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Chapter 11

Reinforcement Learning

Reinforcement learning (RL) is a major branch of machine learning that is con-
cerned with how to learn control laws and policies to interact with a complex
environment from experience [695, 369]. Thus, RL is situated at the growing
intersection of control theory and machine learning [601], and it is among the
most promising fields of research towards generalized artificial intelligence and
autonomy. Both machine learning and control theory fundamentally rely on
optimization, and likewise, RL involves a set of optimization techniques within
an experiential framework for learning how to interact with the environment.

In reinforcement learning, an agent1 senses the state of its environment and
learns take appropriate actions to optimize future rewards. The ultimate goal
in RL is to learn an effective control strategy or set of actions through positive
or negative reinforcement. This search may involve trial-and-error learning,
model-based optimization, or a combination of both. In this way, reinforce-
ment learning is fundamentally biologically inspired, mimicking how animals
learn to interact with their environment through positive and negative reward
feedback from trial-and-error experience. Much of the history of reinforcement
learning, and machine learning more broadly, has been linked to studies of
animal behavior and the neurological basis of decisions, control, and learn-
ing [521, 657, 201, 199]. For example, Pavlov’s dog is an illustration that ani-
mals learn to associate environmental cues with a food reward [563]. The term
reinforcement refers to the rewards, such as food, used to reinforce desirable ac-
tions in humans and animals. However, in animal systems reinforcement is
ultimately achieved through cellular and molecular learning rules.

Multiple textbooks have been written on this topic, which spans almost a
century of progress. Major advances in deep reinforcement learning are also
rapidly changing the landscape. This chapter is not meant to be comprehen-
sive; rather, it aims to provide a solid foundation, to introduce key concepts
and leading approaches, and to lower the barrier to entry in this exciting field.

1Ironically, from the perspective of reinforcement learning, in The Matrix, Neo is actually the
agent learning to interact with his environment.
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Figure 11.1: Schematic of reinforcement learning, where and agent senses its
environmental state s and takes actions a according to a policy ⇡ that is op-
timized through learning to maximize future rewards r. In this case, a deep
neural network is used to represent the policy ⇡. This is known as a deep policy
network.

11.1 Overview and Mathematical Formulation

Figure 11.1 provides a schematic overview of the reinforcement learning frame-
work. An RL agent senses the state of its environment and learns to take ap-
propriate actions to achieve optimal immediate or delayed rewards. Specifi-
cally, the RL agent arrives at a sequence of different states sk 2 S by perform-
ing actions ak 2 A, with the selected actions leading to positive or negative
rewards rk used for learning. The sets S and A denote the sets of possible
states and actions, respsectively. Importantly, the RL agent is capable of learn-
ing delayed rewards, which is critical for systems where the optimal solution
involves a multi-step procedure. Rewards may be thought of as sporadic and
time-delayed labels, leading to RL being considered a third major branch of
machine learning, called semi-supervised learning, which complements the other
two branches of supervised and unsupervised learning. One canonical exam-
ple is learning a set of moves, or a long term strategy, to win a game of chess. As
is the case with human learning, RL often begins with an unstructured explo-
ration, where trial-and-error are used to learn the rules, followed by exploitation,
where a strategy is chosen and optimized within the learned rules.
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The Policy

An RL agent senses the state of its environment s and takes actions a through
a policy ⇡ that is optimized through learning to maximize future rewards r.
Reinforcement learning is often formulated as an optimization problem to learn
the policy ⇡(s, a),

⇡(s, a) = Pr (a = a | s = s) , (11.1)

which is the probability of taking action a given state s, to maximize the total
future rewards. In the simplest formulation, the policy may be a look-up table
that is defined on the discrete state and action spaces S and A, respectively.
However, for most problems, representing and learning this policy becomes
prohibitively expensive, and ⇡ must instead be represented as an approximate
function that is parameterized by a lower-dimensional vector ✓:

⇡(s, a) ⇡ ⇡(s, a, ✓). (11.2)

Often, this parameterized function will be denoted ⇡✓(s, a). Function approxi-
mation is the basis of deep reinforcement learning in Sec. 11.4, where it is pos-
sible to represent these complex functions using deep neural networks.

Note that in the literature, there is often an abuse of notation, where ⇡(s, a)
is used to denote the action taken, rather than the probability density of taking
an action a given a state observation s. In the case of a deterministic policy,
such as a greedy policy, then it may be possible to use a = ⇡(s) to represent
the action taken. We will attempt to be clear throughout when choosing one
convention over another.

The Environment: a Markov Decision Process (MDP)

In general, the measured state of the system may be a partial measurement of
a higher-dimensional environmental state that evolves according to a stochas-
tic, nonlinear dynamical system. However, for simplicity, most introductions
to RL assume that the state evolves according to a Markov decision process
(MDP), so that the probability of the system occurring in the current state is
determined only by the previous state. We will begin with this simple formula-
tion. However, even though it is often assumed that the state evolves according
to an MDP, it is often the case that this model is not known, motivating the use
of “model-free” RL strategies discussed in Sec. 11.3. Similarly, when a model is
not known, it may be possible to first learn an MDP using data-driven methods
and then use this for “model-based” reinforcement learning, as in Sec. 11.2.

An MDP consists of a set of states S , a set of actions A, and a set of rewards
R, along with the probability of transitioning from state sk at time tk to state
sk+1 at time tk+1 given action ak,

P (s0, s, a) = Pr (sk+1 = s
0 | sk = s, ak = a) , (11.3)

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.
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and a reward function R

R(s0, s, a) = Pr (rk+1 | sk+1 = s
0, sk = s, ak = a) . (11.4)

Sometimes the transition probability P (s0, s, a) will be written as P (s0 | s, a).
Again, sometimes there will be an abuse of notation, where a chosen policy ⇡
will be used instead of the action a in the argument of either P or R above. In
this case, it is assumed that this applies a sum over states, as in

P (s0, s, ⇡) =
X

a2A

⇡(s, a)P (s0, s, a). (11.5)

Thus, an MDP generalizes the notion of a Markov process to include actions
and rewards, making it suitable for decision making and control. A simple
Markov process is a set of states S and a probability of transitioning from one
state to the next. The defining property of a Markov process and an MDP is that
the probability of being in a future state is entirely determined by the current
state, and not by previous states or hidden variables. The MDP framework
is closely related to transition state theory and the Perron-Frobenius operator,
which is the adjoint of the Koopman operator from Section 7.4.

In the case of a simple Markov process with a finite set of states S , then it
is possible to let s 2 Rn be a vector of the probability of being in each of the n
states, in which case the Markov process P (s0, s) may be written in terms of a
transition matrix, also known as a stochastic matrix, or a probability matrix, T:

s
0 = Ts, (11.6)

where each column of T must add up to 1, which is a statement of conservation
of probability that given a particular state s, something must happen after the
transition to s

0. Similarly, for an MDP, given a policy ⇡, the transition process
may be written as

s
0 =
X

a2A

⇡(s, a)Tas. (11.7)

Now for each action a, Ta is a Markov process with all columns summing to 1.
One of the defining properties of a Markov process is that the system asymp-

totically approaches a steady state µ, which is the eigenvector of T correspond-
ing to eigenvalue 1. Similarly, given a policy ⇡, an MDP asymptotically ap-
proaches a steady state µ⇡ =

P
a ⇡(s, a)µa.

This brings up another notational issue, where for continuous processes,
s 2 Rn describes the continuous state vector in an n-dimensional vector space,
as in Chapters 7 and 8, while for discrete state spaces, s 2 Rn denotes a vector
of probabilities of belonging to one of n finite states. It is important to care-
fully consider which notation is being used for a given problem, as these for-
mulations have different dynamics (i.e., differential equation versus MDP) and
interpretations (i.e., deterministic dynamics versus probabilistic transitions).

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.
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The Value Function

Given a policy ⇡, we next define a value function that quantifies the desirability
of being in a given state:

V⇡(s) = E
 
X

k

�k
rk | s0 = s

!
, (11.8)

where E is the expected reward over the time steps k, subject to a discount
rate �. Future rewards are discounted, reflecting the economic principle that
current rewards are more valuable than future rewards. Often, the subscript ⇡
is omitted from the value function, in which case we refer to the value function
for the best possible policy:

V (s) = max
⇡

E
 1X

k=0

�k
rk | s0 = s

!
. (11.9)

One of the most important properties of the value function is that the value
at a state s may be written recursively as

V (s) = max
⇡

E
 

r0 +
1X

k=1

�k
rk | s1 = s

0

!
, (11.10)

which implies that

V (s) = max
⇡

E (r0 + �V (s0)) , (11.11)

where s
0 = sk+1 is the next state after s = sk given action ak, and the expectation

is over actions selected from the optimal policy ⇡. This expression, known as
Bellman’s equation, is a statement of Bellman’s principle of optimality, and it is a
central result that underpins modern RL.

Given the value function, it is possible to extract the optimal policy as

⇡ = argmax
⇡

E (r0 + �V (s0)) , (11.12)

Goals and Challenges of Reinforcement Learning
Learning the policy ⇡, the value function V , or jointly learning both, is the cen-
tral challenge in RL. Depending on the assumed structure of ⇡, the size and
evolution dynamics of S , and the reward landscape R, determining an optimal
policy may range from a closed form optimization to a rather high-dimensional
unstructured optimization. Thus, a large number of trials must often be evalu-
ated in order to determine an optimal policy. In practice, reinforcement learn-
ing may be very expensive to train, and it might not be the right strategy for
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problems where testing a policy is expensive or potentially unsafe. Similarly, in
many cases, there are simpler control strategies than RL, such as LQR or MPC;
when these approaches are effective, they are often preferable. Reinforcement
learning is, therefore, well-suited for situations where some combination of the
following are true: evaluating a policy is inexpensive, as in board games; there
are sufficient resources to perform a near brute-force optimization, as in evolu-
tionary optimization; no other control strategy works.

