
Data Driven Science & Engineering
Machine Learning, Dynamical Systems, and Control

Steven L. Brunton
Department of Mechanical Engineering
University of Washington

J. Nathan Kutz
Department of Applied Mathematics
University of Washington

Chapter 11

Reinforcement Learning

Reinforcement learning (RL) is a major branch of machine learning that is con-
cerned with how to learn control laws and policies to interact with a complex
environment from experience [695, 369]. Thus, RL is situated at the growing
intersection of control theory and machine learning [601], and it is among the
most promising fields of research towards generalized artificial intelligence and
autonomy. Both machine learning and control theory fundamentally rely on
optimization, and likewise, RL involves a set of optimization techniques within
an experiential framework for learning how to interact with the environment.

In reinforcement learning, an agent1 senses the state of its environment and
learns take appropriate actions to optimize future rewards. The ultimate goal
in RL is to learn an effective control strategy or set of actions through positive
or negative reinforcement. This search may involve trial-and-error learning,
model-based optimization, or a combination of both. In this way, reinforce-
ment learning is fundamentally biologically inspired, mimicking how animals
learn to interact with their environment through positive and negative reward
feedback from trial-and-error experience. Much of the history of reinforcement
learning, and machine learning more broadly, has been linked to studies of
animal behavior and the neurological basis of decisions, control, and learn-
ing [521, 657, 201, 199]. For example, Pavlov’s dog is an illustration that ani-
mals learn to associate environmental cues with a food reward [563]. The term
reinforcement refers to the rewards, such as food, used to reinforce desirable ac-
tions in humans and animals. However, in animal systems reinforcement is
ultimately achieved through cellular and molecular learning rules.

Multiple textbooks have been written on this topic, which spans almost a
century of progress. Major advances in deep reinforcement learning are also
rapidly changing the landscape. This chapter is not meant to be comprehen-
sive; rather, it aims to provide a solid foundation, to introduce key concepts
and leading approaches, and to lower the barrier to entry in this exciting field.

1Ironically, from the perspective of reinforcement learning, in The Matrix, Neo is actually the
agent learning to interact with his environment.

500

11.1. OVERVIEW AND MATHEMATICAL FORMULATION 501

OBSERVE STATE, s

REWARD, r

ACTION, a
AGENT ENVIRONMENT

STATE

POLICY,
��(s, a)

PARAMETERS, �

r1 � r2 � r3 � � � rt

s1 � s2 � s3 � � � st

� at��a2�a1

https://commons.wikimedia.org/wiki/File:Chess_board_with_chess_set_in_opening_position_2012_PD_02.jpg

Figure 11.1: Schematic of reinforcement learning, where and agent senses its
environmental state s and takes actions a according to a policy ⇡ that is op-
timized through learning to maximize future rewards r. In this case, a deep
neural network is used to represent the policy ⇡. This is known as a deep policy
network.

11.1 Overview and Mathematical Formulation

Figure 11.1 provides a schematic overview of the reinforcement learning frame-
work. An RL agent senses the state of its environment and learns to take ap-
propriate actions to achieve optimal immediate or delayed rewards. Specifi-
cally, the RL agent arrives at a sequence of different states sk 2 S by perform-
ing actions ak 2 A, with the selected actions leading to positive or negative
rewards rk used for learning. The sets S and A denote the sets of possible
states and actions, respsectively. Importantly, the RL agent is capable of learn-
ing delayed rewards, which is critical for systems where the optimal solution
involves a multi-step procedure. Rewards may be thought of as sporadic and
time-delayed labels, leading to RL being considered a third major branch of
machine learning, called semi-supervised learning, which complements the other
two branches of supervised and unsupervised learning. One canonical exam-
ple is learning a set of moves, or a long term strategy, to win a game of chess. As
is the case with human learning, RL often begins with an unstructured explo-
ration, where trial-and-error are used to learn the rules, followed by exploitation,
where a strategy is chosen and optimized within the learned rules.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

502 CHAPTER 11. REINFORCEMENT LEARNING

The Policy

An RL agent senses the state of its environment s and takes actions a through
a policy ⇡ that is optimized through learning to maximize future rewards r.
Reinforcement learning is often formulated as an optimization problem to learn
the policy ⇡(s, a),

⇡(s, a) = Pr (a = a | s = s) , (11.1)

which is the probability of taking action a given state s, to maximize the total
future rewards. In the simplest formulation, the policy may be a look-up table
that is defined on the discrete state and action spaces S and A, respectively.
However, for most problems, representing and learning this policy becomes
prohibitively expensive, and ⇡ must instead be represented as an approximate
function that is parameterized by a lower-dimensional vector ✓:

⇡(s, a) ⇡ ⇡(s, a, ✓). (11.2)

Often, this parameterized function will be denoted ⇡✓(s, a). Function approxi-
mation is the basis of deep reinforcement learning in Sec. 11.4, where it is pos-
sible to represent these complex functions using deep neural networks.

Note that in the literature, there is often an abuse of notation, where ⇡(s, a)
is used to denote the action taken, rather than the probability density of taking
an action a given a state observation s. In the case of a deterministic policy,
such as a greedy policy, then it may be possible to use a = ⇡(s) to represent
the action taken. We will attempt to be clear throughout when choosing one
convention over another.

The Environment: a Markov Decision Process (MDP)

In general, the measured state of the system may be a partial measurement of
a higher-dimensional environmental state that evolves according to a stochas-
tic, nonlinear dynamical system. However, for simplicity, most introductions
to RL assume that the state evolves according to a Markov decision process
(MDP), so that the probability of the system occurring in the current state is
determined only by the previous state. We will begin with this simple formula-
tion. However, even though it is often assumed that the state evolves according
to an MDP, it is often the case that this model is not known, motivating the use
of “model-free” RL strategies discussed in Sec. 11.3. Similarly, when a model is
not known, it may be possible to first learn an MDP using data-driven methods
and then use this for “model-based” reinforcement learning, as in Sec. 11.2.

An MDP consists of a set of states S , a set of actions A, and a set of rewards
R, along with the probability of transitioning from state sk at time tk to state
sk+1 at time tk+1 given action ak,

P (s0, s, a) = Pr (sk+1 = s
0 | sk = s, ak = a) , (11.3)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.1. OVERVIEW AND MATHEMATICAL FORMULATION 503

and a reward function R

R(s0, s, a) = Pr (rk+1 | sk+1 = s
0, sk = s, ak = a) . (11.4)

Sometimes the transition probability P (s0, s, a) will be written as P (s0 | s, a).
Again, sometimes there will be an abuse of notation, where a chosen policy ⇡
will be used instead of the action a in the argument of either P or R above. In
this case, it is assumed that this applies a sum over states, as in

P (s0, s, ⇡) =
X

a2A

⇡(s, a)P (s0, s, a). (11.5)

Thus, an MDP generalizes the notion of a Markov process to include actions
and rewards, making it suitable for decision making and control. A simple
Markov process is a set of states S and a probability of transitioning from one
state to the next. The defining property of a Markov process and an MDP is that
the probability of being in a future state is entirely determined by the current
state, and not by previous states or hidden variables. The MDP framework
is closely related to transition state theory and the Perron-Frobenius operator,
which is the adjoint of the Koopman operator from Section 7.4.

In the case of a simple Markov process with a finite set of states S , then it
is possible to let s 2 Rn be a vector of the probability of being in each of the n
states, in which case the Markov process P (s0, s) may be written in terms of a
transition matrix, also known as a stochastic matrix, or a probability matrix, T:

s
0 = Ts, (11.6)

where each column of T must add up to 1, which is a statement of conservation
of probability that given a particular state s, something must happen after the
transition to s

0. Similarly, for an MDP, given a policy ⇡, the transition process
may be written as

s
0 =
X

a2A

⇡(s, a)Tas. (11.7)

Now for each action a, Ta is a Markov process with all columns summing to 1.
One of the defining properties of a Markov process is that the system asymp-

totically approaches a steady state µ, which is the eigenvector of T correspond-
ing to eigenvalue 1. Similarly, given a policy ⇡, an MDP asymptotically ap-
proaches a steady state µ⇡ =

P
a ⇡(s, a)µa.

This brings up another notational issue, where for continuous processes,
s 2 Rn describes the continuous state vector in an n-dimensional vector space,
as in Chapters 7 and 8, while for discrete state spaces, s 2 Rn denotes a vector
of probabilities of belonging to one of n finite states. It is important to care-
fully consider which notation is being used for a given problem, as these for-
mulations have different dynamics (i.e., differential equation versus MDP) and
interpretations (i.e., deterministic dynamics versus probabilistic transitions).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

504 CHAPTER 11. REINFORCEMENT LEARNING

The Value Function

Given a policy ⇡, we next define a value function that quantifies the desirability
of being in a given state:

V⇡(s) = E

X

k

�k
rk | s0 = s

!
, (11.8)

where E is the expected reward over the time steps k, subject to a discount
rate �. Future rewards are discounted, reflecting the economic principle that
current rewards are more valuable than future rewards. Often, the subscript ⇡
is omitted from the value function, in which case we refer to the value function
for the best possible policy:

V (s) = max
⇡

E
 1X

k=0

�k
rk | s0 = s

!
. (11.9)

One of the most important properties of the value function is that the value
at a state s may be written recursively as

V (s) = max
⇡

E

r0 +
1X

k=1

�k
rk | s1 = s

0

!
, (11.10)

which implies that

V (s) = max
⇡

E (r0 + �V (s0)) , (11.11)

where s
0 = sk+1 is the next state after s = sk given action ak, and the expectation

is over actions selected from the optimal policy ⇡. This expression, known as
Bellman’s equation, is a statement of Bellman’s principle of optimality, and it is a
central result that underpins modern RL.

Given the value function, it is possible to extract the optimal policy as

⇡ = argmax
⇡

E (r0 + �V (s0)) , (11.12)

Goals and Challenges of Reinforcement Learning
Learning the policy ⇡, the value function V , or jointly learning both, is the cen-
tral challenge in RL. Depending on the assumed structure of ⇡, the size and
evolution dynamics of S , and the reward landscape R, determining an optimal
policy may range from a closed form optimization to a rather high-dimensional
unstructured optimization. Thus, a large number of trials must often be evalu-
ated in order to determine an optimal policy. In practice, reinforcement learn-
ing may be very expensive to train, and it might not be the right strategy for

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.1. OVERVIEW AND MATHEMATICAL FORMULATION 505

problems where testing a policy is expensive or potentially unsafe. Similarly, in
many cases, there are simpler control strategies than RL, such as LQR or MPC;
when these approaches are effective, they are often preferable. Reinforcement
learning is, therefore, well-suited for situations where some combination of the
following are true: evaluating a policy is inexpensive, as in board games; there
are sufficient resources to perform a near brute-force optimization, as in evolu-
tionary optimization; no other control strategy works.

Although RL is typically formulated within the mathematical framework
of MDPs, many real world applications do not satisfy these assumptions. For
example, the dynamics may depend on the state history or on hidden or latent
variables. Similarly, the evolution dynamics may be entirely deterministic, yet
chaotic. However, as we will see, it is often possible to develop approximate
probabilistic transition state models for chaotic dynamics or to augment the en-
vironment state to include past states for systems with memory or hidden vari-
ables. Often, the underlying MDP transition probability and reward functions
are not known a priori, and must either be learned ahead of time through some
exploration phase, or alternative model-free optimization techniques must be
used. Finally, many of the theoretical convergence results, and indeed many
of the fundamental RL algorithms, only apply to finite MDPs, which are char-
acterized by finite actions A and states S . Games, such as chess, fall into this
category, even though the number of states may be combinatorially large. Even
continuous dynamical systems, such as a pendulum on a cart, may be approx-
imated by a finite MDP through a discretization or quantization process.

There is typically much less supervisory information available to an RL
agent than is available in classical supervised learning. One of the central chal-
lenges of reinforcement learning is that rewards are often extremely rare and
may be significantly delayed from a sequence of good control actions. This
challenge leads to the so-called credit assignment problem, coined by Min-
sky [514] to describe the challenge of knowing what action sequence was re-
sponsible for the reward ultimately received. These sparse and delayed re-
wards have been a central challenge in RL for six decades, and they are still a
focus of research today. The resulting optimization problem is computationally
expensive and data intensive, requiring considerable trial and error.

Today, reinforcement learning is being used to learn sophisticated control
policies for complex open-world problems in autonomy and propulsion (e.g.,
self-driving cars, learning to swim and fly, etc.) and as a general learning en-
vironment for rule-constrained games (e.g., checkers, backgammon, chess, go,
Atari, etc.). Much of the history of RL may be traced through the success on in-
creasingly challenging board games, from checkers [628] to backgammon [712]
and more recently to chess and go [671]. These games serve to illustrate many
of the central challenges that are still faced in RL, including the curse of dimen-
sionality and the credit assignment problem.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

506 CHAPTER 11. REINFORCEMENT LEARNING

Figure 11.2: Reinforcement learning is inspired by biological learning with
sparse rewards. Mordecai is trained to balance a treat on his nose until a com-
mand is given, after which he grabs it out of the air. Credit: Bing Brunton for
image and training.

Motivating examples

It is helpful to understand RL through simple examples. Consider a mouse in
a maze. The mouse is the agent, and the environment is the maze. The mouse
measures the local state in its environment; it does not have access to a full top-
down view of the maze, but instead it knows its current local environment and
what past actions it has taken. The mouse has agency to take some action about
what to do next, for example whether to turn left, turn right, or go forward.
Typically, the mouse does not receive a reward until the end of the maze. If the
mouse received a reward after each correct turn, it would have a much simpler
learning task. Setting such a curriculum is a strategy to help teach animals,
whereby initially dense rewards are sparsified throughout the learning process.

More generally, RL may be used to understand animal behavior, ranging
from semi-supervised training to naturalistic behaviors. Figure 11.2 shows a
trained behavior where a treat is balanced on Mordecai’s nose until a command
is given, after which he is able to grab it out of the air. Often, training animals to
perform complex tasks involves expert human guidance to provide intermedi-
ate rewards or secondary reinforcers, such as using a clicker to indicate a future
reward. In animal training and in RL, the more proximal the reward is in time
to the action, the easier it is to learn the task. The connection between learning
and temporal proximity is the basis of temporal difference learning, which is a
powerful concept in RL, and this is also important to our understanding of the
chemical basis for addiction [605].

It is also helpful to consider two-player games, such as tic-tac-toe, checkers,
backgammon, chess, and go. In these games, the agent is one of the players,
and the environment encompasses the rules of the game along with an ad-
versarial opponent. These examples are also interesting because there is an
element of randomness or stochasticity in the environment, either because of
the fundamental rules (e.g., a dice-roll in backgammon) or because of an oppo-
nent’s probabilistic strategy. Thus, it may be advantageous for the agent to also
adopt a probabilistic policy, which is in contrast to much of the theory of classi-
cal control for deterministic systems. Similarly, a probabilistic strategy may be

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.1. OVERVIEW AND MATHEMATICAL FORMULATION 507

important when learning how to play.
In most games, the reward signal comes at the end of the game after the

agent has won or lost. Again, this makes the learning process exceedingly chal-
lenging, as it is initially unclear which subsequence of actions were particularly
important in driving the outcome. For example, an agent may play an excel-
lent chess opening and midgame and then lose at the end because of a few bad
moves. Should the agent discard the entire first half of the game, or worse yet,
attribute this to a negative reward? Thus, it is clear that a major part of learn-
ing an effective policy is understanding the value of being in a given state s.
In a game like chess, where the number of states is combinatorially large, there
are too many states to count, and it is intractable to map out the exact value of
all board states. Instead, players create simple heuristic rules-of-thumb about
what are good board positions, e.g. assigning points to the various pieces to
keep track of a rough score. This intermediate score provides a denser reward
structure throughout the game. However, these heuristics are sub-optimal and
may be susceptible to gambits, where the opponent sacrifices a piece for an
immediate point loss in order to eventually move to a more favorable global
state s. In backgammon, an intermediate point total may be more explicitly
computed as the total number of pips, or points that a player must roll to move
all pieces home and off the board. Although this makes it relatively simple
to estimate the strength of a board position, the discrete nature of the die roll
and game mechanics makes this a sub-optimal approximation, as the number
of required dice-rolls or turns may also be a useful measure.

Thinking through games like these illustrates many of the modern strate-
gies to improve the learning rates and sample efficiency of RL, including hind-
sight replay, temporal difference learning, look ahead, and reward shaping,
which we will discuss in the following sections. For example, playing against a
skilled teacher can dramatically improve the learning rate, as the teacher pro-
vides guidance about whether or not a move is good, and why, adding infor-
mation to help shape proxy metrics that can be used as intermediate rewards
and models that can accelerate the learning process.

Categorization of RL Techniques

Nearly all problems in machine learning and control theory involve challeng-
ing optimization problems. In the case of machine learning, the parameters
of a model are optimized to best fit the training data, as measured by a loss
function. In the case of control, a set of control performance metrics are opti-
mized subject to the constraints of the dynamics. Reinforcement learning is no
different, as it is at the intersection of machine learning and control theory.

There are many approaches to learn an optimal policy ⇡, which is the ulti-
mate goal of RL. A major dichotomy in reinforcement learning is that of model-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

508 CHAPTER 11. REINFORCEMENT LEARNING

Actor
Critic

Policy Iteration

Value Iteration

502 CHAPTER 11. REINFORCEMENT LEARNING

The Policy

An RL agent senses the state of its environment s and takes actions a through
a policy ⇡ that is optimized through learning to maximize future rewards r.
Reinforcement learning is often formulated as an optimization problem to learn
a policy ⇡(s, a),

⇡(s, a) = Pr (a = a | s = s) , (11.1)

which is a probability of taking action a given state s, to maximize the total
future rewards. In the simplest formulation, the policy may be a look-up table
that is defined on the discrete state and action spaces S and A, respectively.
However, for most problems, this becomes prohibitively expensive, and ⇡ must
be represented as an approximate function that is parameterized by ✓:

⇡(s, a) ⇡ ⇡(s, a, ✓). (11.2)

Often, this parameterized function will be denoted ⇡✓(s, a). Function approxi-
mation is the basis of deep reinforcement learning in Sec. 11.4, where it is pos-
sible to represent these complex functions using deep neural networks.

Note that in the literature, there is often an abuse of notation, where ⇡(s, a)
is used to denote the action taken, rather than the probability density of taking
an action a given a state observation s. In the case of a deterministic policy,
such as a greedy policy, then it may be possible to use a = ⇡(s) to represent
the action taken. We will attempt to be clear throughout when choosing one
convention over another.

The Environment: a Markov Decision Process (MDP)

In general, the measured state of the system may be a partial measurement of a
higher-dimensional environmental state that evolves according to a stochastic,
nonlinear dynamical system. However, for simplicity, most introductions to RL
assume that the state evolves according to a Markov decision process (MDP),
so that the probability of the system occurring in the current state is determined
only by the previous state. We will begin with this simple formulation, as it is
easier to understand many key principles, although we note that this can and
should be generalized. However, even though it is often assumed that the state
evolves according to an MDP, it is often the case that this model is not known,
leading to model-free RL strategies. Similarly, when a model is not known, it
may be possible to first learn an MDP using data-driven methods and then use
this for model-based reinforcement learning.

An MDP consists of a set of states S , a set of actions A, and a set of rewards
R, along with the probability of transitioning from state sk at time tk to state
sk+1 at time tk+1 given action ak,

P (s0, s, a) = Pr (sk+1 = s
0 | sk = s, ak = a) , (11.3)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

502 CHAPTER 11. REINFORCEMENT LEARNING

The Policy

An RL agent senses the state of its environment s and takes actions a through
a policy ⇡ that is optimized through learning to maximize future rewards r.
Reinforcement learning is often formulated as an optimization problem to learn
a policy ⇡(s, a),

⇡(s, a) = Pr (a = a | s = s) , (11.1)

which is a probability of taking action a given state s, to maximize the total
future rewards. In the simplest formulation, the policy may be a look-up table
that is defined on the discrete state and action spaces S and A, respectively.
However, for most problems, this becomes prohibitively expensive, and ⇡ must
be represented as an approximate function that is parameterized by ✓:

⇡(s, a) ⇡ ⇡(s, a, ✓). (11.2)

Often, this parameterized function will be denoted ⇡✓(s, a). Function approxi-
mation is the basis of deep reinforcement learning in Sec. 11.4, where it is pos-
sible to represent these complex functions using deep neural networks.

Note that in the literature, there is often an abuse of notation, where ⇡(s, a)
is used to denote the action taken, rather than the probability density of taking
an action a given a state observation s. In the case of a deterministic policy,
such as a greedy policy, then it may be possible to use a = ⇡(s) to represent
the action taken. We will attempt to be clear throughout when choosing one
convention over another.

The Environment: a Markov Decision Process (MDP)

In general, the measured state of the system may be a partial measurement of a
higher-dimensional environmental state that evolves according to a stochastic,
nonlinear dynamical system. However, for simplicity, most introductions to RL
assume that the state evolves according to a Markov decision process (MDP),
so that the probability of the system occurring in the current state is determined
only by the previous state. We will begin with this simple formulation, as it is
easier to understand many key principles, although we note that this can and
should be generalized. However, even though it is often assumed that the state
evolves according to an MDP, it is often the case that this model is not known,
leading to model-free RL strategies. Similarly, when a model is not known, it
may be possible to first learn an MDP using data-driven methods and then use
this for model-based reinforcement learning.

An MDP consists of a set of states S , a set of actions A, and a set of rewards
R, along with the probability of transitioning from state sk at time tk to state
sk+1 at time tk+1 given action ak,

P (s0, s, a) = Pr (sk+1 = s
0 | sk = s, ak = a) , (11.3)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

504 CHAPTER 11. REINFORCEMENT LEARNING

The Value Function

Given a policy ⇡, it is possible to define a value function that quantifies the
desirability of being in a given state:

V⇡(s) = E

X

k

�k
rk | s0 = s

!
, (11.8)

where E is the expected reward over the time steps k, subject to a discount rate
�. Often, the subscript ⇡ is omitted from the value function, in which case we
refer to the value function for the best possible policy:

V (s) = max
⇡

E
 1X

k=0

�k
rk | s0 = s

!
. (11.9)

One of the most important properties of the value function is that the value
at a state s may be written recursively as

V (s) = max
⇡

E

r0 +
1X

k=1

�k
rk | s1 = s

0

!
(11.10)

which implies that

V (s) = max
⇡

E (r0 + �V (s0)) , (11.11)

where s
0 is the next state after s. This is true for s

0 = sk+1 and s = sk for all k.
This is known as Bellman’s equation, and is a statement of Bellman’s principle of
optimality, which is a central result that enables modern RL. Given the value
function, it is possible to extract the optimal policy as

⇡ = argmax
⇡

E (r0 + �V (s0)) , (11.12)

Goals and Challenges of Reinforcement Learning
Learning the policy ⇡, the value function V , or jointly learning both, is a cen-
tral challenge in RL. Depending on the assumed structure of ⇡, the size and
evolution dynamics of S , and the reward landscape R, determining an optimal
policy may range from a closed form optimization to a rather high-dimensional
unstructured optimization. Thus a large number of trials must be evaluated in
order to determine an optimal policy.

Although RL is typically formulated within the mathematical framework
of MDPs, many real world applications do not satisfy these assumptions, so
that the state evolution depends on the past history of the state or on hidden

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Markov Decision Process

Model-based RL Model-free RL

Gradient based

Gradient free
Off Policy

Dynamic programming
& Bellman optimality

Q Learning

On Policy

SARSA

TD(0)

TD() MC� �
TD-�

11.4. DEEP REINFORCEMENT LEARNING 519

respect to ✓

r✓R⌃,✓ =
X

s2S

µ�(s)
X

a2A

Q(s, a)r✓⇡✓(s, a) (11.34a)

=
X

s2S

µ�(s)
X

a2A

⇡✓(s, a)Q(s, a)
r✓⇡✓(s, a)

⇡✓(s, a)
(11.34b)

=
X

s2S

µ�(s)
X

a2A

⇡✓(s, a)Q(s, a)r✓ log (⇡✓(s, a)) (11.34c)

= E (Q(s, a)r✓ log (⇡✓(s, a))) . (11.34d)

Then the policy parameters may be updated as

✓new = ✓old + ↵r✓R⌃,✓, (11.35)

where ↵ is a the learning weight; note that ↵ may be replaced with a vector
of learning weights for each component of ✓. There are several approaches to
approximating this gradient, including through finite differences, the REIN-
FORCE algorithm [770], and natural policy gradients [377].

11.4 Deep Reinforcement Learning

Deep reinforcement learning is one of the most exciting areas of machine learn-
ing and of control theory, and it is one of the most promising avenues of re-
search towards generalized artificial intelligence. Deep learning has revolu-
tionized our ability to represent complex functions from data, providing a set
of architectures for achieving human level performance in complex tasks such
as image recognition and natural language processing. Classic reinforcement
learning suffers from a representation problem, as many of the relevant func-
tions, such as the policy ⇡, the value function V , and the quality function Q,
may be exceedingly complex functions defined over a very high dimensional
state and action space. Indeed, even for simple games, such as the 1972 Atari
game Pong, the black and white screen at standard resolution 336 ⇥ 240 has
over 1024,000 possible discrete states, making it infeasible to represent any of
these functions exactly without approximation. Thus, deep learning provides
a powerful tool for improving these representations. It is possible to use deep
learning in several different ways to approximate the various functions used
in RL, or to model the environment more generally. Typically the central chal-
lenge is in identifying and representing key features in a high-dimensional state
space. For example, the policy a, s may now be approximated by

⇡(s, a) ⇡ ⇡(s, a, ✓), (11.36)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Policy Gradient Optimization

11.2. MODEL-BASED OPTIMIZATION AND CONTROL 511

with zeros or at random. Then, for all states s 2 S , the value function is updated
by returning the maximum value at that state across all actions a 2 A, holding
the value function fixed at all other states s

0 2 S\s:

V (s) = max
a

X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.15)

This iteration is repeated until a convergence criterion is met.
After the value function converges, it is possible to extract the optimizing

policy ⇡:

⇡(s, a) = argmax
a

X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.16)

Although value iteration typically requires less steps per iteration, policy
iteration often converges in less iterations. This may be due to the fact that the
value function is often more complex than the policy function, requiring more
parameters to optimize over.

