Exercise 4–1: Lets say that we are integrating the following stable ODE:

$$\dot{\mathbf{x}} = \begin{bmatrix} -2 & 0\\ 0 & -4 \end{bmatrix} \mathbf{x}$$

- (a) If we are using a forward Euler scheme, for what $\Delta t > 0$ will the resulting simulation become unstable?
- (b) If we use the backward Euler scheme, for what $\Delta t > 0$ will the simulation become unstable?

Exercise 4–2: Consider the chaotic Lorenz system:

$$\dot{x} = \sigma(y - x)$$
$$\dot{y} = x(\rho - z) - y$$
$$\dot{z} = xy - \beta z.$$

A chaotic trajectory for parameters $\sigma = 10, \rho = 28$, and $\beta = 8/3$ are shown below.

This system has three fixed points at: (0,0,0), $(\sqrt{\beta(\rho-1)}, \sqrt{\beta(\rho-1)}, \rho-1)$, and $(-\sqrt{\beta(\rho-1)}, -\sqrt{\beta(\rho-1)}, \rho-1)$.

For each fixed point, linearize the Lorenz equations for a neighborhood around the fixed point and determine the eigenvalues and stability (You can use a computer for this part). Draw a rough sketch of the phase portrait around these fixed points.

ME564 - Autumn 2022 Due: 5:0 Homework 4

Exercise 4–3: Consider the same chaotic Lorenz system from the previous exercise.

Now, determine the eigenvalues and stability for each fixed point for $\rho \in \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$. (no need to sketch phase portrait for all cases)

For each value of ρ , simulate and plot the trajectory of the ODE using a 4-th order Runge Kutta

integrator with initial condition $\begin{bmatrix} x(0) \\ y(0) \\ z(0) \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$ for t=0:.01:20.

Do the trajectories for various ρ agree with the linearization results?

Exercise 4–4: Derive a $\mathcal{O}(\Delta t^2)$ accurate backward difference derivative for the function f(t) at t using the following three *measurements* or data points:

$$f(t), f(t - \Delta t), \text{ and } f(t - 2\Delta t)$$

Please show that this scheme is really $\mathcal{O}(\Delta t^2)$ accurate using the Taylor series expansions.

Exercise 4–5: Consider the differential equation for the Van der Pol oscillator (use a RK4 integrator)

$$\ddot{y} + \epsilon (y^2 - 1)\dot{y} + y = 0$$

which has a nonlinear damping term $\epsilon(y^2 - 1)\dot{y}$.

- (a) Write this ODE as a system of first order differential equations.
- (b) Analyze the stability of the fixed point at $y = \dot{y} = 0$ for $\epsilon > 0$.
- (c) For $\epsilon = 0.1$, solve the equation for t=0:0.1:30 for initial conditions y(0) = 0.1 and $\dot{y}(0) = -1$. Repeat for $\epsilon = 1$ and $\epsilon = 20$. Plot the phase portrait $(y \text{ vs. } \dot{y})$ for each of the three cases to see the various behaviors.