Although RL is typically formulated within the mathematical framework
of MDPs, many real world applications do not satisfy these assumptions. For
example, the dynamics may depend on the state history or on hidden or latent
variables. Similarly, the evolution dynamics may be entirely deterministic, yet
chaotic. However, as we will see, it is often possible to develop approximate
probabilistic transition state models for chaotic dynamics or to augment the en-
vironment state to include past states for systems with memory or hidden vari-
ables. Often, the underlying MDP transition probability and reward functions
are not known a priori, and must either be learned ahead of time through some
exploration phase, or alternative model-free optimization techniques must be
used. Finally, many of the theoretical convergence results, and indeed many
of the fundamental RL algorithms, only apply to finite MDPs, which are char-
acterized by finite actions A and states S . Games, such as chess, fall into this
category, even though the number of states may be combinatorially large. Even
continuous dynamical systems, such as a pendulum on a cart, may be approx-
imated by a finite MDP through a discretization or quantization process.

There is typically much less supervisory information available to an RL
agent than is available in classical supervised learning. One of the central chal-
lenges of reinforcement learning is that rewards are often extremely rare and
may be significantly delayed from a sequence of good control actions. This
challenge leads to the so-called credit assignment problem, coined by Min-
sky [514] to describe the challenge of knowing what action sequence was re-
sponsible for the reward ultimately received. These sparse and delayed re-
wards have been a central challenge in RL for six decades, and they are still a
focus of research today. The resulting optimization problem is computationally
expensive and data intensive, requiring considerable trial and error.

Today, reinforcement learning is being used to learn sophisticated control
policies for complex open-world problems in autonomy and propulsion (e.g.,
self-driving cars, learning to swim and fly, etc.) and as a general learning en-
vironment for rule-constrained games (e.g., checkers, backgammon, chess, go,
Atari, etc.). Much of the history of RL may be traced through the success on in-
creasingly challenging board games, from checkers [628] to backgammon [712]
and more recently to chess and go [671]. These games serve to illustrate many
of the central challenges that are still faced in RL, including the curse of dimen-
sionality and the credit assignment problem.
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Figure 11.2: Reinforcement learning is inspired by biological learning with
sparse rewards. Mordecai is trained to balance a treat on his nose until a com-
mand is given, after which he grabs it out of the air. Credit: Bing Brunton for
image and training.

Motivating examples

It is helpful to understand RL through simple examples. Consider a mouse in
a maze. The mouse is the agent, and the environment is the maze. The mouse
measures the local state in its environment; it does not have access to a full top-
down view of the maze, but instead it knows its current local environment and
what past actions it has taken. The mouse has agency to take some action about
what to do next, for example whether to turn left, turn right, or go forward.
Typically, the mouse does not receive a reward until the end of the maze. If the
mouse received a reward after each correct turn, it would have a much simpler
learning task. Setting such a curriculum is a strategy to help teach animals,
whereby initially dense rewards are sparsified throughout the learning process.

More generally, RL may be used to understand animal behavior, ranging
from semi-supervised training to naturalistic behaviors. Figure 11.2 shows a
trained behavior where a treat is balanced on Mordecai’s nose until a command
is given, after which he is able to grab it out of the air. Often, training animals to
perform complex tasks involves expert human guidance to provide intermedi-
ate rewards or secondary reinforcers, such as using a clicker to indicate a future
reward. In animal training and in RL, the more proximal the reward is in time
to the action, the easier it is to learn the task. The connection between learning
and temporal proximity is the basis of temporal difference learning, which is a
powerful concept in RL, and this is also important to our understanding of the
chemical basis for addiction [605].

It is also helpful to consider two-player games, such as tic-tac-toe, checkers,
backgammon, chess, and go. In these games, the agent is one of the players,
and the environment encompasses the rules of the game along with an ad-
versarial opponent. These examples are also interesting because there is an
element of randomness or stochasticity in the environment, either because of
the fundamental rules (e.g., a dice-roll in backgammon) or because of an oppo-
nent’s probabilistic strategy. Thus, it may be advantageous for the agent to also
adopt a probabilistic policy, which is in contrast to much of the theory of classi-
cal control for deterministic systems. Similarly, a probabilistic strategy may be
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important when learning how to play.
In most games, the reward signal comes at the end of the game after the

agent has won or lost. Again, this makes the learning process exceedingly chal-
lenging, as it is initially unclear which subsequence of actions were particularly
important in driving the outcome. For example, an agent may play an excel-
lent chess opening and midgame and then lose at the end because of a few bad
moves. Should the agent discard the entire first half of the game, or worse yet,
attribute this to a negative reward? Thus, it is clear that a major part of learn-
ing an effective policy is understanding the value of being in a given state s.
In a game like chess, where the number of states is combinatorially large, there
are too many states to count, and it is intractable to map out the exact value of
all board states. Instead, players create simple heuristic rules-of-thumb about
what are good board positions, e.g. assigning points to the various pieces to
keep track of a rough score. This intermediate score provides a denser reward
structure throughout the game. However, these heuristics are sub-optimal and
may be susceptible to gambits, where the opponent sacrifices a piece for an
immediate point loss in order to eventually move to a more favorable global
state s. In backgammon, an intermediate point total may be more explicitly
computed as the total number of pips, or points that a player must roll to move
all pieces home and off the board. Although this makes it relatively simple
to estimate the strength of a board position, the discrete nature of the die roll
and game mechanics makes this a sub-optimal approximation, as the number
of required dice-rolls or turns may also be a useful measure.

Thinking through games like these illustrates many of the modern strate-
gies to improve the learning rates and sample efficiency of RL, including hind-
sight replay, temporal difference learning, look ahead, and reward shaping,
which we will discuss in the following sections. For example, playing against a
skilled teacher can dramatically improve the learning rate, as the teacher pro-
vides guidance about whether or not a move is good, and why, adding infor-
mation to help shape proxy metrics that can be used as intermediate rewards
and models that can accelerate the learning process.

Categorization of RL Techniques

Nearly all problems in machine learning and control theory involve challeng-
ing optimization problems. In the case of machine learning, the parameters
of a model are optimized to best fit the training data, as measured by a loss
function. In the case of control, a set of control performance metrics are opti-
mized subject to the constraints of the dynamics. Reinforcement learning is no
different, as it is at the intersection of machine learning and control theory.

There are many approaches to learn an optimal policy ⇡, which is the ulti-
mate goal of RL. A major dichotomy in reinforcement learning is that of model-
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The Policy

An RL agent senses the state of its environment s and takes actions a through
a policy ⇡ that is optimized through learning to maximize future rewards r.
Reinforcement learning is often formulated as an optimization problem to learn
a policy ⇡(s, a),

⇡(s, a) = Pr (a = a | s = s) , (11.1)

which is a probability of taking action a given state s, to maximize the total
future rewards. In the simplest formulation, the policy may be a look-up table
that is defined on the discrete state and action spaces S and A, respectively.
However, for most problems, this becomes prohibitively expensive, and ⇡ must
be represented as an approximate function that is parameterized by ✓:

⇡(s, a) ⇡ ⇡(s, a, ✓). (11.2)

Often, this parameterized function will be denoted ⇡✓(s, a). Function approxi-
mation is the basis of deep reinforcement learning in Sec. 11.4, where it is pos-
sible to represent these complex functions using deep neural networks.

Note that in the literature, there is often an abuse of notation, where ⇡(s, a)
is used to denote the action taken, rather than the probability density of taking
an action a given a state observation s. In the case of a deterministic policy,
such as a greedy policy, then it may be possible to use a = ⇡(s) to represent
the action taken. We will attempt to be clear throughout when choosing one
convention over another.

The Environment: a Markov Decision Process (MDP)

In general, the measured state of the system may be a partial measurement of a
higher-dimensional environmental state that evolves according to a stochastic,
nonlinear dynamical system. However, for simplicity, most introductions to RL
assume that the state evolves according to a Markov decision process (MDP),
so that the probability of the system occurring in the current state is determined
only by the previous state. We will begin with this simple formulation, as it is
easier to understand many key principles, although we note that this can and
should be generalized. However, even though it is often assumed that the state
evolves according to an MDP, it is often the case that this model is not known,
leading to model-free RL strategies. Similarly, when a model is not known, it
may be possible to first learn an MDP using data-driven methods and then use
this for model-based reinforcement learning.

An MDP consists of a set of states S , a set of actions A, and a set of rewards
R, along with the probability of transitioning from state sk at time tk to state
sk+1 at time tk+1 given action ak,

P (s0, s, a) = Pr (sk+1 = s
0 | sk = s, ak = a) , (11.3)
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The Policy

An RL agent senses the state of its environment s and takes actions a through
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An MDP consists of a set of states S , a set of actions A, and a set of rewards
R, along with the probability of transitioning from state sk at time tk to state
sk+1 at time tk+1 given action ak,

P (s0, s, a) = Pr (sk+1 = s
0 | sk = s, ak = a) , (11.3)
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The Value Function

Given a policy ⇡, it is possible to define a value function that quantifies the
desirability of being in a given state:

V⇡(s) = E
 
X

k

�k
rk | s0 = s

!
, (11.8)

where E is the expected reward over the time steps k, subject to a discount rate
�. Often, the subscript ⇡ is omitted from the value function, in which case we
refer to the value function for the best possible policy:

V (s) = max
⇡

E
 1X

k=0

�k
rk | s0 = s

!
. (11.9)

One of the most important properties of the value function is that the value
at a state s may be written recursively as

V (s) = max
⇡

E
 

r0 +
1X

k=1

�k
rk | s1 = s

0

!
(11.10)

which implies that

V (s) = max
⇡

E (r0 + �V (s0)) , (11.11)

where s
0 is the next state after s. This is true for s

0 = sk+1 and s = sk for all k.
This is known as Bellman’s equation, and is a statement of Bellman’s principle of
optimality, which is a central result that enables modern RL. Given the value
function, it is possible to extract the optimal policy as

⇡ = argmax
⇡

E (r0 + �V (s0)) , (11.12)

Goals and Challenges of Reinforcement Learning
Learning the policy ⇡, the value function V , or jointly learning both, is a cen-
tral challenge in RL. Depending on the assumed structure of ⇡, the size and
evolution dynamics of S , and the reward landscape R, determining an optimal
policy may range from a closed form optimization to a rather high-dimensional
unstructured optimization. Thus a large number of trials must be evaluated in
order to determine an optimal policy.