Note that the value function in RL typically refers to a discounted sum of
future rewards that should be maximized, while in nonlinear control it refers
to an integrated cost that should be minimized. The phrase value function is
particularly intuitive when referring to accumulated rewards in the economic
sense, as it quantifies the value of being in a given state. However, in the case
of nonlinear control theory, the value function is more accurately thought of as
quantifying the numerical value of the cost function evaluated on the optimal
trajectory. This notation can be confusing, and is worth careful consideration
depending on the context.

Quality function
Both policy iteration and value iteration rely on the quality function Q(s, a),
which is defined as

Q(s, a) = E (R(s0, s, a) + �V (s0)) (11.17a)

=
X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.17b)

In a sense, the optimal policy ⇡(s, a) and the optimal value function V (s, a)
contain redundant information, as one can be determined from the other via
the quality function Q(s, a):

⇡(s, a) = argmax
a

Q(s, a) (11.18a)

V (s) = max
a

Q(s, a). (11.18b)

This formulation will be used for model-free Q-learning [757, 734, 244] in Sec-
tion 11.3.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Learn a Model!
Deep RL

�

Deep
Policy

Network

DQN
DDQN

Optimal Control & HJB

530 CHAPTER 11. REINFORCEMENT LEARNING

Hamilton-Jacobi-Bellman equation
In optimal control, the goal is often to find a control input u(t) to drive a dy-
namical system

d

dt
x = f(x(t),u(t), t) dt (11.42)

to follow a trajectory x(t) that minimizes a cost function

J(x(t),u(t), t0, tf) =

Z tf

t0

L(x(⌧),u(⌧) d⌧ + Q(x(tf), tf). (11.43)

Note that this formulation in (11.43) generalizes the LQR cost function in (8.47);
now the immediate cost function L(x,u) and the terminal cost Q(x(tf), tf) may
be non-quadratic functions. Often there are also constraints on the state x and
control u, which determine what solutions are admissible.

Given an initial state x0 = x(t0) at t0, an optimal control u(t) will result in
an optimal cost function J . We may define a value function V (x, t0, tf) that de-
scribes the total integrated cost starting at this position x assuming the control
law is optimal:

V (x(t0), t0, tf) = min
u(t)

J(x(t),u(t), t0, tf) (11.44)

where x(t) is the solution to (11.42) for the optimal u(t). Notice that the value
function is no longer a function of the control u(t), as this has been optimized
over, and it is also not a function of a trajectory x(t), but rather of an initial
state x0, as the remainder of the trajectory is entirely specified by the dynamics
and the optimal control law. The value function is often called the cost-to-go in
control theory, as the value function evaluated at any point x(t) on an optimal
trajectory will represent the remaining cost associated with continuing to enact
this optimal policy until the final time tf . In fact, this is a statement of Bellman’s
optimality principle, that the value function V remains optimal starting with
any point on an optimal trajectory.

The Hamilton-Jacobi-Bellman3 (HJB) equation establishes a partial differen-
tial equation that must be satisfied by the value function V (x(t), t, tf) at every
intermediate time t 2 [t0, tf]:

�@V

@t
= min

u(t)

 ✓
@V

@x

◆T

f(x(t),u(t)) + L(x(t),u(t))

!
. (11.45)

3Kalman recognized that the Bellman optimal control formulation was a generalization of
the Hamilton-Jacobi equation from classical mechanics to handle stochastic input–output sys-
tems. These formulations all involve the calculus of variations, which traces its roots back to
the Brachistichrone problem of Johann Bernoulli.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

Nonlinear Dynamics
Deep
MPC

Figure 11.3: Rough categorization of reinforcement learning techniques. This
organization is not comprehensive, and some of the lines are becoming blurred.
The first major dichotomy is between model-based and model-free RL tech-
niques. Next, within model-free RL, there is a dichotomy between gradient-
based and gradient-free methods. Finally, within gradient-free methods, there
is a dichotomy between on-policy and off-policy methods.

based RL versus model-free RL. When there is a known model for the environ-
ment, there are several strategies for learning either the optimal policy or value
function through what is known as policy iteration or value iteration, which are
forms of dynamic programming using the Bellman equation. When there is
no model for the environment, alternative strategies, such as Q-learning, must
be employed. The reinforcement learning optimization problem may be par-
ticularly challenging for high-dimensional systems with unknown, nonlinear,
stochastic dynamics and sparse and delayed rewards. All of these techniques
may be combined with function approximation techniques, such as neural net-
works, for approximating the policy ⇡, the value function V , or the quality
function Q (discussed in subsequent sections), making them more useful for
high-dimensional systems. These model-based, model-free, and deep learn-
ing approaches will be discussed below. Note that this section only provides
a glimpse of the many optimization approaches used to solve RL problems, as
this is a vast and rapidly growing field.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.2. MODEL-BASED OPTIMIZATION AND CONTROL 509

11.2 Model-Based Optimization and Control

This section provides a high-level overview of some essential model-based op-
timization and control techniques. Some don’t consider these techniques to
be reinforcement learning, as they don’t involve learning an optimal strategy
through trial-and-error experience. However, they are closely related. It is pos-
sible to learn a model through trial-and-error, and then use this model with
these techniques, which would be considered RL.

For the simplified case of a known model that is a finite MDP, it is possible
to learn either the optimal policy or value function through what is known as
policy iteration or value iteration, which are forms of dynamic programming us-
ing the Bellman equation. Dynamic programming [70, 71, 83, 735, 81, 82, 618]
is a powerful approach that is used for general optimal nonlinear control and
reinforcement learning, among other tasks. These algorithms provide a math-
ematically simplified optimization framework that helps to introduce essential
concepts used throughout.

More generally, RL optimization is related to the field of optimal nonlinear
control, which has deep roots in variational theory going back to Bernoulli and
the Brachistochrone problem nearly four centuries ago. We will explore this
connection to nonlinear control theory in Sec. 11.6.

Dynamic programming
Dynamic programming is a mathematical framework introduced by Richard
E. Bellman [70, 71] to solve large multi-step optimization problems, such as
those found in decision making and control. Policy iteration and value itera-
tion, discussed below, are two examples of the use of dynamic programming
in reinforcement learning. To solve these multi-step optimizations, dynamic
programming reformulates the large optimization problem as a recursive opti-
mization in terms of smaller sub-problems, so that only a local decision need
be optimized. This approach relies on Bellman’s principle of optimality, which
states that a large multi-step control policy must also be locally optimal in every
sub-sequence of steps.

The Bellman equation in (11.11) indicates that the large optimization prob-
lem over an entire state-action trajectory (sk, ak) may be broken into a recursive
optimization at each point along the trajectory. As long as the value function
is known at the next point s

0, it is possible to solve the optimization at point s

simply by optimizing the policy ⇡(s, a) at this point. Of course, this assumes
that the value function is known at all possible next states sk+1, which is a func-
tion of the current state sk, the current action ak, and the dynamics governing
the system; this becomes even more complex for non-MDP dynamics, such as
the nonlinear control formulation in the next subsection. For even moderately

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

510 CHAPTER 11. REINFORCEMENT LEARNING

large problems, this suffers from the curse of dimensionality, and approximate
solution methods must be employed.

When tractable, dynamic programming (i.e., the process of breaking a large
problem into smaller overlapping sub-problems) provides a globally optimal
solution. There are two main approaches to dynamic programming, referred to
as top down and bottom up:

Top down: The top-down approach involves maintaining a table of sub-
problems that are referred to when solving larger problems. For a new
problem, the table is checked to see if the relevant sub-problem has been
solved. If so, it is used, and if not, the sub-problem is solved. This tabular
storage is called memoization and becomes combinatorially complex for
many problems.

Bottom up: The bottom-up approach involves starting by solving the
smallest sub-problems first, and then combining these to form the larger
problems. This may be thought of as working backwards from every pos-
sible goal state, finding the best previous action to get there, then going
back two steps, then going back three steps, etc.

Although dynamic programming still represents a brute-force search through
all sub-problems, it is still more efficient than a naive brute-force search. In
some cases, it reduces the computational complexity to an algorithm that scales
linearly with the number of sub-problems, although this may still be combina-
torially large, as in the example of the game of chess. Dynamic programming
is closely related to divide-and-conquer techniques, such as quick sort, except
that divide-and-conquer applies to non-overlapping or non-recursive (i.e., inde-
pendent) sub-problems, while dynamic programming applies to overlapping,
or recursively interdependent sub-problems.

However, the recursive strategy suggests approximate solution techniques,
such as the alternating directions method, where a sub-optimal solution is ini-
tialized and the value function is iterated over. This will be discussed next.

Policy iteration
Policy iteration is a two step optimization procedure to simultaneously find an
optimal value function V⇡ and the corresponding optimal policy ⇡.

First, a candidate policy ⇡ is evaluated, resulting in the value function for
this fixed policy. This typically involves a brute force calculation of the value
function for this policy starting at many or all initial states. The policy may
need to be simulated for a long time depending on the reward delay and dis-
counting factor �.

Next, the value function is fixed, and the policy is optimized to improve the
expected rewards by taking different actions at a given state. This optimization

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.2. MODEL-BASED OPTIMIZATION AND CONTROL 511

relies on the alternative recursive formulation of the value function in (11.8)
due to Bellman’s equation (11.11):

V⇡(s) = E (R(s0, s, ⇡(s)) + �V⇡(s0)) (11.13a)

=
X

s0

P (s0 | s, ⇡(s)) (R(s0, s, ⇡(s)) + �V⇡(s0)) . (11.13b)

Note that in this expression, we have assumed a deterministic policy a = ⇡(s),
otherwise, (11.13b) would involve a second summation over a 2 A, with the
expression multiplied by ⇡(s, a).

It is then possible to fix V⇡(s0) and optimize over the policy in the first term.
In particular, the new deterministic optimal policy at the state s is given by:

⇡(s) = argmax
a2A

E (R(s0, s, a) + �V⇡(s0)) . (11.14)

Once the policy is updated, the process repeats, fixing this policy to update
the value function, and then using this updated value function to improve the
policy. The process is repeated until both the policy and the value function
converge to within a specified tolerance. It is important to note that this proce-
dure is both expensive and prone to finding local minima. It also resembles the
alternating descent method that is widely used in optimization and machine
learning.

The formulation in (11.13b) makes it clear that it may be possible to opti-
mize backwards from a state known to give a reward with high probability.
Additionally, this approach requires having a model for P and R to predict the
next state s

0, making this a model-based approach.

Value iteration
Value iteration is similar to policy iteration, except that at every iteration only
the value function is updated, and the optimal policy is extracted from this
value function at the end. First, the value function is initialized, typically either
with zeros or at random. Then, for all states s 2 S , the value function is updated
by returning the maximum value at that state across all actions a 2 A, holding
the value function fixed at all other states s

0 2 S\s:

V (s) = max
a

X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.15)

This iteration is repeated until a convergence criterion is met.
After the value function converges, it is possible to extract the optimizing

policy ⇡:

⇡(s, a) = argmax
a

X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.16)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

512 CHAPTER 11. REINFORCEMENT LEARNING

Although value iteration typically requires fewer steps per iteration, policy
iteration often converges in fewer iterations. This may be due to the fact that
the value function is often more complex than the policy function, requiring
more parameters to optimize over.

Note that the value function in RL typically refers to a discounted sum of
future rewards that should be maximized, while in nonlinear control it refers
to an integrated cost that should be minimized. The phrase value function is
particularly intuitive when referring to accumulated rewards in the economic
sense, as it quantifies the value of being in a given state. However, in the case
of nonlinear control theory, the value function is more accurately thought of as
quantifying the numerical value of the cost function evaluated on the optimal
trajectory. This notation can be confusing and is worth careful consideration
depending on the context.

Quality function
Both policy iteration and value iteration rely on the quality function Q(s, a),
which is defined as

Q(s, a) = E (R(s0, s, a) + �V (s0)) (11.17a)

=
X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.17b)

In a sense, the optimal policy ⇡(s, a) and the optimal value function V (s, a)
contain redundant information, as one can be determined from the other via
the quality function Q(s, a):

⇡(s, a) = argmax
a

Q(s, a) (11.18a)

V (s) = max
a

Q(s, a). (11.18b)

This formulation will be used for model-free Q-learning [757, 734, 244] in Sec-
tion 11.3.

11.3 Model-Free Reinforcement Learning and Q-Learning

Both policy iteration and value iteration above rely on the quality function
Q(s, a), which describes the joint desirability of a given state/action pair. Policy
iteration (11.14) and value iteration (11.15) are both model-based reinforcement
learning strategies, where it is assumed that the MDP model is known: each it-
eration requires a one-step look ahead, or model-based prediction of the next
state s

0 given the current state and action s and a. Based on this model, it is
possible to forecast and maximize over all possible actions.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.3. MODEL-FREE REINFORCEMENT LEARNING AND Q-LEARNING513

When a model is not available, there are several reinforcement learning ap-
proaches to learn effective decision and control policies to interact with the en-
vironment. Perhaps the most straightforward approach is to first learn a model
of the environment using some data-driven active learning strategy, and then
use the standard model-based approaches discussed earlier. However, this may
be infeasible for very large or particularly unstructured systems.

Q-learning is a leading model-free alternative, which learns the Q function
directly from experience, without requiring access to a model. Thus, it is pos-
sible to generalize many of the model-based optimization strategies above to
more unstructured settings, where a model is unavailable. The Q function has
the one-step look ahead implicitly built into its representation, without needing
to explicitly refer to a model. From this learned Q function, the optimal policy
and value function may be extracted as in (11.18).

Before discussing the mechanics of Q-learning in detail, it is helpful to in-
troduce several concepts, including Monte Carlo based learning and temporal
difference learning.

Monte Carlo learning
In the simplest approach to learning from experience, the value function V or
quality function Q may be learned through a Monte Carlo random sampling
of the state-action space through repeated evaluation of many policies. Monte
Carlo approaches require that the RL task is episodic, meaning that the task has
a defined start and terminates after a finite number of actions, resulting in a
total cumulative reward at the end of the episode. Games are good examples
of episodic RL tasks.

In Monte Carlo learning, the total cumulative reward at the end of the task
is used to estimate either the value function V or the quality function Q by
dividing the final reward equally among all of the intermediate states or state-
action pairs, respectively. This is the simplest possible approach to deal with
the credit assignment problem, as credit is shared equally among all interme-
diate steps. However, for this reason, Monte Carlo learning is typically quite
sample inefficient, especially for problems with sparse rewards.

Consider the case of Monte Carlo learning of the value function. Given
a new episode consisting of n steps, the cumulative discounted reward R⌃ is
computed

R⌃ =
nX

k=1

�k
rk (11.19)

and used to update the value function at every state sk visited in this episode:

V new(sk) = V old(sk) +
1

n

�
R⌃ � V old(sk)

�
8k 2 [1, · · · , n]. (11.20)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

514 CHAPTER 11. REINFORCEMENT LEARNING

This incremental update, weighted by 1/n, is equivalent to waiting until the
end of the episode and then updating the value function at all states along the
trajectory with an equal share of the reward. Similarly, in the case of Monte
Carlo learning of the Q function, the discounted reward R⌃ is used to update
the Q function at every state-action pair (sk, ak) visited in this episode:

Qnew(sk, ak) = Qold(sk, ak) +
1

n

�
R⌃ � Qold(sk, ak)

�
8k 2 [1, · · · , n]. (11.21)

In the limit of infinite data and infinite exploration, this approach will even-
tually sample all possible state-action pairs and converge to the true quality
function Q. However, in practice, this often amounts to an intractable brute-
force search.

It is also possible to discount past experiences by introducing a learning rate
↵ 2 [0, 1] and using this to update the Q function:

Qnew(sk, ak) = Qold(sk, ak) + ↵
�
R⌃ � Qold(sk, ak)

�
8k 2 [1, · · · , n]. (11.22)

Larger learning rates ↵ > 1/n will favor more recent experience.
There is a question about how to initialize the many episodes required to

learn with Monte Carlo. When possible, the episode will be initialized ran-
domly at every initial state or state-action pair, providing a random sampling;
however, this might not be possible for many learning tasks. Typically, Monte
Carlo learning is performed on-policy, meaning that the optimal policy is en-
acted, based on the current value or quality function, and the information from
this locally optimal policy is used for the update. It is also possible to promote
exploration by adding a small probability of taking a random action, rather
than the action dictated by the optimal policy. Finally, there are off-policy
Monte Carlo methods, but in general, they are quite inefficient or unfeasible.

Temporal difference (TD) learning
Temporal different learning [694, 711, 202, 712, 105], known as TD learning, is
another sample-based learning strategy. In contrast to Monte Carlo learning,
TD learning is not restricted to episodic tasks, but instead learns continuously
by bootstrapping based on current estimates of the value function V or quality
function Q, as in dynamic programming (e.g., as in value iteration in (11.15)).
TD learning is designed to mimic learning processes in animals, where time
delayed rewards are often learned through environmental cues that act as sec-
ondary reinforcers preceding the delayed reward; this is most popularly under-
stood through Pavlov’s dog [563]. Thus, TD learning is typically more sample
efficient than Monte Carlo learning, resulting in decreased variance, but at the
cost of a bias in the learning due to the bootstrapping.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.3. MODEL-FREE REINFORCEMENT LEARNING AND Q-LEARNING515

TD(0): 1-step look ahead

To understand TD learning, it is helpful to begin with the simplest algorithm:
TD(0). In TD(0), the estimate of the one-step-ahead future reward is used to
update the current value function.

Given a control trajectory generated through an optimal policy ⇡, the value
function at state sk is given by

V (sk) = E (rk + �V (sk+1)) . (11.23)

Thus, in the language of Bayesian statistics, rk+�V (sk+1) is an unbiased estimator
for V (sk).

For non-optimal policies ⇡, this same idea may be used to update the value
function based on the value function one step in the future:

V new(sk) = V old(sk) + ↵

TD errorz }| {0

B@rk + �V old(sk+1)| {z }
TD target estimates R⌃

�V old(sk)

1

CA . (11.24)

Instead of using a model to predicts sk+1, which is required to evaluate V (sk+1),
it is possible to wait until the next step is actually taken and retroactively adjust
the value function. Notice that this is very similar to optimization of the Bell-
man equation using dynamic programming but with retroactive updates based
on sampled data rather than proactive updates based on a model prediction.

In the TD(0) update above, the expression R⌃ = rk + �V (sk+1) is known
as the TD target, as it is the estimate for the future reward, analogous to R⌃ in
Monte Carlo learning of the Q function in (11.22). The difference between this
target and the previous estimate of the value function is the TD error, and it
is used to update the value function, just as in Monte Carlo learning, with a
learning rate ↵.

TD(n): n-step look ahead

Other temporal difference algorithms can be developed, based on multi-step
look-aheads into the future. For example, TD(1) uses a TD target based on two
steps into the future

rk + �rk+1 + �2V (sk+2) (11.25)

and, TD(n) uses a TD target based on n + 1 steps into the future

R(n)
⌃ = rk + �rk+1 + �2

rk+2 + · · · + �n
rk+n + �n+1V (sk+n+1) (11.26a)

=
nX

j=0

�j
rk+j + �n+1V (sk+n+1). (11.26b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

516 CHAPTER 11. REINFORCEMENT LEARNING

Again, there does not need to be a model for these future states, but instead,
the value function may be retroactively adjusted based on the actual sampled
trajectory and rewards. Note that in the limit that an entire episode is used,
TD(n) converges to the Monte Carlo learning approach.

TD-�: Weighted look ahead

An important variant of the TD learning family is TD-�, which was introduced
by Sutton [694]. TD-� creates a TD target R�

⌃ that is a weighted average of the
various TD(n) targets R(n)

⌃ . The weighting is given by:

R�
⌃ = (1 � �)

1X

k=1

�n�1R(n)
⌃ (11.27)

and the update equation is

V new(sk) = V old(sk) + ↵
�
R�

⌃ � V old(sk)
�
. (11.28)

TD-� was used for an impressive demonstration in the game of Backgammon
by Tesauro in 1995 [712].

TD learning provides one of the strongest connections between reinforce-
ment learning and learning in biological systems. These neural circuits are be-
lieve to estimate the future reward, and feedback is based on the difference
between the expected reward and the actual reward, which is closely related
to the TD error. In fact, there are specific neurotransmitter feedback loops that
strengthen connections based on proximity of their firing to a dopamine re-
ward signal [657?]. The closer the proximity in time between an action and a
reward, the stronger the feedback.

Bias-variance tradeoff

Monte Carlo learning and TD learning exemplify the bias-variance tradeoff in
machine learning. Monte Carlo learning typically has high variance but no
bias, while TD learning has lower variance but introduces a bias because of
the bootstrapping. Although the true TD target rk + �V (sk+1) is an unbiased
estimate of V (sk) for an optimal policy ⇡, the sampled TD target is a biased
estimate, because it uses sub-optimal actions and the current imperfect estimate
of the value function.

SARSA: State–action–reward–state–action learning
SARSA is a popular TD algorithm that is used to learn the Q function on-policy.
The Q update equation in SARSA(0) is nearly identical to the V update equation

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.3. MODEL-FREE REINFORCEMENT LEARNING AND Q-LEARNING517

(11.24) in TD(0):

Qnew(sk, ak) = Qold(sk, ak) + ↵
�
rk + �Qold(sk+1, ak+1) � Qold(sk, ak)

�
. (11.29)

There are SARSA variants for all of the TD(n) algorithms, based on the n step
TD target:

R(n)
⌃ = rk + �rk+1 + �2

rk+2 + · · · + �n
rk+n + �n+1Q(sk+n+1, ak+n+1) (11.30a)

=
nX

j=0

�j
rk+j + �n+1Q(sk+n+1, ak+n+1). (11.30b)

In this case, the SARSA(n) update equation is given by

Qnew(sk, ak) = Qold(sk, ak) + ↵
⇣
R(n)

⌃ � Qold(sk, ak)
⌘

. (11.31)

Note that this is on-policy because the actual action sequence ak, ak+1, · · · , ak+n+1

has been used to receive the rewards r and evaluate the n + 1 step Q function
Q(sk+n+1, ak+n+1).

Q-Learning
We are now ready to discuss Q-learning [757, 734, 244], which is one of the most
central approaches in model-free RL. Q-learning is essentially an off-policy TD
learning scheme for the Q function. In Q-learning, the Q update equation is

Qnew (sk, ak) = Qold (sk, ak) + ↵
⇣
rk + � max

a
Q (sk+1, a) � Qold (sk, ak)

⌘
.

(11.32)

Notice that the only difference between Q-learning and SARSA(0) is that SARSA(0)
uses Q(sk+1, ak+1) for the TD target, while Q-learning uses maxa Q(sk+1, a) for
the TD target. Thus, SARSA(0) is considered on-policy because it uses the ac-
tion ak+1 based on the actual policy: ak+1 = ⇡(sk+1). In contrast, Q-learning is
off-policy because it uses the optimal a for the update based on the current es-
timate for Q, while taking a different action ak+1 based on a different behavior
policy. Thus, Q-learning may take sub-optimal actions ak+1 to explore, while
still using the optimal action a to update the Q function.

Generally, Q-learning will learn a more optimal solution faster than SARSA,
but with more variance in the solution. However, SARSA will typically yield
more cumulative rewards during the training process, since it is on-policy. In
safety critical applications, such as self-driving cars or other applications where
there can be catastrophic failure, SARSA will typically learn less optimal solu-
tions, but with a better safety margin, since it is maximizing on-policy rewards.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

518 CHAPTER 11. REINFORCEMENT LEARNING

Q-learning applies to discrete action spaces A and state spaces S governed
by a finite MDP. The Q function is classically represented as a table of Q values
that is updated through some iteration based on new information as a policy
is tested and evaluated. However, this tabular approach doesn’t scale well to
large state spaces, and so typically function approximation is used to represent
the Q function, such as a neural network in deep Q-learning. Even if the ac-
tion and state spaces are continuous, as in the pendulum on a cart system, it
is possible to discretize and then apply Q-learning. In addition to being model
free, Q-learning is also referred to as off-policy RL, as it does not require that an
optimal policy is enacted, as in policy iteration and value iteration. Off-policy
learning is more realistic in real-world applications, enabling the RL agent to
improve when its policy is sub-optimal and by watching and imitating other
more skilled agents. Q-learning is especially good for games, such as backgam-
mon, chess, and go. In particular, deep Q-learning, which approximates the
Q function using a deep neural network, has been used to surpass the world
champions in these challenging games.

Experience replay and imitation learning

Because Q-learning is off-policy, it is possible to learn from action-state se-
quences that do not use the current optimal policy. For example, it is possible
to store past experiences, such as previously played games, and replay these
experiences to further improve the Q function.

In an on-policy strategy, such as SARSA, using actions that are sub-optimal,
based on the current optimal policy, will degrade the Q function, since the TD
target will be a flawed estimate of future rewards based on a sub-optimal ac-
tion. However, in Q-learning, since the action is optimized over the current Q
function in the update, it is possible to learn from experience resulting from
sub-optimal actions. This also makes it possible to learn from watching other,
more experienced agents, which is related to imitation learning [637, 337, 351,
222].

Experience replay is deeply intuitive, as it is closely related to how we learn,
through recalling past experiences in the light of new knowledge (i.e., an up-
dated Q function). Similarly, imitation learning is perhaps one of the most fun-
damental first steps in biological learning.

Exploration vs exploitation: ✏-greedy actions

It is important to introduce an element of random exploration into Q-learning,
and there are several techniques. One approach is the ✏-greedy algorithm to
select the next action. In this approach, the agent takes the current optimal
action ak = maxa Q(sk, a), based on the current Q function, with probability
1 � ✏, where ✏ 2 [0, 1]. With probability ✏, the agent takes a random action.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.3. MODEL-FREE REINFORCEMENT LEARNING AND Q-LEARNING519

Thus, the agent balances exploration with the random actions and exploitation
with the optimal actions. Larger ✏ promote more random exploration.

Typically, the value of ✏ will be initialized to a large value, often ✏ = 1.
Throughout the course of training, ✏ decays so that as the Q function improves,
the agent increasingly takes the current optimal action. This is closely related
to simulated annealing from optimization, which mimics the process of metal
finding a low-energy state through a specific cooling schedule.

Policy Gradient Optimization
Policy gradients [696, 377, 672] are one of the most common and powerful tech-
niques to optimize a policy that is parameterized, as in (11.2). When the policy
⇡ is parameterized by ✓, it is possible to use gradient optimization on the pa-
rameters to improve the policy much faster than through traditional iteration.
The parameterization may be a multi-layer neural network, in which case this
would be a deep policy network, although other representations and function ap-
proximations may be useful. In any case, instead of extracting the policy as the
argument maximizing the value or quality functions, it is possible to directly
optimize the parameters ✓, for example through gradient descent or stochas-
tic gradient descent. The value function V⇡(s), depending on a policy ⇡ then
becomes V (s, ✓) and a similar modification is possible for the quality function
Q.

