore, the matrices U,Σ, and V are solutions to the following eigenvalue problems:

XX∗U = U

[
Σ̂

2
0

0 0

]
, (1.8a)

X∗XV = VΣ̂
2
. (1.8b)

This provides an intuitive interpretation of the SVD, where the columns of U are eigen-
vectors of the correlation matrix XX∗ and columns of V are eigenvectors of X∗X. There-
fore, columns of U are ordered in terms of the vectors that most describe correlation
among columns of X, and likewise with V and rows of X.

X XX∗ X∗X

Figure 1.5: Correlation matrices XX∗ and X∗X for a matrix X obtained from an image of
Mordecai the snow dog. Note that both correlation matrices are symmetric.
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Figure 1.6: Geometric illustration of the SVD as a mapping from an (n−1)-sphere, Sn−1 ⊂
Rn, to an ellipsoid in Rm.

1.3.2 Geometric interpretation

The columns of the matrix U provide an orthonormal basis for the column space of X.
Similarly, the columns of V provide an orthonormal basis for the row space of X. If
the columns of X are spatial measurements in time, then U contains dominant spatial
patterns, while V contains dominant temporal patterns.

One property that makes the SVD particularly useful is the fact that both U and V are
unitary matrices, meaning that UU∗ = U∗U = In×n and VV∗ = V∗V = Im×m. This means
that solving a system of equations involving U or V as simple as multiplication by the
transpose, which scales as O(n2), as opposed to traditional methods for generic methods,
which scale as O(n3). As noted in [5], the SVD is intimately connected to the spectral
properties of compact self-adjoint operators, namely XX∗ and X∗X.

The SVD of X may be interpreted geometrically based on how a hyper sphere, given
by Sn−1 , {x | ‖x‖2 = 1} ⊂ Rn maps into an ellipsoid, {y |y = Xx for x ∈ Sn−1} ⊂ Rm,
through X. This is shown graphically in Fig. 1.6 for a sphere in R3 and a mapping X with
three non-zero singular values. Because the mapping through X is linear, knowing how
it maps the unit sphere determines how all other vectors will map.

For the specific case shown in Fig. 1.6, we construct the matrix X out of three rotation
matrices, Rx,Ry, and Rz, and a fourth matrix to stretch out and scale the principal axes:

X =




cos(θ3) − sin(θ3) 0
sin(θ3) cos(θ3) 0

0 0 1




︸ ︷︷ ︸
Rz




cos(θ2) 0 sin(θ2)
0 1 0

− sin(θ2) 0 cos(θ2)




︸ ︷︷ ︸
Ry




1 0 0
0 cos(θ1) − sin(θ1)
0 sin(θ1) cos(θ1)




︸ ︷︷ ︸
Rx



σ1 0 0
0 σ2 0
0 0 σ3


 .

In this case, θ1 = π/15, θ2 = −π/9, and θ3 = −π/20, and σ1 = 3, σ2 = 1, and σ3 = 0.5.
These rotation matrices do not commute, and so the order of rotation is important. If one
of the singular values is zero, then a dimension is removed and the ellipsoid collapses
onto a lower dimensional subspace. The product RxRyRz is unitary, and is therefore the
matrix U in the SVD of X. The matrix V is the identity.
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Code 1.4: Construct rotation matrices.
clear all, close all, clc
theta = [pi/15; -pi/9; -pi/20];
Sigma = diag([3; 1; 0.5]); % scale x, then y, then z

Rx = [1 0 0; % rotate about x-axis
0 cos(theta(1)) -sin(theta(1));
0 sin(theta(1)) cos(theta(1))];

Ry = [cos(theta(2)) 0 sin(theta(2)); % rotate about y-axis
0 1 0;
-sin(theta(2)) 0 cos(theta(2))];

Rz = [cos(theta(3)) -sin(theta(3)) 0; % rotate about z-axis
sin(theta(3)) cos(theta(3)) 0;
0 0 1];

X = Rz*Ry*Rx*Sigma; % rotate and scale

Code 1.5: Plot sphere.
subplot(1,2,1), hold on
[x,y,z] = sphere(25);
h1=surf(x,y,z);
set(h1,’FaceAlpha’,.7)
colormap jet, lighting phong, axis equal
axis([-2 2 -2 2 -2 2]), view([45 26])

Code 1.6: Map sphere through X and plot resulting ellipsoid.
for i=1:size(x,1)

for j=1:size(x,2)
vec = [x(i,j); y(i,j); z(i,j)];
vecR = X*vec;
xR(i,j) = vecR(1);
yR(i,j) = vecR(2);
zR(i,j) = vecR(3);

end
end

subplot(1,2,2), hold on
h2=surf(xR,yR,zR,z); % using the z-position of sphere for color
set(h2,’FaceAlpha’,.7)
colormap jet, lighting phong, axis equal
axis([-2 2 -2 2 -2 2]), view([45 26])
set(gcf,’Position’,[100 100 800 350])
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1.3.3 Invariance of the SVD to unitary transformations

An extremely useful property of the SVD is that if we left or right-multiply our data
matrix X by a unitary transformation, it preserves the terms in the SVD, except for the
corresponding left or right unitary matrix U or V, respectively. This has important im-
plications, since the discrete Fourier transform (DFT)4 F is a unitary transform, meaning
that the SVD of data X̂ = FX will be exactly the same as the SVD of X, except that
the modes Û will be be the DFT of modes U: Û = FU. In addition, the invariance of
the SVD to unitary transformations will be important in later chapters when we use com-
pressive measurements to reconstruct SVD modes that are sparse in some transform basis.
The advent of compressive sampling, and particularly the theory surrounding restricted
isometry maps, makes this invariance particularly interesting.

The invariance of SVD to unitary transformations is simple to show using the method
of snapshots. For consistency, we denote a left unitary transformation by C, so that Y =
CX, and a right unitary transformation by P, so that Y = XP∗.

Left unitary transformations

First, consider a left unitary transformation of X: Y = CX. Computing the correlation
matrix Y∗Y, we find

Y∗Y = X∗C∗CX = X∗X. (1.9)

The projected data has the same eigendecomposition, resulting in the same VX and ΣX.
Using the method of snapshots to reconstruct UY, we find

UY = YVXΣ−1X = CXVXΣ−1X = CUX. (1.10)

Thus, UY = CUX, ΣY = ΣX, and VY = VX. Finally, we may write the SVD of Y:

Y = CX = CUXΣXV∗X. (1.11)

Right unitary transformations

Similarly, we consider a right unitary transformation Y = XP∗. Computing the correla-
tion matrix Y∗Y:

Y∗Y = PX∗XP∗ = PVXΣ∗XV∗XP∗, (1.12)

with the following eigendecomposition

Y∗YPVX = PVXΣ2
X. (1.13)

Thus, VY = PVX and ΣY = ΣX. We may use the method of snapshots to reconstruct
UY:

UY = YPVXΣ−1X = XVXΣ−1X = UX. (1.14)

Thus, UY = UX, and we may write the SVD of Y as:

Y = XP∗ = UXΣXV∗XP∗. (1.15)
4See Sec. ??.
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1.3.4 Method of snapshots

It is often impractical to construct the matrix XX∗ because of the large size of the state-
dimension n, let alone solve the eigenvalue problem; if x has a million elements, then
XX∗ has a trillion elements. Sirovich observed that it is possible to bypass this large
matrix and compute the first m columns of U using what is now known as the method of
snapshots [48].

