Homework 1

Exercise 1-1: Compute the derivative of the following functions
(a) $f(x)=\cos \left(x^{3}\right)$
(b) $f(x)=x^{x}$
(c) $f(x)=e^{\sin (2 x)} \cos (x)$
(d) Now, compute the derivative of $f(x, y)=\cos \left(x^{2}+y^{2}\right)$ with respect to t, assuming that $x(t)$ and $y(t)$ vary with time. You can write the solution in terms of $d x / d t$ and $d y / d t$.

Exercise 1-2: A given mass x of a radioactive element obeys the following differential equation in time:

$$
\dot{x}=\lambda x
$$

where λ is a constant describing the rate of decay.
(a) Write down the solution $x(t)$ to the differential equation.
(b) Plot the solution for an initial condition $x(0)=2$ from time $t=0$ to $t=5$ for $\lambda=$ $-5,-1,0,0.01,0.1$. Please plot these all on the same figure using the hold on command in Matlab. Label your axes (>> doc xlabel, >> doc ylabel) and include a legend (e.g., legend('lambda 1','lambda 2','lambda 3', ...)).
(c) The half-life T is defined as the time it takes for the material to be reduced to half of its mass through radioactive decay. The half-life of uranium- 238 is 4.468 billion years. What is the corresponding value of λ ?
(d) If you start with 100 kg of uranium- 238 , how long until you only have 5 kg left?

Exercise 1-3: Compute the Taylor series expansion by hand for $f(x)$. For each function, plot $f(x)$ and the three-term expansion (i.e., the first three nonzero terms) from $x=-5$ to $x=5$.
(a) $f(x)=\sin (x) / x$.
(b) $f(x)=3^{x}$.

Exercise 1-4: Please compute an analytic expression, by hand, for the real and imaginary parts of the following complex functions. Please also plot these in Matlab for $\mathrm{t}=0: .01: 10$.
(a) $f(t)=e^{i t}$,
(b) $f(t)=e^{(-1-i) t}$,
(c) $f(t)=e^{1-i t}$.
(d) $f(t)=e^{(-.2+3 \pi i) t}$.

