Exercise 5-1: Show the following:
(a) $\nabla \times(\nabla \phi)=0$ for any potential field ϕ.
(b) $\nabla^{2} \phi=\nabla \cdot(\nabla \phi)$ for any potential field ϕ.
(c) $\nabla \cdot(\nabla \phi \times \nabla \psi)=0$ for all potential fields ϕ and ψ.

Exercise 5-2: Show the following:
(a) $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and \mathbf{b}.
(b) $\nabla \cdot(\nabla \times \mathbf{f})=0$ for any vector field \mathbf{f}.

Exercise 5-3: Here we will compute using the directional derivative $D_{\mathbf{v}} f=\nabla f \cdot \mathbf{v}$.
(a) Compute the directional derivative with $f(x, y)=\sin (x) y^{2}$ and $\mathbf{v}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$.
(b) You are goat climbing a mountain, where the altitude is given by the function $f(x, y)=$ $20-x^{4}-y^{2}$. To impress the humans below, you want to choose the steepest path up the mountain. You are at the point $(1,2,15)$. What direction should you go in to climb the steepest path?
(c) You are a cold mosquito flying around a room. The temperature is given by $T(x, y, z)=$ $\cos (x) \cos (y) \sin (z)$, and you are at the point $(2,1,1)$. What direction should you fly to warm up?

Homework 1

Exercise 5-4:
(a) Compute the area of a square of length 2 centered at the origin using Stokes' theorem:

Square of length 2
(b) Compute the area of a circle with radius 1 centered at the origin using Stokes' theorem:

(c) Compute the area of a hypocycloid using Stokes' theorem (Hint: You can compare your answer to the derivation in the notes):

Hypocycloid: $x^{2 / 3}+y^{2 / 3}=1$

$$
\begin{aligned}
& x=\cos ^{3}(\theta) \\
& y=\sin ^{3}(\theta)
\end{aligned}
$$