Instead of computing the eigen-decomposition of XX∗ to obtain the left singular vec-
tors U, we only compute the eigen-decomposition of X∗X∗, which is much smaller and
more manageable. From Eq. (1.8b), we then obtain V and Σ̂. If there are zero singular
values in Σ̂, then we only keep the r non-zero part, Σ̂1, and the corresponding columns
V̂1 of V. From these matrices, it is then possible to approximate the first r columns of U
as follows:

Û1 = XV̂1Σ̂
−1
1 . (1.16)
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Figure 1.7: Correlation matrix XX∗ is formed by taking the inner-product of rows of X.
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Figure 1.8: Correlation matrix X∗X is formed by taking the inner-product of columns of
X.
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1.4 Pseudo-inverse, least-squares, and regression

Many physical systems may be represented as a linear system of equations:

Ax = b, (1.17)

where the constraint matrix A and vector b are known, and the vector x is unknown. If A
is a square, invertible matrix (i.e., A has nonzero determinant), then there exists a unique
solution x for every b. However, when A is either singular or rectangular, there may be
one, none, or infinitely many solutions, depending on the specific b and the column and
row spaces of A.

First, consider the underdetermined system, where A ∈ Cn×m and n � m (i.e., A is a
short-fat matrix), so that there are less equations than unknowns. This type of system is
likely to have full column rank, since it has many more columns than are required for a
linearly independent basis5. Generically, if a short-fat A has full column rank, then there
are infinitely many solutions x for every b. The system is called underdetermined because
there are not enough values in b to uniquely determine the higher-dimensional x.

Similarly, consider the overdetermined system, where n � m (i.e., a tall-skinny matrix),
so that there are more equations than unknowns. This matrix cannot have a full column
rank, and so there are guaranteed to be vectors b that have no solution x. In fact, there
will only be a solution x if b is in the column space of A, i.e. b ∈ col(A).

Technically, there may be some choices of b that admit infinitely many solutions x
for a tall-skinny matrix A and other choices of b that admit zero solutions even for a
short-fat matrix. The solution space to the system in Eq. (1.17) is determined by the four
fundamental subspaces of A, discussed more in Section 1.8.2. More precisely, if b ∈
col(A) and if dim (ker(A)) 6= 0, then there are infinitely many solutions x. Note that the
condition dim (ker(A)) 6= 0 is guaranteed for a short-fat matrix. Similarly, if b /∈ col(A),
then there are no solutions, and the system of equations in (1.17) are called inconsistent.

Remark 1 There is an extensive literature on random matrix theory, where the above stereotypes
are almost certainly true, meaning that they are true with high probability. For example, a system
Ax = b is extremely unlikely to have a solution for a random matrix A ∈ Rn×m and random
vector b ∈ Rn with n � m, since there is little chance that b is in the column space of A. These
properties of random matrices will play a prominent role in later chapters on compressive sensing.

In the case that no solution exists (i.e. overdetermined), we would often like to find the
solution x that minimizes the sum-squared error ‖Ax − b‖22, the so-called least-squares
solution. Note that the least-squares solution also minimizes ‖Ax − b‖2. In the case that
infinitely many solutions exist (i.e. underdetermined), we may like to find the solution x
with minimum norm ‖x‖2 so that Ax = b, the so-called minimum-norm solution.

The SVD is the technique of choice for these important problems. First, if we substitute
A = UΣV∗ in for A, we can “invert” each of the matrices U,Σ, and V∗ in turn, resulting

5It is easy to construct degenerate examples where a short-fat matrix does not have full column rank,

such as A =

[
1 1 1 1
1 1 1 1

]
.
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in the Moore-Penrose left pseudo-inverse [41, 42, 45, 55] A† of A:

A† , VΣ̂
−1

Û∗ =⇒ A†A = Im×m. (1.18)

This may be used to find both the minimum norm and least-squares solutions to Eq. (1.17):

A†Ax̃ = A†b =⇒ x̃ = VΣ̂
−1

Û∗b. (1.19)

Plugging the solution x̃ back in to Eq. (1.17) results in:

Ax̃ = ÛΣ̂V∗VΣ̂
−1

Û∗b (1.20a)
= ÛÛ∗b. (1.20b)

Note that ÛÛ∗ is not necessarily the identify matrix, but is rather a projection onto the
column space of Û. Therefore, x̃ will only be an exact solution to Eq. (1.17) when b is in
the column space of Û, and therefore in the column space of A.

Computing the pseudo-inverse A† is computationally efficient, after the expensive
up-front cost of computing the SVD. Inverting the unitary matrices Û and V involves
matrix multiplication by the transpose matrices, which are O(n2) operations. Inverting Σ̂
is even more efficient since it is a diagonal matrix, requiring O(n) operations. In contrast,
inverting a dense square matrix would be require an O(n3) operation.

1.4.1 One-dimensional linear regression

Regression is an important statistical tool to relate variables to one another based on
data [38]. Consider the collection of data in Fig. 1.9. The red ×’s are obtained by adding
Gaussian white noise to the black line, as shown in Code 1.7. We assume that the data is
linearly related, as in Eq. (1.17), and we use the pseudo-inverse to find the least-square
solution x̃ below (blue dashed line), shown in Code 1.8:


b


 =


a


 x̃ = ÛΣ̂V∗x̃. (1.21a)

=⇒ x̃ = VΣ̂
−1

Û∗b. (1.21b)

In Eq. (1.21b), Σ̂ = ‖a‖2, V = 1, and Û = a/‖a‖2. Taking the left pseudo-inverse:

x =
a∗b

‖a‖22
. (1.22)

This makes physical sense, if we think of x as the value that best maps our collection
of a values to the corresponding values in b. Then, the best single value x is obtained
by taking the dot product of b with the normalized a direction. We then add a second
normalization factor ‖a‖2 because the a in Eq. (1.21a) is not normalized.

Note that strange things happen if you use row vectors instead of column vectors in
Eq. (1.21) above. Also, if the noise magnitude becomes large relative to the slope x, the
pseudo-inverse will undergo a phase-change in accuracy, related to the hard-thresholding
results in subsequent sections.
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Figure 1.9: Illustration of linear regression using noisy data.

Code 1.7: Generate noisy data for Fig. 1.9.
clear all, close all, clc

x = 3; % True slope
a = [-2:.25:2]’;
b = a*x + 1*randn(size(a)); % Add noise
plot(a,x*a,’k’,’LineWidth’,1.5) % True relationship
hold on
plot(a,b,’rx’,’LineWidth’,1.5) % Noisy measurements

Code 1.8: Compute least-squares approximation for Fig. 1.9.
[U,S,V] = svd(a,’econ’);
xtilde = V*inv(S)*U’*b; % Least-square fit

plot(a,xtilde*a,’b--’,’LineWidth’,1.5) % Plot fit
l1=legend(’True line’,’Noisy data’,’Regression line’);

The procedure above is called linear regression in statistics. There is a regress com-
mand in Matlab, as well as a pinv command that may also be used.