Although RL is typically formulated within the mathematical framework
of MDPs, many real world applications do not satisfy these assumptions, so
that the state evolution depends on the past history of the state or on hidden
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respect to ✓

r✓R⌃,✓ =
X

s2S

µ�(s)
X

a2A

Q(s, a)r✓⇡✓(s, a) (11.34a)

=
X

s2S

µ�(s)
X

a2A

⇡✓(s, a)Q(s, a)
r✓⇡✓(s, a)

⇡✓(s, a)
(11.34b)

=
X

s2S

µ�(s)
X

a2A

⇡✓(s, a)Q(s, a)r✓ log (⇡✓(s, a)) (11.34c)

= E (Q(s, a)r✓ log (⇡✓(s, a))) . (11.34d)

Then the policy parameters may be updated as

✓new = ✓old + ↵r✓R⌃,✓, (11.35)

where ↵ is a the learning weight; note that ↵ may be replaced with a vector
of learning weights for each component of ✓. There are several approaches to
approximating this gradient, including through finite differences, the REIN-
FORCE algorithm [770], and natural policy gradients [377].

11.4 Deep Reinforcement Learning

Deep reinforcement learning is one of the most exciting areas of machine learn-
ing and of control theory, and it is one of the most promising avenues of re-
search towards generalized artificial intelligence. Deep learning has revolu-
tionized our ability to represent complex functions from data, providing a set
of architectures for achieving human level performance in complex tasks such
as image recognition and natural language processing. Classic reinforcement
learning suffers from a representation problem, as many of the relevant func-
tions, such as the policy ⇡, the value function V , and the quality function Q,
may be exceedingly complex functions defined over a very high dimensional
state and action space. Indeed, even for simple games, such as the 1972 Atari
game Pong, the black and white screen at standard resolution 336 ⇥ 240 has
over 1024,000 possible discrete states, making it infeasible to represent any of
these functions exactly without approximation. Thus, deep learning provides
a powerful tool for improving these representations. It is possible to use deep
learning in several different ways to approximate the various functions used
in RL, or to model the environment more generally. Typically the central chal-
lenge is in identifying and representing key features in a high-dimensional state
space. For example, the policy a, s may now be approximated by

⇡(s, a) ⇡ ⇡(s, a, ✓), (11.36)
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with zeros or at random. Then, for all states s 2 S , the value function is updated
by returning the maximum value at that state across all actions a 2 A, holding
the value function fixed at all other states s

0 2 S\s:

V (s) = max
a

X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.15)

This iteration is repeated until a convergence criterion is met.
After the value function converges, it is possible to extract the optimizing

policy ⇡:

⇡(s, a) = argmax
a

X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.16)

Although value iteration typically requires less steps per iteration, policy
iteration often converges in less iterations. This may be due to the fact that the
value function is often more complex than the policy function, requiring more
parameters to optimize over.

Note that the value function in RL typically refers to a discounted sum of
future rewards that should be maximized, while in nonlinear control it refers
to an integrated cost that should be minimized. The phrase value function is
particularly intuitive when referring to accumulated rewards in the economic
sense, as it quantifies the value of being in a given state. However, in the case
of nonlinear control theory, the value function is more accurately thought of as
quantifying the numerical value of the cost function evaluated on the optimal
trajectory. This notation can be confusing, and is worth careful consideration
depending on the context.

Quality function
Both policy iteration and value iteration rely on the quality function Q(s, a),
which is defined as

Q(s, a) = E (R(s0, s, a) + �V (s0)) (11.17a)

=
X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.17b)

In a sense, the optimal policy ⇡(s, a) and the optimal value function V (s, a)
contain redundant information, as one can be determined from the other via
the quality function Q(s, a):

⇡(s, a) = argmax
a

Q(s, a) (11.18a)

V (s) = max
a

Q(s, a). (11.18b)

This formulation will be used for model-free Q-learning [757, 734, 244] in Sec-
tion 11.3.
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Hamilton-Jacobi-Bellman equation
In optimal control, the goal is often to find a control input u(t) to drive a dy-
namical system

d

dt
x = f(x(t),u(t), t) dt (11.42)

to follow a trajectory x(t) that minimizes a cost function

J(x(t),u(t), t0, tf ) =

Z tf

t0

L(x(⌧),u(⌧) d⌧ + Q(x(tf ), tf ). (11.43)

Note that this formulation in (11.43) generalizes the LQR cost function in (8.47);
now the immediate cost function L(x,u) and the terminal cost Q(x(tf ), tf ) may
be non-quadratic functions. Often there are also constraints on the state x and
control u, which determine what solutions are admissible.

Given an initial state x0 = x(t0) at t0, an optimal control u(t) will result in
an optimal cost function J . We may define a value function V (x, t0, tf ) that de-
scribes the total integrated cost starting at this position x assuming the control
law is optimal:

V (x(t0), t0, tf ) = min
u(t)

J(x(t),u(t), t0, tf ) (11.44)

where x(t) is the solution to (11.42) for the optimal u(t). Notice that the value
function is no longer a function of the control u(t), as this has been optimized
over, and it is also not a function of a trajectory x(t), but rather of an initial
state x0, as the remainder of the trajectory is entirely specified by the dynamics
and the optimal control law. The value function is often called the cost-to-go in
control theory, as the value function evaluated at any point x(t) on an optimal
trajectory will represent the remaining cost associated with continuing to enact
this optimal policy until the final time tf . In fact, this is a statement of Bellman’s
optimality principle, that the value function V remains optimal starting with
any point on an optimal trajectory.

The Hamilton-Jacobi-Bellman3 (HJB) equation establishes a partial differen-
tial equation that must be satisfied by the value function V (x(t), t, tf ) at every
intermediate time t 2 [t0, tf ]:

�@V

@t
= min

u(t)

 ✓
@V

@x

◆T

f(x(t),u(t)) + L(x(t),u(t))

!
. (11.45)

3Kalman recognized that the Bellman optimal control formulation was a generalization of
the Hamilton-Jacobi equation from classical mechanics to handle stochastic input–output sys-
tems. These formulations all involve the calculus of variations, which traces its roots back to
the Brachistichrone problem of Johann Bernoulli.
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Figure 11.3: Rough categorization of reinforcement learning techniques. This
organization is not comprehensive, and some of the lines are becoming blurred.
The first major dichotomy is between model-based and model-free RL tech-
niques. Next, within model-free RL, there is a dichotomy between gradient-
based and gradient-free methods. Finally, within gradient-free methods, there
is a dichotomy between on-policy and off-policy methods.

based RL versus model-free RL. When there is a known model for the environ-
ment, there are several strategies for learning either the optimal policy or value
function through what is known as policy iteration or value iteration, which are
forms of dynamic programming using the Bellman equation. When there is
no model for the environment, alternative strategies, such as Q-learning, must
be employed. The reinforcement learning optimization problem may be par-
ticularly challenging for high-dimensional systems with unknown, nonlinear,
stochastic dynamics and sparse and delayed rewards. All of these techniques
may be combined with function approximation techniques, such as neural net-
works, for approximating the policy ⇡, the value function V , or the quality
function Q (discussed in subsequent sections), making them more useful for
high-dimensional systems. These model-based, model-free, and deep learn-
ing approaches will be discussed below. Note that this section only provides
a glimpse of the many optimization approaches used to solve RL problems, as
this is a vast and rapidly growing field.
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11.2 Model-Based Optimization and Control

This section provides a high-level overview of some essential model-based op-
timization and control techniques. Some don’t consider these techniques to
be reinforcement learning, as they don’t involve learning an optimal strategy
through trial-and-error experience. However, they are closely related. It is pos-
sible to learn a model through trial-and-error, and then use this model with
these techniques, which would be considered RL.

For the simplified case of a known model that is a finite MDP, it is possible
to learn either the optimal policy or value function through what is known as
policy iteration or value iteration, which are forms of dynamic programming us-
ing the Bellman equation. Dynamic programming [70, 71, 83, 735, 81, 82, 618]
is a powerful approach that is used for general optimal nonlinear control and
reinforcement learning, among other tasks. These algorithms provide a math-
ematically simplified optimization framework that helps to introduce essential
concepts used throughout.

More generally, RL optimization is related to the field of optimal nonlinear
control, which has deep roots in variational theory going back to Bernoulli and
the Brachistochrone problem nearly four centuries ago. We will explore this
connection to nonlinear control theory in Sec. 11.6.

Dynamic programming
Dynamic programming is a mathematical framework introduced by Richard
E. Bellman [70, 71] to solve large multi-step optimization problems, such as
those found in decision making and control. Policy iteration and value itera-
tion, discussed below, are two examples of the use of dynamic programming
in reinforcement learning. To solve these multi-step optimizations, dynamic
programming reformulates the large optimization problem as a recursive opti-
mization in terms of smaller sub-problems, so that only a local decision need
be optimized. This approach relies on Bellman’s principle of optimality, which
states that a large multi-step control policy must also be locally optimal in every
sub-sequence of steps.

The Bellman equation in (11.11) indicates that the large optimization prob-
lem over an entire state-action trajectory (sk, ak) may be broken into a recursive
optimization at each point along the trajectory. As long as the value function
is known at the next point s

0, it is possible to solve the optimization at point s

simply by optimizing the policy ⇡(s, a) at this point. Of course, this assumes
that the value function is known at all possible next states sk+1, which is a func-
tion of the current state sk, the current action ak, and the dynamics governing
the system; this becomes even more complex for non-MDP dynamics, such as
the nonlinear control formulation in the next subsection. For even moderately
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large problems, this suffers from the curse of dimensionality, and approximate
solution methods must be employed.

When tractable, dynamic programming (i.e., the process of breaking a large
problem into smaller overlapping sub-problems) provides a globally optimal
solution. There are two main approaches to dynamic programming, referred to
as top down and bottom up:

Top down: The top-down approach involves maintaining a table of sub-
problems that are referred to when solving larger problems. For a new
problem, the table is checked to see if the relevant sub-problem has been
solved. If so, it is used, and if not, the sub-problem is solved. This tabular
storage is called memoization and becomes combinatorially complex for
many problems.

Bottom up: The bottom-up approach involves starting by solving the
smallest sub-problems first, and then combining these to form the larger
problems. This may be thought of as working backwards from every pos-
sible goal state, finding the best previous action to get there, then going
back two steps, then going back three steps, etc.