The total estimated reward is given by

R⌃,✓ =
X

s2S

µ✓(s)
X

a2A

⇡✓(s, a)Q(s, a), (11.33)

where µ✓ is the asymptotic steady state of the MDP given a policy ⇡✓ param-
eterized by ✓. It it then possible to compute the gradient of the total estimated
reward with respect to ✓

r✓R⌃,✓ =
X

s2S

µ✓(s)
X

a2A

Q(s, a)r✓⇡✓(s, a) (11.34a)

=
X

s2S

µ✓(s)
X

a2A

⇡✓(s, a)Q(s, a)
r✓⇡✓(s, a)

⇡✓(s, a)
(11.34b)

=
X

s2S

µ✓(s)
X

a2A

⇡✓(s, a)Q(s, a)r✓ log (⇡✓(s, a)) (11.34c)

= E (Q(s, a)r✓ log (⇡✓(s, a))) . (11.34d)

Then the policy parameters may be updated as

✓new = ✓old + ↵r✓R⌃,✓, (11.35)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

520 CHAPTER 11. REINFORCEMENT LEARNING

where ↵ is a the learning weight; note that ↵ may be replaced with a vector
of learning weights for each component of ✓. There are several approaches to
approximating this gradient, including through finite differences, the REIN-
FORCE algorithm [770], and natural policy gradients [377].

11.4 Deep Reinforcement Learning

Deep reinforcement learning is one of the most exciting areas of machine learn-
ing and of control theory, and it is one of the most promising avenues of re-
search towards generalized artificial intelligence. Deep learning has revolu-
tionized our ability to represent complex functions from data, providing a set
of architectures for achieving human level performance in complex tasks such
as image recognition and natural language processing. Classic reinforcement
learning suffers from a representation problem, as many of the relevant func-
tions, such as the policy ⇡, the value function V , and the quality function Q,
may be exceedingly complex functions defined over a very high dimensional
state and action space. Indeed, even for simple games, such as the 1972 Atari
game Pong, the black and white screen at standard resolution 336 ⇥ 240 has
over 1024,000 possible discrete states, making it infeasible to represent any of
these functions exactly without approximation. Thus, deep learning provides
a powerful tool for improving these representations.

It is possible to use deep learning in several different ways to approximate
the various functions used in RL, or to model the environment more generally.
Typically the central challenge is in identifying and representing key features
in a high-dimensional state space. For example, the policy ⇡(a, s) may now be
approximated by

⇡(s, a) ⇡ ⇡(s, a, ✓), (11.36)

where ✓ represent the weights of a neural network.
This pairing of deep learning for representations with reinforcement learn-

ing for decision making and control has resulted in dramatic improvements
to our capabilities of reinforcement learning. For example, Fig. 11.4 shows a
simple policy network designed to play Pong, and Fig. 11.5 shows a more gen-
eral deep convolutional neural network architecture used to develop a deep Q
network to play Atari games [519].

Much of what is discussed in this section is also relevant for other function
approximation techniques besides deep learning. For example, policy gradi-
ents may be computed and used for gradient-based optimization using other
representations, and there is a long history before deep learning [696, 377]. That
said, many of the most exciting and impressive recent demonstrations of RL
leverage the full power of deep learning, and so we present these innovations
in this context.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.4. DEEP REINFORCEMENT LEARNING 521

Figure 11.4: Deep policy network to encode the probability of moving up in
the game of Pong. Reproduced with permission from Andrej Karpathy’s Blog “Deep
Reinforcement Learning: Pong from Pixels” at http://karpathy.github.io/
2016/05/31/rl/.

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learningprocedure throughout—takinghigh-dimensionaldata (210|160
colour video at 60Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputswithonlyveryminimalpriorknowledge (that is,merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradientdescent in a stablemanner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional humangames tester playingunder controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional humangames tester across the set of 49games, achievingmore
than75%of the human score onmore thanhalf of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in theMethods. The input to the neural
network consists of an 843 843 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

Figure 11.5: Convolutional structure of deep Q network used to play Atari
games. Reproduced with permission from [519].

Deep Q-learning

Many of the most exciting advances in the past decade have involved some
variation of deep Q-learning, which uses deep neural networks to represent the
quality function Q. As with the policy in (11.36), it is possible to approximate

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/

522 CHAPTER 11. REINFORCEMENT LEARNING

the Q function through some parameterization ✓

Q(s, a) ⇡ Q(s, a, ✓), (11.37)

where ✓ represents the weights of a deep neural network. In this represen-
tation, the training loss function is directly related to the standard Q-learning
update in (11.32):

L = E
⇣

rk + � max
a

Q(sk+1, ak+1, ✓) � Q(sk, ak, ✓)
⌘2
�

. (11.38)

The first part of the loss function, rk + � maxa Q(sk+1, ak+1, ✓), is the temporal
difference target from before, and the second part, Q(sk, ak, ✓), is the prediction.

Deep reinforcement learning based on a deep Q network (DQN) was in-
troduced by Mnih et al. [519] to play Atari games. Specifically, this network
used a deep convolutional neural network to represent the Q function, where
the inputs were the Atari screen, as shown in Fig. 11.5. In this original paper,
both the Q functions in (11.38) were represented by the same network weights
✓. However, in a double DQN [742], different networks are used to represent
the target and prediction Q functions, which reduces bias due to inaccuracies
early in training. In double DQN, it may be necessary to fix the target network
for multiple training iterations of the prediction network before updating to
improve stability and convergence [264].

Experience replay is a critical component of training a DQN, which is possi-
ble because it is an off-policy RL algorithm. Short segments of past experiences
are used in batches for the stochastic gradient descent during training. More-
over, to place more importance on experiences with large model mismatch, it
is possible to weight past experiences by the magnitude of the TD error. This
process is known as prioritized experience replay [642].

Dueling deep Q networks (DDQNs) [756] are another important deep Q
learning architecture that are used to improve training when actions have a
marginal affect on the quality function. In particular, a DDQN splits the quality
function into the sum of a value function and an advantage function A(s, a),
which quantifies the additional benefit of a particular action over the value of
being in that state:

Q(s, a, ✓) = V (s, ✓1) + A(s, a, ✓2). (11.39)

The value and advantage networks have separate networks that are combined
to estimate the Q function.

There are a variety of other useful architectures for deep Q learning, with
more introduced regularly. For example, deep recurrent Q networks are promis-
ing for dynamic problems [323]. Advantage actor-critic networks, discussed in
the next section, combine the DDQN with deep policy networks.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.4. DEEP REINFORCEMENT LEARNING 523

Actor-critic networks
Actor-critic methods in reinforcement learning simultaneously learn a policy
function and a value function, with the goal of taking the best of both value-
based and policy-based learning. The basic idea is to have an actor, which
is policy-based, and a critic, which is value-based, and to use the temporal
difference signal from the critic to update the policy parameters. There are
many actor-critic methods that predate deep learning. For example, a simple
actor-critic approach would update the policy parameters ✓ in (11.36) using the
temporal difference error rk + �V (sk+1) � V (sk):

✓k+1 = ✓k + ↵ (rk + �V (sk+1) � V (sk)) . (11.40)

It is rather straightforward to incorporate deep learning into an actor-critic
framework. For example, in the advantage actor critic (A2C) network, the actor
is a deep policy network, and the critic is a DDQNs. In this case, the update is
given by

✓k+1 = ✓k + ↵r✓ ((log ⇡(sk, ak, ✓)) Q(sk, ak, ✓2)) . (11.41)

Challenges and Additional Techniques
There are several important innovations that are necessary to make reinforce-
ment learning tractable for even moderately challenging tasks. Two of the
biggest challenges in RL are: 1) high-dimensional state and action spaces, and
2) sparse and delayed rewards.

Many games, such as chess and go, have exceedingly large state spaces.
For example, Claude Shannon estimated the number of games of chess, known
as the Shannon number, at around 10120 in his famous paper “Programming a
computer for playing chess” [666]; this paper was a major inspiration for mod-
ern dynamic programming and reinforcement learning. Representing a value
or quality function, let alone sampling over these states, is beyond astronomi-
cally difficult. Thus, approximate representations of the value or quality func-
tions using approximation theory, such as deep neural networks, are necessary.

Sparse and delayed rewards represent the central challenge of reinforce-
ment learning, leading to the well-known credit assignment problem, which
we have seen multiple times at this point. The following techniques, includ-
ing reward shaping and hindsight experience replay, are leading techniques to
overcome the credit assignment problem.

Reward shaping

Perhaps the most standard approach for systems with sparse rewards is a tech-
nique called reward shaping. This involves designing customized proxy fea-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

524 CHAPTER 11. REINFORCEMENT LEARNING

tures that are indicative of a future reward and that may be used as an inter-
mediate reward signal. For example, in the game of chess, the relative point
count, where each piece is assigned a numeric value and added up (e.g., a
queen is worth 10 points, rooks are worth 5, knights and bishops are worth
3, and pawns are worth 1 point), is an example of a shaped reward that gives
an intermediate reward signal each time a piece is taken.

Reward shaping is quite common and can be very effective. However,
these rewards require expert human guidance to design, and this requires cus-
tomized effort for each new task. Thus, reward shaping is not a viable strat-
egy for a generalized artificial intelligence agent capable of learning multiple
games or tasks. In addition, reward shaping generally limits the upper end of
the agent’s performance to that of the human expert.

Hindsight experience replay

In many tasks, such as robotic manipulation, the goal is to move the robot or
an object from one location to another. For example, consider a robot arm that
is required to slide an object on a table from point A to point B. Without a de-
tailed physical model, or other prior knowledge, it is extremely unlikely that
a random control policy will result in the object actually reaching the desired
destination, so the rewards may be very sparse. It is possible to shape a re-
ward based on the distance of the object to the goal state, although this is not a
general strategy and suffers from the limitations discussed above.

Hindsight experience replay (HER) [22, 438] is a strategy that enriches the
reward signal by taking failed trials and pretending that they were successful at
a different task. This approach makes the reward structure much more dense,
and has the benefit of enabling the simultaneous learning of a whole family of
motion tasks.

HER is quite intuitive in the context of human learning, for example in the
case of tennis. Initially, it is difficult to aim the ball, shots often go wild when
learning. However, this provides valuable information about those muscle ac-
tions, which might be useful for future tasks. After lots of practice, it then
becomes possible to pick from different shots and place the ball more deliber-
ately.

Curiosity driven exploration

Another challenge with RL for large open-world environments is that the agent
may easily get stuck in a local minima, where it over-optimizes for a small re-
gion of state space. One approach to this problem is to augment the reward
signal with a novelty reward that is large in regions of state space that are not
well modeled. This is known as curiosity driven exploration [562], and it in-
volves an intrinsic curiosity module (ICM), which compares a forward model

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.5. APPLICATIONS AND ENVIRONMENTS 525

of the evolution of the state, or a latent representation of the state, with the ac-
tual observed evolution. The discrepancy between the model and the actual
dynamics is the novelty reward. When this difference is large, the agent be-
comes curious and explores this region more. There are similarities between
this approach and TD learning, and in fact, many of the same variations may
be implemented for curiosity driven exploration. The main difference is that in
TD learning, the reward discrepancy is used as feedback to improve the value
or quality function, while in curiosity driven exploration the discrepancy is
explicitly used as an additional reward signal. This is a clever approach to em-
bedding this fundamental behavior of intelligent biological learning systems,
to be curious and explore.

There are challenges when using this novelty reward for chaotic and stochas-
tically driven systems, where there are aspects of the state evolution that are
fundamentally unpredictable. A naive novelty reward would constantly pro-
vide positive incentive to explore these regions, since the forward model will
not improve. Instead, the authors in [562] overcome this challenge by predi-
cating novelty on the predictability of an outcome given the action using latent
features in an autoencoder, so only aspects of the future state that can be af-
fected by the agent’s actions are included in the novelty signal.

11.5 Applications and Environments

Here we provide a brief overview of some of the modern applications and suc-
cess stories of RL, along with some common environments.

OpenAI Gym
The OpenAI Gym is an incredible open source resource to develop and test
reinforcement learning algorithms in a wide range of environments. Fig. 11.6
shows a small selection of these systems. Example environments include

• Classic Atari video games: over 100 tasks on Atari 2600 games, including
asteroids, breakout, space invaders, and many others.

• Classic control benchmarks: tasks include balancing an inverted pendu-
lum on a cart; swing-up of a pendulum; swing-up of a double pendulum;
and driving up a hill with an underactuated system.

• Goal-based robotics [780]: tasks include pushing or fetching a block to a
goal position with a robot arm, with and without sliding after loss of con-
tact; robotic hand manipulation for reaching a pose or orienting various
objects.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

526 CHAPTER 11. REINFORCEMENT LEARNING

• MuJoCo [718]: tasks include multi-legged locomotion, running, hopping,
swimming, etc. within a fast physics simulator environment.

This wide range of environments and tasks provides an invaluable resource for
RL researchers, dramatically lowering the barrier to entry and facilitating the
benchmarking and comparison of innovations.

Classic board games
As discussed throughout this chapter, RL has developed tremendously over
the past half century, from a biologically inspired idea to a major field pushing
the forefront of efforts in generalized artificial intelligence. This progress can
be largely traced through the success of RL on increasingly challenging games,
where RL has learned to interact with and mimic humans, and eventually to
defeat our greatest grandmasters.

Many of the most fundamental advances in RL were either developed for
the purpose of playing games, or demonstrated on the most challenging games
of the time. These simple board games also make the struggles of machine
learning and artificial intelligence more relatable to humans2, as we can reflect
on our own experiences learning first how to play tic-tac-toe, then checkers,
and then eventually “real” games, such as backgammon, chess, and go. The
progression of RL capabilities roughly follows this progression of complexity,
with tic-tac-toe being essentially a homework exercise, checkers being the earli-
est real demonstration of RL by Arthur Samuel [628], and more complex games
such as backgammon [712] and eventually chess and go [670, 673] following.
Interestingly, about three decades passed between each of these definitive land-
marks. One of the next major landmarks is a generalist RL agent that can learn
to play multiple games [671], rather than specializing in only one task.

The success of DeepMind’s AlphaGo and AlphaGo Zero, depicted in Fig. 11.7,
demonstrates the remarkable power of modern RL. This system was a major
breakthrough in RL research, learning to beat the Grandmaster Lee Sedol 4-1
in 2016. However, AlphaGo relied heavily on reward shaping and expert guid-
ance, making it a custom solution, rather than a generalized learner. Its suc-
cessor, AlphaGo Zero, relied entirely on self-play, and was able to eventually
defeat the original AlphaGo decisively. AlphaGo was based largely on CNNs,
while AlphaGo Zero used a residual network (ResNet). ResNets are easier to
train, and AlphaGo Zero was one of the first concrete success stories that ce-
mented ResNets as a competitive architecture. AlphaGo Zero was trained in
40 days on 4 tensor processing units, in contrast to many advanced ML algo-
rithms that are trained for months on thousands of GPUs. Both AlphaGo and

2“A strange game. The only winning move is not to play. How about a nice game of chess?”
– WarGames, 1983

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.5. APPLICATIONS AND ENVIRONMENTS 527

Figure 11.6: The OpenAI Gym [121] (gym.openai.com) provides a flexible
simulation environment to test learning strategies. Examples include classic
Atari 2600 video games and simulated rule-based control environments, in-
cluding open world physics [718], and robotics [780]. Other examples include
classic control benchmarks.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

gym.openai.com

528 CHAPTER 11. REINFORCEMENT LEARNING

https://www.flickr.com/photos/erikbenson/25717574115

Figure 11.7: Reinforcement learning has demonstrated incredible performance
in recent expert tasks, such as AlphaGo defeating world champion Lee Sedol
in the game of Go [671] on March 19, 2016.

AlphaGo Zero are based on using deep learning to improve a Monte Carlo tree
search.

Video games

Some of the most impressive recent innovations in RL have involved scaling up
to larger input spaces, which are well-exemplified by the ability of RL to mas-
ter classic Atari video games [519]. In the case of Atari games, the pixel space
is processed using a CNN architecture, with human-level performance being
achieved mere years after the birth of modern deep learning for image classifi-
cation [423]. More recently, RL has been demonstrated on more sophisticated
games, such as StarCraft [747], which is a real-time strategy game; DeepMind’s
AlphaStar became a Grandmaster in 2019.

General artificial intelligence is one of the grand challenge problems in mod-
ern machine learning, whereby a learning agent is able to excel at multiple
tasks, as in biological systems. What is perhaps most impressive about recent
RL agents that learn video games is that the learning approach is general, so that
the same RL framework can be used to learn multiple tasks. There is evidence
that video games may improve performance in human surgeons [619, 478],
and it may be that future RL agents will master both robotic manipulation and
video games in a next stage of generalized AI.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.5. APPLICATIONS AND ENVIRONMENTS 529

Figure 11.8: Illustration of improved bipedal locomotion performance with
more generations of learning. Reproduced from Geijtenbeek et al. [277].

Physical systems

Although much of RL has been developed for board games and video games,
it is increasingly being used for various advanced modeling and control tasks
in physical systems. Physical systems, such as lasers [690] and fluids [595],
often require additional considerations, such as continuous state and action
spaces [601], and the need for certifiable solutions, such as trust regions [656],
for safety critical applications (e.g., transportation, autonomous flight, etc.).

There has been considerable work applying RL in the field of fluid dynam-
ics [132] for fluid flow control [308, 577, 594, 595], for example for bluff body
control [247] and controlling Rayleigh-Bénard convection [67]. RL has also been
applied to the related problem of navigation in a fluid environment [184, 86,
310], and more recently for turbulence modeling [543].

In addition to studying fluids, there is an extensive literature using RL to
develop control policies for real and simulated robotic systems that operate
primarily in a fluid environment, for example to learn how to fly and swim.
For example, some of the earliest work has involved optimizing the flight of
uninhabited aerial vehicles [395, 2, 710, 1, 785, 551, 603] with especially impres-
sive helicopter aerobatics [2]. Controlling the motion of fish [274, 275, 545, 745]
is another major area of development, including individual [274]and collective
motion [275, 545, 745]. Gliding and perching is another large area of develop-
ment [602, 603, 544].

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

530 CHAPTER 11. REINFORCEMENT LEARNING

Robotics and Autonomy
Robotics [404, 306] and autonomy [664, 627, 558, 604] are two of the largest ar-
eas of current research in RL. These both count as physical systems, as in the
section above, but deserve their own treatment, as these are major areas of in-
novation. In fact, both robotics and autonomy may be viewed as two of the
most pressing societal applications of machine learning in general, and rein-
forcement learning in particular, with self driving cars alone promising to re-
make the modern transportation and energy landscape. As with the discussion
of physical systems above, these are typically safety critical applications with
physical constraints [440, 708]. Figure 11.8 shows a virtual locomotion task that
involves learning physics in a robot walker.

11.6 Optimal Nonlinear Control

Reinforcement learning has considerable overlap with optimal nonlinear con-
trol, and historically they were developed in parallel under the same optimiza-
tion framework. Here we provide a brief overview of optimal nonlinear control
theory, which will provide a connection between the classic linear control the-
ory from Chapter 8 and dynamic programming to solve Bellman’s equations
used in this chapter. We have already seen optimal control in context of lin-
ear dynamics and quadratic cost functions in Section 8.4, resulting in the linear
quadratic regulator (LQR). Similarly, we have used Bellman’s equations to find
optimal policies in RL for systems governed by MDPs. A major goal of this
section is to provide a more general mathematical treatment of Bellman’s equa-
tions, extending these approaches to fully nonlinear optimal control problems.
However, this section is very technical and departs from the MDP notation
used throughout the rest of the chapter; it may be omitted on a first reading.
For more details, see the excellent text by Stengel [687].

Hamilton-Jacobi-Bellman equation
In optimal control, the goal is often to find a control input u(t) to drive a dy-
namical system

d

dt
x = f(x(t),u(t), t) dt (11.42)

to follow a trajectory x(t) that minimizes a cost function

J(x(t),u(t), t0, tf) = Q(x(tf), tf) +

Z tf

t0

L(x(⌧),u(⌧)) d⌧. (11.43)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.6. OPTIMAL NONLINEAR CONTROL 531

Note that this formulation in (11.43) generalizes the LQR cost function in (8.47);
now the immediate cost function L(x,u) and the terminal cost Q(x(tf), tf) may
be non-quadratic functions. Often there are also constraints on the state x and
control u, which determine what solutions are admissible.

Given an initial state x0 = x(t0) at t0, an optimal control u(t) will result in
an optimal cost function J . We may define a value function V (x, t0, tf) that de-
scribes the total integrated cost starting at this position x assuming the control
law is optimal:

V (x(t0), t0, tf) = min
u(t)

J(x(t),u(t), t0, tf), (11.44)

where x(t) is the solution to (11.42) for the optimal u(t). Notice that the value
function is no longer a function of the control u(t), as this has been optimized
over, and it is also not a function of a trajectory x(t), but rather of an initial
state x0, as the remainder of the trajectory is entirely specified by the dynamics
and the optimal control law. The value function is often called the cost-to-go in
control theory, as the value function evaluated at any point x(t) on an optimal
trajectory will represent the remaining cost associated with continuing to enact
this optimal policy until the final time tf . In fact, this is a statement of Bellman’s
optimality principle, that the value function V remains optimal starting with
any point on an optimal trajectory.

The Hamilton-Jacobi-Bellman3 (HJB) equation establishes a partial differen-
tial equation that must be satisfied by the value function V (x(t), t, tf) at every
intermediate time t 2 [t0, tf]:

�@V

@t
= min

u(t)

 ✓
@V

@x

◆T

f(x(t),u(t)) + L(x(t),u(t))

!
. (11.45)

To derive the HJB equation, we may compute the total time derivative of

3Kalman recognized that the Bellman optimal control formulation was a generalization of
the Hamilton-Jacobi equation from classical mechanics to handle stochastic input–output sys-
tems. These formulations all involve the calculus of variations, which traces its roots back to
the Brachistichrone problem of Johann Bernoulli.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

532 CHAPTER 11. REINFORCEMENT LEARNING

the value function V (x(t), t, tf) at some intermediate time t:

d

dt
V (x(t), t, tf) =

@V

@t
+

✓
@V

@x

◆T dx

dt
(11.46a)

= min
u(t)

d

dt

✓Z tf

0

L(x(⌧),u(⌧)) d⌧ + Q(x(tf), tf)

◆
(11.46b)

= min
u(t)

0

BBB@
d

dt

Z tf

0

L(x(⌧),u(⌧)) d⌧
| {z }

�L(x(t),u(t))

1

CCCA
(11.46c)

=) �@V

@t
= min

u(t)

 ✓
@V

@x

◆T

f(x,u) + L(x,u)

!
. (11.46d)

Note that the terminal cost does not vary with t, so it has zero time derivative.
The derivative of the integral of the instantaneous cost

R tf
t L(x(⌧),u(⌧)) d⌧ is

equal to �L(x(t),u(t)) by the first fundamental theorem of calculus. Finally, the
term (@V/@x)T

f(x,u) may be brought into the minimization argument, since V
is already defined as the optimal cost over u. The LQR optimal Riccati equation
is a special case of the HJB equation, and the vector of partial derivatives in
(@J/@x) serves the same role of the Lagrange multiplier co-state �. The HJB
equation may also be more intuitive in vector calculus notation

�@V

@t
= min

u(t)
(rV · f(x(t),u(t)) + L(x(t),u(t))) . (11.47)

The HJB formulation above relies implicitly on Bellman’s principle of opti-
mality, that for any point on an optimal trajectory x(t), the value function V is
still optimal for the remainder of the trajectory:

V (x(t), t, tf) = min
u

✓Z tf

t

L(x(⌧),u(⌧)) d⌧ + Q(x(tf), tf)

◆
. (11.48)

One outcome is that the value function can be decomposed as:

V (x(t0), t0, tf) = V (x(t0), t0, t) + V (x(t), t, tf). (11.49)

This makes it possible to take the total time derivative above. A more rigorous
derivation is possible using the calculus of variations.

The HJB equation is incredibly powerful, providing a PDE for the optimal
solution of general nonlinear control problems. Typically, the HJB equation is
solved numerically as a two-point boundary value problem, with boundary
conditions x(0) = x0 and V (x(tf), tf) = Q(x(tf), tf), for example using a shoot-
ing method. However, a nonlinear control problem with a three-dimensional

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.6. OPTIMAL NONLINEAR CONTROL 533

state vector x 2 R3 will result in a three-dimensional PDE. Thus, optimal non-
linear control based on the HJB equation typically suffers from the curse of
dimensionality. Phase-space clustering techniques have shown great promise
in reducing the effective state-space dimension for systems that evolve on a
low-dimensional attractor [376].

Discrete-time HJB and the Bellman equation
Bellman’s optimal control is especially intuitive for discrete-time systems, where
instead of optimizing over a function, we optimize over a discrete control se-
quence. Consider a discrete-time dynamical system

xk+1 = F(xk,uk). (11.50)

The cost is now given by

J(x0, {uk}n
k=0 , n) =

nX

k=0

L(xk,uk) + Q(xn, tn). (11.51)

Similarly, the value function is defined as the value of the cumulative cost func-
tion, starting at a point x0 assuming an optimal control policy u:

V (x0, n) = min
{uk}n

k=0

J(x0, {uk}n
k=0 , n). (11.52)

Again, Bellman’s principle of optimality states that an optimal control policy
has the property that at any point along the optimal trajectory x(t), the remain-
ing control policy is optimal with respect to this new initial state. Mathemati-
cally,

V (x0, n) = V (x0, k) + V (xk, n) 8k 2 (0, n). (11.53)

Thus, the value at an intermediate time step k may be written as

V (xk, n) =

✓
min
uk

L(xk,uk)

◆
+ V (xk+1, n)| {z }

s.t. xk+1=F(xk,uk)

(11.54a)

= min
uk

(L(xk,uk) + V (F(xk,uk), n)) . (11.54b)

It is also possible, given a value function V (xk, n), to determine the next optimal
control action uk by returning the uk that minimizes the above expression. This
defines an optimal policy u = ⇡(x). Dropping the functional dependence of V
on the end time, we then have

V (x) = min
u

(L(x,u) + V (F(x,u))) (11.55a)

⇡(x) = argmin
u

(L(x,u) + V (F(x,u))) . (11.55b)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

534 CHAPTER 11. REINFORCEMENT LEARNING

These form the Bellman equations.
Note that we have explicitly include the terminal time tf in the terminal cost

Q(xn, tn) and Q(x(tf), tf), as it there are situations when the arrival time should
be minimized. However, it is also possible to include the time explicitly in the
immediate cost L(x,u, t), for example to include a discount function e��t for
future costs or rewards.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

11.6. OPTIMAL NONLINEAR CONTROL 535

Suggested reading
Texts

(1) Reinforcement learning: An introduction, by R. S. Sutton and A. G. Barto,
1998 [695].