Code 1.9: Alternative formulations of least-squares in Matlab.
xtilde1 = V*inv(S)*U’*b
xtilde2 = pinv(a)*b
xtilde3 = regress(b,a)
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1.4.2 Multilinear regression

Example 1: Cement heat generation data

First, we begin with a simple built-in Matlab dataset that describes the heat generation
for various cement mixtures comprised of four basic ingredients. In this problem, we are
solving Eq. (1.17) where A ∈ R13×4, since there are four ingredients and heat measure-
ments for 13 unique mixtures. The goal is to determine a formula, in the weighting x,
that would relate the proportions of the four basic ingredients to the heat generation.

It is possible to find the minimum error solution using the SVD, as shown in Code 1.10.
Alternatives, using regress and pinv, are also explored.
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4 Beta-dicalcium silicate 0.4863

Figure 1.10: Heat data for various cement mixtures containing four basic ingredients.

Code 1.10: Multilinear regression for cement heat data.
clear all, close all, clc

load hald; % Load Portlant Cement dataset
A = ingredients;
b = heat;

[U,S,V] = svd(A,’econ’);
x = V*inv(S)*U’*b; % Solve Ax=b using the SVD

plot(b,’k’,’LineWidth’,2); hold on % Plot data
plot(A*x,’r-o’,’LineWidth’,1.,’MarkerSize’,2); % Plot regression
l1 = legend(’Heat data’,’Regression’)

%% Alternative 1 (regress)
x = regress(b,A);

%% Alternative 2 (pinv)
x = pinv(A)*b;
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Example 2: Boston housing data

In this example, we explore a larger data set to determine which factors best predict prices
in the Boston housing market [23]. This data is available from the UCI Machine Learning
Repository [3].

The various attributes that are correlated with house price are given in Table 1.1. These
features are regressed onto the price data, and the best fit price prediction is plotted
against the true house value in Fig. 1.11, and the regression coefficients are shown in
Fig. 1.12. Although the house value is not perfectly predicted, the trend agrees quite well.
It is often the case that the highest value outliers are not well-captured by simple linear
fits, as in this example.

This data contains prices and attributes for 506 homes, so the attribute matrix is of
size 506× 13. It is important to pad this matrix with an additional column of ones, to take
into account the possibility of a nonzero constant offset in the regression formula. This
corresponds to the “y-intercept” in a simple one-dimensional linear regression.
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Figure 1.11: Multilinear regression of home prices using various factors described in Ta-
ble 1.1. (a) Unsorted data, and (b) Data sorted by home value.
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Figure 1.12: Significance of various attributes from Table 1.1 in the regression.
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Table 1.1: Attributes used for Boston housing price data regression. Attributes are re-
peated verbatim from [3].

# Attribute
1 CRIM: per capita crime rate by town
2 ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
3 INDUS: proportion of non-retail business acres per town
4 CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
5 NOX: nitric oxides concentration (parts per 10 million)
6 RM: average number of rooms per dwelling
7 AGE: proportion of owner-occupied units built prior to 1940
8 DIS: weighted distances to five Boston employment centres
9 RAD: index of accessibility to radial highways

10 TAX: full-value property-tax rate per $10,000
11 PTRATIO: pupil-teacher ratio by town
12 B: 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
13 LSTAT: % lower status of the population

Code 1.11: Multilinear regression for Boston housing data.
clear all, close all, clc

load housing.data

b = housing(:,14); % housing values in $1000s
A = housing(:,1:13); % other factors,
A = [A ones(size(A,1),1)]; % Pad with ones for nonzero offset

x = regress(b,A);

subplot(1,2,1)
plot(b,’k-o’);
hold on, grid on
plot(A*x,’r-o’);
set(gca,’FontSize’,13)
xlim([0 size(A,1)])

subplot(1,2,2)
[b sortind] = sort(housing(:,14)); % sorted values
plot(b,’k-o’)
hold on, grid on
plot(A(sortind,:)*x,’r-o’)
l1=legend(’Housing value’,’Regression’)
set(l1,’Location’,’NorthWest’)
set(gca,’FontSize’,13)
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xlim([0 size(A,1)])

set(gcf,’Position’,[100 100 600 250])

%%
A2 = A-ones(size(A,1),1)*mean(A,1);
for i=1:size(A,2)-1

A2std = std(A2(:,i));
A2(:,i) = A2(:,i)/A2std;

end
A2(:,end) = ones(size(A,1),1);

x = regress(b,A2)
figure
bar(x(1:13))

xlabel(’Attribute’), ylabel(’Correlation’)
set(gca,’FontSize’,13)
set(gcf,’Position’,[100 100 600 250])

1.4.3 Caution

In general, the matrix whose U, whose columns are left-singular vectors of X, is a unitary
square matrix. Therefore, U∗U = UU∗ = In×n. However, to compute the pseudo-inverse
of X, we must compute X† = VΣ̂

−1
Û∗ since only Σ̂ is invertible (if all singular values are

nonzero), although Σ is not invertible in general (in fact, not even square, generally).
The first complication arises when Σ̂ contains singular vales that are zero, or very

nearly machine-precision zero. In this case, we must truncate the SVD as in Eq. (1.6),
where Σ̃1 is a diagonal matrix consisting of the nonzero singular values. The pseudo-
inverse is then X† = Ṽ∗Σ̃

−1
Ũ∗.

The second complication arises when working with a truncated basis of left singular
vectors Û (and Û1). It is still true that Û∗Û = Im×m (and Û∗1Û1 = Ir×r, where r is the rank
of X). However, ÛÛ∗ 6= In×n, which is easy to verify numerically on a simple example.
Assuming that ÛÛ∗ is equal to the identify is one of the most common accidental misuses
of the SVD6.

>> tol = 1.e-16;
>> [U,S,V] = svd(X,’econ’)
>> r = max(find(diag(S)>max(S(:))*tol));
>> invX = V(:,1:r)*S(1:r,1:r)*U(:,1:r)’; % only approximate

6The authors are not immune to this, having mistakenly used this fictional identity in an early version
of [8].
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1.5 Principal components analysis (PCA)

Principal components analysis (PCA) is one of the central uses of the SVD, providing
a data-driven, hierarchical coordinate system to represent high-dimensional correlated
data. PCA involves finding a new coordinate system in terms of the dominant correla-
tions in a data set; this involves the correlation matrices described in Sec. 1.3.1, and a
major difference is that in PCA we mean subtract the data before performing SVD. The
geometry of the resulting coordinate system is determined by principal components (PCs)
that are uncorrelated to each other, but have maximal correlation with the measurements.
This theory was developed in 1901 by Pearson [40], and independently by Hotelling in
the 1930s [27, 28]. Jolliffe [29] provides a good reference text.