Although dynamic programming still represents a brute-force search through
all sub-problems, it is still more efficient than a naive brute-force search. In
some cases, it reduces the computational complexity to an algorithm that scales
linearly with the number of sub-problems, although this may still be combina-
torially large, as in the example of the game of chess. Dynamic programming
is closely related to divide-and-conquer techniques, such as quick sort, except
that divide-and-conquer applies to non-overlapping or non-recursive (i.e., inde-
pendent) sub-problems, while dynamic programming applies to overlapping,
or recursively interdependent sub-problems.

However, the recursive strategy suggests approximate solution techniques,
such as the alternating directions method, where a sub-optimal solution is ini-
tialized and the value function is iterated over. This will be discussed next.

Policy iteration
Policy iteration is a two step optimization procedure to simultaneously find an
optimal value function V⇡ and the corresponding optimal policy ⇡.

First, a candidate policy ⇡ is evaluated, resulting in the value function for
this fixed policy. This typically involves a brute force calculation of the value
function for this policy starting at many or all initial states. The policy may
need to be simulated for a long time depending on the reward delay and dis-
counting factor �.

Next, the value function is fixed, and the policy is optimized to improve the
expected rewards by taking different actions at a given state. This optimization
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relies on the alternative recursive formulation of the value function in (11.8)
due to Bellman’s equation (11.11):

V⇡(s) = E (R(s0, s, ⇡(s)) + �V⇡(s0)) (11.13a)

=
X

s0

P (s0 | s, ⇡(s)) (R(s0, s, ⇡(s)) + �V⇡(s0)) . (11.13b)

Note that in this expression, we have assumed a deterministic policy a = ⇡(s),
otherwise, (11.13b) would involve a second summation over a 2 A, with the
expression multiplied by ⇡(s, a).

It is then possible to fix V⇡(s0) and optimize over the policy in the first term.
In particular, the new deterministic optimal policy at the state s is given by:

⇡(s) = argmax
a2A

E (R(s0, s, a) + �V⇡(s0)) . (11.14)

Once the policy is updated, the process repeats, fixing this policy to update
the value function, and then using this updated value function to improve the
policy. The process is repeated until both the policy and the value function
converge to within a specified tolerance. It is important to note that this proce-
dure is both expensive and prone to finding local minima. It also resembles the
alternating descent method that is widely used in optimization and machine
learning.

The formulation in (11.13b) makes it clear that it may be possible to opti-
mize backwards from a state known to give a reward with high probability.
Additionally, this approach requires having a model for P and R to predict the
next state s

0, making this a model-based approach.

Value iteration
Value iteration is similar to policy iteration, except that at every iteration only
the value function is updated, and the optimal policy is extracted from this
value function at the end. First, the value function is initialized, typically either
with zeros or at random. Then, for all states s 2 S , the value function is updated
by returning the maximum value at that state across all actions a 2 A, holding
the value function fixed at all other states s

0 2 S\s:

V (s) = max
a

X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.15)

This iteration is repeated until a convergence criterion is met.
After the value function converges, it is possible to extract the optimizing

policy ⇡:

⇡(s, a) = argmax
a

X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.16)
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Although value iteration typically requires fewer steps per iteration, policy
iteration often converges in fewer iterations. This may be due to the fact that
the value function is often more complex than the policy function, requiring
more parameters to optimize over.

Note that the value function in RL typically refers to a discounted sum of
future rewards that should be maximized, while in nonlinear control it refers
to an integrated cost that should be minimized. The phrase value function is
particularly intuitive when referring to accumulated rewards in the economic
sense, as it quantifies the value of being in a given state. However, in the case
of nonlinear control theory, the value function is more accurately thought of as
quantifying the numerical value of the cost function evaluated on the optimal
trajectory. This notation can be confusing and is worth careful consideration
depending on the context.

Quality function
Both policy iteration and value iteration rely on the quality function Q(s, a),
which is defined as

Q(s, a) = E (R(s0, s, a) + �V (s0)) (11.17a)

=
X

s0

P (s0 | s, a) (R(s0, s, a) + �V (s0)) . (11.17b)

In a sense, the optimal policy ⇡(s, a) and the optimal value function V (s, a)
contain redundant information, as one can be determined from the other via
the quality function Q(s, a):

⇡(s, a) = argmax
a

Q(s, a) (11.18a)

V (s) = max
a

Q(s, a). (11.18b)

This formulation will be used for model-free Q-learning [757, 734, 244] in Sec-
tion 11.3.

11.3 Model-Free Reinforcement Learning and Q-Learning

Both policy iteration and value iteration above rely on the quality function
Q(s, a), which describes the joint desirability of a given state/action pair. Policy
iteration (11.14) and value iteration (11.15) are both model-based reinforcement
learning strategies, where it is assumed that the MDP model is known: each it-
eration requires a one-step look ahead, or model-based prediction of the next
state s

0 given the current state and action s and a. Based on this model, it is
possible to forecast and maximize over all possible actions.
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When a model is not available, there are several reinforcement learning ap-
proaches to learn effective decision and control policies to interact with the en-
vironment. Perhaps the most straightforward approach is to first learn a model
of the environment using some data-driven active learning strategy, and then
use the standard model-based approaches discussed earlier. However, this may
be infeasible for very large or particularly unstructured systems.

Q-learning is a leading model-free alternative, which learns the Q function
directly from experience, without requiring access to a model. Thus, it is pos-
sible to generalize many of the model-based optimization strategies above to
more unstructured settings, where a model is unavailable. The Q function has
the one-step look ahead implicitly built into its representation, without needing
to explicitly refer to a model. From this learned Q function, the optimal policy
and value function may be extracted as in (11.18).

Before discussing the mechanics of Q-learning in detail, it is helpful to in-
troduce several concepts, including Monte Carlo based learning and temporal
difference learning.

Monte Carlo learning
In the simplest approach to learning from experience, the value function V or
quality function Q may be learned through a Monte Carlo random sampling
of the state-action space through repeated evaluation of many policies. Monte
Carlo approaches require that the RL task is episodic, meaning that the task has
a defined start and terminates after a finite number of actions, resulting in a
total cumulative reward at the end of the episode. Games are good examples
of episodic RL tasks.

In Monte Carlo learning, the total cumulative reward at the end of the task
is used to estimate either the value function V or the quality function Q by
dividing the final reward equally among all of the intermediate states or state-
action pairs, respectively. This is the simplest possible approach to deal with
the credit assignment problem, as credit is shared equally among all interme-
diate steps. However, for this reason, Monte Carlo learning is typically quite
sample inefficient, especially for problems with sparse rewards.

Consider the case of Monte Carlo learning of the value function. Given
a new episode consisting of n steps, the cumulative discounted reward R⌃ is
computed

R⌃ =
nX

k=1

�k
rk (11.19)

and used to update the value function at every state sk visited in this episode:

V new(sk) = V old(sk) +
1

n

�
R⌃ � V old(sk)

�
8k 2 [1, · · · , n]. (11.20)
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This incremental update, weighted by 1/n, is equivalent to waiting until the
end of the episode and then updating the value function at all states along the
trajectory with an equal share of the reward. Similarly, in the case of Monte
Carlo learning of the Q function, the discounted reward R⌃ is used to update
the Q function at every state-action pair (sk, ak) visited in this episode:

Qnew(sk, ak) = Qold(sk, ak) +
1

n

�
R⌃ � Qold(sk, ak)

�
8k 2 [1, · · · , n]. (11.21)

In the limit of infinite data and infinite exploration, this approach will even-
tually sample all possible state-action pairs and converge to the true quality
function Q. However, in practice, this often amounts to an intractable brute-
force search.

It is also possible to discount past experiences by introducing a learning rate
↵ 2 [0, 1] and using this to update the Q function:

Qnew(sk, ak) = Qold(sk, ak) + ↵
�
R⌃ � Qold(sk, ak)

�
8k 2 [1, · · · , n]. (11.22)

Larger learning rates ↵ > 1/n will favor more recent experience.
There is a question about how to initialize the many episodes required to

learn with Monte Carlo. When possible, the episode will be initialized ran-
domly at every initial state or state-action pair, providing a random sampling;
however, this might not be possible for many learning tasks. Typically, Monte
Carlo learning is performed on-policy, meaning that the optimal policy is en-
acted, based on the current value or quality function, and the information from
this locally optimal policy is used for the update. It is also possible to promote
exploration by adding a small probability of taking a random action, rather
than the action dictated by the optimal policy. Finally, there are off-policy
Monte Carlo methods, but in general, they are quite inefficient or unfeasible.

Temporal difference (TD) learning
Temporal different learning [694, 711, 202, 712, 105], known as TD learning, is
another sample-based learning strategy. In contrast to Monte Carlo learning,
TD learning is not restricted to episodic tasks, but instead learns continuously
by bootstrapping based on current estimates of the value function V or quality
function Q, as in dynamic programming (e.g., as in value iteration in (11.15)).
TD learning is designed to mimic learning processes in animals, where time
delayed rewards are often learned through environmental cues that act as sec-
ondary reinforcers preceding the delayed reward; this is most popularly under-
stood through Pavlov’s dog [563]. Thus, TD learning is typically more sample
efficient than Monte Carlo learning, resulting in decreased variance, but at the
cost of a bias in the learning due to the bootstrapping.
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TD(0): 1-step look ahead

To understand TD learning, it is helpful to begin with the simplest algorithm:
TD(0). In TD(0), the estimate of the one-step-ahead future reward is used to
update the current value function.

Given a control trajectory generated through an optimal policy ⇡, the value
function at state sk is given by

V (sk) = E (rk + �V (sk+1)) . (11.23)

Thus, in the language of Bayesian statistics, rk+�V (sk+1) is an unbiased estimator
for V (sk).

For non-optimal policies ⇡, this same idea may be used to update the value
function based on the value function one step in the future:

V new(sk) = V old(sk) + ↵

TD errorz }| {0

B@rk + �V old(sk+1)| {z }
TD target estimates R⌃

�V old(sk)

1

CA . (11.24)

Instead of using a model to predicts sk+1, which is required to evaluate V (sk+1),
it is possible to wait until the next step is actually taken and retroactively adjust
the value function. Notice that this is very similar to optimization of the Bell-
man equation using dynamic programming but with retroactive updates based
on sampled data rather than proactive updates based on a model prediction.