Papers and reviews

(1) Q-learning, by C. Watkins and P. Dayan, Machine Learning, 1992 [757].

(2) TD (�) converges with probability 1, by P. Dayan and T. J. Sejnowski, Ma-
chine Learning, 1994 [202].

(3) Human-level control through deep reinforcement learning, by V. Mnih et
al., Nature, 2015 [519].

(4) Mastering the game of go without human knowledge, by D. Silver et al.,
Nature, 2017 [673].

(5) A tour of reinforcement learning: The view from continuous control,
by B. Recht, Annual Review of Control, Robotics, and Autonomous Systems,
2019 [601].

Blogs and lectures

(1) Deep Reinforcement Learning: Pong from Pixels, by A. Karpathy, http:
//karpathy.github.io/2016/05/31/rl/.

(2) Introduction to Reinforcement Learning with David Silver, by D. Silver,
https://www.youtube.com/playlist?list=PLqYmG7hTraZBiG_
XpjnPrSNw-1XQaM_gB

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
https://www.youtube.com/playlist?list=PLqYmG7hTraZBiG_XpjnPrSNw-1XQaM_gB
https://www.youtube.com/playlist?list=PLqYmG7hTraZBiG_XpjnPrSNw-1XQaM_gB

536 CHAPTER 11. REINFORCEMENT LEARNING

Homework

Exercise RL-1. This example will explore reinforcement learning on the game
of tic-tac-toe. First, describe the states, actions, and rewards.

Next, design a policy iteration algorithm to optimize the policy ⇡. Begin with a
randomly chosen policy. Plot the value function on the board and describe the
optimal policy.

How many policy iterations are required before the policy and value function
converge? How many games were played at each policy iteration? Is this con-
sistent with what you would expect a human learning would do?

Is there any structure or symmetry in the game that could be used to improve
the learning rate? Implement a policy iteration that exploits this structure, and
determine how many policy iterations are required before converging and how
many games played per policy iteration.

Exercise RL-2. Repeat the above example using value iteration instead of pol-
icy iteration. Compare the number of iterations in both methods, along with
the total training time.

Exercise RL-3. This exercise will develop a reinforcement learning controller
for the fluid flow past a cylinder. There are several open-source codes that
can be used to simulate simple fluid flows, such as the IBPM code at https:
//github.com/cwrowley/ibpm/.

Use reinforcement learning to develop a control law to force the cylinder wake
to be symmetric. Describe the reward structure and what learning framework
you chose. Also plot your results, including learning rates, performance, etc.
How long did it take to train this controller (i.e., how many computational iter-
ations, how much CPU time, etc.)?

Now, assume that the RL agent only has access to the lift and drag coefficients,
CL and CD. Design an RL scheme to track a given reference lift value, say
CL = 1 or CL = �1. See if you can make your controller track a reference that
switches between these values. What if the reference lift is much larger, say
CL = 2 or CL = 5?

Exercise RL-4. Install the AI Gym API and develop an RL controller for the
classic control example of a pendulum on a cart. Explore different RL strate-
gies.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

https://github.com/cwrowley/ibpm/
https://github.com/cwrowley/ibpm/

Bibliography

[1] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous helicopter aerobatics through appren-
ticeship learning. The International Journal of Robotics Research, 29(13):1608–1639, 2010.

[2] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement learning
to aerobatic helicopter flight. In Advances in neural information processing systems, pages
1–8, 2007.

[3] R. Abraham and J. E. Marsden. Foundations of mechanics, volume 36. Benjamin/Cum-
mings Publishing Company Reading, Massachusetts, 1978.

[4] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis, and Applications,
volume 75 of Applied Mathematical Sciences. Springer-Verlag, 1988.

[5] M. Agrawal, S. Vidyashankar, and K. Huang. On-chip implementation of ECoG signal
data decoding in brain-computer interface. In Mixed-Signal Testing Workshop (IMSTW),
2016 IEEE 21st International, pages 1–6. IEEE, 2016.

[6] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Proc. 20th
int. conf. very large data bases, VLDB, volume 1215, pages 487–499, 1994.

[7] H.-S. Ahn, Y. Chen, and K. L. Moore. Iterative learning control: Brief survey and cat-
egorization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 37(6):1099–1121, 2007.

[8] H. Akaike. Fitting autoregressive models for prediction. Annals of the institute of Statistical
Mathematics, 21(1):243–247, 1969.

[9] H. Akaike. A new look at the statistical model identification. Automatic Control, IEEE
Transactions on, 19(6):716–723, 1974.

[10] A. Alla and J. N. Kutz. Nonlinear model order reduction via dynamic mode decomposi-
tion. SIAM Journal on Scientific Computing, 39(5):B778–B796, 2017.

[11] A. Alla and J. N. Kutz. Randomized model order reduction. Advances in Computational
Mathematics, 45(3):1251–1271, 2019.

[12] E. P. Alves and F. Fiuza. Data-driven discovery of reduced plasma physics models from
fully-kinetic simulations. arXiv preprint arXiv:2011.01927, 2020.

[13] B. Amos, I. D. J. Rodriguez, J. Sacks, B. Boots, and J. Z. Kolter. Differentiable mpc for
end-to-end planning and control. arXiv preprint arXiv:1810.13400, 2018.

[14] W. Amrein and A.-M. Berthier. On support properties of Lp-functions and their Fourier
transforms. Journal of Functional Analysis, 24(3):258–267, 1977.

[15] D. Amsallem, J. Cortial, and C. Farhat. On-demand cfd-based aeroelastic predictions
using a database of reduced-order bases and models. In 47th AIAA Aerospace Sciences
Meeting Including The New Horizons Forum and Aerospace Exposition, page 800, 2009.

[16] D. Amsallem and C. Farhat. An online method for interpolating linear parametric
reduced-order models. SIAM Journal on Scientific Computing, 33(5):2169–2198, 2011.

[17] D. Amsallem, M. J. Zahr, and K. Washabaugh. Fast local reduced basis updates for the
efficient reduction of nonlinear systems with hyper-reduction. Advances in Computational
Mathematics, 41(5):1187–1230, 2015.

663

664 BIBLIOGRAPHY

[18] J. Andén and S. Mallat. Deep scattering spectrum. IEEE Transactions on Signal Processing,
62(16):4114–4128, 2014.

[19] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammerling, A. McKenney, et al. LAPACK Users’ guide, volume 9.
Siam, 1999.

[20] J. L. Anderson. An ensemble adjustment Kalman filter for data assimilation. Monthly
weather review, 129(12):2884–2903, 2001.

[21] C. A. Andersson and R. Bro. The n-way toolbox for matlab. Chemometrics and intelligent
laboratory systems, 52(1):1–4, 2000.

[22] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, P. Abbeel, and W. Zaremba. Hindsight experience replay. arXiv preprint
arXiv:1707.01495, 2017.

[23] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding using wavelet
transform. IEEE Transactions on image processing, 1(2):205–220, 1992.

[24] A. C. Antoulas. Approximation of large-scale dynamical systems. SIAM, 2005.
[25] H. Arbabi and I. Mezić. Ergodic theory, dynamic mode decomposition and computation

of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Syst., 16(4):2096–2126,
2017.

[26] K. B. Ariyur and M. Krstić. Real-Time Optimization by Extremum-Seeking Control. Wiley,
Hoboken, New Jersey, 2003.

[27] T. Askham and J. N. Kutz. Variable projection methods for an optimized dynamic mode
decomposition. SIAM J. Appl. Dyn. Syst., 17(1):380–416, 2018.

[28] T. Askham, P. Zheng, A. Aravkin, and J. N. Kutz. Robust and scalable methods for the
dynamic mode decomposition. arXiv preprint arXiv:1712.01883, 2017.

[29] P. Astrid. Fast reduced order modeling technique for large scale LTV systems. In Ameri-
can Control Conference, 2004. Proceedings of the 2004, volume 1, pages 762–767. IEEE, 2004.

[30] K. J. Aström and R. M. Murray. Feedback systems: an introduction for scientists and engineers.
Princeton university press, 2010.

[31] M. Azeez and A. Vakakis. Proper orthogonal decomposition (POD) of a class of vibroim-
pact oscillations. Journal of Sound and vibration, 240(5):859–889, 2001.

[32] O. Azencot, W. Yin, and A. Bertozzi. Consistent dynamic mode decomposition. SIAM
Journal on Applied Dynamical Systems, 18(3):1565–1585, 2019.

[33] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[34] P. J. Baddoo, B. Herrmann, B. J. McKeon, and S. L. Brunton. Kernel learning for ro-

bust dynamic mode decomposition: Linear and nonlinear disambiguation optimization
(lando). arXiv preprint arXiv:2106.01510, 2021.

[35] B. W. Bader and T. G. Kolda. Efficient MATLAB computations with sparse and factored
tensors. SIAM Journal on Scientific Computing, 30(1):205–231, Dec. 2007.

[36] S. Bagheri. Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechan-
ics, 726:596–623, 2013.

[37] S. Bagheri. Effects of weak noise on oscillating flows: Linking quality factor, Floquet
modes, and Koopman spectrum. Physics of Fluids, 26(9):094104, 2014.

[38] S. Bagheri. Effects of weak noise on oscillating flows: Linking quality factor, Floquet
modes, and Koopman spectrum. Physics of Fluids, 26(9):094104, 2014.

[39] S. Bagheri, L. Brandt, and D. Henningson. Input-output analysis, model reduction and
control of the flat-plate boundary layer. J. Fluid Mechanics, 620:263–298, 2009.

[40] S. Bagheri, J. Hoepffner, P. J. Schmid, and D. S. Henningson. Input-output analysis and
control design applied to a linear model of spatially developing flows. Appl. Mech. Rev.,
62(2):020803–1..27, 2009.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 665

[41] Z. Bai, S. L. Brunton, B. W. Brunton, J. N. Kutz, E. Kaiser, A. Spohn, and B. R. Noack.
Data-driven methods in fluid dynamics: Sparse classification from experimental data. In
invited chapter for Whither Turbulence and Big Data in the 21st Century, 2015.

[42] Z. Bai, E. Kaiser, J. L. Proctor, J. N. Kutz, and S. L. Brunton. Dynamic mode decomposi-
tion for compressive system identification. arXiv preprint arXiv:1710.07737, 2017.

[43] Z. Bai, T. Wimalajeewa, Z. Berger, G. Wang, M. Glauser, and P. K. Varshney. Low-
dimensional approach for reconstruction of airfoil data via compressive sensing. AIAA
Journal, 53(4):920–933, 2014.

[44] O. Balabanov and A. Nouy. Randomized linear algebra for model reduction. part
i: Galerkin methods and error estimation. Advances in Computational Mathematics,
45(5):2969–3019, 2019.

[45] M. J. Balajewicz, E. H. Dowell, and B. R. Noack. Low-dimensional modelling of high-
Reynolds-number shear flows incorporating constraints from the Navier–Stokes equa-
tion. Journal of Fluid Mechanics, 729:285–308, 2013.

[46] M. Balasubramanian, S. Zabic, C. Bowd, H. W. Thompson, P. Wolenski, S. S. Iyengar, B. B.
Karki, and L. M. Zangwill. A framework for detecting glaucomatous progression in the
optic nerve head of an eye using proper orthogonal decomposition. IEEE Transactions on
Information Technology in Biomedicine, 13(5):781–793, 2009.

[47] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning
from examples without local minima. Neural networks, 2(1):53–58, 1989.

[48] B. Bamieh and L. Giarré. Identification of linear parameter varying models. International
Journal of Robust and Nonlinear Control, 12:841–853, 2002.

[49] A. Banaszuk, K. B. Ariyur, M. Krstić, and C. A. Jacobson. An adaptive algorithm for
control of combustion instability. Automatica, 40(11):1965–1972, 2004.

[50] A. Banaszuk, S. Narayanan, and Y. Zhang. Adaptive control of flow separation in a
planar diffuser. AIAA paper, 617:2003, 2003.

[51] A. Banaszuk, Y. Zhang, and C. A. Jacobson. Adaptive control of combustion instability
using extremum-seeking. In American Control Conference, 2000. Proceedings of the 2000,
volume 1, pages 416–422. IEEE, 2000.

[52] S. Banks. Infinite-dimensional Carleman linearization, the Lie series and optimal con-
trol of non-linear partial differential equations. International journal of systems science,
23(5):663–675, 1992.

[53] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. Learning data-driven discretiza-
tions for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

[54] R. G. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24(4):118–120,
2007.

[55] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive sens-
ing. IEEE Transactions on Information Theory, 56(4):1982–2001, 2010.

[56] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An empirical interpolation
method: application to efficient reduced-basis discretization of partial differential equa-
tions. Comptes Rendus Mathematique, 339(9):667–672, 2004.

[57] J. Basley, L. R. Pastur, N. Delprat, and F. Lusseyran. Space-time aspects of a
three-dimensional multi-modulated open cavity flow. Physics of Fluids (1994-present),
25(6):064105, 2013.

[58] J. Basley, L. R. Pastur, F. Lusseyran, T. M. Faure, and N. Delprat. Experimental inves-
tigation of global structures in an incompressible cavity flow using time-resolved PIV.
Experiments in Fluids, 50(4):905–918, 2011.

[59] T. Baumeister, S. L. Brunton, and J. N. Kutz. Deep learning and model predictive control

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

666 BIBLIOGRAPHY

for self-tuning mode-locked lasers. JOSA B, 35(3):617–626, 2018.
[60] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical computer sci-

ence, 22(3):317–330, 1983.
[61] P. W. Bearman. On vortex shedding from a circular cylinder in the critical reynolds

number regime. Journal of Fluid Mechanics, 37(3):577–585, 1969.
[62] J. F. Beaudoin, O. Cadot, J. L. Aider, and J. E. Wesfreid. Bluff-body drag reduction by

extremum-seeking control. Journal of Fluids and Structures, 22:973–978, 2006.
[63] J.-F. Beaudoin, O. Cadot, J.-L. Aider, and J.-E. Wesfreid. Drag reduction of a bluff body

using adaptive control methods. Physics of Fluids, 18(8):085107, 2006.
[64] R. Becker, R. King, R. Petz, and W. Nitsche. Adaptive closed-loop control on a high-lift

configuration using extremum seeking. AIAA Journal, 45(6):1382–92, 2007.
[65] S. Beetham and J. Capecelatro. Formulating turbulence closures using sparse regression

with embedded form invariance. Physical Review Fluids, 5(8):084611, 2020.
[66] S. Beetham, R. O. Fox, and J. Capecelatro. Sparse identification of multiphase turbulence

closures for coupled fluid–particle flows. Journal of Fluid Mechanics, 914, 2021.
[67] G. Beintema, A. Corbetta, L. Biferale, and F. Toschi. Controlling rayleigh-b\’enard con-

vection via reinforcement learning. arXiv preprint arXiv:2003.14358, 2020.
[68] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisherfaces: Recog-

nition using class specific linear projection. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 19(7):711–720, 1997.

[69] G. Bellani. Experimental studies of complex flows through image-based techniques.
2011.

[70] R. Bellman. On the theory of dynamic programming. Proceedings of the National Academy
of Sciences of the United States of America, 38(8):716, 1952.

[71] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.
[72] B. A. Belson, J. H. Tu, and C. W. Rowley. Algorithm 945: modred—a parallelized model

reduction library. ACM Transactions on Mathematical Software, 40(4):30, 2014.
[73] M. Benedicks. On Fourier transforms of functions supported on sets of finite Lebesgue

measure. Journal of mathematical analysis and applications, 106(1):180–183, 1985.
[74] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep

networks. In Advances in neural information processing systems, pages 153–160, 2007.
[75] P. Benner, A. Cohen, M. Ohlberger, and K. Willcox. Model Reduction and Approximation:

Theory and Algorithms, volume 15. SIAM, 2017.
[76] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction

methods for parametric dynamical systems. SIAM Rev., 57(4):483–531, 2015.
[77] P. Benner, J.-R. Li, and T. Penzl. Numerical solution of large-scale Lyapunov equations,

Riccati equations, and linear-quadratic optimal control problems. Numerical Linear Alge-
bra with Applications, 15(9):755–777, 2008.

[78] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. Slicot—a subroutine
library in systems and control theory. In Applied and computational control, signals, and
circuits, pages 499–539. Springer, 1999.

[79] E. Berger, M. Sastuba, D. Vogt, B. Jung, and H. B. Amor. Estimation of perturbations
in robotic behavior using dynamic mode decomposition. Journal of Advanced Robotics,
29(5):331–343, 2015.

[80] G. Berkooz, P. Holmes, and J. Lumley. The proper orthogonal decomposition in the
analysis of turbulent flows. Ann. Rev. Fluid Mech., 25:539–575, 1993.

[81] D. P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society,
48(3):334–334, 1997.

[82] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 667

2014.
[83] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: an overview. In Pro-

ceedings of 1995 34th IEEE conference on decision and control, volume 1, pages 560–564. IEEE,
1995.

[84] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algo-
rithms i. Communications on pure and applied mathematics, 44(2):141–183, 1991.

[85] K. Bieker, S. Peitz, S. L. Brunton, J. N. Kutz, and M. Dellnitz. Deep model predictive flow
control with limited sensor data and online learning. Theoretical and Computational Fluid
Dynamics, pages 1–15, 2020.

[86] L. Biferale, F. Bonaccorso, M. Buzzicotti, P. Clark Di Leoni, and K. Gustavsson. Zermelo’s
problem: Optimal point-to-point navigation in 2d turbulent flows using reinforcement
learning. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(10):103138, 2019.

[87] S. A. Billings. Nonlinear system identification: NARMAX methods in the time, frequency, and
spatio-temporal domains. John Wiley & Sons, 2013.

[88] P. Binetti, K. B. Ariyur, M. Krstić, and F. Bernelli. Formation flight optimization using
extremum seeking feedback. Journal of Guidance, Control, and Dynamics, 26(1):132–142,
2003.

[89] G. D. Birkhoff. Proof of the ergodic theorem. Proceedings of the National Academy of Sci-
ences, 17(12):656–660, 1931.

[90] G. D. Birkhoff and B. O. Koopman. Recent contributions to the ergodic theory. Proceedings
of the National Academy of Sciences, 18(3):279–282, 1932.

[91] C. M. Bishop. Neural networks for pattern recognition. Oxford university press, 1995.
[92] C. M. Bishop. Pattern recognition and machine learning. Springer New York, 2006.
[93] D. Bistrian and I. Navon. Randomized dynamic mode decomposition for non-intrusive

reduced order modelling. International Journal for Numerical Methods in Engineering, 2016.
[94] D. A. Bistrian and I. M. Navon. An improved algorithm for the shallow water equa-

tions model reduction: Dynamic mode decomposition vs POD. International Journal for
Numerical Methods in Fluids, 2015.

[95] D. A. Bistrian and I. M. Navon. Randomized dynamic mode decomposition for nonintru-
sive reduced order modelling. International Journal for Numerical Methods in Engineering,
112(1):3–25, 2017.

[96] P. Bondi, G. Casalino, and L. Gambardella. On the iterative learning control theory for
robotic manipulators. IEEE Journal on Robotics and Automation, 4(1):14–22, 1988.

[97] J. Bongard and H. Lipson. Automated reverse engineering of nonlinear dynamical sys-
tems. Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

[98] L. Boninsegna, F. Nüske, and C. Clementi. Sparse learning of stochastic dynamical equa-
tions. The Journal of Chemical Physics, 148(24):241723, 2018.

[99] J. L. Borges. The library of Babel. Collected fictions, 1998.
[100] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin

classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, pages
144–152. ACM, 1992.

[101] H. Boulard and Y. Kamp. Autoassociative memory by multilayer perceptron and singu-
lar values decomposition. Biol Cybern, 59:291–294, 1989.

[102] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis: forecasting
and control. John Wiley & Sons, 2015.

[103] S. Boyd, L. O. Chua, and C. A. Desoer. Analytical foundations of volterra series. IMA
Journal of Mathematical Control and Information, 1(3):243–282, 1984.

[104] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2009.
[105] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

668 BIBLIOGRAPHY

learning. Machine learning, 22(1):33–57, 1996.
[106] J. J. Bramburger and J. N. Kutz. Poincaré maps for multiscale physics discovery and

nonlinear floquet theory. Physica D: Nonlinear Phenomena, 408:132479, 2020.
[107] J. J. Bramburger, J. N. Kutz, and S. L. Brunton. Data-driven stabilization of periodic

orbits. IEEE Access, 9:43504–43521, 2021.
[108] A. I. Bratcu, I. Munteanu, S. Bacha, and B. Raison. Maximum power point tracking of

grid-connected photovoltaic arrays by using extremum seeking control. CEAI, 10(4):3–
12, 2008.

[109] L. Breiman. Better subset regression using the nonnegative garrote. Technometrics,
37(4):373–384, 1995.

[110] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[111] L. Breiman et al. Statistical modeling: The two cultures (with comments and a rejoinder

by the author). Statistical science, 16(3):199–231, 2001.
[112] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression trees.

CRC press, 1984.
[113] M. Brenner, J. Eldredge, and J. Freund. Perspective on machine learning for advancing

fluid mechanics. Physical Review Fluids, 4(10):100501, 2019.
[114] I. Bright, G. Lin, and J. N. Kutz. Compressive sensing and machine learning strategies for

characterizing the flow around a cylinder with limited pressure measurements. Physics
of Fluids, 25(127102):1–15, 2013.

[115] I. Bright, G. Lin, and J. N. Kutz. Classification of spatio-temporal data via asynchronous
sparse sampling: Application to flow around a cylinder. SIAM Multiscale modeling and
simulation, 14(2):823–838, 2016.

[116] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Com-
puter networks and ISDN systems, 30(1-7):107–117, 1998.

[117] D. Bristow, M. Tharayil, A. G. Alleyne, et al. A survey of iterative learning control.
Control Systems, IEEE, 26(3):96–114, 2006.

[118] R. Bro. Parafac. tutorial and applications. Chemometrics and intelligent laboratory systems,
38(2):149–171, 1997.

[119] A. Broad, T. Murphey, and B. Argall. Learning models for shared control of human-
machine systems with unknown dynamics. Robotics: Science and Systems Proceedings,
2017.

[120] R. W. Brockett. Volterra series and geometric control theory. Automatica, 12(2):167–176,
1976.

[121] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[122] D. Broomhead and R. Jones. Time-series analysis. In Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, volume 423, pages 103–121.
The Royal Society, 1989.

[123] D. S. Broomhead and D. Lowe. Radial basis functions, multi-variable functional interpo-
lation and adaptive networks. Technical report, Royal Signals and Radar Establishment
Malvern (United Kingdom), 1988.

[124] B. W. Brunton, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Sparse sensor placement
optimization for classification. SIAM Journal on Applied Mathematics, 76(5):2099–2122,
2016.

[125] B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz. Extracting spatial–temporal
coherent patterns in large-scale neural recordings using dynamic mode decomposition.
Journal of Neuroscience Methods, 258:1–15, 2016.

[126] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz. Chaos as an intermit-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 669

tently forced linear system. Nature Communications, 8(19):1–9, 2017.
[127] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz. Koopman invariant subspaces

and finite linear representations of nonlinear dynamical systems for control. PLoS ONE,
11(2):e0150171, 2016.

[128] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz. Modern Koopman theory for dynam-
ical systems. arXiv preprint arXiv:2102.12086, 2021.

[129] S. L. Brunton, X. Fu, and J. N. Kutz. Extremum-seeking control of a mode-locked laser.
IEEE Journal of Quantum Electronics, 49(10):852–861, 2013.

[130] S. L. Brunton, X. Fu, and J. N. Kutz. Self-tuning fiber lasers. IEEE Journal of Selected Topics
in Quantum Electronics, 20(5), 2014.

[131] S. L. Brunton and B. R. Noack. Closed-loop turbulence control: Progress and challenges.
Applied Mechanics Reviews, 67:050801–1–050801–48, 2015.

[132] S. L. Brunton, B. R. Noack, and P. Koumoutsakos. Machine learning for fluid mechanics.
Annual Review of Fluid Mechanics, 52:477–508, 2020.

[133] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the National Academy
of Sciences, 113(15):3932–3937, 2016.

[134] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Sparse identification of nonlinear dynamics
with control (SINDYc). IFAC NOLCOS, 49(18):710–715, 2016.

[135] S. L. Brunton, J. L. Proctor, J. H. Tu, and J. N. Kutz. Compressed sensing and dynamic
mode decomposition. Journal of Computational Dynamics, 2(2):165–191, 2015.

[136] S. L. Brunton, J. L. Proctor, J. H. Tu, and J. N. Kutz. Compressed sensing and dynamic
mode decomposition. Journal of Computational Dynamics, 2(2):165, 2015.

[137] S. L. Brunton and C. W. Rowley. Maximum power point tracking for photovoltaic opti-
mization using ripple-based extremum seeking control. IEEE Transactions on Power Elec-
tronics, 25(10):2531–2540, 2010.

[138] S. L. Brunton, J. H. Tu, I. Bright, and J. N. Kutz. Compressive sensing and low-rank
libraries for classification of bifurcation regimes in nonlinear dynamical systems. SIAM
Journal on Applied Dynamical Systems, 13(4):1716–1732, 2014.

[139] D. Buche, P. Stoll, R. Dornberger, and P. Koumoutsakos. Multiobjective evolutionary
algorithm for the optimization of noisy combustion processes. Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, IEEE Transactions on, 32(4):460–473, 2002.

[140] M. Budišić and I. Mezić. An approximate parametrization of the ergodic partition using
time averaged observables. In Decision and Control, 2009 held jointly with the 2009 28th Chi-
nese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pages
3162–3168. IEEE, 2009.

[141] M. Budišić and I. Mezić. Geometry of the ergodic quotient reveals coherent structures in
flows. Physica D: Nonlinear Phenomena, 241(15):1255–1269, 2012.

[142] M. Budišić, R. Mohr, and I. Mezić. Applied Koopmanism a). Chaos: An Interdisciplinary
Journal of Nonlinear Science, 22(4):047510, 2012.