Typically, a number of measurements are collected in a single experiment, and these
measurements are arranged into a row vector. The measurements may be features of an
observable, such as demographic features of a specific human individual. A number of
experiments are conducted, and each measurement vector is arranged as a row in a large
matrix X. In the example of demography, the collection of experiments may be gathered
via polling. Note that this convention for X, consisting of rows of features, is different
than the convention throughout the remainder of this chapter, where individual feature
“snapshots” are arranged as columns. However, we choose to be consistent with PCA
literature in this section. The matrix will still be size n × m, although it may have more
rows than columns, or vice versa.

1.5.1 Computation

We now compute the row-wise mean x̄ (the mean of all rows), and subtract it from X.
The mean x̄ is given by

x̄j =
1

n

n∑

i=1

Xij, (1.23)

and the mean matrix is

X̄ =




1
...
1


 x̄. (1.24)

Subtracting X̄ from X results in the mean-subtracted data B:

B = X− B̄. (1.25)

The covariance matrix of the rows of B is given by

C =
1

n− 1
B∗B. (1.26)

The first principal component u1 is given as

u1 = argmax
‖u1‖=1

u∗1B
∗Bu1, (1.27)
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which is the eigenvector of B∗B corresponding to the largest eigenvalue. Now it is clear
that u1 is the left singular vector of B corresponding to the largest singular value.

It is possible to obtain the principal components by computing the eigen-decomposition
of C:

V−1CV−1 = D, (1.28)

which is guaranteed to exist, since C is Hermitian.

pca Command

In Matlab, there the additional commands pca and princomp (based on pca) for the
principal components analysis:

>> [V,score,s2] = pca(X);

The matrix V is equivalent to the V matrix from the SVD of X, up to sign changes of
the columns. The vector s2 contains eigenvalues of the covariance of X, also known as
principal component variances; these values are the squares of the singular values. The
variable score simply contains the coordinates of each row of B (the mean-subtracted
data) in the principal component directions. In general, we often prefer to use the svd
command with the various pre-processing steps described above.

1.5.2 Example: Noisy Gaussian data

Consider the noisy cloud of data in Fig. 1.13 (a), generated using Code 1.12. The data
is generated by selecting 10000 vectors from a two-dimensional normal distribution with
zero mean and unit variance. These vectors are then scaled in the x and y directions by
the values in Table 1.2 and rotated by π/3. Finally, the entire cloud of data is translated so
that it has a nonzero center xC =

[
2 1

]T .
Using Code 1.13, the PCA is performed and used to plot confidence intervals using

multiple standard deviations, shown in Fig. 1.13 (b). The singular values, shown in Ta-
ble 1.2, matches the data scaling quite closely. The matrix U from the SVD also closely
matches the rotation matrix, up to a sign on the columns.

Rπ/3 =

[
0.5 −0.8660

0.8660 0.5

]
U =

[
−0.4998 −0.8662
−0.8662 0.4998

]

Table 1.2: Standard deviation of data and singular values from normalized SVD.

σ1 σ2

Data 2 0.5
SVD 1.974 0.503
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Figure 1.13: Principal components capture the variance of mean-subtracted Gaussian data
(a). The first three standard deviation ellipsoids (red), and the two left singular vectors,
scaled by singular values (σ1u1 + xC and σ2u2 + xC , cyan), are shown in (b).

Code 1.12: Create noisy cloud of data to illustrate PCA.
clear all, close all, clc

xC = [2; 1;]; % Center of data (mean)
sig = [2; .5;]; % Principal axes

theta = pi/3; % Rotate cloud by pi/3
R = [cos(theta) -sin(theta); % Rotation matrix

sin(theta) cos(theta)];

nPoints = 10000; % Create 10,000 points
X = R*diag(sig)*randn(2,nPoints) + diag(xC)*ones(2,nPoints);

subplot(1,2,1) % Plot cloud of noisy data
scatter(X(1,:),X(2,:),’k.’,’LineWidth’,2)
hold on, box on, grid on
axis([-6 8 -6 8])

Code 1.13: Compute PCA and plot confidence intervals.
Xavg = mean(X,2); % Compute mean
B = X - Xavg*ones(1,nPoints); % Mean-subtracted Data
[U,S,V] = svd(B/sqrt(nPoints),’econ’); % Find principal components

(SVD)
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subplot(1,2,2)
scatter(X(1,:),X(2,:),’k.’,’LineWidth’,2) % Plot data to overlay

PCA
hold on, box on, grid on
axis([-6 8 -6 8])

theta = (0:.01:1)*2*pi;
[Xstd] = U*S*[cos(theta); sin(theta)]; % 1-std confidence interval
plot(Xavg(1)+Xstd(1,:),Xavg(2) + Xstd(2,:),’r-’,’LineWidth’,1.5)
plot(Xavg(1)+2*Xstd(1,:),Xavg(2) + 2*Xstd(2,:),’r-’,’LineWidth’,1.5)
plot(Xavg(1)+3*Xstd(1,:),Xavg(2) + 3*Xstd(2,:),’r-’,’LineWidth’,1.5)

% Plot principal components U(:,1)S(1,1) and U(:,2)S(2,2)
plot([Xavg(1) Xavg(1)+U(1,1)*S(1,1)],[Xavg(2) Xavg(2)+U(2,1)*S(1,1)

],’c-’,’LineWidth’,2)
plot([Xavg(1) Xavg(1)+U(1,2)*S(2,2)],[Xavg(2) Xavg(2)+U(2,2)*S(2,2)

],’c-’,’LineWidth’,2)

set(gcf,’Position’,[100 100 600 300])

Finally, using the pca command:

>> [V,score,s2] = pca(X);
>> norm(V*score’ - B)

ans =
2.2878e-13

1.5.3 Example: Ovarian cancer data

The ovarian cancer data set, which is built into Matlab, provides a more realistic example
to illustrate the benefits of PCA. This example consists of gene data for 216 patients, 121
of which have ovarian cancer, and 95 which do not. For each patient, there is a vector of
data on the expression of 4000 genes.

There are multiple challenges with this type of data, namely the high-dimension of
the data features. However, we see from Fig 1.14 that there is significant variance cap-
tured in the first few PCA modes. Said another way, the gene data is highly correlated,
so that many patients have significant overlap in their gene expression. The ability to vi-
sualize patterns and correlations in high-dimensional data is an important reason to use
PCA, and PCA has been widely used to find patterns in high-dimensional biological and
genetic data [44].

More importantly, patients with ovarian cancer appear to cluster separately from pa-
tients without cancer when plotted in the space spanned by the first three PCA modes.
This is shown in Fig. 1.15, which is generated by Code 1.14. This inherent clustering in
PCA space of data by category is a foundational element of machine learning and pattern
recognition. For example, we will see in Sec. 1.6 that images of different human faces will
form clusters in PCA space. The use of these clusters will be explored in much greater
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Figure 1.14: Singular values for the Ovarian cancer data.
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Figure 1.15: Clustering of samples that are normal and those that have cancer in the first
three principal component coordinates.

detail in Chapter ??.

