Exercise 4-1: Lets say that we are integrating the following stable ODE:

$$
\dot{\mathrm{x}}=\left[\begin{array}{cc}
-2 & 0 \\
0 & -4
\end{array}\right] \mathbf{x}
$$

(a) If we are using a forward Euler scheme, for what $\Delta t>0$ will the resulting simulation become unstable?
(b) If we use the backward Euler scheme, for what $\Delta t>0$ will the simulation become unstable?

Exercise 4-2: Consider the chaotic Lorenz system:

$$
\begin{aligned}
\dot{x} & =\sigma(y-x) \\
\dot{y} & =x(\rho-z)-y \\
\dot{z} & =x y-\beta z .
\end{aligned}
$$

A chaotic trajectory for parameters $\sigma=10, \rho=28$, and $\beta=8 / 3$ are shown below.

This system has three fixed points at: $(0,0,0),(\sqrt{\beta(\rho-1)}, \sqrt{\beta(\rho-1)}, \rho-1)$, and $(-\sqrt{\beta(\rho-1)},-\sqrt{\beta(\rho-1)}, \rho-1)$.
For each fixed point, linearize the Lorenz equations for a neighborhood around the fixed point and determine the eigenvalues and stability (You can use a computer for this part). Draw a rough sketch of the phase portrait around these fixed points.

ME564-Autumn 2022
Due: 5:00:00pm Friday November $18^{\text {th }}, 2022$

Homework 4

Exercise 4-3: Consider the same chaotic Lorenz system from the previous exercise.
Now, determine the eigenvalues and stability for each fixed point for $\rho \in\{5,10,15,20,25,30,35,40,45,50\}$. (no need to sketch phase portrait for all cases)

For each value of ρ, simulate and plot the trajectory of the ODE using a 4 -th order Runge Kutta integrator with initial condition $\left[\begin{array}{l}x(0) \\ y(0) \\ z(0)\end{array}\right]=\left[\begin{array}{l}10 \\ 10 \\ 10\end{array}\right]$ for $\mathrm{t}=0: .01: 20$.

Do the trajectories for various ρ agree with the linearization results?

Exercise 4-4: Derive a $\mathcal{O}\left(\Delta t^{2}\right)$ accurate backward difference derivative for the function $f(t)$ at t using the following three measurements or data points:

$$
f(t), f(t-\Delta t), \text { and } f(t-2 \Delta t)
$$

Please show that this scheme is really $\mathcal{O}\left(\Delta t^{2}\right)$ accurate using the Taylor series expansions.
Exercise 4-5: Consider the differential equation for the Van der Pol oscillator (use a RK4 integrator)

$$
\ddot{y}+\epsilon\left(y^{2}-1\right) \dot{y}+y=0
$$

which has a nonlinear damping term $\epsilon\left(y^{2}-1\right) \dot{y}$.
(a) Write this ODE as a system of first order differential equations.
(b) Analyze the stability of the fixed point at $y=\dot{y}=0$ for $\epsilon>0$.
(c) For $\epsilon=0.1$, solve the equation for $\mathrm{t}=0: 0.1: 30$ for initial conditions $y(0)=0.1$ and $\dot{y}(0)=-1$. Repeat for $\epsilon=1$ and $\epsilon=20$. Plot the phase portrait ($y \mathrm{vs} . \dot{y}$) for each of the three cases to see the various behaviors.