In the TD(0) update above, the expression R⌃ = rk + �V (sk+1) is known
as the TD target, as it is the estimate for the future reward, analogous to R⌃ in
Monte Carlo learning of the Q function in (11.22). The difference between this
target and the previous estimate of the value function is the TD error, and it
is used to update the value function, just as in Monte Carlo learning, with a
learning rate ↵.

TD(n): n-step look ahead

Other temporal difference algorithms can be developed, based on multi-step
look-aheads into the future. For example, TD(1) uses a TD target based on two
steps into the future

rk + �rk+1 + �2V (sk+2) (11.25)

and, TD(n) uses a TD target based on n + 1 steps into the future

R(n)
⌃ = rk + �rk+1 + �2

rk+2 + · · · + �n
rk+n + �n+1V (sk+n+1) (11.26a)

=
nX

j=0

�j
rk+j + �n+1V (sk+n+1). (11.26b)
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Again, there does not need to be a model for these future states, but instead,
the value function may be retroactively adjusted based on the actual sampled
trajectory and rewards. Note that in the limit that an entire episode is used,
TD(n) converges to the Monte Carlo learning approach.

TD-�: Weighted look ahead

An important variant of the TD learning family is TD-�, which was introduced
by Sutton [694]. TD-� creates a TD target R�

⌃ that is a weighted average of the
various TD(n) targets R(n)

⌃ . The weighting is given by:

R�
⌃ = (1 � �)

1X

k=1

�n�1R(n)
⌃ (11.27)

and the update equation is

V new(sk) = V old(sk) + ↵
�
R�

⌃ � V old(sk)
�
. (11.28)

TD-� was used for an impressive demonstration in the game of Backgammon
by Tesauro in 1995 [712].

TD learning provides one of the strongest connections between reinforce-
ment learning and learning in biological systems. These neural circuits are be-
lieve to estimate the future reward, and feedback is based on the difference
between the expected reward and the actual reward, which is closely related
to the TD error. In fact, there are specific neurotransmitter feedback loops that
strengthen connections based on proximity of their firing to a dopamine re-
ward signal [657? ]. The closer the proximity in time between an action and a
reward, the stronger the feedback.

Bias-variance tradeoff

Monte Carlo learning and TD learning exemplify the bias-variance tradeoff in
machine learning. Monte Carlo learning typically has high variance but no
bias, while TD learning has lower variance but introduces a bias because of
the bootstrapping. Although the true TD target rk + �V (sk+1) is an unbiased
estimate of V (sk) for an optimal policy ⇡, the sampled TD target is a biased
estimate, because it uses sub-optimal actions and the current imperfect estimate
of the value function.

SARSA: State–action–reward–state–action learning
SARSA is a popular TD algorithm that is used to learn the Q function on-policy.
The Q update equation in SARSA(0) is nearly identical to the V update equation

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.



11.3. MODEL-FREE REINFORCEMENT LEARNING AND Q-LEARNING517

(11.24) in TD(0):

Qnew(sk, ak) = Qold(sk, ak) + ↵
�
rk + �Qold(sk+1, ak+1) � Qold(sk, ak)

�
. (11.29)

There are SARSA variants for all of the TD(n) algorithms, based on the n step
TD target:

R(n)
⌃ = rk + �rk+1 + �2

rk+2 + · · · + �n
rk+n + �n+1Q(sk+n+1, ak+n+1) (11.30a)

=
nX

j=0

�j
rk+j + �n+1Q(sk+n+1, ak+n+1). (11.30b)

In this case, the SARSA(n) update equation is given by

Qnew(sk, ak) = Qold(sk, ak) + ↵
⇣
R(n)

⌃ � Qold(sk, ak)
⌘

. (11.31)

Note that this is on-policy because the actual action sequence ak, ak+1, · · · , ak+n+1

has been used to receive the rewards r and evaluate the n + 1 step Q function
Q(sk+n+1, ak+n+1).

Q-Learning
We are now ready to discuss Q-learning [757, 734, 244], which is one of the most
central approaches in model-free RL. Q-learning is essentially an off-policy TD
learning scheme for the Q function. In Q-learning, the Q update equation is

Qnew (sk, ak) = Qold (sk, ak) + ↵
⇣
rk + � max

a
Q (sk+1, a) � Qold (sk, ak)

⌘
.

(11.32)

Notice that the only difference between Q-learning and SARSA(0) is that SARSA(0)
uses Q(sk+1, ak+1) for the TD target, while Q-learning uses maxa Q(sk+1, a) for
the TD target. Thus, SARSA(0) is considered on-policy because it uses the ac-
tion ak+1 based on the actual policy: ak+1 = ⇡(sk+1). In contrast, Q-learning is
off-policy because it uses the optimal a for the update based on the current es-
timate for Q, while taking a different action ak+1 based on a different behavior
policy. Thus, Q-learning may take sub-optimal actions ak+1 to explore, while
still using the optimal action a to update the Q function.

Generally, Q-learning will learn a more optimal solution faster than SARSA,
but with more variance in the solution. However, SARSA will typically yield
more cumulative rewards during the training process, since it is on-policy. In
safety critical applications, such as self-driving cars or other applications where
there can be catastrophic failure, SARSA will typically learn less optimal solu-
tions, but with a better safety margin, since it is maximizing on-policy rewards.
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Q-learning applies to discrete action spaces A and state spaces S governed
by a finite MDP. The Q function is classically represented as a table of Q values
that is updated through some iteration based on new information as a policy
is tested and evaluated. However, this tabular approach doesn’t scale well to
large state spaces, and so typically function approximation is used to represent
the Q function, such as a neural network in deep Q-learning. Even if the ac-
tion and state spaces are continuous, as in the pendulum on a cart system, it
is possible to discretize and then apply Q-learning. In addition to being model
free, Q-learning is also referred to as off-policy RL, as it does not require that an
optimal policy is enacted, as in policy iteration and value iteration. Off-policy
learning is more realistic in real-world applications, enabling the RL agent to
improve when its policy is sub-optimal and by watching and imitating other
more skilled agents. Q-learning is especially good for games, such as backgam-
mon, chess, and go. In particular, deep Q-learning, which approximates the
Q function using a deep neural network, has been used to surpass the world
champions in these challenging games.

Experience replay and imitation learning

Because Q-learning is off-policy, it is possible to learn from action-state se-
quences that do not use the current optimal policy. For example, it is possible
to store past experiences, such as previously played games, and replay these
experiences to further improve the Q function.

In an on-policy strategy, such as SARSA, using actions that are sub-optimal,
based on the current optimal policy, will degrade the Q function, since the TD
target will be a flawed estimate of future rewards based on a sub-optimal ac-
tion. However, in Q-learning, since the action is optimized over the current Q
function in the update, it is possible to learn from experience resulting from
sub-optimal actions. This also makes it possible to learn from watching other,
more experienced agents, which is related to imitation learning [637, 337, 351,
222].

Experience replay is deeply intuitive, as it is closely related to how we learn,
through recalling past experiences in the light of new knowledge (i.e., an up-
dated Q function). Similarly, imitation learning is perhaps one of the most fun-
damental first steps in biological learning.

Exploration vs exploitation: ✏-greedy actions

It is important to introduce an element of random exploration into Q-learning,
and there are several techniques. One approach is the ✏-greedy algorithm to
select the next action. In this approach, the agent takes the current optimal
action ak = maxa Q(sk, a), based on the current Q function, with probability
1 � ✏, where ✏ 2 [0, 1]. With probability ✏, the agent takes a random action.
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Thus, the agent balances exploration with the random actions and exploitation
with the optimal actions. Larger ✏ promote more random exploration.

Typically, the value of ✏ will be initialized to a large value, often ✏ = 1.
Throughout the course of training, ✏ decays so that as the Q function improves,
the agent increasingly takes the current optimal action. This is closely related
to simulated annealing from optimization, which mimics the process of metal
finding a low-energy state through a specific cooling schedule.

Policy Gradient Optimization
Policy gradients [696, 377, 672] are one of the most common and powerful tech-
niques to optimize a policy that is parameterized, as in (11.2). When the policy
⇡ is parameterized by ✓, it is possible to use gradient optimization on the pa-
rameters to improve the policy much faster than through traditional iteration.
The parameterization may be a multi-layer neural network, in which case this
would be a deep policy network, although other representations and function ap-
proximations may be useful. In any case, instead of extracting the policy as the
argument maximizing the value or quality functions, it is possible to directly
optimize the parameters ✓, for example through gradient descent or stochas-
tic gradient descent. The value function V⇡(s), depending on a policy ⇡ then
becomes V (s, ✓) and a similar modification is possible for the quality function
Q.

The total estimated reward is given by

R⌃,✓ =
X

s2S

µ✓(s)
X

a2A

⇡✓(s, a)Q(s, a), (11.33)

where µ✓ is the asymptotic steady state of the MDP given a policy ⇡✓ param-
eterized by ✓. It it then possible to compute the gradient of the total estimated
reward with respect to ✓

r✓R⌃,✓ =
X

s2S

µ✓(s)
X

a2A

Q(s, a)r✓⇡✓(s, a) (11.34a)

=
X

s2S

µ✓(s)
X

a2A

⇡✓(s, a)Q(s, a)
r✓⇡✓(s, a)

⇡✓(s, a)
(11.34b)

=
X

s2S

µ✓(s)
X

a2A

⇡✓(s, a)Q(s, a)r✓ log (⇡✓(s, a)) (11.34c)

= E (Q(s, a)r✓ log (⇡✓(s, a))) . (11.34d)

Then the policy parameters may be updated as

✓new = ✓old + ↵r✓R⌃,✓, (11.35)
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where ↵ is a the learning weight; note that ↵ may be replaced with a vector
of learning weights for each component of ✓. There are several approaches to
approximating this gradient, including through finite differences, the REIN-
FORCE algorithm [770], and natural policy gradients [377].