Code 1.14: Compute PCA for ovarian cancer data.
clear all, close all, clc

load ovariancancer; % Load ovarian cancer data

[U,S,V] = svd(obs,’econ’);

figure
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subplot(1,2,1)
semilogy(diag(S),’k-o’,’LineWidth’,1.5)
set(gca,’FontSize’,13), axis tight, grid on
subplot(1,2,2)
plot(cumsum(diag(S))./sum(diag(S)),’k-o’,’LineWidth’,1.5)
set(gca,’FontSize’,13), axis tight, grid on
set(gcf,’Position’,[100 100 600 250])

figure, hold on
for i=1:size(obs,1)

x = V(:,1)’*obs(i,:)’;
y = V(:,2)’*obs(i,:)’;
z = V(:,3)’*obs(i,:)’;
if(grp{i}==’Cancer’)

plot3(x,y,z,’rx’,’LineWidth’,2);
else

plot3(x,y,z,’bo’,’LineWidth’,2);
end

end
view(85,25), grid on, set(gca,’FontSize’,13)
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1.6 Eigenfaces example

One of the most striking demonstrations of SVD/PCA is the so-called eigenfaces exam-
ple. In this problem, PCA (i.e. SVD on mean-subtracted data) is applied to a large library
of facial images to extract the most dominant correlations between images. The result of
this decomposition is a set of eigenfaces that define a new coordinate system. Images may
be represented in these coordinates by taking the dot product with each of the principal
components. It will be shown in Chapter ?? that images of the same person tend to clus-
ter in the eigenface space, making this a useful transformation for facial recognition and
classification [51, 4]. The eigenface problem was first studied by Sirovich and Kirby in
1987 [49] and expanded on in [31]. Its application to automated facial recognition was
presented by Turk and Pentland in 1991 [53].

Here, we demonstrate this algorithm using the Extended Yale Face Database B [16],
consisting of cropped and aligned images [34] of 38 individuals (28 from the extended
database, and 10 from the original database) under 9 poses and 64 lighting conditions7.
Each image is 192 pixels tall and 168 pixels wide. Unlike the previous image example
in Section 1.2.2, each of the facial images in our library have been reshaped into a large
column vector with 192 ∗ 168 = 32256 elements. We use the first 36 people in the database
(left panel of Fig. 1.16) as our training data for the eigenfaces example, and we hold back
two people as a test set. An example of all 64 images of one specific person are shown in
the right panel. These images are loaded and plotted using Codes 1.15 and 1.16.

Figure 1.16: (left) A single image for each person in Yale database, and (right) all images
for a specific person. Generated by Codes (1.15) & (1.16).

7The database can be downloaded at http://vision.ucsd.edu/˜leekc/ExtYaleDatabase/
ExtYaleB.html.
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Code 1.15: Plot an image for each person in Yale database (Fig. 1.16 (a))
clear all, close all, clc

load ../DATA/allFaces.mat

allPersons = zeros(n*6,m*6);
count = 1;
for i=1:6

for j=1:6
allPersons(1+(i-1)*n:i*n,1+(j-1)*m:j*m) ...

= reshape(faces(:,1+sum(nfaces(1:count-1))),n,m);
count = count + 1;

end
end

figure(1), axes(’position’,[0 0 1 1]), axis off
imagesc(allPersons), colormap gray

Code 1.16: Plot each image for a specific person in Yale database (Fig. 1.16 (b))
for person = 1:length(nfaces)

subset = faces(:,1+sum(nfaces(1:person-1)):sum(nfaces(1:person))
);

allFaces = zeros(n*8,m*8);

count = 1;
for i=1:8

for j=1:8
if(count<=nfaces(person))

allFaces(1+(i-1)*n:i*n,1+(j-1)*m:j*m) ...
= reshape(subset(:,count),n,m);

count = count + 1;
end

end
end

imagesc(allFaces), colormap gray
end

As mentioned before, each image is reshaped into a large column vector, and the av-
erage face is computed and subtracted from each column vector. The mean-subtracted
image vectors are then stacked horizontally as columns in data matrix X, as shown in
Fig. 1.17. Thus, taking the SVD of the mean-subtracted matrix X results in the PCA. The
columns of U are the eigenfaces, and they may be reshaped back into 192 × 168 images.
This is illustrated in Code 1.17.
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Figure 1.17: Schematic of procedure to obtain eigenfaces from library of facial images.

Code 1.17: Compute eigenfaces on mean-subtracted data.
% We use the first 36 people for training data
trainingFaces = faces(:,1:sum(nfaces(1:36)));
avgFace = mean(trainingFaces,2); % size n*m by 1;

% compute eigenfaces on mean-subtracted training data
X = trainingFaces-avgFace*ones(1,size(trainingFaces,2));
[U,S,V] = svd(X,’econ’);

figure, axes(’position’,[0 0 1 1]), axis off
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imagesc(reshape(avgFace,n,m)), colormap gray

for i=1:50 % plot the first 50 eigenfaces
pause(0.1); % wait for 0.1 seconds
imagesc(reshape(U(:,i),n,m)); colormap gray;

end

Using the eigenface library, (U), obtained above, we now attempt to approximately
represent an image that was not in the training data. At the beginning, we held back
two individuals (the 37th and 38th people), and we now use one of their images as a test
image, xtest. We will see how well a rank-r SVD basis will approximate this image using
the following projection:

x̃test = ŨrŨ
∗
rxtest.

The eigenface approximation for various values of r is shown in Fig. 1.18, as computed
using Code 1.18. The approximation is relatively poor for r ≤ 200, although from r = 400
to r = 1600 it converges to a passable representation of the test image.

It is interesting to note that the eigenface space is not only useful for representing
human faces, but may also be used to approximate a dog (Fig. 1.19) or a cappuccino
(Fig. 1.20). This is possible because the 1600 eigenfaces span a large subspace of the 32256
dimensional image space corresponding to broad, smooth, non-localized spatial features,
such as cheeks, forehead, mouths, etc.

Test image r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.18: Approximate representation of test image using eigenfaces basis of various
order r. Test image is not in training set.
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Test image r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.19: Approximate representation of an image of a dog using eigenfaces.