[143] A. Buhr and K. Smetana. Randomized local model order reduction. SIAM journal on
scientific computing, 40(4):A2120–A2151, 2018.

[144] K. P. Burnham and D. R. Anderson. Model selection and multimodel inference: a practical
information-theoretic approach. Springer Science & Business Media, 2003.

[145] D. Burov, D. Giannakis, K. Manohar, and A. Stuart. Kernel analog forecasting: Multiscale
test problems. arXiv preprint arXiv:2005.06623, 2020.

[146] P. A. Businger and G. H. Golub. Algorithm 358: Singular value decomposition of a
complex matrix [f1, 4, 5]. Communications of the ACM, 12(10):564–565, 1969.

[147] J. Callaham, K. Maeda, and S. L. Brunton. Robust reconstruction of flow fields from

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

670 BIBLIOGRAPHY

limited measurements. Physical Review Fluids, 4(103907), 2019.
[148] J. L. Callaham, S. L. Brunton, and J.-C. Loiseau. On the role of nonlinear correlations in

reduced-order modeling. arXiv preprint arXiv:2106.02409, 2021.
[149] J. L. Callaham, J.-C. Loiseau, G. Rigas, and S. L. Brunton. Nonlinear stochastic modelling

with langevin regression. Proceedings of the Royal Society A, 477(2250):20210092, 2021.
[150] J. L. Callaham, G. Rigas, J.-C. Loiseau, and S. L. Brunton. An empirical mean-field model

of symmetry-breaking in a turbulent wake. arXiv preprint arXiv:2105.13990, 2021.
[151] E. F. Camacho and C. B. Alba. Model predictive control. Springer Science & Business Media,

2013.
[152] E. Cambria, G.-B. Huang, L. L. C. Kasun, H. Zhou, C. M. Vong, J. Lin, J. Yin, Z. Cai,

Q. Liu, K. Li, et al. Extreme learning machines [trends & controversies]. IEEE Intelligent
Systems, 28(6):30–59, 2013.

[153] E. J. Candès. Compressive sensing. Proceedings of the International Congress of Mathematics,
2006.

[154] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of
the ACM, 58(3):11–1–11–37, 2011.

[155] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information. IEEE Transactions on Information
Theory, 52(2):489–509, 2006.

[156] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and in-
accurate measurements. Communications in Pure and Applied Mathematics, 8(1207–1223),
59.

[157] E. J. Candes and T. Tao. Decoding by linear programming. Information Theory, IEEE
Transactions on, 51(12):4203–4215, 2005.

[158] E. J. Candès and T. Tao. Near optimal signal recovery from random projections: Uni-
versal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–5425,
2006.

[159] E. J. Candès and M. B. Wakin. An introduction to compressive sampling. IEEE Signal
Processing Magazine, pages 21–30, 2008.

[160] Y. Cao, J. Zhu, Z. Luo, and I. Navon. Reduced-order modeling of the upper tropical
pacific ocean model using proper orthogonal decomposition. Computers & Mathematics
with Applications, 52(8):1373–1386, 2006.

[161] Y. Cao, J. Zhu, I. M. Navon, and Z. Luo. A reduced-order approach to four-dimensional
variational data assimilation using proper orthogonal decomposition. International Jour-
nal for Numerical Methods in Fluids, 53(10):1571–1583, 2007.

[162] K. Carlberg, M. Barone, and H. Antil. Galerkin v. least-squares Petrov–Galerkin projec-
tion in nonlinear model reduction. Journal of Computational Physics, 330:693–734, 2017.

[163] K. Carlberg, C. Bou-Mosleh, and C. Farhat. Efficient non-linear model reduction via a
least-squares Petrov–Galerkin projection and compressive tensor approximations. Inter-
national Journal for Numerical Methods in Engineering, 86(2):155–181, 2011.

[164] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem. The GNAT method for nonlinear
model reduction: effective implementation and application to computational fluid dy-
namics and turbulent flows. Journal of Computational Physics, 242:623–647, 2013.

[165] T. Carleman. Application de la théorie des équations intégrales linéaires aux systémes
d’équations différentielles non linéaires. Acta Mathematica, 59(1):63–87, 1932.

[166] T. Carleman. Sur la théorie de l’équation intégrodifférentielle de boltzmann. Acta Math-
ematica, 60(1):91–146, 1933.

[167] T. Carleman. Sur les systemes lineaires aux dérivées partielles du premier ordrea deux
variables. CR Acad. Sci. Paris, 197:471–474, 1933.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 671

[168] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidimensional
scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika,
35:283–319, 1970.

[169] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. Data-driven discovery of co-
ordinates and governing equations. Proceedings of the National Academy of Sciences,
116(45):22445–22451, 2019.

[170] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. Data-driven discovery of co-
ordinates and governing equations. Proceedings of the National Academy of Sciences,
116(45):22445–22451, 2019.

[171] K. P. Champion, S. L. Brunton, and J. N. Kutz. Discovery of nonlinear multiscale sys-
tems: Sampling strategies and embeddings. SIAM Journal on Applied Dynamical Systems,
18(1):312–333, 2019.

[172] R. Chartrand. Numerical differentiation of noisy, nonsmooth data. ISRN Applied Mathe-
matics, 2011, 2011.

[173] A. Chatterjee. An introduction to the proper orthogonal decomposition. Current science,
78(7):808–817, 2000.

[174] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete empirical
interpolation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010.

[175] K. K. Chen and C. W. Rowley. Normalized coprime robust stability and perfor-
mance guarantees for reduced-order controllers. IEEE Transactions on Automatic Control,
58(4):1068–1073, 2013.

[176] K. K. Chen, J. H. Tu, and C. W. Rowley. Variants of dynamic mode decomposition:
Boundary condition, Koopman, and Fourier analyses. Journal of Nonlinear Science,
22(6):887–915, 2012.

[177] K. K. Chen, J. H. Tu, and C. W. Rowley. Variants of dynamic mode decomposi-
tion: boundary condition, koopman, and fourier analyses. Journal of nonlinear science,
22(6):887–915, 2012.

[178] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural net-
works with arbitrary activation functions and its application to dynamical systems. IEEE
Transactions on Neural Networks, 6(4):911–917, 1995.

[179] Y. Chen, K. L. Moore, and H.-S. Ahn. Iterative learning control. In Encyclopedia of the
Sciences of Learning, pages 1648–1652. Springer, 2012.

[180] S. Cherry. Singular value decomposition analysis and canonical correlation analysis.
Journal of Climate, 9(9):2003–2009, 1996.

[181] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical ma-
chine translation. arXiv preprint arXiv:1406.1078, 2014.

[182] J. Choi, M. Krstić, K. Ariyur, and J. Lee. Extremum seeking control for discrete-time
systems. IEEE Transactions on Automatic Control, 47(2):318–323, FEB 2002.

[183] Y. Choi, D. Amsallem, and C. Farhat. Gradient-based constrained optimization using a
database of linear reduced-order models. arXiv preprint arXiv:1506.07849, 2015.

[184] S. Colabrese, K. Gustavsson, A. Celani, and L. Biferale. Flow navigation by smart mi-
croswimmers via reinforcement learning. Physical review letters, 118(15):158004, 2017.

[185] T. Colonius and K. Taira. A fast immersed boundary method using a nullspace approach
and multi-domain far-field boundary conditions. Computer Methods in Applied Mechanics
and Engineering, 197:2131–2146, 2008.

[186] J. W. Cooley, P. A. Lewis, and P. D. Welch. Historical notes on the fast Fourier transform.
Proceedings of the IEEE, 55(10):1675–1677, 1967.

[187] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

672 BIBLIOGRAPHY

Fourier series. Mathematics of computation, 19(90):297–301, 1965.
[188] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.
[189] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Reviews of

modern physics, 65(3):851, 1993.
[190] J. P. Crutchfield and B. S. McNamara. Equations of motion from a data series. Complex

systems, 1:417–452, 1987.
[191] M. Dam, M. Brøns, J. Juul Rasmussen, V. Naulin, and J. S. Hesthaven. Sparse identifi-

cation of a predator-prey system from simulation data of a convection model. Physics of
Plasmas, 24(2):022310, 2017.

[192] B. C. Daniels and I. Nemenman. Automated adaptive inference of phenomenological
dynamical models. Nature communications, 6, 2015.

[193] B. C. Daniels and I. Nemenman. Efficient inference of parsimonious phenomenologi-
cal models of cellular dynamics using s-systems and alternating regression. PloS one,
10(3):e0119821, 2015.

[194] S. Das and D. Giannakis. Delay-coordinate maps and the spectra of Koopman operators.
arXiv preprint arXiv:1706.08544, 2017.

[195] S. Das and D. Giannakis. Delay-coordinate maps and the spectra of Koopman operators.
Journal of Statistical Physics, 175(6):1107–1145, 2019.

[196] S. Das and D. Giannakis. Koopman spectra in reproducing kernel Hilbert spaces. Applied
and Computational Harmonic Analysis, 49(2):573–607, 2020.

[197] I. Daubechies. The wavelet transform, time-frequency localization and signal analysis.
IEEE transactions on information theory, 36(5):961–1005, 1990.

[198] L. Davis et al. Handbook of genetic algorithms, volume 115. Van Nostrand Reinhold New
York, 1991.

[199] N. D. Daw, J. P. O’doherty, P. Dayan, B. Seymour, and R. J. Dolan. Cortical substrates for
exploratory decisions in humans. Nature, 441(7095):876–879, 2006.

[200] S. T. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley. Characterizing and
correcting for the effect of sensor noise in the dynamic mode decomposition. Experiments
in Fluids, 57(3):1–19, 2016.

[201] P. Dayan and L. F. Abbott. Theoretical neuroscience: computational and mathematical modeling
of neural systems. Computational Neuroscience Series, 2001.

[202] P. Dayan and T. J. Sejnowski. Td (�) converges with probability 1. Machine Learning,
14(3):295–301, 1994.

[203] B. de Silva, D. M. Higdon, S. L. Brunton, and J. N. Kutz. Discovery of physics from data:
Universal laws and discrepancy models. arXiv preprint arXiv:1906.07906, 2019.

[204] B. M. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J. N. Kutz, and S. L. Brunton.
PySINDy: a Python package for the sparse identification of nonlinear dynamics from
data. Journal of Open Source Software, 5(49):2104, 2020.

[205] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the royal statistical society. Series B (methodological),
pages 1–38, 1977.

[206] N. Deng, B. R. Noack, M. Morzyński, and L. R. Pastur. Galerkin force model for transient
and post-transient dynamics of the fluidic pinball. Journal of Fluid Mechanics, 918, 2021.

[207] Z. Deng, C. He, Y. Liu, and K. C. Kim. Super-resolution reconstruction of turbulent veloc-
ity fields using a generative adversarial network-based artificial intelligence framework.
Physics of Fluids, 31(12):125111, 2019.

[208] S. Devasia, D. Chen, and B. Paden. Nonlinear inversion-based output tracking. Automatic
Control, IEEE Transactions on, 41(7):930–942, 1996.

[209] D. Donoho. 50 years of data science. In Based on a Presentation at the Tukey Centennial

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 673

Workshop. NJ Princeton, 2015.
[210] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–

1306, 2006.
[211] D. L. Donoho and M. Gavish. Code supplement to ”The optimal hard threshold for

singular values is 4/
p

3”. http://purl.stanford.edu/vg705qn9070, 2014.
[212] D. L. Donoho, I. M. Johnstone, J. C. Hoch, and A. S. Stern. Maximum entropy and the

nearly black object. Journal of the Royal Statistical Society. Series B (Methodological), pages
41–81, 1992.

[213] D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425–455, 1994.

[214] J. C. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic
Control, 23(4):756–757, 1978.

[215] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback control theory. Courier Corpo-
ration, 2013.

[216] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space solutions to
standard H2 and H1 control problems. IEEE Transactions on Automatic Control, 34(8):831–
847, 1989.

[217] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg. Vision-based
high-speed driving with a deep dynamic observer. IEEE Robotics and Automation Letters,
4(2):1564–1571, 2019.

[218] J. Drgona, K. Kis, A. Tuor, D. Vrabie, and M. Klauco. Differentiable predictive control: An
mpc alternative for unknown nonlinear systems using constrained deep learning. arXiv
preprint arXiv:2011.03699, 2020.

[219] P. Drineas and M. W. Mahoney. A randomized algorithm for a tensor-based generaliza-
tion of the singular value decomposition. Linear algebra and its applications, 420(2-3):553–
571, 2007.

[220] Z. Drmac and S. Gugercin. A new selection operator for the discrete empirical interpola-
tion method—improved a priori error bound and extensions. SIAM Journal on Scientific
Computing, 38(2):A631–A648, 2016.

[221] Q. Du and M. Gunzburger. Model reduction by proper orthogonal decomposition cou-
pled with centroidal voronoi tessellations (keynote). In ASME 2002 Joint US-European
Fluids Engineering Division Conference, pages 1401–1406. American Society of Mechanical
Engineers, 2002.

[222] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and
W. Zaremba. One-shot imitation learning. arXiv preprint arXiv:1703.07326, 2017.

[223] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience, 2000.
[224] J. A. Duersch and M. Gu. Randomized QR with column pivoting. SIAM Journal on

Scientific Computing, 39(4):C263–C291, 2017.
[225] D. Duke, D. Honnery, and J. Soria. Experimental investigation of nonlinear instabilities

in annular liquid sheets. Journal of Fluid Mechanics, 691:594–604, 2012.
[226] D. Duke, J. Soria, and D. Honnery. An error analysis of the dynamic mode decomposi-

tion. Experiments in fluids, 52(2):529–542, 2012.
[227] G. E. Dullerud and F. Paganini. A course in robust control theory: A convex approach. Texts

in Applied Mathematics. Springer, Berlin, Heidelberg, 2000.
[228] R. Dunne and B. J. McKeon. Dynamic stall on a pitching and surging airfoil. Experiments

in Fluids, 56(8):1–15, 2015.
[229] K. Duraisamy, G. Iaccarino, and H. Xiao. Turbulence modeling in the age of data. Annual

Reviews of Fluid Mechanics, 51:357–377, 2019.
[230] T. Duriez, S. L. Brunton, and B. R. Noack. Machine Learning Control: Taming Nonlinear

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

674 BIBLIOGRAPHY

Dynamics and Turbulence. Springer, 2016.
[231] T. Duriez, V. Parezanović, L. Cordier, B. R. Noack, J. Delville, J.-P. Bonnet, M. Segond,

and M. Abel. Closed-loop turbulence control using machine learning. arXiv preprint
arXiv:1404.4589, 2014.

[232] T. Duriez, V. Parezanovic, J.-C. Laurentie, C. Fourment, J. Delville, J.-P. Bonnet,
L. Cordier, B. R. Noack, M. Segond, M. Abel, N. Gautier, J.-L. Aider, C. Raibaudo, C. Cu-
vier, M. Stanislas, and S. L. Brunton. Closed-loop control of experimental shear flows
using machine learning. AIAA Paper 2014-2219, 7th Flow Control Conference, 2014.

[233] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[234] J. L. Eftang, A. T. Patera, and E. M. Rønquist. An” hp” certified reduced basis method for
parametrized elliptic partial differential equations. SIAM Journal on Scientific Computing,
32(6):3170–3200, 2010.

[235] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.
[236] U. Eren, A. Prach, B. B. Koçer, S. V. Raković, E. Kayacan, and B. Açıkmeşe. Model predic-

tive control in aerospace systems: Current state and opportunities. Journal of Guidance,
Control, and Dynamics, 40(7):1541–1566, 2017.

[237] N. B. Erichson, S. L. Brunton, and J. N. Kutz. Compressed dynamic mode decomposition
for real-time object detection. Journal of Real-Time Image Processing, 2016.

[238] N. B. Erichson, S. L. Brunton, and J. N. Kutz. Randomized dynamic mode decomposition.
arXiv preprint arXiv:1702.02912, 2017.

[239] N. B. Erichson, K. Manohar, S. L. Brunton, and J. N. Kutz. Randomized CP tensor de-
composition. arXiv preprint arXiv:1703.09074.

[240] N. B. Erichson, L. Mathelin, J. N. Kutz, and S. L. Brunton. Randomized dynamic mode
decomposition. SIAM Journal on Applied Dynamical Systems, 18(4):1867–1891, 2019.

[241] N. B. Erichson, L. Mathelin, Z. Yao, S. L. Brunton, M. W. Mahoney, and J. N. Kutz. Shal-
low neural networks for fluid flow reconstruction with limited sensors. Proceedings of the
Royal Society A, 476(2238):20200097, 2020.

[242] N. B. Erichson, S. Voronin, S. L. Brunton, and J. N. Kutz. Randomized matrix decompo-
sitions using R. arXiv preprint arXiv:1608.02148, 2016.

[243] T. Esram, J. W. Kimball, P. T Krein, P. L. Chapman, and P. Midya. Dynamic maximum
power point tracking of photovoltaic arrays using ripple correlation control. Ieee Trans-
actions On Power Electronics, 21(5):1282–1291, Sept. 2006.

[244] E. Even-Dar, Y. Mansour, and P. Bartlett. Learning rates for q-learning. Journal of machine
learning Research, 5(1), 2003.

[245] R. Everson and L. Sirovich. Karhunen–Loeve procedure for gappy data. JOSA A,
12(8):1657–1664, 1995.

[246] N. Fabbiane, O. Semeraro, S. Bagheri, and D. S. Henningson. Adaptive and model-based
control theory applied to convectively unstable flows. Appl. Mech. Rev., 66(6):060801–1–
20, 2014.

[247] D. Fan, L. Yang, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis. Reinforcement
learning for bluff body active flow control in experiments and simulations. Proceedings
of the National Academy of Sciences, 117(42):26091–26098, 2020.

[248] D. D. Fan, A.-a. Agha-mohammadi, and E. A. Theodorou. Deep learning tubes for tube
mpc. arXiv preprint arXiv:2002.01587, 2020.

[249] B. Feeny. On proper orthogonal co-ordinates as indicators of modal activity. Journal of
Sound and Vibration, 255(5):805–817, 2002.

[250] R. A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical Trans-
actions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 675

Character, 222:309–368, 1922.
[251] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of human

genetics, 7(2):179–188, 1936.
[252] P. J. Fleming and R. C. Purshouse. Evolutionary algorithms in control systems engineer-

ing: a survey. Control Engineering Practice, 10:1223–1241, 2002.
[253] N. Fonzi, S. L. Brunton, and U. Fasel. Data-driven nonlinear aeroelastic models of mor-

phing wings for control. Proceedings of the Royal Society A, 476(2239):20200079, 2020.
[254] J. Fourier. Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, père et fils,

1822.
[255] J. B. J. Fourier. The analytical theory of heat. The University Press, 1878.
[256] J. E. Fowler. Compressive-projection principal component analysis. IEEE Transactions on

Image Processing, 18(10):2230–2242, 2009.
[257] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.
[258] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of

statistics, pages 1189–1232, 2001.
[259] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank

approximations. Journal of the ACM, 51(6):1025–1041, 2004.
[260] G. Froyland, G. A. Gottwald, and A. Hammerlindl. A computational method to extract

macroscopic variables and their dynamics in multiscale systems. SIAM Journal on Applied
Dynamical Systems, 13(4):1816–1846, 2014.

[261] G. Froyland, G. A. Gottwald, and A. Hammerlindl. A trajectory-free framework for
analysing multiscale systems. Physica D: Nonlinear Phenomena, 328:34–43, 2016.

[262] X. Fu, S. L. Brunton, and J. Nathan Kutz. Classification of birefringence in mode-locked
fiber lasers using machine learning and sparse representation. Optics express, 22(7):8585–
8597, 2014.

[263] K. Fujii and Y. Kawahara. Dynamic mode decomposition in vector-valued reproduc-
ing kernel hilbert spaces for extracting dynamical structure among observables. Neural
Networks, 117:94–103, 2019.

[264] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pages 1587–1596. PMLR,
2018.

[265] K. Fukagata, S. Kern, P. Chatelain, P. Koumoutsakos, and N. Kasagi. Evolutionary opti-
mization of an anisotropic compliant surface for turbulent friction drag reduction. Journal
of Turbulence, 9(35):1–17, 2008.

[266] F. Fukushima. A self-organizing neural network model for a mechanism of pattern recog-
nition unaffected by shift in position. Biological Cybernetic, 36:193–202, 1980.

[267] H. Gao, J. Lam, C. Wang, and Y. Wang. Delay-dependent output-feedback stabilisation of
discrete-time systems with time-varying state delay. IEE Proceedings-Control Theory and
Applications, 151(6):691–698, 2004.

[268] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: theory and practice—
a survey. Automatica, 25(3):335–348, 1989.

[269] J. L. Garriga and M. Soroush. Model predictive control tuning methods: A review. In-
dustrial & Engineering Chemistry Research, 49(8):3505–3515, 2010.

[270] C. Gauss. Nachlass: Theoria interpolationis methodo nova tractata, volume werke.
Königliche Gesellschaft der Wissenschaften, Göttingen, 1866.

[271] C.-F. Gauss. Theoria combinationis observationum erroribus minimis obnoxiae, volume 1. Hen-
ricus Dieterich, 1823.

[272] N. Gautier, J.-L. Aider, T. Duriez, B. Noack, M. Segond, and M. Abel. Closed-loop sepa-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

676 BIBLIOGRAPHY

ration control using machine learning. Journal of Fluid Mechanics, 770:442–457, 2015.
[273] M. Gavish and D. L. Donoho. The optimal hard threshold for singular values is 4/

p
3.

IEEE Transactions on Information Theory, 60(8):5040–5053, 2014.
[274] M. Gazzola, B. Hejazialhosseini, and P. Koumoutsakos. Reinforcement learning and

wavelet adapted vortex methods for simulations of self-propelled swimmers. SIAM Jour-
nal on Scientific Computing, 36(3):B622–B639, 2014.

[275] M. Gazzola, A. Tchieu, D. Alexeev, A. De Brauer, and P. Koumoutsakos. Learning to
school in the presence of hydrodynamic interactions. J. Fluid Mech., 789, 2016.

[276] M. Gazzola, O. V. Vasilyev, and P. Koumoutsakos. Shape optimization for drag reduction
in linked bodies using evolution strategies. Computers & Structures, 89(11):1224–1231,
2011.

[277] T. Geijtenbeek, M. Van De Panne, and A. F. Van Der Stappen. Flexible muscle-based
locomotion for bipedal creatures. ACM Transactions on Graphics (TOG), 32(6):1–11, 2013.

[278] G. Gelbert, J. P. Moeck, C. O. Paschereit, and R. King. Advanced algorithms for gradient
estimation in one-and two-parameter extremum seeking controllers. Journal of Process
Control, 22(4):700–709, 2012.

[279] P. Gelß, S. Klus, J. Eisert, and C. Schütte. Multidimensional approximation of nonlinear
dynamical systems. Journal of Computational and Nonlinear Dynamics, 14(6), 2019.

[280] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination
cone models for face recognition under variable lighting and pose. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 23(6):643–660, 2001.

[281] J. J. Gerbrands. On the relationships between SVD, KLT and PCA. Pattern recognition,
14(1):375–381, 1981.

[282] A. C. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE,
98(6):937–947, 2010.

[283] A. C. Gilbert, J. Y. Park, and M. B. Wakin. Sketched SVD: Recovering spectral features
from compressive measurements. ArXiv e-prints, 2012.

[284] A. C. Gilbert, M. J. Strauss, and J. A. Tropp. A tutorial on fast Fourier sampling. IEEE
Signal Processing Magazine, pages 57–66, 2008.

[285] C. Gin, B. Lusch, S. L. Brunton, and J. N. Kutz. Deep learning models for global coordi-
nate transformations that linearise PDEs. European Journal of Applied Mathematics, pages
1–25, 2020.

[286] C. Gin, B. Lusch, S. L. Brunton, and J. N. Kutz. Deep learning models for global co-
ordinate transformations that linearise pdes. European Journal of Applied Mathematics,
32(3):515–539, 2021.

[287] C. R. Gin, D. E. Shea, S. L. Brunton, and J. N. Kutz. Deepgreen: Deep learning of green’s
functions for nonlinear boundary value problems. arXiv preprint arXiv:2101.07206, 2020.

[288] B. Glaz, L. Liu, and P. P. Friedmann. Reduced-order nonlinear unsteady aerodynamic
modeling using a surrogate-based recurrence framework. AIAA journal, 48(10):2418–
2429, 2010.

[289] P. J. Goddard and K. Glover. Controller approximation: approaches for preserving H1
performance. IEEE Transactions on Automatic Control, 43(7):858–871, 1998.

[290] D. E. Goldberg. Genetic algorithms. Pearson Education India, 2006.
[291] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a ma-

trix. Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical Analysis,
2(2):205–224, 1965.

[292] G. Golub, S. Nash, and C. Van Loan. A Hessenberg-Schur method for the problem ax +
xb = c. IEEE Transactions on Automatic Control, 24(6):909–913, 1979.

[293] G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 677

Numerical Mathematics, 14:403–420, 1970.
[294] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press, 2012.
[295] R. González-Garcı́a, R. Rico-Martı̀nez, and I. G. Kevrekidis. Identification of distributed

parameter systems: A neural net based approach. Computers & chemical engineering,
22:S965–S968, 1998.

[296] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[297] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

[298] A. Goza and T. Colonius. Modal decomposition of fluid–structure interaction with ap-
plication to flag flapping. Journal of Fluids and Structures, 81:728–737, 2018.

[299] M. Grant, S. Boyd, and Y. Ye. Cvx: Matlab software for disciplined convex programming,
2008.

[300] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[301] A. Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.
[302] M. S. Grewal. Kalman filtering. In International Encyclopedia of Statistical Science, pages

705–708. Springer, 2011.
[303] M. Grilli, P. J. Schmid, S. Hickel, and N. A. Adams. Analysis of unsteady behaviour in

shockwave turbulent boundary layer interaction. Journal of Fluid Mechanics, 700:16–28,
2012.

[304] J. Grosek and J. N. Kutz. Dynamic mode decomposition for real-time background/fore-
ground separation in video. arXiv preprint arXiv:1404.7592, 2014.

[305] M. Gu. Subspace iteration randomization and singular value problems. SIAM Journal on
Scientific Computing, 37(3):1139–1173, 2015.

[306] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic ma-
nipulation with asynchronous off-policy updates. In 2017 IEEE international conference on
robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.