11.4 Deep Reinforcement Learning

Deep reinforcement learning is one of the most exciting areas of machine learn-
ing and of control theory, and it is one of the most promising avenues of re-
search towards generalized artificial intelligence. Deep learning has revolu-
tionized our ability to represent complex functions from data, providing a set
of architectures for achieving human level performance in complex tasks such
as image recognition and natural language processing. Classic reinforcement
learning suffers from a representation problem, as many of the relevant func-
tions, such as the policy ⇡, the value function V , and the quality function Q,
may be exceedingly complex functions defined over a very high dimensional
state and action space. Indeed, even for simple games, such as the 1972 Atari
game Pong, the black and white screen at standard resolution 336 ⇥ 240 has
over 1024,000 possible discrete states, making it infeasible to represent any of
these functions exactly without approximation. Thus, deep learning provides
a powerful tool for improving these representations.

It is possible to use deep learning in several different ways to approximate
the various functions used in RL, or to model the environment more generally.
Typically the central challenge is in identifying and representing key features
in a high-dimensional state space. For example, the policy ⇡(a, s) may now be
approximated by

⇡(s, a) ⇡ ⇡(s, a, ✓), (11.36)

where ✓ represent the weights of a neural network.
This pairing of deep learning for representations with reinforcement learn-

ing for decision making and control has resulted in dramatic improvements
to our capabilities of reinforcement learning. For example, Fig. 11.4 shows a
simple policy network designed to play Pong, and Fig. 11.5 shows a more gen-
eral deep convolutional neural network architecture used to develop a deep Q
network to play Atari games [519].

Much of what is discussed in this section is also relevant for other function
approximation techniques besides deep learning. For example, policy gradi-
ents may be computed and used for gradient-based optimization using other
representations, and there is a long history before deep learning [696, 377]. That
said, many of the most exciting and impressive recent demonstrations of RL
leverage the full power of deep learning, and so we present these innovations
in this context.
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Figure 11.4: Deep policy network to encode the probability of moving up in
the game of Pong. Reproduced with permission from Andrej Karpathy’s Blog “Deep
Reinforcement Learning: Pong from Pixels” at http://karpathy.github.io/
2016/05/31/rl/.

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learningprocedure throughout—takinghigh-dimensionaldata (210|160
colour video at 60Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputswithonlyveryminimalpriorknowledge (that is,merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradientdescent in a stablemanner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional humangames tester playingunder controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional humangames tester across the set of 49games, achievingmore
than75%of the human score onmore thanhalf of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in theMethods. The input to the neural
network consists of an 843 843 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0  20  40  60  80  100  120 140  160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0  20  40  60  80  100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n 

va
lu

e 
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0  20  40  60  80  100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  20  40  60  80  100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n 

va
lu

e 
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Figure 11.5: Convolutional structure of deep Q network used to play Atari
games. Reproduced with permission from [519].

Deep Q-learning

Many of the most exciting advances in the past decade have involved some
variation of deep Q-learning, which uses deep neural networks to represent the
quality function Q. As with the policy in (11.36), it is possible to approximate
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the Q function through some parameterization ✓

Q(s, a) ⇡ Q(s, a, ✓), (11.37)

where ✓ represents the weights of a deep neural network. In this represen-
tation, the training loss function is directly related to the standard Q-learning
update in (11.32):

L = E
⇣

rk + � max
a

Q(sk+1, ak+1, ✓) � Q(sk, ak, ✓)
⌘2
�

. (11.38)

The first part of the loss function, rk + � maxa Q(sk+1, ak+1, ✓), is the temporal
difference target from before, and the second part, Q(sk, ak, ✓), is the prediction.

Deep reinforcement learning based on a deep Q network (DQN) was in-
troduced by Mnih et al. [519] to play Atari games. Specifically, this network
used a deep convolutional neural network to represent the Q function, where
the inputs were the Atari screen, as shown in Fig. 11.5. In this original paper,
both the Q functions in (11.38) were represented by the same network weights
✓. However, in a double DQN [742], different networks are used to represent
the target and prediction Q functions, which reduces bias due to inaccuracies
early in training. In double DQN, it may be necessary to fix the target network
for multiple training iterations of the prediction network before updating to
improve stability and convergence [264].

Experience replay is a critical component of training a DQN, which is possi-
ble because it is an off-policy RL algorithm. Short segments of past experiences
are used in batches for the stochastic gradient descent during training. More-
over, to place more importance on experiences with large model mismatch, it
is possible to weight past experiences by the magnitude of the TD error. This
process is known as prioritized experience replay [642].

Dueling deep Q networks (DDQNs) [756] are another important deep Q
learning architecture that are used to improve training when actions have a
marginal affect on the quality function. In particular, a DDQN splits the quality
function into the sum of a value function and an advantage function A(s, a),
which quantifies the additional benefit of a particular action over the value of
being in that state:

Q(s, a, ✓) = V (s, ✓1) + A(s, a, ✓2). (11.39)

The value and advantage networks have separate networks that are combined
to estimate the Q function.

There are a variety of other useful architectures for deep Q learning, with
more introduced regularly. For example, deep recurrent Q networks are promis-
ing for dynamic problems [323]. Advantage actor-critic networks, discussed in
the next section, combine the DDQN with deep policy networks.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.



11.4. DEEP REINFORCEMENT LEARNING 523

Actor-critic networks
Actor-critic methods in reinforcement learning simultaneously learn a policy
function and a value function, with the goal of taking the best of both value-
based and policy-based learning. The basic idea is to have an actor, which
is policy-based, and a critic, which is value-based, and to use the temporal
difference signal from the critic to update the policy parameters. There are
many actor-critic methods that predate deep learning. For example, a simple
actor-critic approach would update the policy parameters ✓ in (11.36) using the
temporal difference error rk + �V (sk+1) � V (sk):

✓k+1 = ✓k + ↵ (rk + �V (sk+1) � V (sk)) . (11.40)

It is rather straightforward to incorporate deep learning into an actor-critic
framework. For example, in the advantage actor critic (A2C) network, the actor
is a deep policy network, and the critic is a DDQNs. In this case, the update is
given by

✓k+1 = ✓k + ↵r✓ ((log ⇡(sk, ak, ✓)) Q(sk, ak, ✓2)) . (11.41)

Challenges and Additional Techniques
There are several important innovations that are necessary to make reinforce-
ment learning tractable for even moderately challenging tasks. Two of the
biggest challenges in RL are: 1) high-dimensional state and action spaces, and
2) sparse and delayed rewards.

Many games, such as chess and go, have exceedingly large state spaces.
For example, Claude Shannon estimated the number of games of chess, known
as the Shannon number, at around 10120 in his famous paper “Programming a
computer for playing chess” [666]; this paper was a major inspiration for mod-
ern dynamic programming and reinforcement learning. Representing a value
or quality function, let alone sampling over these states, is beyond astronomi-
cally difficult. Thus, approximate representations of the value or quality func-
tions using approximation theory, such as deep neural networks, are necessary.

Sparse and delayed rewards represent the central challenge of reinforce-
ment learning, leading to the well-known credit assignment problem, which
we have seen multiple times at this point. The following techniques, includ-
ing reward shaping and hindsight experience replay, are leading techniques to
overcome the credit assignment problem.

Reward shaping

Perhaps the most standard approach for systems with sparse rewards is a tech-
nique called reward shaping. This involves designing customized proxy fea-
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tures that are indicative of a future reward and that may be used as an inter-
mediate reward signal. For example, in the game of chess, the relative point
count, where each piece is assigned a numeric value and added up (e.g., a
queen is worth 10 points, rooks are worth 5, knights and bishops are worth
3, and pawns are worth 1 point), is an example of a shaped reward that gives
an intermediate reward signal each time a piece is taken.

Reward shaping is quite common and can be very effective. However,
these rewards require expert human guidance to design, and this requires cus-
tomized effort for each new task. Thus, reward shaping is not a viable strat-
egy for a generalized artificial intelligence agent capable of learning multiple
games or tasks. In addition, reward shaping generally limits the upper end of
the agent’s performance to that of the human expert.

Hindsight experience replay

In many tasks, such as robotic manipulation, the goal is to move the robot or
an object from one location to another. For example, consider a robot arm that
is required to slide an object on a table from point A to point B. Without a de-
tailed physical model, or other prior knowledge, it is extremely unlikely that
a random control policy will result in the object actually reaching the desired
destination, so the rewards may be very sparse. It is possible to shape a re-
ward based on the distance of the object to the goal state, although this is not a
general strategy and suffers from the limitations discussed above.

Hindsight experience replay (HER) [22, 438] is a strategy that enriches the
reward signal by taking failed trials and pretending that they were successful at
a different task. This approach makes the reward structure much more dense,
and has the benefit of enabling the simultaneous learning of a whole family of
motion tasks.

HER is quite intuitive in the context of human learning, for example in the
case of tennis. Initially, it is difficult to aim the ball, shots often go wild when
learning. However, this provides valuable information about those muscle ac-
tions, which might be useful for future tasks. After lots of practice, it then
becomes possible to pick from different shots and place the ball more deliber-
ately.

Curiosity driven exploration

Another challenge with RL for large open-world environments is that the agent
may easily get stuck in a local minima, where it over-optimizes for a small re-
gion of state space. One approach to this problem is to augment the reward
signal with a novelty reward that is large in regions of state space that are not
well modeled. This is known as curiosity driven exploration [562], and it in-
volves an intrinsic curiosity module (ICM), which compares a forward model
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of the evolution of the state, or a latent representation of the state, with the ac-
tual observed evolution. The discrepancy between the model and the actual
dynamics is the novelty reward. When this difference is large, the agent be-
comes curious and explores this region more. There are similarities between
this approach and TD learning, and in fact, many of the same variations may
be implemented for curiosity driven exploration. The main difference is that in
TD learning, the reward discrepancy is used as feedback to improve the value
or quality function, while in curiosity driven exploration the discrepancy is
explicitly used as an additional reward signal. This is a clever approach to em-
bedding this fundamental behavior of intelligent biological learning systems,
to be curious and explore.

There are challenges when using this novelty reward for chaotic and stochas-
tically driven systems, where there are aspects of the state evolution that are
fundamentally unpredictable. A naive novelty reward would constantly pro-
vide positive incentive to explore these regions, since the forward model will
not improve. Instead, the authors in [562] overcome this challenge by predi-
cating novelty on the predictability of an outcome given the action using latent
features in an autoencoder, so only aspects of the future state that can be af-
fected by the agent’s actions are included in the novelty signal.