Test image r = 25 r = 50 r = 100

r = 200 r = 400 r = 800 r = 1600

Figure 1.20: Approximate representation of a cappuccino using eigenfaces.
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Code 1.18: Approximate test-image that was omitted from training data, using eigenfaces.
testFace = faces(:,1+sum(nfaces(1:36))); % first face of person 37
axes(’position’,[0 0 1 1]), axis off
imagesc(reshape(testFace,n,m)), colormap gray

testFaceMS = testFace - avgFace;
for r=25:25:2275

reconFace = avgFace + (U(:,1:r)*(U(:,1:r)’*testFaceMS));
imagesc(reshape(reconFace,n,m)), colormap gray
title([’r=’,num2str(r,’%d’)]);
pause(0.1)

end

We further investigate the use of the eigenfaces as a coordinate system, defining an
eigenface space. By projecting an image x onto the first r PCA modes, we obtain a set of
coordinates in this space: α = Ũ∗rx. Some principal components may capture the most
common features shared among all human faces, while other principal components will
be more useful for distinguishing between individuals. Other principal components may
capture differences in lighting angles. Figure 1.21 shows the coordinates of all 64 im-
ages of two individuals projected onto the 5th and 6th principal components, generated
by Code 1.19. Images of the two individuals appear to be well-separated in these coordi-
nates. This is the basis for image recognition and classification in Chapter ??.
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Figure 1.21: Projection of all images from two individuals onto the 5th and 6th PCA modes.
Projected images of the first individual are indicated with black diamonds, and projected
images of the second individual are indicated with red triangles. Three examples from
each individual are circled in blue, and the corresponding image is shown.
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Code 1.19: Project images for two specific people onto the 5th and 6th eigenfaces.
P1num = 2; % person number 2
P2num = 7; % person number 7
P1 = faces(:,1+sum(nfaces(1:P1num-1)):sum(nfaces(1:P1num)));
P2 = faces(:,1+sum(nfaces(1:P2num-1)):sum(nfaces(1:P2num)));
P1 = P1 - avgFace*ones(1,size(P1,2));
P2 = P2 - avgFace*ones(1,size(P2,2));

figure
subplot(1,2,1), imagesc(reshape(P1(:,1),n,m)); colormap gray, axis

off
subplot(1,2,2), imagesc(reshape(P2(:,1),n,m)); colormap gray, axis

off

% project onto PCA modes 5 and 6
PCAmodes = [5 6];
PCACoordsP1 = U(:,PCAmodes)’*P1;
PCACoordsP2 = U(:,PCAmodes)’*P2;

figure
plot(PCACoordsP1(1,:),PCACoordsP1(2,:),’kd’,’MarkerFaceColor’,’k’)
axis([-4000 4000 -4000 4000]), hold on, grid on
plot(PCACoordsP2(1,:),PCACoordsP2(2,:),’rˆ’,’MarkerFaceColor’,’r’)
set(gca,’XTick’,[0],’YTick’,[0]);
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1.7 Truncation and hard thresholding

Deciding how many singular values to keep, i.e. where to truncate, is one of the most im-
portant and contentious decisions when using the SVD. There are many factors, including
specifications on the desired rank of the system, the magnitude of noise, and the distri-
bution of the singular values. Often, one truncates the SVD at a rank r that captures a
pre-determined amount of the variance or energy in the original data, such as 90% or 99%
truncation. Although crude, this technique is commonly used. Other techniques involve
identifying “elbows” or “knees” in the singular value distribution, which may denote the
transition from singular values that represent important signal from those that represent
noise. Truncation may be viewed as a hard threshold on singular values, where values
larger than a threshold τ are kept, while remaining singular values are truncated. Re-
cent work provides an optimal truncation value, or hard threshold, under certain condi-
tions [15], providing a principled approach to obtaining low-rank matrix approximations
using the SVD.

1.7.1 Optimal hard threshold

A recent theoretical breakthrough determines the optimal hard threshold τ for singular
value truncation under the assumption of Gaussian white noise on top of a low-rank
signal [15]. This work builds on a significant literature surrounding various techniques
for hard and soft thresholding of singular values. In this section, we summarize the main
results and demonstrate on examples. However, for more details, see [15].

First, we assume that the data matrix X may be written as the sum of an underlying
low-rank, or approximately low-rank, matrix Xtrue and a noise matrix:

X = Xtrue + γXnoise. (1.29)

The entries of Xnoise are assumed to be independent, identically distributed (i.i.d.) Gaus-
sian random variables with zero mean and unit variance. The magnitude of the noise is
characterized by γ, which deviates from the notation in [15]8.

When the noise magnitude γ is known, there are closed-form solutions for the optimal
hard threshold τ :

1. If X ∈ Rn×n is square, then

τ = (4/
√

3)
√
nγ. (1.30)

2. If X ∈ Rn×m is rectangular and m � n, then the constant 4/
√

3 is replaced by a
function of the aspect ratio β = m/n:

τ = λ(β)
√
nγ, (1.31)

λ(β) =

(
2(β + 1) +

8β

(β + 1) + (β2 + 14β + 1)1/2

)1/2

. (1.32)

Note that this expression reduces to Eq. (1.30) when β = 1. If m� n, then β = n/m.
8In [15], σ is used to denote standard deviation and yk denotes the kth singular value.
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When the noise magnitude γ is unknown, which is more typical in real-world appli-
cations, then it is possible to estimate the noise magnitude and scale the distribution of
singular values by using σmed, the median singular value. In this case, there is no closed-
form solution for τ , but it must be approximated numerically.

3. For unknown noise γ, and a rectangular matrix X ∈ Rn×m, the optimal hard thresh-
old is given by

τ = ω(β)σmed. (1.33)

Here, ω(β) = λ(β)/µβ , where µβ is the solution to the following problem:

∫ µβ

(1−β)2

[(
(1 +

√
β)2 − t

) (
t− (1−√β)2

)]1/2

2πt
dt =

1

2
.

Solutions to the expression above must be approximated numerically. Fortunately
[15] has a Matlab code supplement [12] at http://purl.stanford.edu/vg705qn9070
to approximate µβ .

The new method of optimal hard thresholding works remarkably well, as demon-
strated on the examples below.

Example 1: Toy problem

In the first example, shown in Fig. 1.22, we artificially construct a rank-2 matrix (Code 1.20)
and we contaminate the signal with Gaussian white noise (Code 1.21). A de-noised
and dimensionally reduced matrix is then obtained using the threshold from Eq. (1.30)
(Code 1.22), as well as using a 90% energy truncation (Code 1.23). It is clear that the
hard threshold is able to filter the noise more effectively. Plotting the singular values
(Code 1.24) in Fig. 1.23, it is clear that there are two values that are above threshold.

Code 1.20: Compute underlying low-rank signal. (Fig. 1.22 (a))
clear all, close all, clc

t = (-3:.01:3)’;

Utrue = [cos(17*t).*exp(-t.ˆ2) sin(11*t)];
Strue = [2 0; 0 .5];
Vtrue = [sin(5*t).*exp(-t.ˆ2) cos(13*t)];

X = Utrue*Strue*Vtrue’;

figure, imshow(Xnoisy);
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Code 1.21: Contaminate signal with noise. (Fig. 1.22 (b))

%%
sigma = 1;
Xnoisy = X+sigma*randn(size(X));

Code 1.22: Truncate using optimal hard threshold. (Fig. 1.22 (c))
[U,S,V] = svd(Xnoisy);

N = size(Xnoisy,1);
cutoff = (4/sqrt(3))*sqrt(N)*sigma; % hard threshold
r = max(find(diag(S)>cutoff)); % keep modes with sing. values >

cutoff
Xclean = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’;

figure, imshow(Xclean)

(a) Original (b) Noisy

(c) Hard Threshold (d) 90% cutoff

Figure 1.22: Underlying rank 2 matrix (a), matrix with noise (b), clean matrix after opti-
mal hard threshold (4/

√
3)
√
nσ (c), and truncation based on 90% energy (d).
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Figure 1.23: Singular values σr (a) and cumulative energy in first rmodes (b). The optimal
hard threshold (4/

√
3)
√
nσ is shown as a red dashed line (- -), and the 90% cutoff is shown

as a blue dashed line (- -). For this case, n = 600 and σ = 1 so that the optimal cutoff is
approximately τ = 56.6.

