Exercise 2–1: Consider the following ODE:

$$\ddot{x} + 10\dot{x} + 21x = 0.$$

- (a) Solve this ODE by substituting in $x(t) = e^{\lambda t}$ and finding roots of the characteristic polynomial.
- (b) Now, write this second order ODE as a system of first order equations, $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, by introducing a new variable $v = \dot{x}$. Solve the linear system by decomposing the matrix \mathbf{A} into the eigenvalues and eigenvectors. Hint: computing the inverse of the matrix of eigenvectors is easier if they are not normalized (i.e., both of my eigenvectors have integer entries).
- (c) For both of the solutions in parts (a) and (b), write down the specific solution for an initial condition x(0) = 2 and $\dot{x}(0) = -10$.
- (d) What is the long-time behavior of this system? How would this change if the equation was $\ddot{x} 10\dot{x} + 21x = 0$?

Exercise 2–2:

(a) Write the following ODE as a system of first order ODEs:

$$\ddot{x} + 2\ddot{x} - \dot{x} - 2x = 0$$

What are the eigenvalues of the system of ODEs? (it is OK to use Matlab).

What are the long-time behaviors of this system for the following two different initial condi- $\begin{bmatrix} x(0) \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} x(0) \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$

	$\mathcal{L}(0)$		1 1		x(0)		Ŧ	
tions:	$\dot{x}(0)$	=	1	and	$\dot{x}(0)$	=	-1	?
	$\ddot{x}(0)$		1		$\ddot{x}(0)$		1	

Please plot the response for t=0:0.01:10 using ode45 for each of these initial conditions. Do the Matlab plots agree with your calculations? Please briefly explain your observations in 1-2 sentences.

(b) Repeat the steps above for the ODE

$$x^{(4)} + 5\ddot{x} + 5\ddot{x} - 5\dot{x} - 6x = 0$$

with initial conditions:	$\begin{bmatrix} x(0) \\ \dot{x}(0) \\ \ddot{x}(0) \\ \ddot{x}(0) \end{bmatrix}$	$= \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} and$	$\mathbf{I} \begin{bmatrix} x(0) \\ \dot{x}(0) \\ \ddot{x}(0) \\ \ddot{x}(0) \end{bmatrix} =$	$\begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}$
--------------------------	--	--	---	---

ME564 - Autumn 2018 Homework 2

Exercise 2–3: Consider the system of weakly coupled pendulua (equations below). Both pendula are mounted to a board that is placed on rollers, so that it can move from side to side, slightly.

Write these coupled second order linear differential equations as

- (a) A single fourth order ODE in θ_1
- (b) A single fourth order ODE in θ_2
- (c) A system of four coupled linear ODEs in terms of the angular positions and velocities of each pendulum. Please write this as a matrix ODE.
- (d) Now, assume that $\omega_1 = 1$ and $\omega_2 = 1.5$. Increase ϵ from 0 to 0.5 (in increments of 0.005), and compute the eigenvalues of the system of equations. Plot the two frequencies as a function of ϵ . Now plot the difference of the two frequencies agains ϵ . Explain what you see.
- (e) At what value of ϵ will the frequencies of the coupled system be equal for $\omega_1 = 1$ and $\omega_2 = 1.5$?
- (f) At what value of ϵ will the frequencies of the coupled system be equal for generic ω_1 and ω_2 ?

Exercise 2–4: In this exercise, we will represent the solution of a nonlinear differential equation in terms of an infinite power series expansion. Consider the differential equation:

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - a^{2})y = 0.$$

Derive a formula for the coefficients of the power series expansion for y(x) for the case where a = 1.