11.5 Applications and Environments

Here we provide a brief overview of some of the modern applications and suc-
cess stories of RL, along with some common environments.

OpenAI Gym
The OpenAI Gym is an incredible open source resource to develop and test
reinforcement learning algorithms in a wide range of environments. Fig. 11.6
shows a small selection of these systems. Example environments include

• Classic Atari video games: over 100 tasks on Atari 2600 games, including
asteroids, breakout, space invaders, and many others.

• Classic control benchmarks: tasks include balancing an inverted pendu-
lum on a cart; swing-up of a pendulum; swing-up of a double pendulum;
and driving up a hill with an underactuated system.

• Goal-based robotics [780]: tasks include pushing or fetching a block to a
goal position with a robot arm, with and without sliding after loss of con-
tact; robotic hand manipulation for reaching a pose or orienting various
objects.
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• MuJoCo [718]: tasks include multi-legged locomotion, running, hopping,
swimming, etc. within a fast physics simulator environment.

This wide range of environments and tasks provides an invaluable resource for
RL researchers, dramatically lowering the barrier to entry and facilitating the
benchmarking and comparison of innovations.

Classic board games
As discussed throughout this chapter, RL has developed tremendously over
the past half century, from a biologically inspired idea to a major field pushing
the forefront of efforts in generalized artificial intelligence. This progress can
be largely traced through the success of RL on increasingly challenging games,
where RL has learned to interact with and mimic humans, and eventually to
defeat our greatest grandmasters.

Many of the most fundamental advances in RL were either developed for
the purpose of playing games, or demonstrated on the most challenging games
of the time. These simple board games also make the struggles of machine
learning and artificial intelligence more relatable to humans2, as we can reflect
on our own experiences learning first how to play tic-tac-toe, then checkers,
and then eventually “real” games, such as backgammon, chess, and go. The
progression of RL capabilities roughly follows this progression of complexity,
with tic-tac-toe being essentially a homework exercise, checkers being the earli-
est real demonstration of RL by Arthur Samuel [628], and more complex games
such as backgammon [712] and eventually chess and go [670, 673] following.
Interestingly, about three decades passed between each of these definitive land-
marks. One of the next major landmarks is a generalist RL agent that can learn
to play multiple games [671], rather than specializing in only one task.

The success of DeepMind’s AlphaGo and AlphaGo Zero, depicted in Fig. 11.7,
demonstrates the remarkable power of modern RL. This system was a major
breakthrough in RL research, learning to beat the Grandmaster Lee Sedol 4-1
in 2016. However, AlphaGo relied heavily on reward shaping and expert guid-
ance, making it a custom solution, rather than a generalized learner. Its suc-
cessor, AlphaGo Zero, relied entirely on self-play, and was able to eventually
defeat the original AlphaGo decisively. AlphaGo was based largely on CNNs,
while AlphaGo Zero used a residual network (ResNet). ResNets are easier to
train, and AlphaGo Zero was one of the first concrete success stories that ce-
mented ResNets as a competitive architecture. AlphaGo Zero was trained in
40 days on 4 tensor processing units, in contrast to many advanced ML algo-
rithms that are trained for months on thousands of GPUs. Both AlphaGo and

2“A strange game. The only winning move is not to play. How about a nice game of chess?”
– WarGames, 1983
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Figure 11.6: The OpenAI Gym [121] (gym.openai.com) provides a flexible
simulation environment to test learning strategies. Examples include classic
Atari 2600 video games and simulated rule-based control environments, in-
cluding open world physics [718], and robotics [780]. Other examples include
classic control benchmarks.
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https://www.flickr.com/photos/erikbenson/25717574115

Figure 11.7: Reinforcement learning has demonstrated incredible performance
in recent expert tasks, such as AlphaGo defeating world champion Lee Sedol
in the game of Go [671] on March 19, 2016.

AlphaGo Zero are based on using deep learning to improve a Monte Carlo tree
search.

Video games

Some of the most impressive recent innovations in RL have involved scaling up
to larger input spaces, which are well-exemplified by the ability of RL to mas-
ter classic Atari video games [519]. In the case of Atari games, the pixel space
is processed using a CNN architecture, with human-level performance being
achieved mere years after the birth of modern deep learning for image classifi-
cation [423]. More recently, RL has been demonstrated on more sophisticated
games, such as StarCraft [747], which is a real-time strategy game; DeepMind’s
AlphaStar became a Grandmaster in 2019.

General artificial intelligence is one of the grand challenge problems in mod-
ern machine learning, whereby a learning agent is able to excel at multiple
tasks, as in biological systems. What is perhaps most impressive about recent
RL agents that learn video games is that the learning approach is general, so that
the same RL framework can be used to learn multiple tasks. There is evidence
that video games may improve performance in human surgeons [619, 478],
and it may be that future RL agents will master both robotic manipulation and
video games in a next stage of generalized AI.
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Figure 11.8: Illustration of improved bipedal locomotion performance with
more generations of learning. Reproduced from Geijtenbeek et al. [277].

Physical systems

Although much of RL has been developed for board games and video games,
it is increasingly being used for various advanced modeling and control tasks
in physical systems. Physical systems, such as lasers [690] and fluids [595],
often require additional considerations, such as continuous state and action
spaces [601], and the need for certifiable solutions, such as trust regions [656],
for safety critical applications (e.g., transportation, autonomous flight, etc.).

There has been considerable work applying RL in the field of fluid dynam-
ics [132] for fluid flow control [308, 577, 594, 595], for example for bluff body
control [247] and controlling Rayleigh-Bénard convection [67]. RL has also been
applied to the related problem of navigation in a fluid environment [184, 86,
310], and more recently for turbulence modeling [543].

In addition to studying fluids, there is an extensive literature using RL to
develop control policies for real and simulated robotic systems that operate
primarily in a fluid environment, for example to learn how to fly and swim.
For example, some of the earliest work has involved optimizing the flight of
uninhabited aerial vehicles [395, 2, 710, 1, 785, 551, 603] with especially impres-
sive helicopter aerobatics [2]. Controlling the motion of fish [274, 275, 545, 745]
is another major area of development, including individual [274]and collective
motion [275, 545, 745]. Gliding and perching is another large area of develop-
ment [602, 603, 544].
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Robotics and Autonomy
Robotics [404, 306] and autonomy [664, 627, 558, 604] are two of the largest ar-
eas of current research in RL. These both count as physical systems, as in the
section above, but deserve their own treatment, as these are major areas of in-
novation. In fact, both robotics and autonomy may be viewed as two of the
most pressing societal applications of machine learning in general, and rein-
forcement learning in particular, with self driving cars alone promising to re-
make the modern transportation and energy landscape. As with the discussion
of physical systems above, these are typically safety critical applications with
physical constraints [440, 708]. Figure 11.8 shows a virtual locomotion task that
involves learning physics in a robot walker.

11.6 Optimal Nonlinear Control

Reinforcement learning has considerable overlap with optimal nonlinear con-
trol, and historically they were developed in parallel under the same optimiza-
tion framework. Here we provide a brief overview of optimal nonlinear control
theory, which will provide a connection between the classic linear control the-
ory from Chapter 8 and dynamic programming to solve Bellman’s equations
used in this chapter. We have already seen optimal control in context of lin-
ear dynamics and quadratic cost functions in Section 8.4, resulting in the linear
quadratic regulator (LQR). Similarly, we have used Bellman’s equations to find
optimal policies in RL for systems governed by MDPs. A major goal of this
section is to provide a more general mathematical treatment of Bellman’s equa-
tions, extending these approaches to fully nonlinear optimal control problems.
However, this section is very technical and departs from the MDP notation
used throughout the rest of the chapter; it may be omitted on a first reading.
For more details, see the excellent text by Stengel [687].

Hamilton-Jacobi-Bellman equation
In optimal control, the goal is often to find a control input u(t) to drive a dy-
namical system

d

dt
x = f(x(t),u(t), t) dt (11.42)

to follow a trajectory x(t) that minimizes a cost function

J(x(t),u(t), t0, tf ) = Q(x(tf ), tf ) +

Z tf

t0

L(x(⌧),u(⌧)) d⌧. (11.43)
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Note that this formulation in (11.43) generalizes the LQR cost function in (8.47);
now the immediate cost function L(x,u) and the terminal cost Q(x(tf ), tf ) may
be non-quadratic functions. Often there are also constraints on the state x and
control u, which determine what solutions are admissible.

Given an initial state x0 = x(t0) at t0, an optimal control u(t) will result in
an optimal cost function J . We may define a value function V (x, t0, tf ) that de-
scribes the total integrated cost starting at this position x assuming the control
law is optimal:

V (x(t0), t0, tf ) = min
u(t)

J(x(t),u(t), t0, tf ), (11.44)

where x(t) is the solution to (11.42) for the optimal u(t). Notice that the value
function is no longer a function of the control u(t), as this has been optimized
over, and it is also not a function of a trajectory x(t), but rather of an initial
state x0, as the remainder of the trajectory is entirely specified by the dynamics
and the optimal control law. The value function is often called the cost-to-go in
control theory, as the value function evaluated at any point x(t) on an optimal
trajectory will represent the remaining cost associated with continuing to enact
this optimal policy until the final time tf . In fact, this is a statement of Bellman’s
optimality principle, that the value function V remains optimal starting with
any point on an optimal trajectory.