Code 1.23: Truncate using 90% energy criterion. (Fig. 1.22 (d))
cdS = cumsum(diag(S))./sum(diag(S)); % cumulative energy
r90 = min(find(cdS>0.90)); % find r that captures 90% energy

X90 = U(:,1:r90)*S(1:r90,1:r90)*V(:,1:r90)’;

figure, imshow(X90)

Code 1.24: Plot singular values for hard threshold example. (Fig. 1.23)
figure
semilogy(diag(S),’-ok’,’LineWidth’,1.5)
hold on, grid on
semilogy(diag(S(1:r,1:r)),’or’,’LineWidth’,1.5)
plot([-20 N+20],[cutoff cutoff],’r--’,’LineWidth’,2)
axis([-10 610 .003 300])
rectangle(’Position’,[-5,20,100,200],’LineWidth’,2,’LineStyle’,’--’)

figure
semilogy(diag(S),’-ok’,’LineWidth’,1.5)
hold on, grid on
semilogy(diag(S(1:r,1:r)),’or’,’LineWidth’,1.5)
plot([-20 N+20],[cutoff cutoff],’r--’,’LineWidth’,2)
axis([-5 100 20 200])
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figure
plot(cdS,’-ok’,’LineWidth’,1.5)
hold on, grid on
plot(cdS(1:r90),’ob’,’LineWidth’,1.5)
plot(cdS(1:r),’or’,’LineWidth’,1.5)
set(gca,’XTick’,[0 300 r90 600],’YTick’,[0 .5 0.9 1.0])
xlim([-10 610])
plot([r90 r90 -10],[0 0.9 0.9],’b--’,’LineWidth’,1.5)

Example 2: Eigenfaces

In the second example, we revisit the eigenfaces problem from Section ??. This provides
a more typical example, since the data matrix X is rectangular, with aspect ratio β = 3/4,
and the noise magnitude is unknown. It is also not clear that the system has white noise.
Nonetheless, the method determines a threshold τ , above which columns of U appear to
have strong facial features, and below which columns of U consist mostly of noise.
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Figure 1.24: Hard thresholding for eigenfaces example.
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Code 1.25: Compute hard threshold for eigenfaces example (Fig. 1.24). Assumes
Code (1.17) has already been run.

sigs = diag(S);

beta = size(X,2)/size(X,1); % aspect ratio of data matrix
thresh = optimal_SVHT_coef(beta,0) * median(sigs); % From Gavish &

Donoho

figure
semilogy(sigs,’-ok’,’LineWidth’,1.5)
axis([0 length(sigs) 1 10ˆ6)], grid on, hold on

semilogy(sigs(sigs>thresh),’ro’,’LineWidth’,1.5)
plot([-20 length(sigs)],[thresh thresh],’r--’,’LineWidth’,2)

rvals = [200 766 2000];
semilogy(rvals,sigs(rvals),’bo’,’LineWidth’,1.5,’MarkerFaceColor’,’b

’);

for r = rvals
figure
imagesc(reshape(U(:,r),n,m)); colormap gray, axis off

end
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1.8 Additional mathematical properties

1.8.1 Important theorems

Theorem 2 (Existence and Uniqueness) The SVD exists and is unique.

Theorem 3 The rank of X is equal to the number of non-zero singular values.

Theorem 4 Each nonzero singular value of X is a positive square root of an eigenvalue of X∗X
and of XX∗, which have the same non-zero eigenvalues.

Corollary 1 If X is self-adjoint (i.e. X = X∗), then the singular values of X are equal to the
absolute value of the eigenvalues of X.

Theorem 5 (Eckart-Young [13]) The optimal rank-r approximation to X, in an L2 sense, is
given by the rank-r SVD truncation X̃:

argmin
X̃

‖X− X̃‖2 = ŨΣ̃Ṽ∗. (1.34)

Here, Ũ and Ṽ denote the leading r columns of U and V, and Σ̃ contains the leading r × r
sub-block of Σ.

The singular values are useful for quantifying the norms of a matrix, and of the error
associated with matrix approximation.

Corollary 2 The two-norm of X is given by σ1: ‖X‖2 = σ1.

Corollary 3 The Frobenius norm of X is given by the two-norm of the vector of singular values:
‖X‖F =

√
σ2
1 + σ2

2 + · · ·+ σ2
m =

√
σ2
1 + σ2

2 + · · ·+ σ2
r .

The Frobenius norm is closely related to the mean-square error (MSE):

MSE ,
∑

i,j

(
Xij − X̃ij

)2
= ‖X− X̃‖2F . (1.35)

Theorem 6 The determinant of a square matrix X ∈ Rn×n is related to the singular values as:
|det(X)| = Πm

k=1σk.

1.8.2 Four fundamental subspaces

There are four fundamental subspaces that define any matrix X: the column space col(X)
and its orthogonal complement ker(X∗), and the row space row(X) and its orthogonal
complement ker(X). The column space of X, col(X), is the span of the columns of X; it
is also known as the range. The kernel of X, ker(X), is the subspace of vectors that map
through X to zero, i.e. Xv = 0; it is sometimes referred to as the null space. The row space
of X is equal to row(X) = col(X∗).
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col(X)⊕ ker(X∗) = Rn (1.36)
col(X∗)⊕ ker(X) = Rn (1.37)

There are a number of properties that are related to the matrices in the SVD:

1. The column space of X is the same as the column space of Û1,

2. The orthogonal complement to col(X) is given by the column space of Û2,

3. The null space of X is given by the column space of V̂2,

4. The orthogonal complement to ker(X) is given by the column space of V̂1.
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1.9 Caveats and extensions

Here, we discuss common pitfalls of the SVD associated with misaligned data. We also
describe numerous powerful extensions to the basic SVD described above.

1.9.1 Poorly aligned data

The following example is designed to illustrate one of the central weaknesses of the SVD
for dimensionality reduction and coherent feature extraction in data. Consider a matrix
of zeros with a rectangular sub-block consisting of ones. As an image, this would look
like a white rectangle placed on a black background. If the rectangle is perfectly aligned
with the x- and y- axes of the figure, then the SVD is extremely simple, having only one
nonzero singular value σ1 and corresponding singular vectors u1 and v1 that define the
width and height of the white rectangle.

When we begin to rotate the inner rectangle so that it is no longer aligned with the
image axes, additional non-zero singular values begin to appear in the spectrum.