[307] Y. Guan, S. L. Brunton, and I. Novosselov. Sparse nonlinear models of chaotic electro-
convection. Royal Society Open Science, 8(8):202367, 2021.

[308] F. Guéniat, L. Mathelin, and M. Y. Hussaini. A statistical learning strategy for closed-loop
control of fluid flows. Theor. Comp. Fluid Dyn., 30(6):497–510, 2016.

[309] F. Gueniat, L. Mathelin, and L. Pastur. A dynamic mode decomposition approach for
large and arbitrarily sampled systems. Physics of Fluids, 27(2):025113, 2015.

[310] P. Gunnarson, I. Mandralis, G. Novati, P. Koumoutsakos, and J. O. Dabiri. Learning
efficient navigation in vortical flow fields. arXiv preprint arXiv:2102.10536, 2021.

[311] D. R. Gurevich, P. A. Reinbold, and R. O. Grigoriev. Robust and optimal sparse regres-
sion for nonlinear pde models. Chaos: An Interdisciplinary Journal of Nonlinear Science,
29(10):103113, 2019.

[312] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P.-J.
Nordlund. Particle filters for positioning, navigation, and tracking. IEEE Transactions on
signal processing, 50(2):425–437, 2002.

[313] A. Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen,
69(3):331–371, 1910.

[314] N. Halko, P.-G. Martinsson, Y. Shkolnisky, and M. Tygert. An algorithm for the principal
component analysis of large data sets. SIAM Journal on Scientific Computing, 33:2580–2594,
2011.

[315] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Prob-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

678 BIBLIOGRAPHY

abilistic algorithms for constructing approximate matrix decompositions. SIAM Review,
53(2):217–288, 2011.

[316] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288, 2011.

[317] S. J. Hammarling. Numerical solution of the stable, non-negative definite Lyapunov
equation. IMA Journal of Numerical Analysis, 2(3):303–323, 1982.

[318] S. Han and B. Feeny. Application of proper orthogonal decomposition to structural vi-
bration analysis. Mechanical Systems and Signal Processing, 17(5):989–1001, 2003.

[319] N. Hansen, A. S. Niederberger, L. Guzzella, and P. Koumoutsakos. A method for han-
dling uncertainty in evolutionary optimization with an application to feedback control
of combustion. IEEE Transactions on Evolutionary Computation, 13(1):180–197, 2009.

[320] D. Harrison Jr and D. L. Rubinfeld. Hedonic housing prices and the demand for clean
air. Journal of environmental economics and management, 5(1):81–102, 1978.

[321] R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for
an “explanatory” multi-modal factor analysis. UCLA working papers in phonetics, 16:1–
84, 1970. Available at http://www.psychology.uwo.ca/faculty/harshman/
wpppfac0.pdf.

[322] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and R. Tibshirani. The elements
of statistical learning, volume 2. Springer, 2009.

[323] M. Hausknecht and P. Stone. Deep recurrent q-learning for partially observable mdps.
In 2015 aaai fall symposium series, 2015.

[324] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778,
2016.

[325] M. Heath, A. Laub, C. Paige, and R. Ward. Computing the singular value decomposi-
tion of a product of two matrices. SIAM Journal on Scientific and Statistical Computing,
7(4):1147–1159, 1986.

[326] M. Heideman, D. Johnson, and C. Burrus. Gauss and the history of the fast Fourier
transform. IEEE ASSP Magazine, 1(4):14–21, 1984.

[327] W. Heisenberg. Über den anschaulichen inhalt der quantentheoretischen kinematik und
mechanik. In Original Scientific Papers Wissenschaftliche Originalarbeiten, pages 478–504.
Springer, 1985.

[328] M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta. De-biasing the dynamic
mode decomposition for applied Koopman spectral analysis. Theoretical and Computa-
tional Fluid Dynamics, 31(4):349–368, 2017.

[329] M. S. Hemati, M. O. Williams, and C. W. Rowley. Dynamic mode decomposition for large
and streaming datasets. Physics of Fluids (1994-present), 26(11):111701, 2014.

[330] K. K. Herrity, A. C. Gilbert, and J. A. Tropp. Sparse approximation via iterative thresh-
olding. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006
IEEE International Conference on, volume 3, pages III–III. IEEE, 2006.

[331] B. Herrmann, P. J. Baddoo, R. Semaan, S. L. Brunton, and B. J. McKeon. Data-driven
resolvent analysis. arXiv preprint arXiv:2010.02181, 2020.

[332] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified reduced basis methods for
parametrized partial differential equations. SpringerBriefs in Mathematics, 2015.

[333] T. Hey, S. Tansley, K. M. Tolle, et al. The fourth paradigm: data-intensive scientific discovery,
volume 1. Microsoft research Redmond, WA, 2009.

[334] G. E. Hinton and T. J. Sejnowski. Learning and releaming in boltzmann machines. Parallel
distributed processing: Explorations in the microstructure of cognition, 1(282-317):2, 1986.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf

BIBLIOGRAPHY 679

[335] S. M. Hirsh, S. M. Ichinaga, S. L. Brunton, J. N. Kutz, and B. W. Brunton. Structured
time-delay models for dynamical systems with connections to frenet-serret frame. arXiv
preprint arXiv:2101.08344, 2021.

[336] B. L. Ho and R. E. Kalman. Effective construction of linear state-variable models from
input/output data. In Proceedings of the 3rd Annual Allerton Conference on Circuit and
System Theory, pages 449–459, 1965.

[337] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural infor-
mation processing systems, 29:4565–4573, 2016.

[338] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[339] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

[340] J. H. Holland. Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence. U Michigan Press, 1975.

[341] P. Holmes and J. Guckenheimer. Nonlinear oscillations, dynamical systems, and bifurcations
of vector fields, volume 42 of Applied Mathematical Sciences. Springer-Verlag, Berlin, Hei-
delberg, 1983.

[342] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, Coherent Structures,
Dynamical Systems and Symmetry. Cambridge University Press, Cambridge, 2nd paper-
back edition, 2012.

[343] E. Hopf. The partial differential equation ut + uux = µuxx. Communications on Pure and
Applied mathematics, 3(3):201–230, 1950.

[344] J. J. Hopfield. Neural networks and physical systems with emergent collective computa-
tional abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[345] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are univer-
sal approximators. Neural networks, 2(5):359–366, 1989.

[346] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24:417–441, Sept. 1933.

[347] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24:498–520, Oct. 1933.

[348] C. Huang, W. E. Anderson, M. E. Harvazinski, and V. Sankaran. Analysis of self-excited
combustion instabilities using decomposition techniques. In 51st AIAA Aerospace Sciences
Meeting, pages 1–18, 2013.

[349] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. Journal of Physiology, 160:106–154, 1962.

[350] P. J. Huber. Robust statistics. In International Encyclopedia of Statistical Science, pages
1248–1251. Springer, 2011.

[351] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

[352] S. J. Illingworth, A. S. Morgans, and C. W. Rowley. Feedback control of flow resonances
using balanced reduced-order models. Journal of Sound and Vibration, 330(8):1567–1581,
2010.

[353] E. Jacobsen and R. Lyons. The sliding DFT. IEEE Signal Processing Magazine, 20(2):74–80,
2003.

[354] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. science, 304(5667):78–80, 2004.

[355] G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical learning.
Springer, 2013.

[356] M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz. Extremum-seeking control

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

680 BIBLIOGRAPHY

of a beam pattern of a reconfigurable holographic metamaterial antenna. Journal of the
Optical Society of America A, 33(1):59–68, 2016.

[357] R. A. Johnson and D. Wichern. Multivariate analysis. Wiley Online Library, 2002.
[358] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert

space. Contemporary mathematics, 26(189-206):1, 1984.
[359] I. Jolliffe. Principal component analysis. Wiley Online Library, 2005.
[360] S. Joshi and S. Boyd. Sensor selection via convex optimization. IEEE Transactions on

Signal Processing, 57(2):451–462, 2009.
[361] M. R. Jovanović. From bypass transition to flow control and data-driven turbulence

modeling: An input-output viewpoint. Annu. Rev. Fluid. Mech., 53(1), 2021.
[362] M. R. Jovanović and B. Bamieh. Componentwise energy amplification in channel flows.

J. Fluid Mech., 534:145–183, 2005.
[363] M. R. Jovanović, P. J. Schmid, and J. W. Nichols. Sparsity-promoting dynamic mode

decomposition. Physics of Fluids, 26(2):024103, 2014.
[364] J. N. Juang. Applied System Identification. Prentice Hall PTR, Upper Saddle River, New

Jersey, 1994.
[365] J. N. Juang and R. S. Pappa. An eigensystem realization algorithm for modal parameter

identification and model reduction. Journal of Guidance, Control, and Dynamics, 8(5):620–
627, 1985.

[366] J. N. Juang, M. Phan, L. G. Horta, and R. W. Longman. Identification of observer/Kalman
filter Markov parameters: Theory and experiments. Technical Memorandum 104069,
NASA, 1991.

[367] S. J. Julier and J. K. Uhlmann. A new extension of the Kalman filter to nonlinear sys-
tems. In Int. symp. aerospace/defense sensing, simul. and controls, volume 3, pages 182–193.
Orlando, FL, 1997.

[368] S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear estimation. Proceedings
of the IEEE, 92(3):401–422, 2004.

[369] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285, 1996.

[370] K. Kaheman, E. Kaiser, B. Strom, J. N. Kutz, and S. L. Brunton. Learning discrepancy
models from experimental data. CDC [arXiv preprint arXiv:1909.08574], 2019.

[371] K. Kaheman, J. N. Kutz, and S. L. Brunton. Sindy-pi: a robust algorithm for parallel
implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A,
476(2242):20200279, 2020.

[372] E. Kaiser, J. N. Kutz, and S. L. Brunton. Data-driven discovery of Koopman eigenfunc-
tions for control. arXiv preprint arXiv:1707.01146, 2017.

[373] E. Kaiser, J. N. Kutz, and S. L. Brunton. Sparse identification of nonlinear dynamics for
model predictive control in the low-data limit. Proceedings of the Royal Society of London
A, 474(2219), 2018.

[374] E. Kaiser, J. N. Kutz, and S. L. Brunton. Sparse identification of nonlinear dynamics for
model predictive control in the low-data limit. Proceedings of the Royal Society of London
A, 474(2219), 2018.

[375] E. Kaiser, B. R. Noack, L. Cordier, A. Spohn, M. Segond, M. Abel, G. Daviller, J. Osth,
S. Krajnovic, and R. K. Niven. Cluster-based reduced-order modelling of a mixing layer.
J. Fluid Mech., 754:365–414, 2014.

[376] E. Kaiser, B. R. Noack, L. Cordier, A. Spohn, M. Segond, M. Abel, G. Daviller, J. Östh,
S. Krajnović, and R. K. Niven. Cluster-based reduced-order modelling of a mixing layer.
Journal of Fluid Mechanics, 754:365–414, 2014.

[377] S. M. Kakade. A natural policy gradient. Advances in neural information processing systems,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 681

14, 2001.
[378] M. Kalia, S. L. Brunton, H. G. Meijer, C. Brune, and J. N. Kutz. Learning normal form

autoencoders for data-driven discovery of universal, parameter-dependent governing
equations. arXiv preprint arXiv:2106.05102, 2021.

[379] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of
Fluids Engineering, 82(1):35–45, 1960.

[380] M. Kamb, E. Kaiser, S. L. Brunton, and J. N. Kutz. Time-delay observables for Koopman:
Theory and applications. SIAM J. Appl. Dyn. Syst., 19(2):886–917, 2020.

[381] A. A. Kaptanoglu, J. L. Callaham, C. J. Hansen, A. Aravkin, and S. L. Brunton. Promoting
global stability in data-driven models of quadratic nonlinear dynamics. arXiv preprint
arXiv:2105.01843, 2021.

[382] A. A. Kaptanoglu, K. D. Morgan, C. J. Hansen, and S. L. Brunton. Physics-constrained,
low-dimensional models for mhd: First-principles and data-driven approaches. Physical
Review E, 104(015206), 2021.

[383] K. Karhunen. Über lineare methoden in der wahrscheinlichkeitsrechnung, vol. 37. An-
nales AcademiæScientiarum Fennicæ, Ser. A. I, 1947.

[384] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[385] K. Kasper, L. Mathelin, and H. Abou-Kandil. A machine learning approach for con-
strained sensor placement. In American Control Conference (ACC), 2015, pages 4479–4484.
IEEE, 2015.

[386] A. K. Kassam and L. N. Trefethen. Fourth-order time-stepping for stiff PDEs. SIAM
Journal on Scientific Computing, 26(4):1214–1233, 2005.

[387] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and
finite automata. Journal of the ACM (JACM), 41(1):67–95, 1994.

[388] A. R. Kellems, S. Chaturantabut, D. C. Sorensen, and S. J. Cox. Morphologically accu-
rate reduced order modeling of spiking neurons. Journal of computational neuroscience,
28(3):477–494, 2010.

[389] J. Kepler. Tabulae Rudolphinae, quibus Astronomicae scientiae, temporum longinquitate collap-
sae Restauratio continetur. Ulm: Jonas Saur, 1627.

[390] G. Kerschen and J.-C. Golinval. Physical interpretation of the proper orthogonal modes
using the singular value decomposition. Journal of Sound and Vibration, 249(5):849–865,
2002.

[391] G. Kerschen, J.-c. Golinval, A. F. Vakakis, and L. A. Bergman. The method of proper
orthogonal decomposition for dynamical characterization and order reduction of me-
chanical systems: an overview. Nonlinear dynamics, 41(1-3):147–169, 2005.

[392] I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidid, O. Runborg, C. Theodor-
opoulos, and others. Equation-free, coarse-grained multiscale computation: Enabling
mocroscopic simulators to perform system-level analysis. Communications in Mathemati-
cal Sciences, 1(4):715–762, 2003.

[393] I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, and C. Theodor-
opoulos. Equation-free, coarse-grained multiscale computation: Enabling microscopic
simulators to perform system-level analysis. Communications in Mathematical Science,
1(4):715–762, 2003.

[394] N. J. Killingsworth and M. Krstc. PID tuning using extremum seeking: online, model-
free performance optimization. IEEE Control Systems Magazine, February:70–79, 2006.

[395] H. J. Kim, M. I. Jordan, S. Sastry, and A. Y. Ng. Autonomous helicopter flight via rein-
forcement learning. In Advances in neural information processing systems, pages 799–806,
2004.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

682 BIBLIOGRAPHY

[396] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[397] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[398] M. Kirby and L. Sirovich. Application of the Karhunen-Loève procedure for the charac-
terization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 12(1):103–108, 1990.

[399] V. C. Klema and A. J. Laub. The singular value decomposition: Its computation and
some applications. IEEE Transactions on Automatic Control, 25(2):164–176, 1980.

[400] S. Klus, P. Gelß, S. Peitz, and C. Schütte. Tensor-based dynamic mode decomposition.
Nonlinearity, 31(7):3359, 2018.

[401] S. Klus, F. Nüske, and B. Hamzi. Kernel-based approximation of the koopman generator
and schrödinger operator. Entropy, 22(7):722, 2020.

[402] S. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis, C. Schütte, and F. Noé. Data-driven
model reduction and transfer operator approximation. Journal of Nonlinear Science, pages
1–26, 2018.

[403] S. Klus, I. Schuster, and K. Muandet. Eigendecompositions of transfer operators in re-
producing kernel hilbert spaces. Journal of Nonlinear Science, 30(1):283–315, 2020.

[404] J. Kober and J. Peters. Reinforcement learning in robotics: A survey. In Reinforcement
Learning, pages 579–610. Springer, 2012.

[405] R. Koch. The 80/20 Principle. Nicholas Brealey Publishing, 1997.
[406] R. Koch. Living the 80/20 way. Audio-Tech Business Book Summaries, Incorporated, 2006.
[407] R. Koch. The 80/20 principle: the secret to achieving more with less. Crown Business, 2011.
[408] R. Koch. The 80/20 principle and 92 other powerful laws of nature: the science of success.

Nicholas Brealey Publishing, 2013.
[409] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer. Machine

learning accelerated computational fluid dynamics. arXiv preprint arXiv:2102.01010, 2021.
[410] T. Kohonen. The self-organizing map. Neurocomputing, 21(1-3):1–6, 1998.
[411] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,

51(3):455–500, September 2009.
[412] B. O. Koopman. Hamiltonian systems and transformation in Hilbert space. Proceedings

of the National Academy of Sciences, 17(5):315–318, 1931.
[413] B. O. Koopman and J.-v. Neumann. Dynamical systems of continuous spectra. Proceed-

ings of the National Academy of Sciences of the United States of America, 18(3):255, 1932.
[414] M. Korda and I. Mezić. Linear predictors for nonlinear dynamical systems: Koopman

operator meets model predictive control. Automatica, 93(149–160), 2018.
[415] M. Korda and I. Mezić. On convergence of extended dynamic mode decomposition to

the Koopman operator. Journal of Nonlinear Science, 28(2):687–710, 2018.
[416] P. Koumoutsakos, J. Freund, and D. Parekh. Evolution strategies for automatic optimiza-

tion of jet mixing. AIAA journal, 39(5):967–969, 2001.
[417] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anand-

kumar. Neural operator: Learning maps between function spaces. arXiv preprint
arXiv:2108.08481, 2021.

[418] K. Kowalski, W.-H. Steeb, and K. Kowalksi. Nonlinear dynamical systems and Carleman
linearization. World Scientific, 1991.

[419] J. R. Koza. Genetic programming: on the programming of computers by means of natural selec-
tion, volume 1. MIT press, 1992.

[420] J. R. Koza, F. H. Bennett III, and O. Stiffelman. Genetic programming as a darwinian
invention machine. In Genetic Programming, pages 93–108. Springer, 1999.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 683

[421] B. Kramer, P. Grover, P. Boufounos, M. Benosman, and S. Nabi. Sparse sensing and dmd
based identification of flow regimes and bifurcations in complex flows. SIAM J. Appl.
Dyn. Syst., 16(2):1164–1196, 2017.

[422] J. P. Krieger and M. Krstic. Extremum seeking based on atmospheric turbulence for
aircraft endurance. Journal of Guidance, Control, and Dynamics, 34(6):1876–1885, 2011.

[423] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[424] M. Krstic, A. Krupadanam, and C. Jacobson. Self-tuning control of a nonlinear model of
combustion instabilities. IEEE Tr. Contr. Syst. Technol., 7(4):424–436, 1999.

[425] M. Krstić and H. Wang. Stability of extremum seeking feedback for general nonlinear
dynamic systems. Automatica, 36:595–601, 2000.

[426] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional inverse
graphics network. In Advances in Neural Information Processing Systems, pages 2539–2547,
2015.

[427] S. Kullback and R. A. Leibler. On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86, 1951.

[428] K. Kunisch and S. Volkwein. Optimal snapshot location for computing pod basis func-
tions. ESAIM: Mathematical Modelling and Numerical Analysis, 44(3):509–529, 2010.

[429] J. N. Kutz. Data-Driven Modeling & Scientific Computation: Methods for Complex Systems &
Big Data. Oxford University Press, 2013.

[430] J. N. Kutz. Deep learning in fluid dynamics. Journal of Fluid Mechanics, 814:1–4, 2017.
[431] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic Mode Decomposition:

Data-Driven Modeling of Complex Systems. SIAM, 2016.
[432] J. N. Kutz, X. Fu, and S. L. Brunton. Multi-resolution dynamic mode decomposition.

SIAM Journal on Applied Dynamical Systems, 15(2):713–735, 2016.
[433] J. N. Kutz, S. Sargsyan, and S. L. Brunton. Leveraging sparsity and compressive sensing

for reduced order modeling. In Model Reduction of Parametrized Systems, pages 301–315.
Springer, 2017.

[434] S. Lall, J. E. Marsden, and S. Glavaški. Empirical model reduction of controlled nonlinear
systems. In IFAC World Congress, volume F, pages 473–478. International Federation of
Automatic Control, 1999.

[435] S. Lall, J. E. Marsden, and S. Glavaški. A subspace approach to balanced truncation for
model reduction of nonlinear control systems. International Journal of Robust and Nonlinear
Control, 12(6):519–535, 2002.

[436] Y. Lan and I. Mezić. Linearization in the large of nonlinear systems and Koopman oper-
ator spectrum. Physica D: Nonlinear Phenomena, 242(1):42–53, 2013.

[437] H. Lange, S. L. Brunton, and J. N. Kutz. From fourier to koopman: Spectral methods for
long-term time series prediction. J. Mach. Learn. Res., 22(41):1–38, 2021.

[438] S. Lanka and T. Wu. Archer: Aggressive rewards to counter bias in hindsight experience
replay. arXiv preprint arXiv:1809.02070, 2018.

[439] A. Laub. A Schur method for solving algebraic Riccati equations. IEEE Transactions on
automatic control, 24(6):913–921, 1979.

[440] H. Le, C. Voloshin, and Y. Yue. Batch policy learning under constraints. In International
Conference on Machine Learning, pages 3703–3712. PMLR, 2019.

[441] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436, 2015.
[442] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[443] J. H. Lee. Model predictive control: Review of the three decades of development. Inter-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

684 BIBLIOGRAPHY

national Journal of Control, Automation and Systems, 9(3):415–424, 2011.
[444] K. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under

variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
27(5):684–698, 2005.

[445] A. M. Legendre. Nouvelles méthodes pour la détermination des orbites des comètes. F. Didot,
1805.

[446] V. Lenaerts, G. Kerschen, and J.-C. Golinval. Proper orthogonal decomposition for model
updating of non-linear mechanical systems. Mechanical Systems and Signal Processing,
15(1):31–43, 2001.

[447] I. Lenz, R. A. Knepper, and A. Saxena. Deepmpc: Learning deep latent features for model
predictive control. In Robotics: Science and Systems, 2015.

[448] R. Leyva, C. Alonso, I. Queinnec, A. Cid-Pastor, D. Lagrange, and L. Martinez-Salamero.
MPPT of photovoltaic systems using extremum-seeking control. Ieee Transactions On
Aerospace and Electronic Systems, 42(1):249–258, Jan. 2006.

[449] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis. Extended dynamic mode decompo-
sition with dictionary learning: A data-driven adaptive spectral decomposition of the
Koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10):103111,
2017.

[450] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020.

[451] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Multipole graph neural operator for parametric partial differential equations.
arXiv preprint arXiv:2006.09535, 2020.

[452] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Neural operator: Graph kernel network for partial differential equations. arXiv
preprint arXiv:2003.03485, 2020.

[453] Y. Liang, H. Lee, S. Lim, W. Lin, K. Lee, and C. Wu. Proper orthogonal decomposition
and its applications- part i: Theory. Journal of Sound and vibration, 252(3):527–544, 2002.

[454] E. Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 581–588.
ACM, 2013.

[455] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert. Randomized algo-
rithms for the low-rank approximation of matrices. Proceedings of the National Academy of
Sciences, 104:20167–20172, 2007.

[456] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

[457] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier method for exact recov-
ery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.

[458] J. Ling, A. Kurzawski, and J. Templeton. Reynolds averaged turbulence modelling using
deep neural networks with embedded invariance. Journal of Fluid Mechanics, 807:155–166,
2016.

[459] Y. Liu, J. N. Kutz, and S. L. Brunton. Hierarchical deep learning of multiscale differential
equation time-steppers. arXiv preprint arXiv:2008.09768, 2020.

[460] Y. Liu, C. Ponce, S. L. Brunton, and J. N. Kutz. Multiresolution convolutional autoen-
coders. arXiv preprint arXiv:2004.04946, 2020.

[461] L. Ljung. System Identification: Theory for the User. Prentice Hall, 1999.
[462] S. Lloyd. Least squares quantization in PCM. IEEE transactions on information theory,

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 685

28(2):129–137, 1982.
[463] M. Loeve. Probability Theory. Van Nostrand, Princeton, NJ, 1955.
[464] J.-C. Loiseau. Data-driven modeling of the chaotic thermal convection in an annular

thermosyphon. Theoretical and Computational Fluid Dynamics, 34(4):339–365, 2020.
[465] J.-C. Loiseau and S. L. Brunton. Constrained sparse Galerkin regression. Journal of Fluid

Mechanics, 838:42–67, 2018.
[466] J.-C. Loiseau, B. R. Noack, and S. L. Brunton. Sparse reduced-order modeling: sensor-

based dynamics to full-state estimation. Journal of Fluid Mechanics, 844:459–490, 2018.
[467] R. W. Longman. Iterative learning control and repetitive control for engineering practice.

International journal of control, 73(10):930–954, 2000.
[468] B. T. Lopez, J.-J. E. Slotine, and J. P. How. Dynamic tube mpc for nonlinear systems. In

2019 American Control Conference (ACC), pages 1655–1662. IEEE, 2019.
[469] E. N. Lorenz. Empirical orthogonal functions and statistical weather prediction. Techni-

cal report, Massachusetts Institute of Technology, Dec. 1956.
[470] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences, 20(2):130–

141, 1963.
[471] L. Lu, P. Jin, and G. E. Karniadakis. Deeponet: Learning nonlinear operators for identi-

fying differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193, 2019.

[472] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via
deeponet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, 2021.

[473] D. M. Luchtenburg and C. W. Rowley. Model reduction using snapshot-based realiza-
tions. Bulletin of the American Physical Society, 56, 2011.

[474] J. Lumley. Toward a turbulent constitutive relation. Journal of Fluid Mechanics, 41(02):413–
434, 1970.

[475] B. Lusch, E. C. Chi, and J. N. Kutz. Shape constrained tensor decompositions using
sparse representations in over-complete libraries. arXiv preprint arXiv:1608.04674, 2016.

[476] B. Lusch, J. N. Kutz, and S. L. Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature Communications, 9(1):4950, 2018.

[477] F. Lusseyran, F. Gueniat, J. Basley, C. L. Douay, L. R. Pastur, T. M. Faure, and P. J. Schmid.
Flow coherent structures and frequency signature: application of the dynamic modes
decomposition to open cavity flow. In Journal of Physics: Conference Series, volume 318,
page 042036. IOP Publishing, 2011.

[478] J. Lynch, P. Aughwane, and T. M. Hammond. Video games and surgical ability: a litera-
ture review. Journal of surgical education, 67(3):184–189, 2010.

[479] Z. Ma, S. Ahuja, and C. W. Rowley. Reduced order models for control of fluids using the
eigensystem realization algorithm. Theor. Comput. Fluid Dyn., 25(1):233–247, 2011.

[480] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states:
A new framework for neural computation based on perturbations. Neural computation,
14(11):2531–2560, 2002.