The Hamilton-Jacobi-Bellman3 (HJB) equation establishes a partial differen-
tial equation that must be satisfied by the value function V (x(t), t, tf ) at every
intermediate time t 2 [t0, tf ]:

�@V

@t
= min

u(t)

 ✓
@V

@x

◆T

f(x(t),u(t)) + L(x(t),u(t))

!
. (11.45)

To derive the HJB equation, we may compute the total time derivative of

3Kalman recognized that the Bellman optimal control formulation was a generalization of
the Hamilton-Jacobi equation from classical mechanics to handle stochastic input–output sys-
tems. These formulations all involve the calculus of variations, which traces its roots back to
the Brachistichrone problem of Johann Bernoulli.
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the value function V (x(t), t, tf ) at some intermediate time t:

d

dt
V (x(t), t, tf ) =

@V

@t
+

✓
@V

@x

◆T dx

dt
(11.46a)

= min
u(t)

d

dt

✓Z tf

0

L(x(⌧),u(⌧)) d⌧ + Q(x(tf ), tf )

◆
(11.46b)

= min
u(t)

0

BBB@
d

dt

Z tf

0

L(x(⌧),u(⌧)) d⌧
| {z }

�L(x(t),u(t))

1

CCCA
(11.46c)

=) �@V

@t
= min

u(t)

 ✓
@V

@x

◆T

f(x,u) + L(x,u)

!
. (11.46d)

Note that the terminal cost does not vary with t, so it has zero time derivative.
The derivative of the integral of the instantaneous cost

R tf
t L(x(⌧),u(⌧)) d⌧ is

equal to �L(x(t),u(t)) by the first fundamental theorem of calculus. Finally, the
term (@V/@x)T

f(x,u) may be brought into the minimization argument, since V
is already defined as the optimal cost over u. The LQR optimal Riccati equation
is a special case of the HJB equation, and the vector of partial derivatives in
(@J/@x) serves the same role of the Lagrange multiplier co-state �. The HJB
equation may also be more intuitive in vector calculus notation

�@V

@t
= min

u(t)
(rV · f(x(t),u(t)) + L(x(t),u(t))) . (11.47)

The HJB formulation above relies implicitly on Bellman’s principle of opti-
mality, that for any point on an optimal trajectory x(t), the value function V is
still optimal for the remainder of the trajectory:

V (x(t), t, tf ) = min
u

✓Z tf

t

L(x(⌧),u(⌧)) d⌧ + Q(x(tf ), tf )

◆
. (11.48)

One outcome is that the value function can be decomposed as:

V (x(t0), t0, tf ) = V (x(t0), t0, t) + V (x(t), t, tf ). (11.49)

This makes it possible to take the total time derivative above. A more rigorous
derivation is possible using the calculus of variations.

The HJB equation is incredibly powerful, providing a PDE for the optimal
solution of general nonlinear control problems. Typically, the HJB equation is
solved numerically as a two-point boundary value problem, with boundary
conditions x(0) = x0 and V (x(tf ), tf ) = Q(x(tf ), tf ), for example using a shoot-
ing method. However, a nonlinear control problem with a three-dimensional
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state vector x 2 R3 will result in a three-dimensional PDE. Thus, optimal non-
linear control based on the HJB equation typically suffers from the curse of
dimensionality. Phase-space clustering techniques have shown great promise
in reducing the effective state-space dimension for systems that evolve on a
low-dimensional attractor [376].

Discrete-time HJB and the Bellman equation
Bellman’s optimal control is especially intuitive for discrete-time systems, where
instead of optimizing over a function, we optimize over a discrete control se-
quence. Consider a discrete-time dynamical system

xk+1 = F(xk,uk). (11.50)

The cost is now given by

J(x0, {uk}n
k=0 , n) =

nX

k=0

L(xk,uk) + Q(xn, tn). (11.51)

Similarly, the value function is defined as the value of the cumulative cost func-
tion, starting at a point x0 assuming an optimal control policy u:

V (x0, n) = min
{uk}n

k=0

J(x0, {uk}n
k=0 , n). (11.52)

Again, Bellman’s principle of optimality states that an optimal control policy
has the property that at any point along the optimal trajectory x(t), the remain-
ing control policy is optimal with respect to this new initial state. Mathemati-
cally,

V (x0, n) = V (x0, k) + V (xk, n) 8k 2 (0, n). (11.53)

Thus, the value at an intermediate time step k may be written as

V (xk, n) =

✓
min
uk

L(xk,uk)

◆
+ V (xk+1, n)| {z }

s.t. xk+1=F(xk,uk)

(11.54a)

= min
uk

(L(xk,uk) + V (F(xk,uk), n)) . (11.54b)

It is also possible, given a value function V (xk, n), to determine the next optimal
control action uk by returning the uk that minimizes the above expression. This
defines an optimal policy u = ⇡(x). Dropping the functional dependence of V
on the end time, we then have

V (x) = min
u

(L(x,u) + V (F(x,u))) (11.55a)

⇡(x) = argmin
u

(L(x,u) + V (F(x,u))) . (11.55b)
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These form the Bellman equations.
Note that we have explicitly include the terminal time tf in the terminal cost

Q(xn, tn) and Q(x(tf ), tf ), as it there are situations when the arrival time should
be minimized. However, it is also possible to include the time explicitly in the
immediate cost L(x,u, t), for example to include a discount function e��t for
future costs or rewards.
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Suggested reading
Texts

(1) Reinforcement learning: An introduction, by R. S. Sutton and A. G. Barto,
1998 [695].

Papers and reviews

(1) Q-learning, by C. Watkins and P. Dayan, Machine Learning, 1992 [757].

(2) TD (�) converges with probability 1, by P. Dayan and T. J. Sejnowski, Ma-
chine Learning, 1994 [202].

(3) Human-level control through deep reinforcement learning, by V. Mnih et
al., Nature, 2015 [519].

(4) Mastering the game of go without human knowledge, by D. Silver et al.,
Nature, 2017 [673].

(5) A tour of reinforcement learning: The view from continuous control,
by B. Recht, Annual Review of Control, Robotics, and Autonomous Systems,
2019 [601].

Blogs and lectures

(1) Deep Reinforcement Learning: Pong from Pixels, by A. Karpathy, http:
//karpathy.github.io/2016/05/31/rl/.

(2) Introduction to Reinforcement Learning with David Silver, by D. Silver,
https://www.youtube.com/playlist?list=PLqYmG7hTraZBiG_
XpjnPrSNw-1XQaM_gB
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Homework

Exercise RL-1. This example will explore reinforcement learning on the game
of tic-tac-toe. First, describe the states, actions, and rewards.

Next, design a policy iteration algorithm to optimize the policy ⇡. Begin with a
randomly chosen policy. Plot the value function on the board and describe the
optimal policy.

How many policy iterations are required before the policy and value function
converge? How many games were played at each policy iteration? Is this con-
sistent with what you would expect a human learning would do?

Is there any structure or symmetry in the game that could be used to improve
the learning rate? Implement a policy iteration that exploits this structure, and
determine how many policy iterations are required before converging and how
many games played per policy iteration.

Exercise RL-2. Repeat the above example using value iteration instead of pol-
icy iteration. Compare the number of iterations in both methods, along with
the total training time.

Exercise RL-3. This exercise will develop a reinforcement learning controller
for the fluid flow past a cylinder. There are several open-source codes that
can be used to simulate simple fluid flows, such as the IBPM code at https:
//github.com/cwrowley/ibpm/.

Use reinforcement learning to develop a control law to force the cylinder wake
to be symmetric. Describe the reward structure and what learning framework
you chose. Also plot your results, including learning rates, performance, etc.
How long did it take to train this controller (i.e., how many computational iter-
ations, how much CPU time, etc.)?

Now, assume that the RL agent only has access to the lift and drag coefficients,
CL and CD. Design an RL scheme to track a given reference lift value, say
CL = 1 or CL = �1. See if you can make your controller track a reference that
switches between these values. What if the reference lift is much larger, say
CL = 2 or CL = 5?

Exercise RL-4. Install the AI Gym API and develop an RL controller for the
classic control example of a pendulum on a cart. Explore different RL strate-
gies.
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[279] P. Gelß, S. Klus, J. Eisert, and C. Schütte. Multidimensional approximation of nonlinear
dynamical systems. Journal of Computational and Nonlinear Dynamics, 14(6), 2019.

[280] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination
cone models for face recognition under variable lighting and pose. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 23(6):643–660, 2001.

[281] J. J. Gerbrands. On the relationships between SVD, KLT and PCA. Pattern recognition,
14(1):375–381, 1981.

[282] A. C. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE,
98(6):937–947, 2010.

[283] A. C. Gilbert, J. Y. Park, and M. B. Wakin. Sketched SVD: Recovering spectral features
from compressive measurements. ArXiv e-prints, 2012.

[284] A. C. Gilbert, M. J. Strauss, and J. A. Tropp. A tutorial on fast Fourier sampling. IEEE
Signal Processing Magazine, pages 57–66, 2008.

[285] C. Gin, B. Lusch, S. L. Brunton, and J. N. Kutz. Deep learning models for global coordi-
nate transformations that linearise PDEs. European Journal of Applied Mathematics, pages
1–25, 2020.

[286] C. Gin, B. Lusch, S. L. Brunton, and J. N. Kutz. Deep learning models for global co-
ordinate transformations that linearise pdes. European Journal of Applied Mathematics,
32(3):515–539, 2021.

[287] C. R. Gin, D. E. Shea, S. L. Brunton, and J. N. Kutz. Deepgreen: Deep learning of green’s
functions for nonlinear boundary value problems. arXiv preprint arXiv:2101.07206, 2020.

[288] B. Glaz, L. Liu, and P. P. Friedmann. Reduced-order nonlinear unsteady aerodynamic
modeling using a surrogate-based recurrence framework. AIAA journal, 48(10):2418–
2429, 2010.

[289] P. J. Goddard and K. Glover. Controller approximation: approaches for preserving H1
performance. IEEE Transactions on Automatic Control, 43(7):858–871, 1998.

[290] D. E. Goldberg. Genetic algorithms. Pearson Education India, 2006.
[291] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a ma-

trix. Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical Analysis,
2(2):205–224, 1965.

[292] G. Golub, S. Nash, and C. Van Loan. A Hessenberg-Schur method for the problem ax +
xb = c. IEEE Transactions on Automatic Control, 24(6):909–913, 1979.

[293] G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions.

Copyright © 2021 Brunton & Kutz, Cambridge University Press. All Rights Reserved.



BIBLIOGRAPHY 677

Numerical Mathematics, 14:403–420, 1970.
[294] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press, 2012.
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[401] S. Klus, F. Nüske, and B. Hamzi. Kernel-based approximation of the koopman generator
and schrödinger operator. Entropy, 22(7):722, 2020.
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expansion for systems with symmetry. Physica D: Nonlinear Phenomena, 142(1):1–19, 2000.
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