Code 1.26: Compute the SVD for a well-aligned and rotated square (Fig. 1.25).
clear all, close all, clc

n = 1000;
q = n/4;
X = zeros(n,n);
X(q:(n/2)+q,q:(n/2)+q) = 1;

subplot(2,2,1), imshow(X); colormap gray, axis off

Y = imrotate(X,10,’bicubic’); % rotate 10 degrees
Y = Y - Y(1,1);
nY = size(Y,1);
startind = floor((nY-n)/2);
Xrot = Y(startind:startind+n-1, startind:startind+n-1);
subplot(2,2,2), imshow(Xrot); colormap gray, axis off

[U,S,V] = svd(X); % svd well-aligned square
[U,S,V] = svd(Xrot); % svd rotated square

subplot(2,2,3), semilogy(diag(S),’-ko’)
ylim([1.e-16 1.e4]), grid on
set(gca,’YTick’,[1.e-16 1.e-12 1.e-8 1.e-4 1. 1.e4])
set(gca,’XTick’,[0 250 500 750 1000])

subplot(2,2,4), semilogy(diag(S),’-ko’)
ylim([1.e-16 1.e4]), grid on
set(gca,’YTick’,[1.e-16 1.e-12 1.e-8 1.e-4 1. 1.e4])
set(gca,’XTick’,[0 250 500 750 1000])
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Figure 1.25: A data matrix consisting of ones with a square sub-block of zeros (a), and
its SVD spectrum (c). If we rotate the image by 10◦, as in (b), the SVD spectrum becomes
significantly more complex (d).

The reason that this example breaks down is that the SVD is fundamentally geometric,
meaning that it depends on the coordinate system in which the data is represented. As
we have seen earlier, the SVD is only generically invariant to unitary transformations,
meaning that the transformation preserves the inner product. This fact may be viewed
as both a strength and a weakness of the method. First, the dependence of SVD on the
inner product is essential for the various useful geometric interpretations. Moreover, the
SVD has meaningful units and dimensions. However, this makes the SVD sensitive to the
alignment of the data. In fact, the SVD is not invariant to translations, rotations, or scaling
of data, which severely limits its use for data that has not been heavily pre-processed.

For instance, the eigenfaces example was built on a library of images that had been
meticulously cropped, centered, and aligned according to a stencil. Without taking these
important pre-processing steps, the features and clustering performance would be under-
whelming.
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Figure 1.26: A data matrix consisting of ones with a square sub-block of zeros at various
rotations (a), and the corresponding SVD spectrum, diag(S), (c).

Code 1.27: SVD for a square rotated through various angles (Fig. 1.26).
clear all, close all, clc
n = 1000;
X = zeros(n,n);
X(n/4:3*n/4,n/4:3*n/4) = 1;
nAngles = 12; % sweep through 12 different angles, from 0:4:44
cm=colormap(jet(nAngles));

[U,S,V] = svd(X);
subplot(1,2,1), imagesc(X), hold on;
subplot(1,2,2), semilogy(diag(S),’-o’,’color’,cm(1,:)), hold on,

grid on

Xrot = X;
for j=2:nAngles

Y = imrotate(X,(j-1)*4,’bicubic’); % rotate theta = (j-1)*4
startind = floor((size(Y,1)-n)/2);
Xrot1 = Y(startind:startind+n-1, startind:startind+n-1);
Xrot2 = Xrot1 - Xrot1(1,1);
Xrot2 = Xrot2/max(Xrot2(:));
Xrot(Xrot2>.5) = j;

[U,S,V] = svd(Xrot1);
subplot(1,2,1), imagesc(Xrot), colormap([0 0 0; cm])
subplot(1,2,2), semilogy(diag(S),’-o’,’color’,cm(j,:))

end
axis([1.e-16 1.e3 -10 1000])
set(gca,’XTick’,[0 250 500 750 1000])
set(gca,’YTick’,[1.e-16 1.e-12 1.e-8 1.e-4 1. 1.e4]);
set(gcf,’Position’,[100 100 550 230])
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1.9.2 Advanced extensions to the SVD

There are numerous advanced variants of the SVD that have been developed in various
contexts. The streaming or incremental SVD algorithm provides a fast algorithm to ap-
proximate the SVD for large data sets that are being continuously updated with streaming
data [7, 6]. These streaming data sets include large recommender systems that provide
suggestions and marketing to users [46]. These systems constantly assimilate new user
purchasing data, and it would be prohibitively expensive to frequently recompute these
large SVDs from scratch. Another important SVD algorithm based on streaming data is
the sketched SVD [18].

SVD has also been extended to randomly projected or subsampled data [14, 43]. Low-
rank SVD approximations may also be obtained using randomized SVD, which involves
randomly selecting columns for inner products [35]. There are numerous other general-
ized SVD algorithms [54], including a multilinear SVD [11] and an SVD for tensors [22].
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1.10 Computing the SVD

The SVD is a cornerstone of computational science and engineering, and the numerical
implementation of the SVD is both important and mathematically enlightening. That
said, most standard numerical implementations are mature and a simple interface exists
in many modern computer languages, allowing us to abstract away the details underly-
ing the SVD computation. For most intents and purposes, we simply use the SVD as a
part of a larger effort, and we take for granted the existence of efficient and stable numer-
ical algorithms. In the sections below, we demonstrate how to use the SVD in various
computational languages, and we also discuss the most common computational strate-
gies and limitations. There are numerous important results on the computation of the
SVD [20, 9, 19, 32, 24]. A more thorough discussion of computational issues can be found
in [21].

1.10.1 SVD in various languages

We have already seen that the SVD is quite simple to use in Matlab:

>>[U,S,V] = svd(X);

Below, we describe the SVD interface in some of the most common computational
languages.

Python

>>> import numpy as np
>>> X = np.random.rand(5, 3) % create random data matrix
>>> U, S, V = np.linalg.svd(X, full_matrices=True) % full sized SVD
>>> U, S, V = np.linalg.svd(X, full_matrices=False) % economy SVD

R

> X <- replicate(3, rnorm(5))
> s <- svd(X)
> U <- s$u
> S <- diag(s$d)
> V <- s$v

Mathematica

In:= X=RandomReal[{0,1},{5,3}]
In:= {U,S,V} = SingularValueDecomposition[X]

C++

There are many options for the SVD in C++, and we describe just a few:

1. Armadillo
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#include <armadillo>
using namespace arma;

mat X = randn<mat>(5,3);

mat U;
vec s;
mat S;
mat V;

svd(U,s,V,X);
S = diagmat(s);

2. Eigen (templated library)

#include <Eigen/Core>
#include <Eigen/SVD>

MatrixXf X = MatrixXf::Random(5,3);
JacobiSVD<MatrixXf> svd(X, ComputeThinU | ComputeThinV);

MatrixXf U = svd.matrixU();
MatrixXf V = svd.matrixV();
VectorXf s = svd.singularValues();
MatrixXf S = s.asDiagonal();

3. redsvd - This is a randomized SVD library for large matrices, based on the Eigen
package.

Fortran and LAPACK

In Fortran, most SVD implementations are based on the LAPACK (Linear Algebra Pack-
age) [1]. In particular, the Fortran routine is designated DGESVD in LAPACK. Many other
computational libraries wrap these basic LAPACK routines.
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