[481] A. Mackey, H. Schaeffer, and S. Osher. On the compressive spectral method. Multiscale
Modeling & Simulation, 12(4):1800–1827, 2014.

[482] M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and Trends
in Machine Learning, 3:123–224, 2011.

[483] A. J. Majda and J. Harlim. Physics constrained nonlinear regression models for time
series. Nonlinearity, 26(1):201, 2012.

[484] A. J. Majda and Y. Lee. Conceptual dynamical models for turbulence. Proceedings of the
National Academy of Sciences, 111(18):6548–6553, 2014.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

686 BIBLIOGRAPHY

[485] S. Mallat. A wavelet tour of signal processing. Academic press, 1999.
[486] S. Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A,

374(2065):20150203, 2016.
[487] S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet representa-

tion. IEEE transactions on pattern analysis and machine intelligence, 11(7):674–693, 1989.
[488] J. Mandel. Use of the singular value decomposition in regression analysis. The American

Statistician, 36(1):15–24, 1982.
[489] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Inferring biological networks

by sparse identification of nonlinear dynamics. IEEE Transactions on Molecular, Biological,
and Multi-Scale Communications, 2(1):52–63, 2016.

[490] N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor. Model selection for dynamical
systems via sparse regression and information criteria. Proceedings of the Royal Society A,
473(2204):1–16, 2017.

[491] J. Mann and J. N. Kutz. Dynamic mode decomposition for financial trading strategies.
Quantitative Finance, pages 1–13, 2016.

[492] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton. Data-driven sparse sensor
placement. Invited for IEEE Control Systems Magazine, 2017.

[493] K. Manohar, S. L. Brunton, and J. N. Kutz. Environmental identification in flight using
sparse approximation of wing strain. Journal of Fluids and Structures, 70:162–180, 2017.

[494] K. Manohar, E. Kaiser, S. L. Brunton, and J. N. Kutz. Optimized sampling for multiscale
dynamics. SIAM Multiscale modeling and simulation, 17(1):117–136, 2019.

[495] K. Manohar, J. N. Kutz, and S. L. Brunton. Optimized sensor and actuator placement for
balanced models. arXiv preprint arXiv:1812.01574, 2018.

[496] A. Mardt, L. Pasquali, H. Wu, and F. Noé. VAMPnets: Deep learning of molecular kinet-
ics. Nature Communications, 9(5), 2018.

[497] J. E. Marsden and T. S. Ratiu. Introduction to mechanics and symmetry. Springer-Verlag,
2nd edition, 1999.

[498] P.-G. Martinsson. Randomized methods for matrix computations and analysis of high
dimensional data. arXiv preprint arXiv:1607.01649, 2016.

[499] P.-G. Martinsson, V. Rokhlin, and M. Tygert. A randomized algorithm for the decompo-
sition of matrices. Applied and Computational Harmonic Analysis, 30:47–68, 2011.

[500] J. L. Maryak, J. C. Spall, and B. D. Heydon. Use of the Kalman filter for inference in state-
space models with unknown noise distributions. IEEE Transactions on Automatic Control,
49(1):87–90, 2004.

[501] L. Massa, R. Kumar, and P. Ravindran. Dynamic mode decomposition analysis of deto-
nation waves. Physics of Fluids (1994-present), 24(6):066101, 2012.

[502] L. Mathelin, K. Kasper, and H. Abou-Kandil. Observable dictionary learning for
high-dimensional statistical inference. Archives of Computational Methods in Engineering,
25(1):103–120, 2018.

[503] R. Maulik, O. San, A. Rasheed, and P. Vedula. Subgrid modelling for two-dimensional
turbulence using neural networks. Journal of Fluid Mechanics, 858:122–144, 2019.

[504] R. Maury, M. Keonig, L. Cattafesta, P. Jordan, and J. Delville. Extremum-seeking control
of jet noise. Aeroacoustics, 11(3&4):459–474, 2012.

[505] S. F. McCormick. Multigrid methods. SIAM, 1987.
[506] B. J. McKeon and A. S. Sharma. A critical-layer framework for turbulent pipe flow. J.

Fluid Mech., 658:336–382, 2010.
[507] X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis. Ppinn: Parareal physics-informed

neural network for time-dependent pdes. Computer Methods in Applied Mechanics and
Engineering, 370:113250, 2020.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 687

[508] I. Mezić. Spectral properties of dynamical systems, model reduction and decomposi-
tions. Nonlinear Dynamics, 41(1-3):309–325, 2005.

[509] I. Mezić. Analysis of fluid flows via spectral properties of the Koopman operator. Ann.
Rev. Fluid Mech., 45:357–378, 2013.

[510] I. Mezić. Spectral operator methods in dynamical systems: Theory and applications. Springer,
2017.

[511] I. Mezić and A. Banaszuk. Comparison of systems with complex behavior. Physica D:
Nonlinear Phenomena, 197(1):101–133, 2004.

[512] I. Mezić and S. Wiggins. A method for visualization of invariant sets of dynamical sys-
tems based on the ergodic partition. Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 9(1):213–218, 1999.

[513] M. Milano and P. Koumoutsakos. Neural network modeling for near wall turbulent flow.
Journal of Computational Physics, 182(1):1–26, 2002.

[514] M. Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 1961.
[515] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
[516] Y. Mizuno, D. Duke, C. Atkinson, and J. Soria. Investigation of wall-bounded turbulent

flow using dynamic mode decomposition. In Journal of Physics: Conference Series, volume
318, page 042040. IOP Publishing, 2011.

[517] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 1928–1937, 2016.

[518] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[519] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[520] J. P. Moeck, J.-F. Bourgouin, D. Durox, T. Schuller, and S. Candel. Tomographic recon-
struction of heat release rate perturbations induced by helical modes in turbulent swirl
flames. Experiments in Fluids, 54(4):1–17, 2013.

[521] P. R. Montague, P. Dayan, and T. J. Sejnowski. A framework for mesencephalic dopamine
systems based on predictive hebbian learning. Journal of neuroscience, 16(5):1936–1947,
1996.

[522] B. C. Moore. Principal component analysis in linear systems: Controllability, observabil-
ity, and model reduction. IEEE Transactions on Automatic Control, AC-26(1):17–32, 1981.

[523] C. C. Moore. Ergodic theorem, ergodic theory, and statistical mechanics. Proceedings of
the National Academy of Sciences, 112(7):1907–1911, 2015.

[524] K. L. Moore. Iterative learning control for deterministic systems. Springer Science & Business
Media, 2012.

[525] M. Morari and J. H. Lee. Model predictive control: past, present and future. Computers
& Chemical Engineering, 23(4):667–682, 1999.

[526] J. Morton, F. D. Witherden, A. Jameson, and M. J. Kochenderfer. Deep dynamical model-
ing and control of unsteady fluid flows. 32nd Conference on Neural Information Processing
Systems (NeurIPS 2018); arXiv preprint arXiv:1805.07472, 2018.

[527] T. W. Muld, G. Efraimsson, and D. S. Henningson. Flow structures around a high-speed
train extracted using proper orthogonal decomposition and dynamic mode decomposi-
tion. Computers & Fluids, 57:87–97, 2012.

[528] T. W. Muld, G. Efraimsson, and D. S. Henningson. Mode decomposition on surface-
mounted cube. Flow, Turbulence and Combustion, 88(3):279–310, 2012.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

688 BIBLIOGRAPHY

[529] S. Müller, M. Milano, and P. Koumoutsakos. Application of machine learning algorithms
to flow modeling and optimization. Annual Research Briefs, pages 169–178, 1999.

[530] I. Munteanu, A. I. Bratcu, and E. Ceanga. Wind turbulence used as searching signal for
MPPT in variable-speed wind energy conversion systems. Renewable Energy, 34(1):322–
327, Jan. 2009.

[531] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.
[532] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines.

In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–
814, 2010.

[533] D. Needell and J. A. Tropp. CoSaMP: iterative signal recovery from incomplete and
inaccurate samples. Communications of the ACM, 53(12):93–100, 2010.

[534] J. v. Neumann. Proof of the quasi-ergodic hypothesis. Proceedings of the National Academy
of Sciences, 18(1):70–82, 1932.

[535] N. Nguyen, A. Patera, and J. Peraire. A best points interpolation method for efficient
approximation of parametrized functions. International Journal for Numerical Methods in
Engineering, 73(4):521–543, 2008.

[536] Y. Nievergelt and Y. Nievergelt. Wavelets made easy, volume 174. Springer, 1999.
[537] B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, and F. Thiele. A hierarchy of low-

dimensional models for the transient and post-transient cylinder wake. Journal of Fluid
Mechanics, 497:335–363, 2003.

[538] B. R. Noack, T. Duriez, L. Cordier, M. Segond, M. Abel, S. L. Brunton, M. Morzyński,
J.-C. Laurentie, V. Parezanovic, and J.-P. Bonnet. Closed-loop turbulence control with
machine learning methods. Bulletin Am. Phys. Soc., 58(18):M25.0009, p. 418, 2013.

[539] B. R. Noack, M. Morzynski, and G. Tadmor. Reduced-order modelling for flow control, vol-
ume 528. Springer Science & Business Media, 2011.

[540] B. R. Noack, W. Stankiewicz, M. Morzynski, and P. J. Schmid. Recursive dynamic mode
decomposition of a transient cylinder wake. Journal of Fluid Mechanics, 809:843–872, 2016.

[541] F. Noé and F. Nuske. A variational approach to modeling slow processes in stochastic
dynamical systems. Multiscale Modeling & Simulation, 11(2):635–655, 2013.

[542] E. Noether. Invariante variationsprobleme nachr. d. könig. gesellsch. d. wiss. zu
göttingen, math-phys. klasse 1918: 235-257. English Reprint: physics/0503066, http://dx.
doi. org/10.1080/00411457108231446, page 57, 1918.

[543] G. Novati, H. L. de Laroussilhe, and P. Koumoutsakos. Automating turbulence mod-
elling by multi-agent reinforcement learning. Nature Machine Intelligence, 3(1):87–96,
2021.

[544] G. Novati, L. Mahadevan, and P. Koumoutsakos. Controlled gliding and perching
through deep-reinforcement-learning. Physical Review Fluids, 4(9):093902, 2019.

[545] G. Novati, S. Verma, D. Alexeev, D. Rossinelli, W. M. Van Rees, and P. Koumout-
sakos. Synchronisation through learning for two self-propelled swimmers. Bioinspiration
Biomim., 12(3):aa6311, 2017.

[546] F. Nüske, P. Gelß, S. Klus, and C. Clementi. Tensorbased edmd for the koopman analysis
of high-dimensional systems. arXiv preprint arXiv:1908.04741, 2019.

[547] F. Nüske, B. G. Keller, G. Pérez-Hernández, A. S. Mey, and F. Noé. Variational approach
to molecular kinetics. Journal of chemical theory and computation, 10(4):1739–1752, 2014.

[548] F. Nüske, R. Schneider, F. Vitalini, and F. Noé. Variational tensor approach for approxi-
mating the rare-event kinetics of macromolecular systems. J. Chem. Phys., 144(5):054105,
2016.

[549] H. Nyquist. Certain topics in telegraph transmission theory. Transactions of the A. I. E. E.,
pages 617–644, FEB 1928.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 689

[550] G. Obinata and B. D. Anderson. Model reduction for control system design. Springer Science
& Business Media, 2012.

[551] M. Ornik, A. Israel, and U. Topcu. Control-oriented learning on the fly. arXiv preprint
arXiv:1709.04889, 2017.

[552] C. M. Ostoich, D. J. Bodony, and P. H. Geubelle. Interaction of a Mach 2.25 turbulent
boundary layer with a fluttering panel using direct numerical simulation. Physics of Flu-
ids (1994-present), 25(11):110806, 2013.

[553] S. E. Otto and C. W. Rowley. Linearly-recurrent autoencoder networks for learning dy-
namics. arXiv preprint arXiv:1712.01378, 2017.

[554] Y. Ou, C. Xu, E. Schuster, T. C. Luce, J. R. Ferron, M. L. Walker, and D. A. Humphreys.
Design and simulation of extremum-seeking open-loop optimal control of current profile
in the DIII-D tokamak. Plasma Physics and Controlled Fusion, 50:115001–1–115001–24, 2008.

[555] V. Ozoliņš, R. Lai, R. Caflisch, and S. Osher. Compressed modes for variational problems
in mathematics and physics. Proceedings of the National Academy of Sciences, 110(46):18368–
18373, 2013.

[556] C. Pan, D. Yu, and J. Wang. Dynamical mode decomposition of Gurney flap wake flow.
Theoretical and Applied Mechanics Letters, 1(1):012002, 2011.

[557] S. Pan and K. Duraisamy. Physics-informed probabilistic learning of linear embeddings
of nonlinear dynamics with guaranteed stability. SIAM Journal on Applied Dynamical
Systems, 19(1):480–509, 2020.

[558] X. Pan, Y. You, Z. Wang, and C. Lu. Virtual to real reinforcement learning for autonomous
driving. arXiv preprint arXiv:1704.03952, 2017.

[559] V. Parezanović, T. Duriez, L. Cordier, B. R. Noack, J. Delville, J.-P. Bonnet, M. Segond,
M. Abel, and S. L. Brunton. Closed-loop control of an experimental mixing layer using
machine learning control. arXiv preprint arXiv:1408.3259, 2014.

[560] V. Parezanovic, J.-C. Laurentie, T. Duriez, C. Fourment, J. Delville, J.-P. Bonnet,
L. Cordier, B. R. Noack, M. Segond, M. Abel, T. Shaqarin, and S. L. Brunton. Mixing
layer manipulation experiment – from periodic forcing to machine learning closed-loop
control. Journal Flow Turbulence and Combustion, 94(1):155–173, 2015.

[561] E. J. Parish and K. T. Carlberg. Time-series machine-learning error models for approx-
imate solutions to parameterized dynamical systems. Computer Methods in Applied Me-
chanics and Engineering, 365:112990, 2020.

[562] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In International conference on machine learning, pages 2778–2787.
PMLR, 2017.

[563] P. I. Pavlov. Conditioned reflexes: an investigation of the physiological activity of the cerebral
cortex. Oxford University Press, 1927.

[564] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2(7–12):559–572, 1901.

[565] B. Peherstorfer, D. Butnaru, K. Willcox, and H.-J. Bungartz. Localized discrete empirical
interpolation method. SIAM Journal on Scientific Computing, 36(1):A168–A192, 2014.

[566] B. Peherstorfer, Z. Drmac, and S. Gugercin. Stability of discrete empirical interpolation
and gappy proper orthogonal decomposition with randomized and deterministic sam-
pling points. SIAM Journal on Scientific Computing, 42(5):A2837–A2864, 2020.

[567] B. Peherstorfer and K. Willcox. Detecting and adapting to parameter changes for reduced
models of dynamic data-driven application systems. Procedia Computer Science, 51:2553–
2562, 2015.

[568] B. Peherstorfer and K. Willcox. Dynamic data-driven reduced-order models. Computer
Methods in Applied Mechanics and Engineering, 291:21–41, 2015.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

690 BIBLIOGRAPHY

[569] B. Peherstorfer and K. Willcox. Online adaptive model reduction for nonlinear systems
via low-rank updates. SIAM Journal on Scientific Computing, 37(4):A2123–A2150, 2015.

[570] S. Peitz and S. Klus. Koopman operator-based model reduction for switched-system
control of PDEs. arXiv preprint arXiv:1710.06759, 2017.

[571] S. D. Pendergrass, J. N. Kutz, and S. L. Brunton. Streaming GPU singular value and
dynamic mode decompositions. arXiv preprint arXiv:1612.07875, 2016.

[572] R. Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cam-
bridge philosophical society, volume 51, pages 406–413. Cambridge Univ Press, 1955.

[573] R. Penrose and J. A. Todd. On best approximate solutions of linear matrix equations.
In Mathematical Proceedings of the Cambridge Philosophical Society, volume 52, pages 17–19.
Cambridge Univ Press, 1956.

[574] L. Perko. Differential equations and dynamical systems, volume 7. Springer Science & Busi-
ness Media, 2013.

[575] M. Phan, L. G. Horta, J. N. Juang, and R. W. Longman. Linear system identification via an
asymptotically stable observer. Journal of Optimization Theory and Applications, 79:59–86,
1993.

[576] M. A. Pinsky. Introduction to Fourier analysis and wavelets, volume 102. American Mathe-
matical Soc., 2002.

[577] C. Pivot, L. Mathelin, L. Cordier, F. Guéniat, and B. R. Noack. A continuous reinforce-
ment learning strategy for closed-loop control in fluid dynamics. In 35th AIAA Applied
Aerodynamics Conference, page 3566, 2017.

[578] T. Poggio. Deep learning: mathematics and neuroscience. Views & Reviews, McGovern
Center for Brains, Minds and Machines, pages 1–7, 2016.

[579] P. Poncet, G.-H. Cottet, and P. Koumoutsakos. Control of three-dimensional wakes using
evolution strategies. Comptes Rendus Mecanique, 333(1):65–77, 2005.

[580] C. Poultney, S. Chopra, Y. L. Cun, et al. Efficient learning of sparse representations with
an energy-based model. In Advances in neural information processing systems, pages 1137–
1144, 2007.

[581] J. L. Proctor, S. L. Brunton, B. W. Brunton, and J. N. Kutz. Exploiting sparsity and
equation-free architectures in complex systems (invited review). The European Physical
Journal Special Topics, 223(13):2665–2684, 2014.

[582] J. L. Proctor, S. L. Brunton, and J. N. Kutz. Dynamic mode decomposition with control.
SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016.

[583] J. L. Proctor and P. A. Eckhoff. Discovering dynamic patterns from infectious disease
data using dynamic mode decomposition. International health, 7(2):139–145, 2015.

[584] H. Qi and S. M. Hughes. Invariance of principal components under low-dimensional
random projection of the data. IEEE International Conference on Image Processing, Oc-
tober 2012.

[585] S. Qian and D. Chen. Discrete Gabor transform. IEEE transactions on signal processing,
41(7):2429–2438, 1993.

[586] S. J. Qin and T. A. Badgwell. An overview of industrial model predictive control tech-
nology. In AIChE Symposium Series, volume 93, pages 232–256, 1997.

[587] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control technology.
Control engineering practice, 11(7):733–764, 2003.

[588] T. Qin, K. Wu, and D. Xiu. Data driven governing equations approximation using deep
neural networks. Journal of Computational Physics, 395:620–635, 2019.

[589] Q. Qu, J. Sun, and J. Wright. Finding a sparse vector in a subspace: Linear sparsity us-
ing alternating directions. In Advances in Neural Information Processing Systems 27, pages
3401—-3409, 2014.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 691

[590] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential
Equations: An Introduction, volume 92. Springer, 2015.

[591] A. Quarteroni and G. Rozza. Reduced Order Methods for Modeling and Computational Re-
duction, volume 9 of MS&A – Modeling, Simulation & Appplications. Springer, 2013.

[592] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
[593] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
[594] J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi. Artificial neural networks

trained through deep reinforcement learning discover control strategies for active flow
control. Journal of fluid mechanics, 865:281–302, 2019.

[595] J. Rabault and A. Kuhnle. Deep reinforcement learning applied to active flow control.
2020.

[596] M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125–141, 2018.

[597] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

[598] C. R. Rao. The utilization of multiple measurements in problems of biological classifica-
tion. Journal of the Royal Statistical Society. Series B (Methodological), 10(2):159–203, 1948.

[599] J. B. Rawlings. Tutorial overview of model predictive control. IEEE Control Systems,
20(3):38–52, 2000.

[600] S. Raychaudhuri, J. M. Stuart, and R. B. Altman. Principal components analysis to sum-
marize microarray experiments: application to sporulation time series. In Pacific Sympo-
sium on Biocomputing. Pacific Symposium on Biocomputing, page 455. NIH Public Access,
2000.

[601] B. Recht. A tour of reinforcement learning: The view from continuous control. Annual
Review of Control, Robotics, and Autonomous Systems, 2:253–279, 2019.

[602] G. Reddy, A. Celani, T. J. Sejnowski, and M. Vergassola. Learning to soar in turbulent
environments. Proc. Natl. Acad. Sci. USA, 113(33):E4877–E4884, 2016.

[603] G. Reddy, J. Wong-Ng, A. Celani, T. J. Sejnowski, and M. Vergassola. Glider soaring via
reinforcement learning in the field. Nature, 562(7726):236–239, 2018.

[604] S. Reddy, A. D. Dragan, and S. Levine. Shared autonomy via deep reinforcement learn-
ing. arXiv preprint arXiv:1802.01744, 2018.

[605] A. D. Redish. Addiction as a computational process gone awry. Science, 306(5703):1944–
1947, 2004.

[606] W. T. Redman. On koopman mode decomposition and tensor component analysis. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 31(5):051101, 2021.

[607] F. Regazzoni, L. Dede, and A. Quarteroni. Machine learning for fast and reliable solution
of time-dependent differential equations. Journal of Computational physics, 397:108852,
2019.

[608] R. H. Reichle, D. B. McLaughlin, and D. Entekhabi. Hydrologic data assimilation with
the ensemble Kalman filter. Monthly Weather Review, 130(1):103–114, 2002.

[609] P. A. Reinbold, D. R. Gurevich, and R. O. Grigoriev. Using noisy or incomplete data to
discover models of spatiotemporal dynamics. Physical Review E, 101(1):010203, 2020.

[610] P. A. Reinbold, L. M. Kageorge, M. F. Schatz, and R. O. Grigoriev. Robust learning from
noisy, incomplete, high-dimensional experimental data via physically constrained sym-
bolic regression. Nature communications, 12(1):1–8, 2021.

[611] B. Ren, P. Frihauf, R. J. Rafac, and M. Krstić. Laser pulse shaping via extremum seeking.
Control Engineering Practice, 20:674–683, 2012.

[612] A. Richards and J. How. Decentralized model predictive control of cooperating uavs.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

692 BIBLIOGRAPHY

In 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601),
volume 4, pages 4286–4291. IEEE, 2004.

[613] A. Richards and J. P. How. Robust distributed model predictive control. International
Journal of control, 80(9):1517–1531, 2007.

[614] B. Ristic, S. Arulampalam, and N. J. Gordon. Beyond the Kalman filter: Particle filters for
tracking applications. Artech house, 2004.

[615] A. J. Roberts. Model emergent dynamics in complex systems. SIAM, 2014.
[616] C. A. Rohde. Generalized inverses of partitioned matrices. Journal of the Society for Indus-

trial & Applied Mathematics, 13(4):1033–1035, 1965.
[617] V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component

analysis. SIAM Journal on Matrix Analysis and Applications, 31:1100–1124, 2009.
[618] S. M. Ross. Introduction to stochastic dynamic programming. Academic press, 2014.
[619] J. C. Rosser, P. J. Lynch, L. Cuddihy, D. A. Gentile, J. Klonsky, and R. Merrell. The impact

of video games on training surgeons in the 21st century. Archives of surgery, 142(2):181–
186, 2007.

[620] C. Rowley. Model reduction for fluids using balanced proper orthogonal decomposition.
Int. J. Bifurcation and Chaos, 15(3):997–1013, 2005.

[621] C. W. Rowley, T. Colonius, and R. M. Murray. Model reduction for compressible flows
using POD and Galerkin projection. Physica D, 189:115–129, 2004.

[622] C. W. Rowley and J. E. Marsden. Reconstruction equations and the Karhunen–Loève
expansion for systems with symmetry. Physica D: Nonlinear Phenomena, 142(1):1–19, 2000.

[623] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. Henningson. Spectral analysis of
nonlinear flows. J. Fluid Mech., 645:115–127, 2009.

[624] S. Roy, J.-C. Hua, W. Barnhill, G. H. Gunaratne, and J. R. Gord. Deconvolution of reacting-
flow dynamics using proper orthogonal and dynamic mode decompositions. Physical
Review E, 91(1):013001, 2015.

[625] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-driven discovery of partial
differential equations. Science Advances, 3(e1602614), 2017.

[626] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

[627] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani. Deep reinforcement learning frame-
work for autonomous driving. Electronic Imaging, 2017(19):70–76, 2017.

[628] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of research and development, 3(3):210–229, 1959.

[629] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia. Learning
to simulate complex physics with graph networks. In International Conference on Machine
Learning, pages 8459–8468. PMLR, 2020.

[630] T. P. Sapsis and A. J. Majda. Statistically accurate low-order models for uncertainty quan-
tification in turbulent dynamical systems. Proceedings of the National Academy of Sciences,
110(34):13705–13710, 2013.

[631] S. Sargsyan, S. L. Brunton, and J. N. Kutz. Nonlinear model reduction for dynamical sys-
tems using sparse sensor locations from learned libraries. Physical Review E, 92(033304),
2015.

[632] S. Sarkar, S. Ganguly, A. Dalal, P. Saha, and S. Chakraborty. Mixed convective flow stabil-
ity of nanofluids past a square cylinder by dynamic mode decomposition. International
Journal of Heat and Fluid Flow, 44:624–634, 2013.

[633] T. Sarlos. Improved approximation algorithms for large matrices via random projections.
In Foundations of Computer Science. 47th Annual IEEE Symposium on, pages 143–152, 2006.

[634] D. Sashidhar and J. N. Kutz. Bagging, optimized dynamic mode decomposition (bop-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 693

dmd) for robust, stable forecasting with spatial and temporal uncertainty-quantification.
arXiv preprint arXiv:2107.10878, 2021.

[635] T. Sayadi and P. J. Schmid. Parallel data-driven decomposition algorithm for large-scale
datasets: with application to transitional boundary layers. Theoretical and Computational
Fluid Dynamics, pages 1–14, 2016.

[636] T. Sayadi, P. J. Schmid, J. W. Nichols, and P. Moin. Reduced-order representation of
near-wall structures in the late transitional boundary layer. Journal of Fluid Mechanics,
748:278–301, 2014.

[637] S. Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences,
3(6):233–242, 1999.

[638] H. Schaeffer. Learning partial differential equations via data discovery and sparse opti-
mization. In Proc. R. Soc. A, volume 473, page 20160446. The Royal Society, 2017.

[639] H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher. Sparse dynamics for partial differ-
ential equations. Proceedings of the National Academy of Sciences USA, 110(17):6634–6639,
2013.

[640] H. Schaeffer and S. G. McCalla. Sparse model selection via integral terms. Physical Review
E, 96(2):023302, 2017.

[641] R. E. Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.
[642] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv

preprint arXiv:1511.05952, 2015.
[643] I. Scherl, B. Strom, J. K. Shang, O. Williams, B. L. Polagye, and S. L. Brunton. Robust

principal component analysis for particle image velocimetry. Physical Review Fluids,
5(054401), 2020.

[644] M. Schlegel and B. R. Noack. On long-term boundedness of galerkin models. Journal of
Fluid Mechanics, 765:325–352, 2015.

[645] M. Schlegel, B. R. Noack, and G. Tadmor. Low-dimensional Galerkin models and control
of transitional channel flow. Technical Report 01/2004, Hermann-Föttinger-Institut für
Strömungsmechanik, Technische Universität Berlin, Germany, 2004.

[646] M. Schmelzer, R. P. Dwight, and P. Cinnella. Discovery of algebraic reynolds-stress mod-
els using sparse symbolic regression. Flow, Turbulence and Combustion, 104(2):579–603,
2020.

[647] P. J. Schmid. Dynamic mode decomposition for numerical and experimental data. J.
Fluid. Mech, 656:5–28, 2010.

[648] P. J. Schmid, L. Li, M. P. Juniper, and O. Pust. Applications of the dynamic mode decom-
position. Theoretical and Computational Fluid Dynamics, 25(1-4):249–259, 2011.

[649] P. J. Schmid and J. Sesterhenn. Dynamic mode decomposition of numerical and exper-
imental data. In 61st Annual Meeting of the APS Division of Fluid Dynamics. American
Physical Society, Nov. 2008.

[650] P. J. Schmid, D. Violato, and F. Scarano. Decomposition of time-resolved tomographic
PIV. Experiments in Fluids, 52:1567–1579, 2012.

[651] E. Schmidt. Zur theorie der linearen und nichtlinearen integralgleichungen. i teil. en-
twicklung willkürlichen funktionen nach system vorgeschriebener. Math. Ann., 3:433–
476, 1907.

[652] M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data.
Science, 324(5923):81–85, 2009.

[653] M. D. Schmidt, R. R. Vallabhajosyula, J. W. Jenkins, J. E. Hood, A. S. Soni, J. P. Wikswo,
and H. Lipson. Automated refinement and inference of analytical models for metabolic
networks. Physical biology, 8(5):055011, 2011.

[654] O. T. Schmidt and T. Colonius. Guide to spectral proper orthogonal decomposition. Aiaa

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

694 BIBLIOGRAPHY

journal, 58(3):1023–1033, 2020.
[655] B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization,

optimization, and beyond. MIT press, 2002.
[656] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimiza-

tion. In International conference on machine learning, pages 1889–1897. PMLR, 2015.
[657] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and reward.

Science, 275(5306):1593–1599, 1997.
[658] G. Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):461–

464, 1978.
[659] A. Seena and H. J. Sung. Dynamic mode decomposition of turbulent cavity flows for

self-sustained oscillations. International Journal of Heat and Fluid Flow, 32(6):1098–1110,
2011.

[660] E. Sejdić, I. Djurović, and J. Jiang. Time–frequency feature representation using energy
concentration: An overview of recent advances. Digital Signal Processing, 19(1):153–183,
2009.

[661] O. Semeraro, G. Bellani, and F. Lundell. Analysis of time-resolved PIV measurements of a
confined turbulent jet using POD and Koopman modes. Experiments in Fluids, 53(5):1203–
1220, 2012.

[662] O. Semeraro, F. Lusseyran, L. Pastur, and P. Jordan. Qualitative dynamics of wavepackets
in turbulent jets. Physical Review Fluids, 2(094605), 2017.

[663] G. Shabat, Y. Shmueli, Y. Aizenbud, and A. Averbuch. Randomized LU decomposition.
Applied and Computational Harmonic Analysis, 2016.

[664] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforcement learn-
ing for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

[665] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27(3):379–423, 1948.

[666] C. E. Shannon. Xxii. programming a computer for playing chess. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 41(314):256–275, 1950.

[667] A. S. Sharma, I. Mezić, and B. J. McKeon. Correspondence between Koopman mode
decomposition, resolvent mode decomposition, and invariant solutions of the Navier-
Stokes equations. Physical Review Fluids, 1(3):032402, 2016.

[668] D. E. Shea, S. L. Brunton, and J. N. Kutz. Sindy-bvp: Sparse identification of nonlinear
dynamics for boundary value problems. Physical Review Research, 3(2):023255, 2021.

[669] E. Shlizerman, E. Ding, M. O. Williams, and J. N. Kutz. The proper orthogonal decom-
position for dimensionality reduction in mode-locked lasers and optical systems. Inter-
national Journal of Optics, 2012, 2011.

[670] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

[671] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[672] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. In International conference on machine learning, pages 387–395.
PMLR, 2014.

[673] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
nature, 550(7676):354–359, 2017.

[674] V. Simoncini. A new iterative method for solving large-scale Lyapunov matrix equations.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 695

SIAM Journal on Scientific Computing, 29(3):1268–1288, 2007.
[675] L. Sirovich. Turbulence and the dynamics of coherent structures, parts I-III. Q. Appl.

Math., XLV(3):561–590, 1987.
[676] L. Sirovich and M. Kirby. A low-dimensional procedure for the characterization of hu-

man faces. Journal of the Optical Society of America A, 4(3):519–524, 1987.
[677] S. Skogestad and I. Postlethwaite. Multivariable feedback control. Wiley, Chichester, 1996.
[678] P. Smolensky. Information processing in dynamical systems: Foundations of harmony

theory. Technical report, COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCI-
ENCE, 1986.

[679] G. Solari, L. Carassale, and F. Tubino. Proper orthogonal decomposition in wind engi-
neering. part 1: A state-of-the-art and some prospects. Wind and Structures, 10(2):153–176,
2007.

[680] G. Song, F. Alizard, J.-C. Robinet, and X. Gloerfelt. Global and Koopman modes analysis
of sound generation in mixing layers. Physics of Fluids (1994-present), 25(12):124101, 2013.

[681] D. C. Sorensen and Y. Zhou. Direct methods for matrix Sylvester and Lyapunov equa-
tions. Journal of Applied Mathematics, 2003(6):277–303, 2003.

[682] M. Sorokina, S. Sygletos, and S. Turitsyn. Sparse identification for nonlinear optical com-
munication systems: SINO method. Optics express, 24(26):30433–30443, 2016.

[683] J. C. Spall. The Kantorovich inequality for error analysis of the Kalman filter with un-
known noise distributions. Automatica, 31(10):1513–1517, 1995.

[684] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[685] I. Stakgold and M. J. Holst. Green’s functions and boundary value problems, volume 99. John
Wiley & Sons, 2011.

[686] W.-H. Steeb and F. Wilhelm. Non-linear autonomous systems of differential equations
and Carleman linearization procedure. Journal of Mathematical Analysis and Applications,
77(2):601–611, 1980.

[687] R. F. Stengel. Optimal control and estimation. Courier Corporation, 2012.
[688] G. W. Stewart. On the early history of the singular value decomposition. SIAM review,

35(4):551–566, 1993.
[689] G. Sugihara, R. May, H. Ye, C.-h. Hsieh, E. Deyle, M. Fogarty, and S. Munch. Detecting

causality in complex ecosystems. Science, 338(6106):496–500, 2012.
[690] C. Sun, E. Kaiser, S. L. Brunton, and J. N. Kutz. Deep reinforcement learning for optical

systems: A case study of mode-locked lasers. Machine Learning: Science and Technology,
1(4):045013, 2020.

[691] A. Surana. Koopman operator based observer synthesis for control-affine nonlinear sys-
tems. In 55th IEEE Conference on Decision and Control (CDC, pages 6492–6499, 2016.

[692] A. Surana and A. Banaszuk. Linear observer synthesis for nonlinear systems using Koop-
man operator framework. IFAC-PapersOnLine, 49(18):716–723, 2016.

[693] Y. Susuki and I. Mezić. A prony approximation of Koopman mode decomposition. In
Decision and Control (CDC), 2015 IEEE 54th Annual Conference on, pages 7022–7027. IEEE,
2015.

[694] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learn-
ing, 3(1):9–44, 1988.

[695] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[696] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in neural information

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

696 BIBLIOGRAPHY

processing systems, pages 1057–1063, 2000.
[697] A. Svenkeson, B. Glaz, S. Stanton, and B. J. West. Spectral decomposition of nonlinear

systems with memory. Phys. Rev. E, 93:022211, Feb 2016.
[698] S. Svoronos, D. Papageorgiou, and C. Tsiligiannis. Discretization of nonlinear control

systems via the Carleman linearization. Chemical engineering science, 49(19):3263–3267,
1994.

[699] D. L. Swets and J. Weng. Using discriminant eigenfeatures for image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 18(8):831–836, 1996.

[700] K. Taira, S. L. Brunton, S. T. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. T.
Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley. Modal analysis of fluid flows: An
overview. Aiaa Journal, 55(12):4013–4041, 2017.

[701] K. Taira and T. Colonius. The immersed boundary method: a projection approach. Jour-
nal of Computational Physics, 225(2):2118–2137, 2007.

[702] K. Taira, M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S. Dawson, and C.-
A. Yeh. Modal analysis of fluid flows: Applications and outlook. AIAA Journal, 58(3):998–
1022, 2020.

[703] N. Takeishi, Y. Kawahara, Y. Tabei, and T. Yairi. Bayesian dynamic mode decomposition.
Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017.

[704] N. Takeishi, Y. Kawahara, and T. Yairi. Learning Koopman invariant subspaces for dy-
namic mode decomposition. In Advances in Neural Information Processing Systems, pages
1130–1140, 2017.

[705] N. Takeishi, Y. Kawahara, and T. Yairi. Subspace dynamic mode decomposition for
stochastic Koopman analysis. Physical Review E, 96(033310), 2017.

[706] F. Takens. Detecting strange attractors in turbulence. Lecture Notes in Mathematics,
898:366–381, 1981.

[707] Z. Q. Tang and N. Jiang. Dynamic mode decomposition of hairpin vortices generated by
a hemisphere protuberance. Science China Physics, Mechanics and Astronomy, 55(1):118–
124, 2012.

[708] A. Taylor, A. Singletary, Y. Yue, and A. Ames. Learning for safety-critical control with
control barrier functions. In Learning for Dynamics and Control, pages 708–717. PMLR,
2020.

[709] R. Taylor, J. N. Kutz, K. Morgan, and B. Nelson. Dynamic mode decomposition for
plasma diagnostics and validation. Review of Scientific Instruments, 89(053501), 2018.

[710] R. Tedrake, Z. Jackowski, R. Cory, J. W. Roberts, and W. Hoburg. Learning to fly like a
bird. In 14th International Symposium on Robotics Research. Lucerne, Switzerland, 2009.

[711] G. Tesauro. Practical issues in temporal difference learning. Machine learning, 8(3):257–
277, 1992.

[712] G. Tesauro et al. Temporal difference learning and td-gammon. Communications of the
ACM, 38(3):58–68, 1995.

[713] S. Thaler, L. Paehler, and N. A. Adams. Sparse identification of truncation errors. Journal
of Computational Physics, 397:108851, 2019.

[714] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society. Series B (Methodological), pages 267–288, 1996.

[715] Z. Ting and J. Hui. Eeg signal processing based on proper orthogonal decomposition.
In Audio, Language and Image Processing (ICALIP), 2012 International Conference on, pages
636–640. IEEE, 2012.

[716] S. Tirunagari, N. Poh, K. Wells, M. Bober, I. Gorden, and D. Windridge. Movement
correction in DCE-MRI through windowed and reconstruction dynamic mode decom-
position. Machine Vision and Applications, 28(3-4):393–407, 2017.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 697

[717] J. Tithof, B. Suri, R. K. Pallantla, R. O. Grigoriev, and M. F. Schatz. Bifurcations in a quasi-
two-dimensional kolmogorov-like flow. Journal of Fluid Mechanics, 828:837–866, 2017.

[718] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE, 2012.

[719] C. Torrence and G. P. Compo. A practical guide to wavelet analysis. Bulletin of the Amer-
ican Meteorological society, 79(1):61–78, 1998.

[720] A. Towne, O. T. Schmidt, and T. Colonius. Spectral proper orthogonal decomposition
and its relationship to dynamic mode decomposition and resolvent analysis. Journal of
Fluid Mechanics, 847:821–867, 2018.

[721] G. Tran and R. Ward. Exact recovery of chaotic systems from highly corrupted data.
SIAM Multiscale modeling and simulation, 15(3):1108–1129, 2017.

[722] L. N. Trefethen. Spectral methods in MATLAB. SIAM, 2000.
[723] L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.
[724] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll. Hydrodynamic stability

without eigenvalues. Science, 261(5121):578–584, 1993.
[725] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transac-

tions on Information Theory, 50(10):2231–2242, 2004.
[726] J. A. Tropp. Recovery of short, complex linear combinations via l1 minimization. IEEE

Transactions on Information Theory, 51(4):1568–1570, 2005.
[727] J. A. Tropp. Algorithms for simultaneous sparse approximation. part ii: Convex relax-

ation. Signal Processing, 86(3):589–602, 2006.
[728] J. A. Tropp. Just relax: Convex programming methods for identifying sparse signals in

noise. IEEE Transactions on Information Theory, 52(3):1030–1051, 2006.
[729] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal

matching pursuit. IEEE Transactions on Information Theory, 53(12):4655–4666, 2007.
[730] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous sparse approx-

imation. part i: Greedy pursuit. Signal Processing, 86(3):572–588, 2006.
[731] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk. Beyond Nyquist:

Efficient sampling of sparse bandlimited signals. IEEE Transactions on Information Theory,
56(1):520–544, 2010.

[732] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. Randomized single-view algorithms
for low-rank matrix approximation. arXiv preprint arXiv:1609.00048, 2016.

[733] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Elsevier, 2000.
[734] J. N. Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine learning,

16(3):185–202, 1994.
[735] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Transactions on

Automatic Control, 40(9):1528–1538, 1995.
[736] J. H. Tu and C. W. Rowley. An improved algorithm for balanced POD through an analytic

treatment of impulse response tails. J. Comp. Phys., 231(16):5317–5333, 2012.
[737] J. H. Tu, C. W. Rowley, E. Aram, and R. Mittal. Koopman spectral analysis of separated

flow over a finite-thickness flat plate with elliptical leading edge. AIAA Paper 2011, 2864,
2011.

[738] J. H. Tu, C. W. Rowley, J. N. Kutz, and J. K. Shang. Spectral analysis of fluid flows using
sub-Nyquist-rate PIV data. Experiments in Fluids, 55(9):1–13, 2014.

[739] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. On dynamic
mode decomposition: theory and applications. J. Comp. Dyn., 1(2):391–421, 2014.

[740] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience,
3(1):71–86, 1991.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

698 BIBLIOGRAPHY

[741] R. Van Der Merwe. Sigma-point Kalman filters for probabilistic inference in dynamic state-space
models. 2004.

[742] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[743] C. Van Loan. Computational frameworks for the fast Fourier transform. SIAM, 1992.
[744] D. Venturi and G. E. Karniadakis. Gappy data and reconstruction procedures for flow

past a cylinder. Journal of Fluid Mechanics, 519:315–336, 2004.
[745] S. Verma, G. Novati, and P. Koumoutsakos. Efficient collective swimming by harness-

ing vortices through deep reinforcement learning. Proceedings of the National Academy of
Sciences, 115(23):5849–5854, 2018.

[746] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th international con-
ference on Machine learning, pages 1096–1103. ACM, 2008.

[747] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.
Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[748] S. Volkwein. Model reduction using proper orthogonal decomposition. Lecture Notes,
Institute of Mathematics and Scientific Computing, University of Graz. see http://www. uni-
graz. at/imawww/volkwein/POD. pdf, 1025, 2011.

[749] S. Volkwein. Proper orthogonal decomposition: Theory and reduced-order modelling.
Lecture Notes, University of Konstanz, 4:4, 2013.

[750] S. Voronin and P.-G. Martinsson. RSVDPACK: Subroutines for computing partial singu-
lar value decompositions via randomized sampling on single core, multi core, and GPU
architectures. arXiv preprint arXiv:1502.05366, 2015.

[751] A. Wang et al. An industrial strength audio search algorithm. In Ismir, volume 2003,
pages 7–13. Washington, DC, 2003.

[752] H. H. Wang, M. Krstić, and G. Bastin. Optimizing bioreactors by extremum seeking.
Adaptive Control and Signal Processing, 13(8):651–669, 1999.

[753] H. H. Wang, S. Yeung, and M. Krstić. Experimental application of extremum seeking on
an axial-flow compressor. IEEE Transactions on Control Systems Technology, 8(2):300–309,
2000.

[754] W. X. Wang, R. Yang, Y. C. Lai, V. Kovanis, and C. Grebogi. Predicting catastro-
phes in nonlinear dynamical systems by compressive sensing. Physical Review Letters,
106:154101–1–154101–4, 2011.

[755] Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu. Proper orthogonal decomposition clo-
sure models for turbulent flows: a numerical comparison. Computer Methods in Applied
Mechanics and Engineering, 237:10–26, 2012.

[756] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network
architectures for deep reinforcement learning. In International conference on machine learn-
ing, pages 1995–2003. PMLR, 2016.

[757] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.
[758] C. Wehmeyer and F. Noé. Time-lagged autoencoders: Deep learning of slow collective

variables for molecular kinetics. The Journal of Chemical Physics, 148(241703), 2018.
[759] E. Weinan. Principles of multiscale modeling. Cambridge University Press, 2011.
[760] E. Weinan, B. Engquist, and others. The heterogeneous multiscale methods. Communica-

tions in Mathematical Sciences, 1(1):87–132, 2003.
[761] G. Welch and G. Bishop. An introduction to the Kalman filter, 1995.
[762] P. Whitle. Hypothesis testing in time series analysis, volume 4. Almqvist & Wiksells, 1951.
[763] O. Wiederhold, R. King, B. R. Noack, L. Neuhaus, L. Neise, W. an Enghard, and M. Swo-

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

BIBLIOGRAPHY 699

boda. Extensions of extremum-seeking control to improve the aerodynamic performance
of axial turbomachines. In 39th AIAA Fluid Dynamics Conference, pages 1–19, San Anto-
nio, TX, USA, 2009. AIAA-Paper 092407.

[764] S. Wiggins, S. Wiggins, and M. Golubitsky. Introduction to applied nonlinear dynamical
systems and chaos, volume 2. Springer, 1990.

[765] K. Willcox. Unsteady flow sensing and estimation via the gappy proper orthogonal de-
composition. Computers & fluids, 35(2):208–226, 2006.

[766] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal decom-
position. AIAA Journal, 40(11):2323–2330, 2002.

[767] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A.
Theodorou. Information theoretic mpc for model-based reinforcement learning. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 1714–1721. IEEE,
2017.

[768] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A data-driven approximation of
the Koopman operator: extending dynamic mode decomposition. Journal of Nonlinear
Science, 6:1307–1346, 2015.

[769] M. O. Williams, C. W. Rowley, and I. G. Kevrekidis. A kernel approach to data-driven
Koopman spectral analysis. Journal of Computational Dynamics, 2(2):247–265, 2015.

[770] R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3):229–256, 1992.

[771] D. M. Witten and R. Tibshirani. Penalized classification using Fisher’s linear discrimi-
nant. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(5):753–772,
2011.

[772] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized algorithm for the ap-
proximation of matrices. Journal of Applied and Computational Harmonic Analysis, 25:335–
366, 2008.

[773] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
31(2):210–227, 2009.

[774] C. J. Wu. On the convergence properties of the EM algorithm. The Annals of statistics,
pages 95–103, 1983.

[775] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng,
B. Liu, S. Y. Philip, et al. Top 10 algorithms in data mining. Knowledge and information
systems, 14(1):1–37, 2008.

[776] H. Ye, R. J. Beamish, S. M. Glaser, S. C. Grant, C.-h. Hsieh, L. J. Richards, J. T. Schnute, and
G. Sugihara. Equation-free mechanistic ecosystem forecasting using empirical dynamic
modeling. Proceedings of the National Academy of Sciences, 112(13):E1569–E1576, 2015.

[777] E. Yeung, S. Kundu, and N. Hodas. Learning deep neural network representations for
Koopman operators of nonlinear dynamical systems. arXiv preprint arXiv:1708.06850,
2017.

[778] B. Yildirim, C. Chryssostomidis, and G. Karniadakis. Efficient sensor placement for
ocean measurements using low-dimensional concepts. Ocean Modelling, 27(3):160–173,
2009.

[779] X. Yuan and J. Yang. Sparse and low-rank matrix decomposition via alternating direction
methods. preprint, 12, 2009.

[780] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero. Extending the openai gym
for robotics: a toolkit for reinforcement learning using ros and gazebo. arXiv preprint
arXiv:1608.05742, 2016.

[781] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional networks. In

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

700 BIBLIOGRAPHY

IEEE Computer Vision and Pattern Recognition (CVPR), pages 2528–2535, 2010.
[782] C. Zhang and R. O. nez. Numerical optimization-based extremum seeking control with

application to ABS design. IEEE Transactions on Automatic Control, 52(3):454–467, 2007.
[783] H. Zhang, C. W. Rowley, E. A. Deem, and L. N. Cattafesta. Online dynamic mode de-

composition for time-varying systems. arXiv preprint arXiv:1707.02876, 2017.
[784] T. Zhang, G. Kahn, S. Levine, and P. Abbeel. Learning deep control policies for au-

tonomous aerial vehicles with MPC-guided policy search. In IEEE Robotics and Automa-
tion (ICRA), pages 528–535, 2016.

[785] T. Zhang, G. Kahn, S. Levine, and P. Abbeel. Learning deep control policies for au-
tonomous aerial vehicles with MPC-guided policy search. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on, pages 528–535. IEEE, 2016.

[786] W. Zhang, B. Wang, Z. Ye, and J. Quan. Efficient method for limit cycle flutter analysis
based on nonlinear aerodynamic reduced-order models. AIAA journal, 50(5):1019–1028,
2012.

[787] P. Zheng, T. Askham, S. L. Brunton, J. N. Kutz, and A. Y. Aravkin. Sparse relaxed regu-
larized regression: SR3. IEEE Access, 7(1):1404–1423, 2019.

[788] S. Zlobec. An explicit form of the moore-penrose inverse of an arbitrary complex matrix.
SIAM Review, 12(1):132–134, 1970.

[789] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.

	Preface
	Common Optimization Techniques, Equations, Symbols, and Acronyms
	I Dimensionality Reduction and Transforms
	Singular Value Decomposition
	Overview
	Matrix approximation
	Mathematical properties and manipulations
	Pseudo-inverse, least-squares, and regression
	Principal component analysis (PCA)
	Eigenfaces example
	Truncation and alignment
	Randomized singular value decomposition
	Tensor decompositions and N-way data arrays

	Fourier and Wavelet Transforms
	Fourier series and Fourier transforms
	Discrete Fourier transform (DFT) and fast Fourier transform (FFT)
	Transforming partial differential equations
	Gabor transform and the spectrogram
	Laplace transform
	Wavelets and multi-resolution analysis
	2D transforms and image processing

	Sparsity and Compressed Sensing
	Sparsity and compression
	Compressed sensing
	Compressed sensing examples
	The geometry of compression
	Sparse regression
	Sparse representation
	Robust principal component analysis (RPCA)
	Sparse sensor placement

	II Machine Learning and Data Analysis
	Regression and Model Selection
	Classic curve fitting
	Nonlinear regression and gradient descent
	Regression and Ax=b: Over- and under-determined systems
	Optimization as the cornerstone of regression
	The Pareto front and Lex Parsimoniae
	Model selection: Cross validation
	Model selection: Information criteria

	Clustering and Classification
	Feature selection and data mining
	Supervised versus unsupervised learning
	Unsupervised learning: k-means clustering
	Unsupervised hierarchical clustering: Dendrogram
	Mixture models and the expectation-maximization algorithm
	Supervised learning and linear discriminants
	Support vector machines (SVM)
	Classification trees and random forest
	Top 10 algorithms in data mining 2008

	Neural Networks and Deep Learning
	Neural networks: 1-Layer networks
	Multi-layer networks and activation functions
	The backpropagation algorithm
	The stochastic gradient descent algorithm
	Deep convolutional neural networks
	Neural networks for dynamical systems
	Recurrent Neural Networks
	Autoencoders
	Generative Adversarial Networks (GANs)
	The diversity of neural networks

	III Dynamics and Control
	Data-Driven Dynamical Systems
	Overview, motivations, and challenges
	Dynamic Mode Decomposition (DMD)
	Sparse identification of nonlinear dynamics (SINDy)
	Koopman Operator Theory
	Data-driven Koopman analysis

	Linear Control Theory
	Closed-loop feedback control
	Linear time-invariant systems
	Controllability and observability
	Optimal full-state control: linear quadratic regulator (LQR)
	Optimal full-state estimation: The Kalman filter
	Optimal sensor-based control: Linear quadratic Gaussian (LQG)
	Case study: Inverted pendulum on a cart
	Robust control and frequency domain techniques

	Balanced Models for Control
	Model reduction and system identification
	Balanced model reduction
	System identification

	IV Advanced Data-Driven Modeling and Control
	Data-Driven Control
	Model Predictive Control (MPC)
	Nonlinear System Identification for Control
	Machine Learning Control
	Adaptive Extremum-Seeking Control

	Reinforcement Learning
	Overview and Mathematical Formulation
	Model-Based Optimization and Control
	Model-Free Reinforcement Learning and Q-Learning
	Deep Reinforcement Learning
	Applications and Environments
	Optimal Nonlinear Control

	Reduced Order Models (ROMs)
	POD for partial differential equations
	Optimal basis elements: The POD expansion
	POD and soliton dynamics
	Continuous formulation of POD
	POD with symmetries: Rotations and translations
	Integrating neural networks with POD
	Integrating SINDy and DMD with POD

	Interpolation for Parametric ROMs
	Gappy POD
	Error and convergence of gappy POD
	Gappy measurements: Minimize condition number
	Gappy measurements: Maximal variance
	POD and the discrete empirical interpolation method (DEIM)
	DEIM algorithm implementation
	Decoder networks for interpolation
	Randomization and Compression for ROMs
	Machine learning ROMs

	Physics-Informed Machine Learning
	Mathematical foundations
	SINDy Autoencoder: Coordinates and dynamics
	Koopman Forecasting
	Learning nonlinear operators: DeepOnet and Neural Operator
	Physics-informed neural networks (PINNs)
	Learning coarse-graining for PDEs
	Deep Learning and Boundary Value Problems

	Glossary
	References

